2012届中考数学实数的有关概念专题复习
中考数学专题复习资料数与式

第一轮中考复习——数及式知识梳理:一.实数和代数式的有关概念 1.实数分类:实数⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数2.数轴:规定了原点、正方向和单位长度的直线。
数轴上所有的点及全体实数是一一对应关系,即每个实数都可以用数轴上的一个点表示;反过来,数轴上的每一个点都表示一个实数。
3.相反数:只有符号不同的两个数叫做互为相反数。
0的相反数是0。
数轴上,表示互为相反数的两个点位于原点的两边(0除外),并且及原点的距离相等。
4.倒数:1除以一个数的商,叫做这个数的倒数。
一般地,实数a 的倒数为a1。
0没有倒数。
两个互为倒数的数之积为1.反之,若两个数之积为1,则这两个数必互为倒数。
5.绝对值:一个正实数的绝对值等于它本身,零的绝对值等于零,负实数的绝对值等于它的相反数。
a =,绝对值的几何意义:数轴上表示一个数到原点的距离。
6.实数大小的比较:在数轴上表示的两个数,右边的数总比左边的数大。
(1)正数大于零,零大于负数。
(2)两正数相比较绝对值大的数大,绝对值小的数小。
(3)两负数相比较绝对值大的数反而小,绝对值大小的数反而大。
(4)对于任意两个实数a 和b ,①a>b,②a=b,③a<b,这三种情况必有一种成立,而且只能有一种成立。
7.代数式:用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连结而成的式子,叫代数式。
单独的一个数或字母也是代数式。
8.整式:单项式及多项式统称为整式。
单项式:只含有数及字母乘积形式的代数式叫做单项式。
一个数或一个字母也是单项式。
单项式中数字因数叫做这个单项式的系数。
一个单项式中所有字母的指数的和叫做这个单项式的次数。
多项式:几个单项式的代数和多项式。
在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项。
2012年中考数学复习第二轮资料《专题复习精品资料》

2012年中考数学复习第二轮资料《专题复习部分》中考数学二轮专题复习之一:配方法与换元法把代数式通过凑配等手段,得到完全平方式,再运用完全平方式是非负数这一性质达到增加问题的条件的目的,这种解题方法叫配方法.所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
【范例讲析】: 例1: 填空题:1).将二次三项式x 2+2x -2进行配方,其结果为 。
2).方程x 2+y 2+4x -2y+5=0的解是 。
3).已知M=x 2-8x+22,N=-x 2+6x -3,则M 、N 的大小关系为 。
例 2.已知△ABC 的三边分别为a 、b 、c ,且a 2+b 2+c 2=ab+bc+ac ,则△ABC 的形状为 。
例3.解方程:422740x x --=【闯关夺冠】 1.已知13x x +=.则221x x+的值为__________. 2.若a 、b 、c 是三角形的三边长,则代数式a 2–2ab+b 2–c 2的值 ( ) A 大于零 B 等于零 C 小于零 D 不能确定 3已知:a 、b 为实数,且a 2+4b 2-2a+4b+2=0,求4a 2-b1的值。
4. 解方程:211()65()11x x +=--77中考数学专题复习之二:待定系数法对于某些数学问题,若得知所求结果具有某种确定的形式,则可研究和引入一些尚待确定的系数(或参数)来表示这样的结果.通过变形与比较.建立起含有待定字母系数(或参数)的方程(组),并求出相应字母系数(或参数)的值,进而使问题获解.这种方法称为待定系数法.【范例讲析】:【例1】二次函数的图象经过A(1,0)、B(3,0)、C(2,-1)三点.(1)求这个函数的解析式.(2)求函数与直线y=-x+1的交点坐标.【例2】一次函数的图象经过反比例函数xy 8-=的图象上的A 、B 两点,且点A 的横坐标与点B 的纵坐标都是2。
中考数学考点系统复习 第一章 数与式 第一节 实 数

(6)一个整数 3 212…0 用科学记数法表示为 3.212×108,则原数中“0”
有 5 5 个.
(7)(9.6×106)×(1.5×105)运算结果用科学记数法表示为 1.14.44×4×10112. 012
8.(数学文化)《九章算术》中注有“今两算得失相反,要令正负以名之”,
意思是:今有两数,若其意义相反,则分别叫做正数与负数.若气温为
(2)数据 2 000 000 用科学记数法表示为 2×10n,则 n= 6 6.
(3)用科学记数法表示的数是 1.69×105,则原来的数是 161969 000.
(4)2.05×10-3 用小数表示为 0.0.0000 205.
000
(5)把 0.081 3 写成 a×10n(1≤a≤20150,n 为整数)的形式,则 a 为 8 8.1.313.
命题点 1:实数的有关概念(近 6 年考查 2 次)
1.(2017·安徽第 1 题 4 分)12的相反数是
1
1
A.2 B.-2 C. 2 D.-2
( B)
2.(2013·安徽第 1 题 4 分)-2 的倒数是 A.-12 B.12 C.2 D.-2
(A)
3.(2021·安徽第 1 题 4 分)-9 的绝对值是 A.9 B.-9 C.19 D.-19
零上 10 ℃记作“+10 ℃”,则“-3 ℃”表示气温为
( B)
A.零上 3 ℃ B.零下 3 ℃ C.零上 7 ℃ D.零下 7 ℃
【考情分析】安徽近 6 年主要以填空题、选择题的形式考查实数的概念 及实数的大小比较;结合实际问题考查科学记数法;结合绝对值、算术 平方根、负指数幂等考查实数的混合运算.
(2)-122=
中考数学专题复习数与式概念与运算方法

中考数学专题复习数与式的概念和 运算方法
·人教版
第1课时 │归类示例
归类示例
类型之一 实数的概念及分类
命题角度: 1.有理数与无理数的概念 2.实数的分类
22 实数 7 ,sin)0,3 -8,
12,|-
中考数学专题复习数与式的概念和 运算方法
·人教版
第1课时 │归类示例
(1)求一个数的相反数,直接在这个数的前面加上负号, 有时需要化简得出.
(2)负数的绝对值等于它的相反数.反过来,一个数的绝 对值等于它的相反数,则这个数是非正数.
(3)解有关绝对值和数轴的问题时常用到字母表示数的思 想、分类讨论思想和数形结合思想.
(2)相反数等于它本身的数是零,即若 a=-a,则 a=0.
3.倒数:__乘__积____是 1 的两个数互为倒数. [注意] 零是唯一没有倒数的数,倒数等于本身的数是 1 或-1.
中考数学专题复习数与式的概念和 运算方法
·人教版
第1课时 │考点聚焦
4.绝对值:数轴上表示数 a 的点与原点的_距__离___,记作|a|.
中考数学专题复习数与式的概念和 运算方法
·人教版
第1课时 │考点聚焦
考点聚焦
考点1 实数的概念及分类
1.按定义分类
有理数整数负整正零数整数
自然数
实数
分数
正 负分 分数 数有限小数或无限循环小数
无理数 正 负无 无理 理数 数无限不循环小数
中考数学专题复习数与式的概念和
运算方法
·人教版
第1课时 │考点聚焦
(2)对于带单位的近似数,则由近似数的位数和后面的单位共同确 定.如近似数 3.618 精确到千分位,3.618 万,数字 8 实际上是十位上 的数字,即精确到十位.
中考数学课后强化训练:第1课《实数的有关概念》ppt-课件

移动 5 次后该点对应的数为-5+12=7,到原点的距离为 7; …… ∴移动(2n-1)次后该点到原点的距离为 3n-2,移动 2n 次后该点到原点 的距离为 3n-1. ①当 3n-2≥41 时,n≥433. ∵n 是正整数,∴n 的最小值为 15,此时移动了 29 次. ②当 3n-1≥41 时,n≥14. ∵n 是正整数,∴n 的最小值为 14,此时移动了 28 次. 综上所述,至少移动 28 次后该点到原点的距离不小于 41.
(第 7 题图) B. 点 A 与点 C D. 点 B 与点 C
8.有理数 a,b 在数轴上的位置如图所示,有:①a-b>0;②a+b>0; ③1a>1b;④b-a>0.其中正确的个数是( B )
(第 8 题图)
A. 1 个
B. 2 个
C. 3 个
D. 4 个
9.把下列各数填入相应的括号里:
0, 8, 4,3.1415926,sin 60°,-2, 3, 3-1,272,0.1010010001…
(第 14 题图) 解:墨迹盖住的整数共有(238-23)+[(-52)-(-188)]=215+136= 351(个),相反数有-(52)-(-188)=136(对).
15.若|x|=3,|y|=2,且 x>y,求 x+y 的值.
解:由题意,得 x=3,y=2 或-2,∴x+y=5 或 1.
16.如图,点 A 的初始位置位于数轴上的原点,现对点 A 做如下移动: 第 1 次从原点向右移动 1 个单位长度至点 B,第 2 次从点 B 向左移动 3 个单 位长度至点 C,第 3 次从点 C 向右移动 6 个单位长度至点 D,第 4 次从点 D 向左移动 9 个单位长度至点 E……依此类推,这样至少移动___2_8____次后该 点到原点的距离不小于 41.
中考数学专题复习1实数的运算(原卷版)

实数的运算复习考点攻略考点01 有理数1.整数和分数统称为有理数。
(有限小数与无限循环小数都是有理数。
)2.正整数、0、负整数统称为整数。
正分数、负分数统称分数。
3.正数和零统称为非负数,负数和零统称为非正数,正整数和零统称为非负整数,负整数和零统称为非正整数。
4.正数和负数表示相反意义的量。
【注意】0既不是正数,也不是负数。
【例1】.在下列各组中,哪个选项表示互为相反意义的量()A.足球比赛胜5场与负5场B.向东走3千米,再向南走3千米C.增产10吨粮食与减产﹣10吨粮食D.下降的反义词是上升【例2】已知某快递公司的收费标准为:寄一件物品不超过5千克,收费13元;超过5千克的部分每千克收2元。
圆圆在该快递公司寄一件8千克的物品,需要付费( )。
A.17元B.19元C.21元D.23元考点02 数轴1.数轴的三要素:原点、正方向、单位长度。
数轴是一条直线。
2.所有有理数都可以用数轴上的点来表示,但数轴上的点不一定都是有理数。
3.数轴上,右边的数总比左边的数大;表示正数的点在原点的右侧,表示负数的点在原点的左侧。
【例3】如图,数轴上的点A,B分别表示数﹣2和1,点C是线段AB的中点,则点C 表示的数是()A.﹣0.5B.﹣1.5C.0D.0.5考点03 相反数、绝对值和倒数1.在数轴上表示数a的点与原点的距离,叫做a的绝对值,记作:a。
2.一个正数的绝对值等于本身,一个负数的绝对值等于它的相反数,0的绝对值是0.即(0)0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩3. 乘积为1的两个数互为倒数。
正数的倒数为正数,负数的倒数为负数,0没 有倒数。
倒数是本身的只有1和-1。
4. 倒数性质:(1)若a 与b 互为倒数,则a·b=1;反之,若a·b=1,则a 与b 互为倒数。
(2)若a 与b 互为负倒数,则a·b=-1;反之,若a·b= -1则a 与b 互为倒数。
中考数学考点总复习课件:第1节 实 数
20.(导学号 65244002)(2016·枣阳)一列数 a1,a2,a3,…满足条件:a1=12,an=1-1an-1(n≥2,且 n 为整数),
a(a≥0), (2)|a|=-a(a<0)即,正数的绝对值是____它__本__身,0的绝对值是____0_,负数的 绝对值是它的____相__反__数_; (3)一个数的绝对值是 ____非__负__数_,即|a| ____≥__ 0.
6.倒数:(1)若两个非零数 a,b 的积为 1,即___a_·b_=__1___, 则 a 与 b 互为倒数,反之亦然;
【对应训练 4】(2017·苏州)小亮用天平称得一个罐头的质量为 2.026 kg, 用四舍五入法将 2.026 精确到 0.01 的近似值为( D ) A.2 B.2.0 C.2.02 D.2.03 【对应训练 5】(2017·十堰)某颗粒物的直径是 0.000 002 5,把 0.000 002 5 用科学记数法表示为___2__.5_×__1_0_-__6___.
2
2
6.-2的绝对值的相反数是( D ) 3
A.32 B.-32 C.23 D.-23
7.(2017·乌鲁木齐)如图,数轴上点 A 表示数 a,则|a|是( A )
A.2 B.1 C.-1 D.-2 8.(2017·天门)北京时间 5 月 27 日,蛟龙号载人潜水器在太平洋马里亚纳海沟作业区开展了
若|a-b|=2 016,且 AO=2BO,则 a+b 的值为___-__6_7__2____.
初中-数学-中考-实数的有关概念和性质(一)
实数的有关概念和性质(一)一、选择题 1、在-2,0,12,2四个数中,最小的是( )A. -2B. 0C. 12D. 22、-3的绝对值为( )A. -3B. 3C. -13D.133、在0,1,12-,-1四个数中,最小的数是( ).A. 0B. 1C. 12-D. -14、的绝对值是( )A.B. 8C. 8±D. 18-5、-2018的相反数是( )A. -2018B. 2018C. 12018-D.120186、2018的倒数是( )A. 2018B.20181C. 20181-D. -20187、下列四个数中,是正整数的是( )A. -1B. 0C.12D. 18、利用如图1的二维码可以进行身份识别.某校建立了一个身份识别系统,图2是某个学生的识别图案,黑色小正方形表示1,白色小正方形表示0.将第一行数字从左到右依次记为a ,b ,c ,d ,那么可以转换为该生所在班级序号,其序号为32102222a b c d ⨯+⨯+⨯+⨯.如图2第一行数字从左到右依次为0,1,0,1,序号为3210021202125⨯+⨯+⨯+⨯=,表示该生为5班学生.表示6班学生的识别图案是( )8-8-A. B.C. D.9、-8的相反数是( )A. -8B.18C. 8D. 18-10、21-的倒数是( )A. 2-B. 21-C. 2D.21 11、实数d c b a ,,,在数轴上的位置如图所示,下列关系式不正确的是( )A. ||||b a >B. ac ac =||C. d b <D. 0>+d c12、2018的相反数是( ).A. 2018B. -2018C.12018D. -12018. 13、-3的倒数为( )A. 3B.. C. -. D. -3.14、下列实数中,最小的数是( )A.B. 0C. 1D.15、-4的相反数是( )A. 4B. -4C. -14D.1416的值( ) A. 在2和3之间 B. 在3和4之间C. 在4和5之间D. 在5和6之间17、()2--等于( )A. -2B. 2C.21 D. -21131318、如图,点A 所表示的数的绝对值是( )A. 3B. 3-C.13D. 13-19、-2的绝对值是( )A. 2B. -12C.12D. -220、的倒数是( ) A. 3B. -3C.D. 21、计算11--22的结果是( ) A. 0B. 1C. -1D.1422最接近的整数是( )A. 5B. 6C. 7D. 823、3的相反数是( )A.13B. 3C. -3D. ±1324、计算(-3)2的结果等于( )A. 5B. -5C. 9D. -925、|-3|=( )A. 3B. -3C.13D. 13-26、在-3,-1,0,1这四个数中,最小的数是( ).A. -3B. -1C. 0D. 1272,0,1-,其中负数是( )A.B. 2C. 0D. -1二、填空题28、将从1开始的连续自然数按如下规律排列:13-1313-则2018在第______行.29、-2的相反数的值等于______.30、某地某天的最高气温是6°C,最低气温是-4°C,则某天当地的温差为______°C.31、任何一个无限循环小数都可以写成分数的形式,应该怎样写呢?我们以无限循环小数0.7,为例进行说明:设0.7x.由0.7=0.7777...可知,10x=7.7777....所以10x-x=7,解方程得:x=79,于是,得70.7=9.将0.36写成分数的形式是.答案第1页,共4页参考答案1、【答案】A【分析】本题考查了有理数比较大小.【解答】有理数比较大小,负数小于0,0小于正数,因为-2<0<21<2,选A 2、【答案】B【分析】本题考查了绝对值、相反数.【解答】解:因为负数的绝对值等于它的相反数,所以-3的绝对值为3.选择B. 3、【答案】D【分析】本题考查了有理数的大小比较. 【解答】∵-1<12-<0<1,∴最小的数是-1,选D.4、【答案】B【分析】本题考查了绝对值.【解答】计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.根据负数的绝对值等于它的相反数可得答案. ∵-8<0,∴|-8|=8.选:B . 5、【答案】B【分析】本题考查了相反数.【解答】:-2018的相反数为2018.即求一个实数的相反数就在它前面添一个“-”号. 选B. 6、【答案】B【分析】本题考查了倒数. 【解答】2018的倒数是20181. 选B. 7、【答案】D【分析】本题考查了实数的概念整数正整数.. 【解答】易知-1是负整数,12是分数,1是正整数,而整数包括正整数、0和负整数,选D . 8、【答案】B【分析】本题考查了有理数的乘方.【解答】A :32101202120210⨯+⨯+⨯+⨯=;B :3210021212026⨯+⨯+⨯+⨯=;C :321012020212=8⨯+⨯+⨯+⨯;D :3210021212127⨯+⨯+⨯+⨯=, 只有选项B 表示6班, 选:B 9、【答案】C【分析】本题考查了相反数. 【解答】解:-8的相反数是8,选C. 10、【答案】A【分析】本题考查了倒数.【解答】根据倒数的概念,乘积是1的两个数,因为21-×(2-)=1,所以21-的倒数是2-.选A. 11、【答案】B【分析】本题考查了数轴;绝对值;不等式;有理数的加法;有理数的乘法. 【解答】由数轴可知实数a 在实数b 的左边离原点较远,所以|a |>|b |故A 正确; a 是负数,c 是正数,所以ac 负数,ac ac =-,故B 错误; b 是负数,d 是正数,所以b <d ,故C 正确; c 是正数,d 是正数,所以c +d >0,故D 正确;选B. 12、【答案】B【分析】本题考查了相反数.【解答】∵a 的相反数是-a ,∴2018的相反数是-2018.选B. 13、【答案】C【分析】本题考查了倒数的定义.【解答】乘积为1的两个数互为倒数.由-3×(-)=1,可知-3的倒数为-.选C. 14、【答案】A【分析】本题考查了实数的比较;立方根.【解答】解:∵0<1A. 15、【答案】A【分析】本题考查了相反数.1313答案第3页,共4页【解答】根据相反数的定义可知,-4的相反数是4,选A. 16、【答案】C【分析】本题考查了无理数的估算.【解答】因为9<10<16,所以34,4<5,因此C 选项正确 17、【答案】B【分析】本题考查了相反数. 【解答】-(-2)=2.选B. 18、【答案】A【分析】本题考查了数轴;绝对值.【解答】由数轴看出点A 所表示的数是-3,3-=3.选A. 19、【答案】A【分析】本题考查了绝对值..【解答】根据“负数的绝对值是它的相反数”得,-2的绝对值是-(-2)=2,选A. 20、【答案】B【分析】本题考查了有理数的倒数..【解答】求一个有理数的倒数,如果是分数,只需把这个数的分子和分母颠倒即可,所以的倒数是-3. 21、【答案】A【分析】本题考查了绝对值;有理数的加减. 【解答】先计算-12的绝对值,再计算结果,11--22=12-12=022、【答案】B【分析】本题考查了二次根式的估值.6和9之间,且非常接近6的平方36,从而答案选B. 23、【答案】C【分析】本题考查了相反数的概念.【解答】任何数的相反数都是在其本身前面加上“-”,故3的相反数为-3. 24、【答案】C【分析】本题考查了有理数的乘方,根据乘方的意义,直接运算即可. 【解答】解:原式=(-3)×(-3)=9.13-选C. 25、【答案】A【分析】本题考查了负数的绝对值等于它的相反数. 【解答】负数的绝对值等于它的相反数,|-3|=3,选择A. 26、【答案】A【分析】本题考查了有理数大小比较.【解答】在数轴上,右边的数大于左边的数,选A . 27、【答案】D【分析】本题考查了实数的分类.【解答】本题考查了实数的分类,实数分为正实数和负实数和0,负实数是比0小的数,或者理解为正数前加上负号便成了负数.因为在四个数中,只有-1有负号.选D 28、【答案】45【分析】本题考查了规律探索型问题.由已知的图中数据,分析每一行结束时所有的个数与所在行数的关系,发现前1行共有1个数,前2行共有1+3=4=22个数,前3行共有1+3+5=9=32个数,…;据此可判断出2018所在的行数.【解答】由排列的图形可知,前1行共有1个数,前2行共有1+3=4=22个数,前3行共有1+3+5=9=32个数,…,那么第n 行共有1+3+5+7+…+(2n -1)=n 2个数.∵442<2018<452,∴2018在第45行. 29、【答案】2【分析】本题考查了相反数的求法. 【解答】-2的相反数的值等于2. 30、【答案】10【分析】本题考查了有理数的减法.【解答】解:∵温差=最高温度-最低温度,∴温差=6-(-4)=10.故答案为:10. 31、【答案】114【分析】本题考查了有理数分数阅读理解.【解答】设0.36=x ,由0.36=0.363636……,可知100x =36.3636……,所以100x -x =36,解方程得x =1149936 .。
北师版八年级数学上册中考数学复习专题1:实数的有关概念及运算
专题01 实数的有关概念及运算☞解读考点 知 识 点名师点晴实数的分类1.有理数 会根据有限小数和无限循环小数判定一个数是有理数2.无理数会识别无理数,并在数轴上表示一个无理数 实数的有关概念1.相反数、倒数、绝对值会求一个实数的相反数、倒数和绝对值 2.科学计数法、近似数 掌握用科学计数法表示一个较大的数和较小的数 3.实数的非负性利用实数的非负性解决一些实际问题 实数的运算和大小比较1.实数的估算 求一个无理数的范围2.实数的大小比较 理解实数的大小比较的方法3.实数的运算掌握实数的混合运算☞2年中考【2015年题组】1.(2015南京)估计512 介于( )A .0.4与0.5之间B .0.5与0.6之间C .0.6与0.7之间D .0.7与0.8之间【答案】C .考点:估算无理数的大小.2.(2015常州)已知a=22,b=33,c=55,则下列大小关系正确的是( )A .a >b >cB .c >b >aC .b >a >cD .a >c >b 【答案】A .考点:实数大小比较.3.(2015泰州)下列4个数:9,227,π,()03,其中无理数是( )A .9B .227 C .π D .()03【答案】C . 【解析】试题分析:π是无理数,故选C . 考点:1.无理数;2.零指数幂.4.(2015资阳)如图,已知数轴上的点A 、B 、C 、D 分别表示数﹣2、1、2、3,则表示数35-的点P 应落在线段( )A .AO 上B .OB 上C .BC 上D .CD 上 【答案】B . 【解析】试题分析:∵2<5<3,∴0<35-<1,故表示数35-的点P 应落在线段OB 上.故选B .考点:1.估算无理数的大小;2.实数与数轴.5.(2015广元)当01x <<时,x 、1x 、2x 的大小顺序是( ) A .21x x x << B .21x x x << C .21x x x << D .21x xx <<【答案】C .【解析】试题分析:∵01x <<,令12x =,那么214x =,14x =,∴21x x x <<.故选C . 考点:实数大小比较. 6.(2015绵阳)若5210a b a b +++-+=,则()2015b a -=( )A .﹣1B .1C .20155 D .20155-【答案】A . 【解析】试题分析:∵5210a b a b +++-+=,∴⎩⎨⎧=+-=++01205b a b a ,解得:⎩⎨⎧-=-=32b a ,则()20152015321b a -=-+=-().故选A .考点:1.解二元一次方程组;2.非负数的性质.7.(2015武汉)在实数﹣3,0,5,3中,最小的实数是( ) A .﹣3 B .0 C .5 D .3 【答案】A .考点:实数大小比较. 8.(2015荆门)64的立方根是( ) A .4 B .±4 C .8 D .±8 【答案】A . 【解析】试题分析:∵4的立方等于64,∴64的立方根等于4.故选A . 考点:立方根. 9.(2015北京市)实数a ,b ,c ,d 在数轴上的对应点的位置如图所示,这四个数中,绝对值最大的是( )A .aB .bC .cD .d 【答案】A . 【解析】试题分析:根据图示,可得:3<|a|<4,1<|b|<2,0<|c|<1,2<|d|<3,所以这四个数中,绝对值最大的是a .故选A . 考点:实数大小比较.10.(2015河北省)在数轴上标注了四段范围,如图,则表示8的点落在( )A .段①B .段②C .段③D .段④ 【答案】C .考点:1.估算无理数的大小;2.实数与数轴.11.(2015六盘水)如图,表示7的点在数轴上表示时,所在哪两个字母之间()A.C与D B.A与B C.A与C D.B与C【答案】A.【解析】试题分析:∵6.25<7<9,∴2.5<7<3,则表示7的点在数轴上表示时,所在C和D 两个字母之间.故选A.考点:1.估算无理数的大小;2.实数与数轴.12.(2015通辽)实数tan45°,38,0,35π-,9,13-,sin60°,0.3131131113…(相邻两个3之间依次多一个1),其中无理数的个数是()A.4 B.2 C.1 D.3【答案】D.【解析】试题分析:在实数tan45°,38,0,35π-,9,13-,sin60°,0.3131131113…(相邻两个3之间依次多一个1)中,无理数有:35π-,sin60°,0.3131131113…(相邻两个3之间依次多一个1),共3个,故选D.考点:无理数.13.(2015淄博)已知21xy=⎧⎨=⎩是二元一次方程组81mx nynx my+=⎧⎨-=⎩的解,则2m n-的平方根为()A.±2 B .2C .2±D.2 【答案】A.考点:1.二元一次方程组的解;2.平方根;3.综合题.14.(2015成都)比较大小:512-____58(填“>”、“<”或“=”).【答案】<. 【解析】试题分析:512-为黄金数,约等于0.618,50.6258=,显然前者小于后者.或者作差法:515459808102888----==<,所以,前者小于后者.故答案为:<.考点:1.实数大小比较;2.估算无理数的大小.15.(2015资阳)已知:22(6)230a b b ++--=,则224b b a --的值为 . 【答案】12.【解析】试题分析:∵22(6)230a b b ++--=,∴60a +=,2230b b --=,解得,6a =-,223b b -=,可得2246b b -=,则224b b a --=6(6)--=12,故答案为:12.考点:1.非负数的性质:算术平方根;2.非负数的性质:偶次方. 16.(2015自贡)若两个连续整数x 、y 满足y x <+<15,则x+y 的值是 .【答案】7.【解析】试题分析:∵2<5<3,∴3<51+<4,∴x=3,y=4,∴x+y=7,故答案为:7. 考点:估算无理数的大小.17.(2015巴中)计算:01123(2015)2sin 60()3π----++. 【答案】4.【解析】试题分析:根据绝对值、零指数幂、负整数指数幂以及特殊角的三角函数值进行计算即可.试题解析:原式=3231232--+⨯+=1+3=4.考点:1.实数的运算;2.零指数幂;3.负整数指数幂;4.特殊角的三角函数值.18.(2015龙岩)计算:0312201522sin 30893-+-+-⨯.【答案】0.考点:1.实数的运算;2.零指数幂;3.特殊角的三角函数值. 19.(2015临沂)计算:(321)(321)+--+. 【答案】22.【解析】试题分析:先根据平方差公式展开后,再根据完全平方公式展开后合并即可.试题解析:解:原式=[3(21)+-][3(21)--]=22(3)(21)--3(2221)=--+32221=-+-22=.考点:实数的运算.【2014年题组】 1.(2014年福建福州中考)地球绕太阳公转的速度约是110000千米/时,将110000用科学计数法表示为( )A .41110⨯ B .51.110⨯ C .41.110⨯ D .60.1110⨯ 【答案】B .考点:科学计数法.2.(2014年福建三明中考)13-的相反数是( )A. 13 B.13-C. 3D. 3-【答案】A.试题分析:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0. 因此,13-的相反数是13. 故选A.考点:相反数.3.(2014年黑龙江大庆中考)下列式子中成立的是()A. ﹣|﹣5|>4B. ﹣3<|﹣3|C. ﹣|﹣4|=4D. |﹣5.5|<5【答案】B.【解析】试题分析:先对每一个选项应用绝对值的性质化简,再进行比较即可:A.﹣|﹣5|=﹣5<4,故A选项错误;B.|﹣3|=3>﹣3,故B选项正确;C.﹣|﹣4|=﹣4≠4,故C选项错误;D.|﹣5.5|=5.5>5,故D选项错误.故选B.考点:1.绝对值;2.有理数的大小比较.4.(2014年湖北宜昌中考)如图,M,N两点在数轴上表示的数分别是m,n,则下列式子中成立的是()A. m+n<0B. -m<-nC. m|-|n|>0D. 2+m<2+n【答案】D.考点:1.数轴;2.不等式的性质.5.(2014年贵州黔南中考)计算()20123-+--的值等于()A. 1-B. 0C. 1D. 5【答案】A.【解析】试题分析:针对有理数的乘方,零指数幂,绝对值3个考点分1.别进行计算,然后根据实数的运算法则求得计算结果: ;2.故选A.考点:实数的运算.6.(2014年黑龙江大庆中考)若x y y20-+-=,则y3x-的值为.【答案】12.【解析】试题分析:∵x y y 20-+-=,∴x y 0x 2y 20y 2-==⎧⎧⇒⎨⎨-==⎩⎩.∴y 32311x 222---===. 考点:1.实数的非负性;2.负整数指数幂.7.(2014年吉林省中考)若a <13<b ,且a ,b 为连续正整数,则b2﹣a2= . 【答案】7.【解析】试题分析:∵32<13<42,∴3<13<4,即a=3,b=4.∴b2﹣a2=42﹣32=7.考点:无理数的估算. 8.(2014年新疆区兵团中考)规定用符号[x]表示一个实数的整数部分,例如[3.69]=3.31⎡⎤=⎣⎦,按此规定,131⎡⎤-⎣⎦=_____________ 【答案】2.【解析】试题分析:∵9<13<16,∴3<13<4.∴2<131-<3,∴131⎡⎤-⎣⎦=2. 考点:1.新定义;2.无理数的估算.9.(2014年甘肃兰州中考)为了求1+2+22+23+…+2100的值,可令S=1+2+22+23+…+2100,则2S=2+22+23+24+…+2101,因此2S ﹣S=2101﹣1,所以S=2101﹣1,即1+2+22+23+…+2100=2101﹣1,仿照以上推理计算1+3+32+33+…+32014的值是.【答案】2015312-. 考点:1.有理数的运算;2.阅读理解型问题.10.(2014年内蒙古赤峰中考)计算:()1013328sin 454π-⎛⎫-+-- ⎪⎝⎭【答案】-3.【解析】 试题分析:()1123328sin 451428434242342π-⎛⎫-+--=+-⨯-=---=- ⎪⎝⎭.考点:1.实数的运算;2.零指数幂;3.负整数指数幂;4.特殊角的三角函数值.☞考点归纳归纳 1:实数及其分类 基础知识归纳:基本方法归纳:判断一个数是不是有理数,关键是看它是不是有限小数或无限循环小数;判断一个数是不是无理数,关键在于看它是不是无限不循环小数.注意问题归纳:在理解无理数时,要抓住“无限不循环”这一点,归纳起来有四类:(1)开方开不尽的数,如32,7等; (2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等;(3)有特定结构的数,如0.1010010001…等;【例1】在实数313,,,8,0,tan 453π︒中,其中无理数的个数是( )A.2B.3C.4D.5【答案】A .考点:无理数.归纳 2:实数的有关概念 基础知识归纳: 1、相反数实数与它的相反数是一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称 2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0;正数的绝对值是它的本身,负数的绝对值是它的相反数,0的绝对值是0. 3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立.倒数等于本身的数是1和-1.基本方法归纳:如果a 与b 互为相反数,则有a+b=0,a=-b ,反之亦成立;零的绝对值是它本身,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0注意问题归纳:零没有倒数;一个非零的数的绝对值一定是正数【例2】若实数x ,y 满足2270x x y ++-+=,则x y = .【答案】19.考点:非负数.归纳 3:实数的大小比较 基础知识归纳:正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小.基本方法归纳:(1)求差比较:设a 、b 是实数,,0b a b a >⇔>-,0b a b a =⇔=-b a b a <⇔<-0(2)求商比较法:设a 、b 是两正实数,;1;1;1b a b ab a b a b a b a <⇔<=⇔=>⇔>(3)平方法:设a 、b 是两负实数,则b a b a <⇔>22.注意问题归纳:实数的大小比较,一般要将其进行化简,并合理选择方法来进行比较.【例3】用“<”号,将1)61(-、0)2(-、2)3(-、22-连接起来______ 【答案】2102)3()61()2(2-<<-<--.【解析】试题分析:先根据有理数的乘方法则依次计算出各个数的值,再根据有理数的大小比较法则比较.∵6)61(1=-,1)2(0=-,9)3(2=-,422-=- ∴2102)3()61()2(2-<<-<--.考点:实数的大小比较.归纳 4:科学计数法与近似数基础知识归纳:根据科学记数法的定义,科学记数法的表示形式为a×10n ,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.基本方法归纳:利用科学计数法表示一个数,在确定n 的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n 为它的整数位数减1;当该数小于1时,-n 为它第一个有效数字前0的个数(含小数点前的1个0)注意问题归纳:利用科学计数法表示数和转化为原数时,要注意数位的变化.【例4】据测算,我国每天因土地沙漠化造成的经济损失约为1.5亿元,一年的经济损失约为54750000000元,用科学记数法表示这个数为 A .5.475×1011 B .5.475×1010 C .0.5475×1011 D .5475×108 【答案】B .考点:科学计数法. 归纳 5:实数的混合运算基础知识归纳:实数混合运算时,将运算分为三级,加减为一级运算,乘除为二级运算,乘方为三级运算.同级运算时,从左到右依次进行;不是同级的混合运算,先算乘方,再算乘除,而后才算加减;运算中如有括号时,先做括号内的运算,按小括号、中括号、大括号的顺序进行基本方法归纳:实数的混合运算经常涉及到零指数幂、负整数指数幂、特殊角的三角函数值、绝对值的化简、二次根式等内容,要熟练掌握这些知识.注意问题归纳:实数的混合运算经常以选择、填空和解答的形式出现,是中考是热点,也是比较容易出错的地方,在解答此类问题时要注意基本性质和运算的顺序.【例5】计算:()114sin451282-⎛⎫-︒--+ ⎪⎝⎭【答案】1.【解析】针对负整数指数幂,特殊角的三角函数值,零指数幂,二次根式化简4个考点分别进行计算,然后根据实数的运算法则求得计算结果:()1124sin4512824122122-⎛⎫-︒--+=-⨯-+= ⎪⎝⎭考点:实数的运算.☞1年模拟1.(2015届山东省日照市中考一模)4的算术平方根是( ) A .2 B .±2 C .2 D .±2 【答案】C .【解析】试题分析:∵4=2,而2的算术平方根是2,∴4的算术平方根是2,故选C .考点:算术平方根.2.(2015届山东省潍坊市昌乐县中考一模)在实数π、13、2、tan60°中,无理数的个A .1B .2C .3D .4 【答案】C . 【解析】试题分析:∵tan60°=3,∴在实数π、13、2、tan60°中,无理数有: ,2和tan60°.故选C .考点:1.无理数;2.特殊角三角函数值.3.(2015届广东省佛山市初中毕业班综合测试)14的算术平方根是( ) A .-12 B .12 C .±12 D .116【答案】B .考点:算术平方根. 4.(2015届江苏省南京市建邺区中考一模)下列计算结果是负数的是( ) A .3-2 B .3×(-2) C .3-2 D .3 【答案】B . 【解析】试题分析:A :3-2=1,计算结果是正数,据此判断即可. B :3×(-2)=-6,计算结果是负数,据此判断即可.C :3-2=19,计算结果是正数,据此判断即可.D :3是一个正数,据此判断即可.试题解析:∵3-2=1,计算结果是正数,∴选项A 不正确; ∵3×(-2)=-6,计算结果是负数,∴选项B 正确;∵3-2=19,计算结果是正数,∴选项C 不正确;∵3是一个正数,∴选项D 不正确.故选B .考点:实数的运算. 5.(2015届江苏省南京市建邺区中考一模)面积为10m2的正方形地毯,它的边长介于( ) A .2m 与3m 之间 B .3m 与4m 之间 C .4m 与5m 之间 D .5m 与6m 之间【解析】试题分析:正方形的边长为10,∵9<10<16,∴3<10<4,∴其边长在3m 与4m之间.故选B.考点:估算无理数的大小.6.(2015届河北省中考模拟二)下列无理数中,不是介于-3与2之间的是()A.-5B .5C.-3D .3【答案】B.考点:估算无理数的大小.7.(2015届浙江省宁波市江东区4月中考模拟)实数5的相反数是().A.15B.-15C.﹣5 D.5【答案】C.【解析】试题分析:∵符号相反,绝对值相等的两个数互为相反数,∴5的相反数是﹣5.故选C.考点:实数的性质.8.(2015届浙江省宁波市江东区4月中考模拟)下列四个数中,值最小的数是().A.tan45°B .3C.πD.8 3【答案】A.【解析】试题分析:tan45°=1,根据实数比较大小的方法,可得,1<3<83<π,所以tan45°<3<83<π,因此四个数中,值最小的数是tan45°.故选A.考点:1.实数大小比较;2.特殊角的三角函数值.9.(2015届四川省成都市外国语学校中考直升模拟)已知直角三角形两边x、y的长满足|x2-4|+256y y-+=0,则第三边长为.【答案】22、13或5.考点:1.解一元二次方程-因式分解法;2.算术平方根;3.勾股定理;4.分类讨论.10.(2015届山东省济南市平阴县中考二模)计算:2-1+2cos30°-tan60°-(π+3)0= .【答案】-1 2.【解析】试题分析:原式=1323122+⨯--=-12.故答案为:-12.考点:1.实数的运算;2.零指数幂;3.负整数指数幂;4.特殊角的三角函数值.11.(2015届山西省晋中市平遥县九年级下学期4月中考模拟)的算术平方根为.【答案】2.【解析】试题分析:∵4=2,2的算术平方根是2,∴4的算术平方根为2.故答案为:2.考点:算术平方根.12.(2015届北京市平谷区中考二模)计算:()10 12sin603133π-⎛⎫--︒+-+-⎪⎝⎭.【答案】-3.【解析】试题分析:分别进行负整数次幂、特殊角的三角函数值、绝对值的化简、零指数幂,然后按照实数的运算法则计算即可.试题解析:原式=3323112--⨯+-+=333--+=3-.考点:实数的运算.13.(2015届安徽省安庆市中考二模)计算:﹣32+.【答案】-9.考点:1.实数的运算;2.特殊角的三角函数值.14.(2015届广东省深圳市龙华新区中考二模)计算:(-12)-1+(π-2015)0-3tan30°+|-3|【答案】-1.【解析】试题分析:原式第一项利用负指数幂法则计算,第二项利用零指数幂法则计算,第三项利用特殊角的三角函数值计算,最后一项利用绝对值的代数意义化简,计算即可得到结果.试题解析:原式=-2+1-3×33+3=-1.考点:1.实数的运算;2.零指数幂;3.负整数指数幂;4.特殊角的三角函数值.15.(2015届湖北省黄石市6月中考模拟)计算:﹣2sin30°﹣(﹣13)﹣2+(2﹣π)0﹣38 +(﹣1)2012.【答案】-6.考点:1.实数的运算;2.零指数幂;3.负整数指数幂;4.特殊角的三角函数值.。
浙教版中考数学实数的有关概念及实数的分类
3 cos 45 0.2121121112 , [例1]在实数 , 2 1 , 8 ,7 , , ctg 44 ctg 46中,无理数共有( C )
3
A.2个
B.3个
C.4个
D.5个
. 二、数轴:
⑴数轴:规定了原点、正方向和单位长度的直线。 ⑵实数与数轴上的点是一一对应的。 三、相反数: ⑴相反数:只有符号不同的两个数叫做互为相反数,零的 相反数是零。 ⑵在一个数的前面添上“-”号,就成为这个数的相反数。 即实数 a 的相反数是-a ;在数轴上表示相反数的两点以原 点对称。
1 。
例8:卫星绕地球运行的速度(即第一宇宙速度)是 7.9 103 米 秒 ,
6 则卫星绕地球运行 2 102 秒走过的路程≈ 1.6 10 米(结果保留
两个有效数字)。 例9:[02潍坊]若 ( 3 a)2 与
b 1 互为相反数,
3 1
。
2 则 ab
的Hale Waihona Puke 为课堂练习: 《全解》P5
小结:
⑴要注意绝对值概念的正确应用。因为互为相反数的绝对值相 等,因此绝对值等于一个正数的数有两个,它们是一对互为相 反数,不可漏掉其中任何一个。 ⑵解涉及有理数的绝对值、大小比较等问题时,数轴是一个十 分有效的工具。可由已知条件确定对应于数轴上的点,按“表 示在数轴上的点的数,左边的数总比左边的大”进行比较大小; 有时也可采用特殊值法进行判断。 ⑶注意平方根与算术平方根的区别与关系。要求一个的平方根 或算术平方根,须将这个数先进行化简或计算。
6、方根的有关概念: ⑴平方根: 如果 x 2 a ( a 0 ),那么 x 叫做 a 的平方根(二 次方根),记作 x a ,其中 a 叫做 a 的算术平方根。 正数有两个平方根,它们互为相反数;零的平方根是零(一 个)。负数没有平方根。 ⑵立方根:如果 x 3 a ( a 为一切实数),那么 x 叫做 a 的立方 根(三次方根), 记作 x 3 a 。 正数有一个正的立方根;零的立方根是零;负数有一个负