八年级数学 反比例函数
八年级数学下册 17.4.2 反比例函数的图象和性质教案 (新版)华东师大版

反比例函数的图象和性质
(1)是非零常数;
学做思一:你能作出反比例函数的图像
例:画出函数
导学:画出函数图象一般分为列表,描点、连线三个步骤,
这个
的取值
范围是不等于零的一切
用表里各组对
在直角坐
.连线:用平滑的曲线将第一象限各点依次连起来,得到图象的第一个分支;用平滑的曲线将第三象限各点依次连起来,得到图象的另一分支。
这两个分支合起来,就是反比例函数的图象,如图所示。
这种
画出函数的图象。
学
教师注意指导画函数图象有困难的学生,并评
这个函数的图象在哪两个象限
联系一次函数的性质,你能否总结出反比例函随着自变量
导做:在充分讨论、交流后达成共识:
时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是在每个象跟内
时,函数的图象在第二、四象限,在
3。
八年级数学下册 第一部分 基础知识篇 第12课 反比例函数图像与性质例题课件

由图象可得,当x<﹣3或0<3 x<2时,反比例函数的值小
于一次函数的值.
第二十页,共三十七页。
熟练掌握 待定系数 法是解本 题的关键.
举一反三(jǔ yī fǎn sān)
m
如图,直线y=kx+k(k≠0)与双曲线y= 于点M,与x轴交于点A.
在x 第一象限(xiàngxiàn)内相交
(1)求点A的坐标;
第六页,共三十七页。
重掌要握结反论比:
列例方函程数组的,
一二四三
利图关用象键根特词的征:判
读联悟解
别和反式根比求的例解判函.
重别数要式,方是根法解的:
待题判定的别系关式数键,法.
取值
举一反三(jǔ yī fǎn sān)
如图,过点A(4,5)分别(fēnbié)作x轴、y轴的平行线,交直 线y=﹣x+6于B、C两点,若函数y=k/x(x>0)的图象△ABC的 边有公共点,则k的取值范围是( ) A.5≤k≤20 B.8≤k≤20 C.5≤k≤8 D.9≤k≤20
读联解悟
后式函代是数入解,已决反知问
数比值例列,方正程
求题比解的例.关,键解.
重析要式方法:
待定系数法
举一反三(jǔ yī fǎn sān)
已知y=y1﹣y2,y1与x成反比例,y2与(x﹣2)成正比例, 并且(bìngqiě)当x=3时,y=5,当x=1时,y=﹣1;求y与x之 间的函数关系式,并求当x=2时,求y的值.
解题技巧
解: (3)∵CB⊥y轴,∴B点坐标为(0,b),
在Rt△AOB中,∵AB= ,17OA=1,∴OB=4,
∴B(0,﹣4),C(2,﹣4),
∵点C(2,﹣4)在y=kx+k(k≠0)上,
人教版初二数学八年级下册教案导学案

第十七章反比例函数课题 17.1.1 反比例函数的意义课时:一课时【学习目标】1.理解并掌握反比例函数的概念。
2.会判断一个给定函数是否为反比例函数。
3.会根据已知条件用待定系数法求反比例函数的解析式。
【重点难点】重点:理解反比例函数的意义,确定反比例函数的表达式。
难点:反比例函数的意义。
【导学指导】复习旧知:1.什么是常量?什么是变量?函数是如何定义的?2.我们学过哪几种函数?每一种函数形式怎样?3.写出下列问题中的函数关系式并说明是什么函数.(1)梯形的上底长是2,下底长是4,一腰长是6,则梯形的周长y与另一腰长x之间的函数关系式。
(2)某种文具单价为3元,当购买m个这种文具时,共花了y元,则y与m的关系式。
学习新知:阅读教材P39-P40相关内容,思考,讨论,合作交流完成下列问题。
1.什么是反比例函数?反比例函数的自变量可以取一切实数吗?为什么?2.仔细观察反比例函数的解析式y=k/x,我们还可以把它写成什么形式?3.回忆我们学过的一次函数和正比例函数,我们是用什么方法求它们的解析式的?以此类推,我们也可以采用同样的方法来求反比例函数的解析式。
【课堂练习】1.下列等式中y是x的反比例函数的是()①y=4x ②y/x=3 ③y=6x-1 ④xy=12 ⑤y=5/x+2 ⑥y=x/2 ⑦y=-√2/x⑧y=-3/2x2.已知y是x的反比例函数,当x=3时,y=7,【要点归纳】通过今天的学习,你有哪些收获?与同伴交流一下。
【拓展训练】1.函数y=(m-4)x3-|m|是反比例函数,则m的值是多少?2.若反比例函数y=k/x与一次函数y=2x-4的图象都过点A(m,2)(1)求A点的坐标;(2)求反比例函数的解析式。
课题:17.1.2 反比例函数的图象和性质课时:二课时第一课时反比例函数的图象和性质的认识【学习目标】1.体会并了解反比例函数图象的意义。
2.能用描点的方法画出反比例函数的图象。
3.通过对反比例函数的图象的分析,探索并掌握反比例函数的图象的性质。
八下数学课件 用反比例函数解决实际问题(第二课时)

八年级 下册第十一章 反比例数11.3 用反比例函数解决实际问题
(第二课时)
学习目标
学习目标
1)运用反比例函数的知识解决实际问题。
2)经历“实际问题-建立模型-拓展应用”的过程,发展学生分析、解决问题的能力。
3)经历运用反比例函数解决实际问题的过程,体会数学建模的思想。
重点
运用反比例函数解决实际问题。
数图象的部分,下列选项错误的是( )
A.4月份的利润为50万元
B.污改造完成后每月利润比前一个月增加30万元
C.治污改造完成前后共有4个月的利润低于100万元 D.9月份该厂利润达到200万元
【详解】
治污改造完成前后,1-6月份的利润分别为200万元、100万元、
的利润低于100万元,C选项错误;
9月份的利润为30 × 9 − 70 = 200万元,D选项正确;
(1)动力 F 与动力臂 L 有怎样的函数关系?
(2)当动力臂为1.5米时,撬动石头至少需要多大的力?
(3)若想使动力F不超过题(2)中所用力的一半, 则动力臂至少要加长多少米?
2)把L=1.5带入到函数解析式F=
600
解得,F=400(N)
则对于函数F=
600
,当L=1.5米时,F=400 N,此时
段是恒温阶段,BC段是双曲线 = 的一部分,请根据图中信息解答下列问题:
(1)求k的值;
(2)恒温系统在一天内保持大棚里温度在15℃及15℃以上的时间有多少小时?
(1)把B(12,20)代入 = 中得:k=12×20=240;
(2)设AD的解析式为:y=mx+n.
把(0,10)、(2,20)代入y=mx+n中
17.4 反比例函数 华东师大版数学八年级下册同步练习(含解析)

17.4反比例函数基础过关全练知识点1反比例函数的概念1.(2022江苏苏州草桥中学期中)下列函数中,变量y是x的反比例函数的是()A.y=x3B.y=3x+1C.y=3xD.y=3x2.【易错题】(2022湖南衡阳弘扬中学期中)已知y=(k-2)x k2−5是反比例函数,那么k的值是.知识点2反比例函数的图象与性质3.(2022云南中考)反比例函数y=6x的图象位于() A.第一、三象限 B.第一、四象限C.第二、三象限D.第二、四象限4.(2021山西期末)关于反比例函数y=-12x,下列说法不正确的是()A.函数图象经过点(3,-4)B.函数图象关于原点成中心对称C.函数图象位于第一、三象限D.当x<0时,y随x的增大而增大5.(2022河南南阳卧龙期中)已知点A(-1,y1),B(2,y2),C(1,y3),D(3,-2)都在双曲线y=kx上,则y1,y2,y3的大小关系是() A.y1>y2>y3 B.y1>y3>y2C.y3>y2>y1D.y2>y1>y36. (2022海南海口十中期中)在同一坐标系中,函数y =kx和y =kx +3(k ≠0)的图象大致是( )ABCD7.【分类讨论思想】(2022河南南阳桐柏思源实验学校第二次月考)已知点A (a ,y 1),B (a +1,y 2)在反比例函数y =m 2+1x(m 是常数)的图象上,且y 1<y 2,则a 的取值范围是( )A.a <0B.a >0C.0<a <1D.-1<a <0 8.【新独家原创】已知m =(−12)−1,则反比例函数y =m+3x的图象分布在第 象限.9.【教材变式·P56T1变式】(2022辽宁大连模拟)某长方体的体积为 1 000 cm 3,长方体的高h (单位:cm)随底面积S (单位:cm 2)的变化而变化,则h 关于S 的函数关系式为 ,它是 函数.10.(2022内蒙古呼和浩特中考)点(2a -1,y 1)、(a ,y 2)在反比例函数y =kx (k >0)的图象上,若0<y 1<y 2,则a 的取值范围是 . 知识点3 确定反比例函数的解析式11.(2022江苏苏州星湾中学期中)若点A (3,-6)在反比例函数y =kx 的图象上,则k 的值为( )A.-18B.18C.-2D.212.(2022海南中考)若反比例函数y =kx (k ≠0)的图象经过点(2,-3),则它的图象也一定经过的点是 ( )A.(-2,-3)B.(-3,-2)C.(1,-6)D.(6,1)13.【跨学科·物理】(2022河南南阳新野期中)某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压p(kPa)是气体体积V(m3)的反比例函数,图象如图所示,当气球内的气压大于120 kPa时,气球将爆炸,为了安全起见,气球的体积应()A.不小于54m3 B.小于54m3C.不小于45m3 D.小于45m314.(2022福建泉州安溪期中)如图,在平面直角坐标系中,点P(1,4)、Q(m,n)在函数y=kx(k>0,x>0)的图象上,当m>1时,过点P分别作x轴、y 轴的垂线,垂足为A、B,过点Q分别作x轴、y轴的垂线,垂足为C、D,DQ交PA于点E,随着m的增大,四边形ACQE的面积()A.逐渐增大B.逐渐减小C.先减小后增大D.先增大后减小15.(2022福建中考)已知反比例函数y=kx的图象位于第二、四象限,则实数k的值可以是.(只需写出一个符合条件的实数)16.(2022湖北仙桃中考)在反比例函数y=k−1的图象的每一支上,y都随xx的增大而减小,且整式x2-kx+4是一个完全平方式,则该反比例函数的解析式为.(x>0) 17.【一题多变】(2022四川凉山州中考)如图,点A在反比例函数y=kx的图象上,过点A作AB⊥x轴于点B,若△OAB的面积为3,则k=.[变式一](2022湖南怀化中考)如图,直线AB交x轴于点C,交反比例函数y=a−1(a>1)的图象于A、B两点,过点B作BD⊥y轴,垂足为点D,若xS△BCD=5,则a的值为()A.8B.9C.10D.11[变式二](2022黑龙江齐齐哈尔中考)如图,点A是反比例函数y=k(x<0)x图象上一点,过点A作AB⊥y轴于点D,且D为线段AB的中点.若点C 为x轴上任意一点,且△ABC的面积为4,则k=.18.(2022河南南阳镇平期中)已知:反比例函数y=k的图象经过A(2,-4).x(1)求k的值.(2)这个函数的图象在哪几个象限?y随x的增大怎样变化?(3)画出函数的图象.(4)点B(-2,4),C(-1,5)在这个函数的图象上吗?19.(2022山东聊城实验中学期中)一辆汽车匀速通过某段公路,所需时,其图象为如图所示的一间t(h)与行驶速度v(km/h)满足函数关系:t=kv段曲线,且端点为A(40,1)和B(m,0.5).(1)求k和m的值;(2)若行驶速度不得超过50 km/h,则汽车通过该路段最少需要多少时间?能力提升全练20.【一题多解】(2022湖北武汉中考,6,)已知点A(x1,y1),B(x2,y2)在的图象上,且x1<0<x2,则下列结论一定正确的是() 反比例函数y=6xA.y1+y2<0B.y1+y2>0C.y1<y2D.y1>y221.(2022浙江舟山中考,15,)如图,在直角坐标系中,△ABC的顶点C 与原点O重合,点A在反比例函数y=k(k>0,x>0)的图象上,点B的坐标x为(4,3),AB与y轴平行,若AB=BC,则k=.22.(2022江苏常州中考,23,)如图,在平面直角坐标系xOy中,一次函数y=2x+b的图象分别与x轴、y轴交于点A、B,与反比例函数y=k(x>0)x的图象交于点C,连结OC.已知点B(0,4),△BOC的面积是2.(1)求b、k的值;(2)求△AOC的面积.23.【新考法】(2022河南中考,18,)如图,反比例函数y=k(x>0)的图x象经过点A(2,4)和点B,点B在点A的下方,AC平分∠OAB,交x轴于点C.(1)求反比例函数的表达式;(2)请用无刻度的直尺和圆规作出线段AC的垂直平分线;(要求:不写作法,保留作图痕迹)(3)线段OA与(2)中所作的垂直平分线相交于点D,连结CD,求证:CD∥AB.素养探究全练24.【模型观念】(2022内蒙古赤峰中考)阅读下列材料.定义运算:min|a,b|,当a≥b时,min|a,b|=b;当a<b时,min|a,b|=a.例如:min|-1,3|=-1;min|-1,-2|=-2.完成下列任务.(1)①min|(-3)0,2|=;②min|√14,-4|=.(2)如图,已知反比例函数y1=k和一次函数y2=-2x+b的图象交于A、Bx,−2x+b|=(x+1)(x-3)-x2,求这两个函数的解析两点.当-2<x<0时,min|kx式.答案全解全析基础过关全练1.C 根据反比例函数的定义,知符合题意的只有C.2.答案 -2解析 由题意得{k 2−5=−1,k −2≠0,解得k =-2.3.A 反比例函数y =6x 中,k =6>0,所以图象位于第一、三象限,故选A.4.C A.把x =3代入y =-12x得,y =-4,所以函数图象经过点(3,-4),故本选项正确;B.反比例函数的图象的两个分支关于原点成中心对称,故本选项正确;C.k =-12<0,所以函数图象位于第二、四象限,故本选项错误;D.k =-12<0,所以图象位于第二、四象限,且在每个象限内,y 随x 增大而增大,所以当x <0时,y 随x 的增大而增大,故本选项正确.故选C. 5.A ∵点D (3,-2)在双曲线y =kx 上,∴k =3×(-2)=-6<0,∴反比例函数的图象在第二、四象限,在每个象限内,y 随x 的增大而增大,∴A (-1,y 1)在第二象限,B (2,y 2),C (1,y 3)在第四象限, ∴y 1>0,0>y 2>y 3,∴y 1>y 2>y 3.故选A. 6.C 分两种情况讨论:①当k >0时,函数y =kx +3的图象在第一、二、三象限,函数y =kx 的图象在第一、三象限;②当k <0时,函数y =kx +3的图象在第一、二、四象限,函数y =kx 的图象在第二、四象限.只有C选项符合,故选C.7.D∵m2+1>0,∴反比例函数y=m 2+1x(m是常数)的图象在第一、三象限,在每个象限内,y随x的增大而减小.①当A(a,y1),B(a+1,y2)在同一象限时,∵y1<y2, ∴a>a+1,此不等式无解;②当点A(a,y1),B(a+1,y2)在不同象限时,∵y1<y2, ∴a<0,a+1>0,解得-1<a<0.故选D.8.答案一、三解析∵m=(−12)−1=-2,∴m+3=-2+3=1>0,∴函数y=m+3x的图象分布在第一、三象限.9.答案h=1 000S;反比例解析根据长方体的体积等于底面积乘高,可知函数关系式为h=1 000S,它是反比例函数.10.答案a>1解析因为k>0,所以反比例函数图象在第一、三象限,且在每个象限内,y随x的增大而减小.由0<y1<y2得,0<a<2a-1,解得a>1.故答案为a>1.11.A将点A(3,-6)代入y=kx得k=3×(-6)=-18,故选A.12.C∵反比例函数y=kx(k≠0)的图象经过点(2,-3),∴k=2×(-3)=-6,∵(-2)×(-3)=6≠-6,(-3)×(-2)=6≠-6,1×(-6)=-6,6×1=6≠-6,∴它的图象一定还经过的点是(1,-6),故选C.13.C设气球内气体的气压p(kPa)与气体体积V(m3)之间的关系式为p=k(k≠0),V,∵图象过点(1.6,60),∴k=96.∴p=96V当p=120时,V=4.∵图象在第一象限,p随V的增大而减小,故气球内的5m3,即气球的体积应气压小于或等于120 kPa时,体积应大于或等于45不小于4m3.故选C.514.A由题意得AC=m-1,CQ=n,则S四边形ACQE=AC·CQ=(m-1)n=mn-n.(k>0,x>0)的图象上,∴mn=k=4.∵P(1,4)、Q(m,n)在函数y=kx∴S四边形ACQE=AC·CQ=4-n,∵m>1时,n随m的增大而减小,∴S四边形ACQE=4-n随m的增大而增大.故选A.15.答案-3(答案不唯一)的图象位于第二、四象限,∴k<0,∴k的值可解析∵反比例函数y=kx以是-3.(答案不唯一)16.答案y=3x解析∵整式x2-kx+4是一个完全平方式,∴k=±4,的图象的每一支上,y都随x的增大而减小,∵反比例函数y=k−1x∴k-1>0,解得k>1,∴k=4,∴k-1=4-1=3,.∴反比例函数的解析式为y=3x17.答案 6解析∵△OAB的面积为3,点A在反比例函数y=k(x>0)的图象上,xOB·AB=3,即OB·AB=6,∴k=6.∴12),[变式一]D设B的横坐标为m,则B(m,a−1m∵BD ⊥y 轴,∴S △BCD =12m ·a−1m=5,解得a =11,故选D.[变式二]答案 -4 解析 如图,连结OA ,OB ,∵AB ⊥y 轴,∴AB ∥x 轴, ∴S △ABC =S △AOB , ∵△ABC 的面积为4, ∴S △AOB =4.∵D 为线段AB 的中点, ∴S △AOD =S △BOD ,∴S △AOD =2.根据反比例函数的比例系数k 的几何意义可得k =-4.18.解析 (1)∵反比例函数y =kx 的图象经过点A (2,-4),∴k =-4×2=-8.(2)由(1)知k =-8,∴反比例函数的解析式为y =-8x,∵-8<0,∴函数的图象在第二、四象限,在每个象限内,y 随x 的增大而增大. (3)函数图象如图.(4)∵-2×4=-8,-1×5=-5≠-8,∴点B 在函数图象上,点C 不在函数图象上.19.解析 (1)由题意得,函数t =k v的图象经过点(40,1),∴1=k40,解得k =40,∴函数关系式为t =40v,把(m ,0.5)代入t =40v,得0.5=40m,解得m =80.故k 的值为40,m 的值为80.(2)把v =50代入t =40v,得t =4050=0.8,∵t 随v 的增大而减小,∴汽车行驶速度不超过50 km/h 时,通过该路段最少需要0.8小时. 能力提升全练20.C 解法一:∵点A (x 1,y 1),B (x 2,y 2)是反比例函数y =6x 的图象上的两点,∴x 1y 1=x 2y 2=6.∵x 1<0<x 2,∴y 1<0<y 2.故选C.解法二:反比例函数y =6x 的大致图象如图所示.∵x 1<0<x 2,∴点A 在第三象限,点B 在第一象限,∴y 1<y 2.21.答案 32解析 由点B 的坐标为(4,3),可得OB =√42+32=5,∵AB ∥y 轴,AB =BC ,∴A 点的坐标为(4,8),∴k =4×8=32.22.解析 (1)∵一次函数y =2x +b 的图象过点B (0,4),∴b =4,∴一次函数的解析式为y =2x +4,∵OB =4,△BOC 的面积是2,∴12OB ·x C =2,即12×4×x C =2,∴x C =1,把x =1代入y =2x +4,得y =6,∴C (1,6),∵点C 在反比例函数y =k x(x >0)的图象上,∴k =1×6=6.(2)把y =0代入y =2x +4,得2x +4=0,解得x =-2,∴A (-2,0),∴OA =2,∴S△AOC=12×2×6=6.23.解析本题将尺规作图与反比例函数综合起来进行考查.(1)∵反比例函数y=kx(x>0)的图象经过点A(2,4),∴k=2×4=8.故反比例函数的表达式为y=8x.(2)如图,直线EF即为所作.(3)证明:如图,∵AC平分∠OAB,∴∠OAC=∠BAC.∵AC的垂直平分线交OA于点D,∴DA=DC,∴∠DAC=∠DCA.∴∠DCA=∠BAC.∴CD∥AB.素养探究全练24.解析(1)①1.②-4.(2)(x+1)(x-3)-x2=-2x-3,∵当-2<x<0时,min|kx,−2x+b|=-2x+b,∴-2x+b=-2x-3,∴b=-3,∴y2=-2x-3,当x=-2时,y2=1,∴A(-2,1).将A(-2,1)代入y1=kx 中,得k=-2,∴y1=-2x.。
26.1.2反比例函数的图像与性质(教案)

-理解反比例函数图像与性质之间的关系,特别是\( x \)接近0时,\( y \)值的变化;
-将反比例函数图像与实际情境联系起来,进行数学建模;
-解决涉及反比例函数的实际问题时,如何提取关键信息,建立数学模型。
举例:在分析反比例函数图像时,难点在于让学生理解当\( x \)接近0时,\( y \)值会无限增大,图像呈现出渐进线。此时,教师可通过动态演示或实际案例(如速度与时间的关系),帮助学生形象理解这一难点。
此外,课堂总结时,我询问了学生们的疑问,他们提出了一些很好的问题,这表明他们在课堂上确实有所思考。我感到欣慰的同时,也意识到自己在解答问题时需要更加耐心和细致,确保每个学生都能跟上课堂节奏。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解反比例函数的基本概念。反比例函数是形如\( y = \frac{k}{x} \)(\( k \neq 0 \))的函数。它在描述一些变量关系时非常重要,如在经济学、物理学等领域有着广泛的应用。
2.案例分析:接下来,我们来看一个具体的案例。以速度与时间的关系为例,当速度固定时,行驶的距离与时间成反比,从而引入反比例函数的概念。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了反比例函数的基本概念、图像性质和实际应用。通过实践活动和小组讨论,我们加深了对反比例函数的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
三、教例函数的定义及其表达形式,强调\( k \neq 0 \)的条件;
-反比例函数图像的特点,包括图像在坐标轴上的分布、对称性等;
八年级数学反比例函数的图解和性质
三、练习
(一)填空
1、当m 时,反比例函数y=(1-2m)/x的图象在一、 三象限。 2、若反比例函数y=K/x的图象在二、四象限,则直 线y=kx-3不经过第 象限。 3、当k>0时,反比例函数y=(k+1)/x的图象在 象 限。 4、当k<0时,反比例函数y=-k/x的图象在 象 限。 5、反比例函数y=(k2 +1)/x的图象在 象 限。
-2
2
-3
3
-6
6
6
-6
3
-3
2
-2
1.5
-1.5
… … …
Y=3/x … Y=-3/x …
-0.75 -1
0.75 1
-1.5 -3
1.5 3
3
-3
1.5
2
0.75
-1.5 -2 -0.75
… …
y y﹦6∕x y=-6/x
y
o
x
o
x
gx = hx =
6 x 数的概念 1、什么是反比例函数?其 自变量的取值范围是什么, 你能说明为什么吗? 2、试举出几个反比例的例 子。
反比例函数定义:
形如Y=K/X(K≠0)的函数叫反 比例函数。注意反比例函数的另 两种形式:y=kx-1 xy=k (k≠0)
回顾: 一般反比例函数解析式中有 几个待定系数?需要几组X和Y 的对应值可以求出其解析式? 例 1: 已知Y与X的平方成反比例,并 且当X=3时,Y=4;求X=6时, Y的值.
下列( )是函数y=kx-k和y=k/x的大致图象
y
o x
y y o x o x
y o
x
A
B
C
华东师大版八年级下册数学17.反比例函数的图象和性质课件
象限内y随x的增 1
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 x
-1 -2
大而减小。
-3
-4
-5
-6
x … -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 …
y=
6 x
…
1
1.2 1.5
2
3 6 -6 -3 -2 -1.5-1.2 -1 …
2、k<0 图象在第二 和第四象限, 在每个象限 内y 随x的增 大而增大。
y
=
6 x
…
-1 -1.2 -1.5 -2 -3
-6
6
3
2 1.5 1.2 1 …
y=
6 x
…
1
1.2 1.5
2
3 6 -6 -3 -2 -1.5-1.2 -1 …
y
y
6
5 4
y
=
6 x
3
6
y=
6 x
5 4
3
2
2
1
1
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 x
-1
-6 -5 -4 -3 -2 -1 0 1 2 3 4而增大 y随x的增大而减小
性
象 限 二四象限
二四象限
增
减 性
y随x的增大而减小
y随x的增大而增大
例4.如图双曲线
y
k x
上任一点分别作
x轴、y轴的垂线段,与x轴y轴围成矩
形面积为12,求函数解析式。
课堂小结 思考题
请大家环绕以下三个问题小结本节课 ① 什么是反比例函数?
② 反比例函数的图象是什么样子的?
y
6
第6章 反比例函数 浙教版数学八年级下册期末试题选编(含答案)
第6章反比例函数一、单选题1.(2022春·浙江金华·八年级统考期末)如图,在平面直角坐标系中,矩形ABCO,点B(10,8),点D在BC边上,连接AD,把ABD沿AD折叠,使点B恰好落在OC边上点E处,反比例函数(k≠0)的图象经过点D,则k的值为( )A.20B.30C.40D.482.(2022春·浙江丽水·八年级统考期末)反比例函数的图象必经过点()A.B.C.D.3.(2022春·浙江杭州·八年级统考期末)已知是关于的反比例函数,,和,是自变量与函数的两组对应值.则下列关系式中,成立的是()A.B.C.D.4.(2022春·浙江嘉兴·八年级统考期末)若反比例函数的图象经过点,则该反比例函数的表达式是()A.B.C.D.5.(2022春·浙江丽水·八年级统考期末)已知点,,都在反比例函数(a是常数)的图象上,且,则,,的大小关系为()A.B.C.D.6.(2022春·浙江湖州·八年级统考期末)已知反比例函数的图象经过点(2,﹣4),那么这个反比例函数的解析式是( )A.y=B.y=﹣C.y=D.y=﹣7.(2022春·浙江湖州·八年级统考期末)如图,和都是等腰直角三角形,,反比例函数在第一象限的图象经过点B,则与的面积差为().A.32B.16C.8D.48.(2022春·浙江金华·八年级统考期末)已知反比例函数的图象位于第一、三象限,则a的取值范围是()A.B.C.D.二、填空题9.(2022春·浙江绍兴·八年级统考期末)若点A(2,m)在反比例函数y=的图像上,则m 的值为________.10.(2022春·浙江宁波·八年级统考期末)如图,已知在平面直角坐标系中,直线分别交轴,轴于点和点,分别交反比例函数,的图象于点和点,过点作轴于点,连结. 若的面积与的面积相等,则的值是_____.11.(2022春·浙江宁波·八年级统考期末)若点在反比例函数的图象上,则____(填“>”或“<”或“=”)12.(2022春·浙江绍兴·八年级统考期末)如图,直线与反比例函数的图象相交于A、C 两点,与x轴交于点D,过点D作轴交反比例函的图象于点E,连结,点B为y 轴上一点,满足,且恰好平行于x轴.若,则k的值为________.13.(2022春·浙江金华·八年级统考期末)如图,在平面直角坐标系中,已知点的坐标为,射线与反比例函数的图像交于点,过点作轴的垂线交双曲线于点,过点作轴的垂线交双曲线于点,联结,那么的值是__________14.(2022春·浙江杭州·八年级统考期末)已知反比例函数,当时,的最大值与最小值之差是4,则________.15.(2022春·浙江绍兴·八年级统考期末)如图,在平面直角坐标系中,矩形的顶点A在x轴上,顶点C在y轴上,矩形的边在上,.反比例函数的图象经过点B,若阴影部分面积为6,则k的值为______________.16.(2022春·浙江嘉兴·八年级统考期末)如图,直线交反比例函数的图象于点A,交y轴于点B,将直线向下平移个单位后得到直线,交反比例函数的图象于点C.若的面积为,则k的值为____.17.(2022春·浙江丽水·八年级统考期末)如图,的顶点在轴正半轴上,反比例函数在第一象限经过点,与交于点,且,若的面积为9,则的值是______.18.(2022春·浙江宁波·八年级统考期末)如图,平面直角坐标系放置有两个三角板ABO和ACO,其中、为直角,,,和分别经过B、C两点,则的值为______.三、解答题19.(2022春·浙江丽水·八年级统考期末)已知是关于的反比例函数,当时,.(1)求此函数的表达式;(2)当时,函数值是,求的值.20.(2022春·浙江宁波·八年级统考期末)如图,一次函数y1=kx+b(k≠0)与反比例函数y2=(m≠0)的图象交于点A(1,2)和B(﹣2,a),与y轴交于点M.(1)求一次函数和反比例函数的解析式;(2)在y轴上取一点N,当△AMN的面积为3时,求点N的坐标;(3)求不等式kx+b﹣<0的解集.(请直接写出答案)21.(2022春·浙江杭州·八年级校考期末)如图,一次函数的图象与反比例四数的图象相交于A(1,3),B(-3,n)两点.(1)求一次函数和反比例函数的表达式;(2)当一次函数的值大于反比例函数的值时,直接写出的取值范围.(3)直线交轴于点,点是轴上的点,的面积等于的面积,求点的坐标.22.(2022春·浙江金华·八年级统考期末)如图,在平面直角坐标系中,点B在第一象限,BA⊥x轴于A,BC⊥y轴于C,BA=3,BC=5,有一反比例函数图像刚好过点B.(1)分别求出过点B的反比例函数和过A,C两点的一次函数的表达式.(2)动点P在射线CA(不包括C点)上,过点P作直线l⊥x轴,交反比例函数图像于点D.是否存在这样的点Q,使得以点B,D,P,Q为顶点的四边形为菱形?若存在,求出点Q的坐标;若不存在,请说明理由.23.(2022春·浙江嘉兴·八年级统考期末)如图,经过坐标原点O的直线交反比例函数的图象于点,B.点C是x轴上异于点O的动点,点D与点C关于y轴对称,射线交y轴于点E,连结,,.(1)①写出点B的坐标.②求证:四边形是平行四边形.(2)当四边形是矩形时,求点C的坐标.(3)点C在运动过程中,当A,C,E三点中的其中一点到另两点的距离相等时,求的值.24.(2022春·浙江湖州·八年级统考期末)如图一次函数y=kx+b的图像与反比例函数的图像交于点A(2,5)和点B(n,2).(1)求m,n的值;(2)连接OA,OB,求△OAB的面积.25.(2022春·浙江舟山·八年级统考期末)背景:点A在反比例函数的图象上,轴于点B,轴于点C,分别在射线上取点D,E,使得四边形为正方形.如图1,点A在第一象限内,当时,小李测得.探究:通过改变点A的位置,小李发现点D,A的横坐标之间存在函数关系.请有助小李解决下列问题.(1)求k的值.(2)设点A,D的横坐标分别为x,z,将z关于x的函数称为“Z函数”.如图2,小李画出了时“Z函数”的图象.①求这个“Z函数”的表达式.②补画时“Z函数”的图象,并写出这个函数的性质(两条即可).26.(2022春·浙江温州·八年级统考期末)如图,某校劳动小组计划利用已有的一堵长为6m的墙,用篱笆围成一个面积为的矩形劳动基地,边的长不超过墙的长度,在边上开设宽为1m的门(门不需要消耗篱笆).设的长为(m),的长为(m).(1)求关于的函数表达式.(2)若围成矩形劳动基地三边的篱笆总长为10m,求和的长度(3)若和的长都是整数(单位:m),且围成矩形劳动基地三边的篱笆总长小于10m,请直接写出所有满足条件的围建方案.27.(2022春·浙江衢州·八年级统考期末)如图1,将一长方体放置于一水平玻璃桌面上,按不同的方式摆放,记录桌面所受压强与受力面积的关系如下表所示:桌面所受压强P(Pa)400受力面积S()0.5根据表中数据,求出压强()的函数表达式及10cm,且与原长方体相同重量的长方体放置于该水平28.(2022春·浙江杭州·八年级统考期末)在探究欧姆定律时,小明发现小灯泡电路上的电压保持不变,通过小灯泡的电流越大,灯就越亮.设选用小灯泡的电阻为,通过的电流强度为.(1)若电阻为,通过的电流强度为,求关于的函数表达式.(2)如果电阻小于,那么与原来的相比,小灯泡的亮度将发生什么变化?参考答案:1.B【分析】根据翻折变换的性质,可得AE=AB=5,DE=BD;然后设点D的坐标是(10,b),在Rt△CDE 中,根据勾股定理,求出CD的长度,进而求出k的值.【详解】解:∵△ABD沿AD折叠,使点B恰好落在OC边上点E处,点B(10,8),∴AE=AB=10,DE=BD,∵AO=8,AE=10,∴OE==6,CE=10﹣6=4,设点D的坐标是(10,b),则CD=b,DE=8﹣b,∵CD2+CE2=DE2,∴b2+42=(8﹣b)2,解得b=3,∴点D的坐标是(10,3),∵反比例函数的图象经过点D,∴k=10×3=30,故选:B.【点睛】本题考查了求反比例函数的解析式,同时也考查了矩形的翻折问题.须熟练掌握待定系数法求反比例函数的解析式,轴对称的性质.其中求点D的坐标是解题的关键.2.B【分析】利用代入法,把坐标一一代入反比例函数解析式,即可得出结果.【详解】解:A.把代入反比例函数,可得:,故该选项不符合题意;B.把代入反比例函数,可得:,故该选项符合题意;C.把代入反比例函数,可得:,故该选项不符合题意;.把代入反比例函数,可得:,故该选项不符合题意.故选:B【点睛】本题考查了反比例函数的定义及解析式,解本题的关键在充分利用反比例函数解析式进行分【详解】解:设该反比例函数的表达式是,把点代入得:,解得:,∴该反比例函数的表达式是.故选:【点睛】本题主要考查了求反比例函数解析式,熟练掌握待定系数法求函数解析式是解题的关键.【分析】根据,判断反比例函数的图象所在位置,结合图象分析函数增减性,利用函数增减性比较自变量的大小.∵,反比例函数(当时,,故选:D.【点睛】本题考查反比例函数的自变量大小的比较,解题的关键是结合图象,根据反比例函数的增减性分析自变量的大小.=,代入点求出即可.【详解】解:设反比例函数解析式为=,-4=,所以这个反比例函数解析式为=-.【点睛】本题主要考查待定系数法求反比例函数解析式,求反比例函数解析式只需要知道其图像上一点的【分析】已知反比例函数的解析式为,根据系数)再结合已知条件求解即可;【详解】解:如图,设点,因为点B在反比例函数的图象上,所以设点,),)−=m2−2=n−(=−m mn=−(BAD=8.【点睛】本题考查了反比例函数系数的几何意义、等腰三角形的性质以及面积公式,解题的关键是掌握反比例函数系数的几何意义.【分析】根据反比例函数经过第一、三象限,可知,据此作答即可.反比例函数的图象位于第一、三象限,∴,解得:,故选:C.函数的(当时,反比例函数的(当时,反比例函数的()的图象经过二、四象限.【详解】解:将点()代入反比例函数得,==3点睛:本题主要考查反比例函数图象上点的坐标特征,所有在反比例函数上的点的横纵坐标符合函数的解【分析】过点作轴于.根据代入即可求得的值.【详解】如图,过点作轴于.代入得:由反比例函数比例系数的几何意义,可得,.∵,∴,∴.易证,从而,即的横坐标为,而在直线上,∴∴.故答案为2.【分析】先确定的图像在一,三象限,且在每一象限内,随的增大而减小,再利用反比例函数的性质可得答案.【详解】解:>的图像在一,三象限,且在每一象限内,随的增大而减小,><故答案为:【点睛】本题考查的是反比例函数的性质,掌握利用反比例函数的图像与性质比较函数值的大小是解题的【分析】由等腰三角形的性质可得,即点C的纵坐标得出,进而利用全等三角形得出点,利用反比例函数图象上点的坐标特征得出点E的纵坐标,再利用三角形的面积可得【详解】解:如图,过点作轴,交于点作轴,垂足为∵,∴,由于点A、点C在反比例函数的图象上,可设点,即,,∴,∴点,即,∴,∴,在和中,,∴,∴,∴点E的横坐标为,在反比例函数的图象上,的纵坐标为,即,∵,即,∴,∴,故答案为:6.【点睛】本题考查反比例函数图象上点的坐标特征,以及一次函数与反比例函数的交点坐标,利用坐标表【分析】求出的直线解析式,联立,求出,,过点作交于点,交于点,则,,分别求出,,,,即可求,,再求即可.【详解】解:设的解析式为,,,,联立,解得,,,过点作交于点,交于点,,,,,,,,,,故答案为:1.【点睛】本题考查反比例函数的图象及性质,解题的关键是熟练掌握反比例函数的图象及性质.,∴△CMO≌△EMF(AAS)∴,∴,则ab=12,=,=k =12故答案为【点睛】本题考查待定系数法求反比例函数,矩形的性质和全等三角形的性质和判定,不规则图形面积,【分析】向下平移个单位后得到直线,可得到的函数表达式,将点A分别作轴得垂线,与y轴交于点P,则,即可求的坐标,最后将点的坐标代入反比例函数的表达式,求出k即可.∵向下平移个单位后得到直线直线=0代入得;y=,)的横坐标为m,则,)的横坐标为,)AP=m,CQ=n,PQ=-()= PB==,BQ=====∵的面积为∴==(,4(,)代入解得:k=6=四边形OACB=BC∴,∵∴,∴,∴k=12,.【分析】过点,分别做轴的垂线,交于点,,令长为,根据直角三角形的性质,勾股定理,得,,,的值,得到点,点的坐标;将点的坐标代入,点的坐代入标,求出,,即可.【详解】如图,过点,分别做轴的垂线,交于点,,设长为∴在,中,∴,∴∴∴在,中,∴;∴;∴,∴,∴故答案为:.反比例函数解析式为(2)【分析】()首先设反比例函数解析式为,然后把,代入反比例函数,即可得出)中反比例函数解析式,把代入解析式,即可得出)解:设反比例函数解析式为,把,代入反比例函数解析式,可得:,反比例函数解析式为.)可得:,当时,函数值是,∵当时,,∴,解得:.【点睛】本题考查了用待定系数法求反比例函数表达式、反比例函数的定义,解本题的关键在正确求出反比例函数表达式.),;)或;)或【分析】(1)先由点A(1,)在反比例函数图象上求解反比例函数的解析式,再求解的坐标代入一次函数的解析式,求解一次函数的解析式即可;)先求解设点,可得)结合函数图象,根据一次函数的图象在反比例函数的图象的下方,从而可得答案)=(反比例函数的解析式为:)代入可得:把代入y1=(k≠0),解得:所以一次函数的解析式为:)令则则设点,解得:或或(3)kx+b﹣<0,所以一次函数值小于反比例函数值,即一次函数的图象在反比例函数图象的下方,所以或【点睛】本题考查的利用待定系数法求解一次函数与反比例函数的图象,坐标与图形的面积,利用函数图(1),(2)或(3)或【分析】(1)将点A坐标代入反比例解析式求出解析式求出n的值,确定出点)代入反比例解析式得:,,∴反比例解析式为,)代入反比例解析式得:,∴,∴B(-3,)代入中,得:,解得:,一次函数解析式为;)解:由图象得:一次函数值大于反比例函数值的的取值范围为或;)解:对于一次函数,令,得到,即0),∴.∵的面积等于的面积,,,∵点是轴上的点,∴设点P(∴,解得,.∴或.【点睛】此题考查了一次函数与反比例函数的交点问题,涉及的知识有:坐标与图形性质,待定系数法求函数解析式,利用了数形结合的思想,熟练掌握待定系数法是解本题的关键.22.(1),存在,Q点的坐标为(5,-)或(-)或(,)根据题意分别求出A点和C点的坐标,然后用待定系数法求出函数解析式即可;点和D点的坐标,分点在直线BA=,3=,的反比例函数的解析式为=,点坐标得,,解得,A,C两点的一次函数的表达式为=-x)解:存在,(m,-m,)若以点B,为顶点的四边形为菱形则点∴-(-m+3=,整理得,解得=或,经检验,m的值是方程的解,=时,=--m==此时Q5,3-),Q(5-);=时,=-(-m==此时(5,3-),Q(5-);B,D,P,,且=3=,经检验,m的值是方程的解,,=,(,综上所述,若以点-)或(-)或(,3【点睛】本题主要考查反比例函数的综合题,熟练掌握待定系数法求解析式,一次函数的性质,反比例函数的性质,菱形的性质,解一元二次方程等知识是解题的关键.23.(1);证明见解析(2)(3)或或【分析】(1)①根据反比例函数图象是中心对称图形可得点②根据中心对称的性质可得正比例函数与反比例函数的图象于点,∴;②∵点A、∴OA=OB,∵,∴,∴,∴;(3)当点E作AH⊥x轴于∴,∴,∵,∴点D与H重合,∴,∴,当点A为CE的中点时,如图,则,同理可得,∴,∵四边形ACBD是平行四边形,∴,∴,∴,当点C为AE的中点时,,则,,由勾股定理得,∴,综上:或或.【点睛】本题是反比例函数综合题,主要考查了反比例函数的性质,平行四边形的判定,矩形的性质,三角形中位线定理等知识,熟练掌握反比例函数图象是中心对称图形是解题的关键,同时注意分类讨论思想的运用.(2)【分析】2)利用待定系数法求得一次函数的解析式,即可求得直线与)代入中,得到y,y中,得到=5;)解:如图所示:∴,解得,∴一次函数为+7,令y=0,则﹣0,解得∴C(7,0),BOC.【点睛】本题考查待定系数法确定函数关系式以及平面直角坐标系下三角形面积,掌握待定系数法以及坐①;而增大.,,=(A(∴;②图象如图:性质1:x>0时,y随x的增大而增大;性质2:x<0时,y随x的增大而增大.【点睛】此题考查待定系数法求反比例函数解析式,画函数图象,函数的性质,熟练掌握各知识点并应用解决问题是解题的关键.26.(1)(2)(3)或,进而可得出:;均为整数,围成矩形劳动基地三边的篱笆总长小于10m,可得出∴.又∵墙长为∴,∴.∴y关于的函数表达式为:.)解:依题意得:,∴或,∵,∴,∴;(3)解:依题意得:,,∴,∵和的长都是正整数,∴或,∴则满足条件的围建方案为:或【点睛】本题考查了根据实际问题列出反比例函数关系式,根据各数量之间的关系,找出关系式以及根据x(1),这种摆放方式不安全,理由见解析()的函数表达式为,)代入得:,)关于受力面积S()的函数表达式为,时,,)解:这种摆放方式不安全,理由如下:=0.1×0.2=0.02()将长方体放置于该水平玻璃桌面上的压强为,(1)小灯泡的亮度将变亮【分析】(1)根据题意列出关系即可求解;电压不变,,∴,;(2),,随的增大而减小,若电阻小于,那么与原来的相比,小灯泡的亮度将变亮.【点睛】本题考查了反比例函数的应用,根据题意列出函数关系式是解题的关键.。
初二数学《正比例函数和反比例函数》PPT复习
案例分析三
已知正比例函数y=ax(a≠0)的 图像与反比例函数y=b/x(b≠0) 的图像交于C、D两点,且C、D 两点关于原点对称,若点C的坐 标为(3,2),求a、b的值及D点
的坐标。
05 典型例题解析与思路拓展
典型例题选讲
例题1
已知正比例函数 y = kx (k ≠ 0) 的图像经过点 (2, -4),求该正比
在同一平面直角坐标系中,正比例函数 的图像是一条过原点的直线,且关于原 点对称。
比例系数k决定了直线的倾斜程度,k>0 时,直线从左下方向右上方延伸;k<0 时,直线从左上方向右下方延伸。
性质 图像是一条经过原点的直线。
反比例函数定义及性质
性质
图像是分布在两个象限内的双曲 线。
比例系数k决定了双曲线的形状和位置 ,k>0时,双曲线位于第一、三象限; k<0时,双曲线位于第二、四象限。
06 课堂互动环节
学生提问答疑
学生可以向老师提出关于正比例函数 和反比例函数概念、性质、图像等方 面的疑问。
老师会针对学生的问题,进行详细的 解答和辅导,确保学生能够理解和掌 握相关知识。
小组讨论分享学习心得
学生可以分组进行讨论,分享自己在学习正比例函数和反比 例函数过程中的心得和体会。
小组内成。
例题2
已知反比例函数 y = k/x (k ≠ 0) 的图像经过点 (3, 4),求该反比例 函数的解析式。
例题3
已知正比例函数 y = 2x 和反比例函 数 y = 8/x,求这两个函数图像的交 点坐标。
解题思路与方法总结
对于正比例函数,已知一点坐 标,可以通过代入法求出函数 的解析式。
经济学问题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
长铁一中导学·学案 《17.1.1 反比例函数的意义》学案 科目 数学 年 级 初二 班 级 姓 名 课型 新课 主备人 覃 茵 审核人 章 曼 导学时间 第 周
学习目标
知识 会识别相关量之间的反比例关系,理解反比例函数的意义,能确定简单的反比例函数关系式. 能力 通过对实际问题的分析、类比、归纳,培养学生分析问题的能力,并体会函数在实际问题中的应用.
情感 让学生体会数学来源于生活,又能为社会服务,在实际问题的分析中感受数学美. 教材分析
重点 反比例函数意义的理解
难点 反比例函数的建模。 导学操作过程设计(含导学方法、学法指导、课练、作业安排等)
复习巩固导入新课
问题:1.京沪线铁路全长1 463km,某次列车的平均速度v(单位:km/h•)随此次列车的全程运行时间t(单位:h•)的变化而变化,其关系是: =1463,用函数式表示为为:v= ; 2.某住宅小区要种植一个面积为1 000m2矩形草坪,草坪的长ym随宽xm•的变化而变化,其关系是: =1000,用函数式表示为y= ; 3.已知北京市的总面积为1.68×104km2,人均占有的土地面积Skm2/人,随全市总人口n人的变化而变化,其关系是: =1.68×104,用函数式表示为S= 。
自主探究 合作交流
定义:一般地,形如 (k为常数,且k•≠0)•的函数称为反比例函数。 例1:写出下列函数关系式,并指出它们各是什么函数 (1)平行四边形面积是24cm2,它的一边长xm和这边上的高hcm之间的关系是 ,是 函数。 (2)小明用10元钱与买同一种菜,买这种菜的数量mkg与单价n元/kg•之间的关系是 ,是 函数。 (3)老李家一块地收粮食1 000kg,这块地的亩数S与亩产量tkg/亩之间的关系是 ,是 函数。 (4)刘飞骑自行车行驶了100千米的路程,他行驶的时间t小时和速度v千米/时之间的关系是 ,是 函数。 (5)某小区绿地总面积是400m2,该小区的人口数y和人均绿地面积数x之间的关系是 ,是 函数。 注意:
在y=kx中,自变量x取值范围 。为什么? 例2:已知y是x的反比例函数,当x=2时,y=6. (1)求y与x的函数解析式;(2)当x=-4时y的值。
例3 :反比例函数y=kx与直线y=-2x相交于点A,•且点A的横坐标为-1,求此反比例函数的解析式。
拓展提升 发展能力
1、已知y是2x的反比例函数,当x=3时,y=1. (1)求y与2x的函数关系式; (2)当x=-4时,求y的值; (3)当y=-5时,求x的值.
2、若y与x3成反比例,且x=2是y=8. (1)求y与x3的函数关系式 (2)求y=-16时x的值. 3、若y=11nx是y关于x的反比例函数关系式,则n是 。
达标检测 查漏补缺
1、教材P40 练习1 ,2 , 3 2、指出下列函数关系式中,哪一个成反比例函数关系,并指出k的值。 (1)y=-3x (2)xy=2(3)2yx=1 (4)y=121 (5)y=-34x (6)y=21x 3、下列关系中说法不正确的是( ) A、在y=1x—1中,y+1与x成反比例 B、在xy=-2中,y与1x成正比例
C、在y=212x中,y与x成反比例 D、在xy=-3中,y与x成反比例 4、若y是x—1的反比例函数,则x的取值范围是 。 5、已知y是x的反比例函数,并且当x=3时,y=-8。 (1)写出y与x之间的函数关系式;(2)求y=2时x的值。 6、若反比例函数y=kx与一次函数y=2x-4的图象都过点A(m,2)。 (1)求点A坐标; (2)求反比例函数解析式。
课后作业 1. 教材P46 --17.1—1, 2. 2. 基训:P13
课后反思
长铁一中导学·学案 《 17.1.2 反比例函数的图象和性质(第1课时)》学案 科目 数学 年 级 初二 班 级 姓 名 课型 新课 主备人 覃 茵 审核人 章 曼 导学时间 第 周
学习目标
知识 进一步熟悉用描点法作函数图象的主要步骤,会作反比例函数的图象; 能力 1.体会函数三种方式的相互转换,对函数进行认知上的整和;
2.逐步提高从函数图象中获取知识的能力,探索并掌握反比例函数的主要性质; 情感 通过观察反比例函数图象,分析和探究反比例函数的性质,培养学生的探究,归纳及概括能力。在探究过程中渗透分类讨论思想和数形结合的思想。
教材分析 重点
画反比例函数的图象,理解反比例函数的性质;
难点 理解反比例函数的性质,并能灵活应用 导学操作过程设计(含导学方法、学法指导、课练、作业安排等)
复习巩固导入新课
1、形如 (k为常数,且k•≠0)•的函数称为反比例函数。 2、作出一次函数6yx的图象,图象是是 ,作图的步骤是 。 自主探究 合作交流
1、 画出反比例函数6yx与6yx的图象。 步骤:列表---描点---连线
注意:①列表时,注意自变量的取值应使函数有意义(即 )②描点时,一般情况下所选的点越多则图象越精细,③连线时,引导学生用平滑的曲线按照自变量从小到大的顺序连接各点,得到反比例函数的图象。反比例函数图象是由断开的两支曲线组成的,他们与x轴、y轴 交点。 思考:反比函数6yx与6yx的图象有什么共同特征?它们之间有什么关系?
归纳:(1)反比例函数kyx (k为常数,k≠0)的图象是 ; (2)当0k时,双曲线的两支分别位于第 、 象限,在每个象限内,y 随x值的 而 ;
(3)当0k时,双曲线的两支分别位于第 、 象限,在每个象限内y随x值的 而 。
拓展提升 发展能力
1、 已知反比例函数4kyx,分别根据下列条件求出字母k的取值范围: ①函数图象
位于第一、三象限;②在每一象限内,y随x的增大而增大? 达标检测 查漏补缺
1、教材P43-P44 -- 1 , 2 2、下列函数中,当x>0时,函数值y随着 x增大而减小的函数是 ( ) (A)y=31x (B)y=-x4 (C)y=2x (D)y=x3 3、反比例函数y=2x的图象位于 ( )
(A)第一、二象限 (B)第一、三象限 (C)第二、三象限 (D)第二、四象限 4、如果函数y=2xk+1的图象是双曲线,那么k=______. 5、已知正比例函数y=kx,y随x的增大而减小,那么反比例函数xky,当x<0时,y随x的增大而_ _____. 6、如果点(1,-2)在双曲线xky上,那么该双曲线在第______象限.
7、如果反比例函数xky3的图象位于第二、四象限内,那么满足条件的正整数k的值是____________. 8、下列函数中,当x>0时,y随x的增大而减小的是( ).
(A)y=x (B)xy1 (C)xy1 (D)y=2x 9、下列反比例函数图象一定在第一、三象限的是( ). (A)xmy (B)xmy1 (C)xmy12 (D)xmy
课后作业 1、教材P46习题17.1 --3 2、基训
课后反思
长铁一中导学·学案 《17.1.2 反比例函数的图象和性质(第二课时 》学案 科目 数学 年 级 初二 班 级 姓 名 课型 新课 主备人 覃 茵 审核人 章 曼 导学时间 第 周 学习目标
知识 理解并灵活应用反比例函数性质,应用待定系数法求函数关系式,能结合函数图象比较大小. 能力 结合数形结合思想、类比思想理解并应用反比例函数的性质,发展学生的数学能力.
情感 通过习题课,培养学生学习数学的兴趣,发展学生的能力.
教材分析
重点 灵活应用反比例函数的性质.
难点 利用数形结合思想比较大小及求函数关系式. 导学操作过程设计(含导学方法、学法指导、课练、作业安排等)
复习巩固导入新课
老师在黑板上写了这样一道题:“已知点(2,5)在反比例函数y=?x的图象上,•试判断点(-5,-2)是否也在此图象上.”题中的“?•”是被一个同学不小心擦掉的一个数字,请你分析一下“?”代表什么数,并解答此题目.
自主探究 合作交流
探究 点(2,5)在反比例函数图象上,其坐标当然满足函数解析式,因此,代入后易求得?=10,即反比例函数关系式为y=10x,再当x=-5时,代入易求得y=-2,说明点(-5,•-2)适合此函数解析式,进而说明点(-5,-2)一定在其函数图象上. 例1已知反比例函数的图象经过点A(2,6) (1)这个函数的图象分布在哪些象限?y随x的增大而如何变化?
(2)点B(3,4)、C(-212,-445)和D(2,5)是否在这个函数的图象上?
例2教材P44--例4 例3已知函数y=-kx(k≠0)和y=-4x的图象交于A、B两点,过点A作