行程问题
行程问题

基本概念: 行程问题是研究物体运动的,它研究的是物体速度、时间、行程 三者之间的关系。 基本公式:
路程=速度×时间 路程÷时间=速度 路程÷速度=时间
相遇问题: 相遇路程=速度和×相遇时间 相遇时间=相遇路程÷速度和 速度和=相遇路程÷相遇时间
相遇路程(直线) 甲的路程+乙的路程等于=总路程
相遇问题(环形) 甲的路程+乙的路程=环形周长
追及问题: 追及时间=路程差÷速度差 速度差=路程差÷追及时间 路程差=追及时间×速度差
追及问题(直线) 距离差=追者路程-被追者路程 距离差=速度差×时间
追及问题(环形) 快的路程-慢的路程=曲线的周长
流水问题: 顺水行程=(船速+水速)×顺水时间 逆水行程=(船速-水速)×逆水时间 顺水速度=船速+水速 逆水速度=船速-水速 船速/静水速度=(顺水速度+逆水速度)÷2 水速=(顺水速度-逆水速度)÷2
解题思路:甲车继续行驶3小时到达B地的距离应该是乙车4小时走 的路程。从而求出甲车的速度。
24×4÷3 =96÷3 =32(千米/时)
(32+24)×4 =56×4 =224(千米)
答:A、B两地相距224千米。
练习2: 一列快车和一列慢车,同时从甲、乙两站出发,相向而行,经过6 小时相遇,相遇后快车继续行驶3小时后到达乙站。已知慢车每小 时行45千米,甲、乙两站相距多少千米?
练习4: 光明小学有一条长200米的环形跑道,亮亮和晶晶同时从起跑线起 跑,亮亮每秒跑6米,晶晶每秒跑4米,问:亮亮第一次追பைடு நூலகம்晶晶时 两人各跑了多少米?
例5: 一艘轮船的静水速度为每小时18千米,水流速度为每小时3千米, 这艘船从相距3.15千米的两个港口间来回一趟至少需要多少小时?
行程问题应用题大全

行程问题应用题大全1. 题目:火车行程假设小明乘坐火车旅行,从A地出发到B地,全程需要3小时。
在途中,火车经过C地,小明在C地停留了20分钟。
请问小明在C地停留的时刻是多少?解析:假设小明在A地出发的时刻为t0,则到达B地的时刻是t0+3小时。
因此,在途中经过C地的时刻是(t0+3小时)/2,再加上停留的20分钟,则小明在C地停留的时刻为(t0+3小时)/2 + 20分钟。
2. 题目:飞机行程小红乘坐飞机旅行,从A地飞往B地,全程需要5小时。
飞机在途中经过C地,小红在C地停留了1小时20分钟,然后继续飞往B地。
请问小红在B地的时刻是多少?解析:假设小红在A地起飞的时刻为t0,则到达C地的时刻是t0+5小时。
在C地停留1小时20分钟后,小红再次起飞,需要飞行的时间是5小时。
因此,小红在B地的时刻是(t0+5小时)+1小时20分钟+5小时。
3. 题目:汽车行程假设小李乘坐汽车旅行,从A地出发到B地,全程需要6小时。
汽车在途中经过C地,小李在C地停留了45分钟。
请问小李在A地出发的时刻是多少?解析:假设小李在A地出发的时刻为t0,则到达C地的时刻是t0+6小时。
因此,小李在C地停留的时刻是(t0+6小时)+45分钟。
根据题目要求,我们需要求得小李在A地出发的时刻,即t0。
可以通过逆推的方法得到t0,即t0 = (t0+6小时)+45分钟-6小时。
4. 题目:步行行程小张步行旅行,从A地出发到B地,全程需要2小时。
在途中,小张在C地停留了30分钟。
请问小张在C地停留的时刻是多少?解析:假设小张在A地出发的时刻为t0,则到达B地的时刻是t0+2小时。
因此,在途中经过C地的时刻是(t0+2小时)/2,再加上停留的30分钟,则小张在C地停留的时刻为(t0+2小时)/2 + 30分钟。
5. 题目:骑行行程假设小王骑自行车旅行,从A地出发到B地,全程需要1小时30分钟。
自行车在途中经过C地,小王在C地停留了15分钟。
行程问题

年级六年级学科奥数版本通用版课程标题行程问题(一)编稿老师宋玲玲一校林卉二校黄楠审核高旭东行程问题是小学奥数中变化最多的一个专题,不论在奥数竞赛中还是在“小升初”的升学考试中,都占有非常重要的地位。
行程问题包括:相遇问题、追及问题、流水问题、火车过桥、环形行程、复杂行程等。
每一类问题都有自己的特点,解决方法也各有不同,但是,行程问题无论怎么变化,都离不开“三个量、三个关系”:三个量是:路程(s)、速度(v)、时间(t)三个关系:1. 简单行程:路程=速度×时间2. 相遇问题:路程和=速度和×时间3. 追及问题:路程差=速度差×时间牢牢把握住这三个量以及它们之间的这三种关系,就会发现解决行程问题还是有很多方法可循的。
要正确的解答有关“行程问题”的应用题,必须弄清物体运动的具体情况。
如运动的方向(相向,相背,同向),出发的时间(同时,不同时),出发的地点(同地,不同地),运动的路线(封闭,不封闭),运动的结果(相遇、相距多少、交错而过、追及)。
两个物体运动时,运动的方向与运动的速度有着很大关系,当两个物体“相向运动”或“相背运动”时,它们的运动速度都是“两个物体运动速度的和”(简称速度和),当两个物体“同向运动”时,它们的追及速度就变为“两个物体运动速度的差”(简称速度差)。
例如:甲从A地到B地,乙从B地到A地,然后两人在途中相遇,实质上是甲和乙一起走了A,B之间这段路程,如果两人同时出发,那么AB之间的路程=甲走的路程+乙走的路程=甲的速度×相遇时间+乙的速度×相遇时间=(甲的速度+乙的速度)×相遇时间=速度和×相遇时间“相遇问题”的核心是速度和问题。
例1 小陈和小许二人分别从两地同时骑车相向而行。
小陈每小时行16千米,小许每小时行13千米,两人相遇时距中点3千米。
求全程长多少千米?分析与解:要求全程长多少千米,必须知道“速度和”与“相遇时间”。
行程问题

行程问题(相遇问题)【例一】甲、乙两辆汽车同时从东、西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。
两车在距中点32千米处相遇。
东、西两地相距多少千米?练习一1.小玲每分行100米,小平每分行80米,两人同时从学校和少年宫相向而行,并在离中点120米处相遇,学校到少年宫有多少米?2.一辆汽车和一辆摩托车同时从甲、乙两地相对开出,汽车每小时行40千米,摩托车每小时行65千米,当摩托车行到两地中点处时,与汽车还相距75千米,甲、乙两地相距多少千米?3.小轿车每小时行60千米,比客车每小时多行5千米,两车同时从A、B两地相向而行,在距中点20千米处相遇,求A、B两地的路程。
【例二】快车和慢车同时从甲、乙两地相向开出,快车每小时行40千米,经过3小时,快车已驶过中点25千米,这时快车与慢车还相距7千米。
慢车每小时行多少千米?练习二1.兄、弟二人同时从学校和家中出发,相向而行。
哥哥每分钟行120米,5分钟后哥哥已超过中点50米,这时兄弟二人还相距30米。
弟弟每分钟行多少米?2.汽车从甲地开往乙地,每小时行32千米,4小时后,剩下的路比全程的一半少8千米,如果改用每小时56千米的速度行驶,再行几小时到乙地?3.学校运来一批树苗,五(1)班的40个同学都去参加植树活动,如果每人植3棵,全班同学能植这批树苗的一半还多20棵。
如果这批树苗全部给五(1)班的同学去植,平均每人植多少棵树?【例三】甲、乙二人上午8时同时从东村骑车到西村去,甲每小时比乙快6千米。
中午12时甲到西村后立即返回东村,在距西村15千米处遇到乙。
求东、西两村相距多少千米?练习三1.甲、乙二人同时从A地到B地,甲每分钟走250米,乙每分钟走90米。
甲到达B地后立即返回A地,在离B地3.2千米处于乙相遇。
A、B两地间的距离是多少千米?2.小平和小红同时从学校出发步行去小平家,小平每分钟比小红多走20米。
30分钟后小平到家,到家后立即原路返回,在离家350米处遇到小红。
行程问题集锦

行程问题集锦1、根本行程问题:根本概念:行程问题是研究物体运动的,它研究的是物体速度、时间、行程三者之间的关系。
根本公式:路程=速度×时间;路程÷时间=速度;路程÷速度=时间关键问题:确定行程过程中的位置2、简单的相遇、追及问题:相遇问题:速度和×相遇时间=相遇路程追击问题:追击时间=路程差÷速度差简单的相遇与追及问题各自解题时的入手点及需要注意的地方1.相遇问题:与速度和、路程和有关⑴是否同时出发⑵是否有返回条件⑶是否和中点有关:判断相遇点位置⑷是否是屡次返回:按倍数关系走。
⑸一般条件下,入手点从"和"入手,但当条件与"差"有关时,就从差入手,再分析出时间,由此再得所需结果2.追及问题:与速度差、路程差有关⑴速度差与路程差的本质含义⑵是否同时出发,是否同地出发。
⑶方向是否有改变⑷环形时:慢者落快者整一圈(1) 甲、乙两列火车同时从相距700千米的两地相向而行,甲列车每小时行85千米,乙列车每小时行90千米,几小时两列火车相遇?(2) 两列火车从两个车站同时相向出发,甲车每小时行48千米,乙车每小时行78千米,经过2.5小时两车相遇。
两个车站之间的铁路长多少千米?(3) 甲、乙两列火车同时从相距988千米的两地相向而行,经过5.2小时两车相遇。
甲列车每小时行93千米,乙列车每小时行多少千米?〔1〕师徒两人合作加工520个零件,师傅每小时加工30个,徒弟每小时加工20个,几小时以后还有70个零件没有加工?〔2〕甲、乙两队合挖一条水渠,甲队从东往西挖,每天挖75米;乙队从西往东挖,每天比甲队少挖5米,两队合作8天挖好,这条水渠一共长多少米?(3) 甲、乙两艘轮船从相距654千米的两地相对开出而行,8小时两船还相距22千米。
乙船每小时行42千米,甲船每小时行多少千米?〔4〕一辆汽车和一辆自行车从相距172.5千米的甲、乙两地同时出发,相向而行,3小时后两车相遇。
行程问题

行程问题(一)姓名例1、甲乙两人分别从相距20千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米。
两人几小时后相遇?例2、东西两镇相距20千米,甲、乙两人分别从两镇同时出发相背而行,甲每小时行的路程是乙的2倍,3小时后两人相距56千米,两人速度各是多少?例3、王欣和陆良两人同时从相距2000米的两地相向而行,王欣每分钟行110米,陆良每分钟行90米,如果一只狗与王欣同时同向而行,每分钟行500米,遇到陆良后,立即回头向王欣跑去,遇到王欣再向陆良跑去。
这样不断来回,直到王欣和陆良相遇为止,狗共行了多少米?例4、甲、乙两人在环形跑道上以各自的不变速度跑步,如果两人同时从同地相背而行,乙跑4分钟后两人第一次相遇,甲跑一周要6分钟,乙跑一周要多少分钟?例5、甲、乙两人骑车同时从东西两地相向而行,8小时相遇。
如果甲每小时少行1千米,乙每小时多行3千米,这样过7小时就可以相遇。
东西两地相距多少千米?例6、甲乙两车同时从东西两地相对开出,6小时相遇。
如果甲车每小时少行9千米,乙车每小时多行6千米,那么经过6小时后,两车已行路程是剩下路程的19倍。
东西两地相距多少千米?例7、甲乙两车同时从A、B两地相向而行,在距A地60千米处第一次相遇。
各自到达对方出发地后立即返回,途中又在距A地40千米处相遇。
A、B两地相距多少千米?1、甲乙两艘轮船分别从A、B两港同时出发而行,甲船每小时行驶18千米,乙船每小时行驶15千米,经过6小时两艘轮船途中相遇。
两地间的水路长多少千米?2、甲乙两车分别从相距480千米的AB两城同时出发,相向而行,已知甲车从A城到B城需6小时,乙车从城到A城需12小时,两车出发后多少小时相遇?3、甲乙两队学生从相隔18千米的两地同时出发,相向而行。
一个同学骑自行车以每小时15千米的速度在两队间不停地往返联络。
甲队每小时行5千米,乙队每小时行4千米,两队相遇时,骑自行车的同学共行多少千米?4、小东和小刚两人在环形跑道上以各自不同的不变速度跑步,如果两人同时从同地相背而行,小刚跑6分钟后两人第一次相遇,小东跑一周要8分钟,小刚跑一周要几分钟?5、小明和小军分别从甲乙两地同时出发,相向而行。
六年级数学行程问题
六年级数学行程问题一、行程问题题目1. 甲、乙两地相距450千米,快车和慢车分别从甲、乙两地同时出发相向而行,快车每小时行60千米,慢车每小时行30千米。
问几小时后两车相遇?解析:两车相向而行,它们的相对速度就是两车速度之和,即公式千米/小时。
根据时间 = 路程÷速度,总路程是450千米,所以相遇时间为公式小时。
2. 一辆汽车从甲地开往乙地,速度是85千米/小时,用了6小时,返回时只用了5小时,返回时的速度是多少?解析:根据路程 = 速度×时间,从甲地到乙地的路程为公式千米。
返回时路程不变,时间为5小时,所以返回速度为公式千米/小时。
3. 小明和小红在周长为400米的环形跑道上跑步,小明的速度是6米/秒,小红的速度是4米/秒。
如果他们同时同地同向起跑,多少秒后小明第一次追上小红?解析:同向起跑时,小明第一次追上小红时,小明比小红多跑了一圈,即400米。
小明每秒比小红多跑公式米,所以追及时间为公式秒。
4. 两列火车同时从相距720千米的两地相对开出,一列火车每小时行50千米,另一列火车每小时行70千米。
经过几小时两车相遇?解析:两车相对开出,相对速度为公式千米/小时。
根据时间 = 路程÷速度,路程为720千米,所以相遇时间为公式小时。
5. 一辆客车和一辆货车分别从A、B两地同时出发,相向而行,客车的速度是每小时75千米,货车的速度是每小时65千米,经过3小时两车相遇。
A、B两地相距多少千米?解析:两车相向而行,它们的速度和为公式千米/小时,经过3小时相遇。
根据路程 = 速度×时间,所以A、B两地相距公式千米。
6. 甲、乙两人分别从相距24千米的两地同时出发相向而行,甲每小时走4千米,乙每小时走2千米,几小时后两人相遇?解析:两人相向而行,速度和为公式千米/小时。
根据路程÷速度= 时间,总路程24千米,所以相遇时间为公式小时。
7. 一辆汽车以每小时60千米的速度从甲地开往乙地,3小时后到达乙地,然后又以每小时45千米的速度返回甲地,求汽车往返的平均速度。
行程问题ppt课件
Part
06
行程问题述:通过画图的方式,将行程问题中的信息以图形的方式呈现出来,有助 于直观地理解问题,找出关键信息,从而解决问题。
代数法
总结词:通用性强
详细描述:将行程问题中的未知数用代数式表示,通过设立方程或方程组来求解,这种方法通用性强,适用于各种行程问题 。
02 03
详细描述
追及问题涉及到两个物体在同一方向上移动,一个物体追赶另一个物体 直到它们相遇。这类问题需要考虑物体的速度、时间和距离,以及它们 之间的相对运动关系。
公式
距离 = 速度 × 时间
环形跑道问题
总结词
环形跑道问题主要研究在环形跑道上运动的物体之间的相对位置关系。
详细描述
在环形跑道问题中,物体在同一起点出发,沿着环形跑道运动,直到再次相遇。这类问题 需要考虑物体的速度、时间和距离,以及它们之间的相对运动关系。
Part
02
基础行程问题解析
匀速直线运动
总结词
物体在直线运动中,速度保持不变。
详细描述
匀速直线运动是速度恒定的运动,即单位时间内通过的距离相等。在匀速直线 运动中,速度、时间和距离之间的关系可以用公式表示为:速度 = 距离 / 时间。
匀加速直线运动
总结词
物体在直线运动中,速度逐渐增加。
详细描述
行程问题ppt课件
• 行程问题简介 • 基础行程问题解析 • 复杂行程问题解析 • 行程问题的数学模型 • 行程问题的实际应用 • 行程问题的解题技巧
目录
Part
01
行程问题简介
行程问题的定义
总结词
行程问题是指在一定条件下,寻找一条满足特定要求的旅行路线,通常需要考虑时间、 距离、成本等因素。
行程问题
行程问题(一)相遇追及问题知识点1:路程=速度×时间2:路程和=速度和×相遇时间3:路程差=速度差×追击时间例1 甲、乙两人同时从两地出发相向而行,距离是1300米,甲每分钟行60米,乙每分钟行70米。
甲带着一只狗,狗每分钟行150米。
这只狗同甲一道出发,碰到乙的时候,它就掉头朝甲这边走,碰到甲时又往乙那边走…直到两人相遇,这只狗一共走了多少米?解析: 狗行走的时间与甲乙两人的相遇时间相同,用其速度乘其时间便可求解.1300÷(60+70)=10(分钟)150×10=1500(米)例2 两城相距400千米,两列火车同时从两城相对开出,5小时相遇,已知第一列火车的速度比第二列火车每小时快2千米,两列火车的速度各是多少?解析: 两车速度和为400÷5=80km/h,又知差为2km/h,则根据和差问题可求二者速度.提示:和差问题:大数=(和+差)÷2,小数=(和—差)÷2400÷5=80(km/h)(80+2)÷2=41(km/h)(80-2)÷2=39(km/h)例3 甲、乙两辆汽车同时从A、B两地相向而行,4小时后相遇。
相遇后甲车继续前行3小时到达B地,乙车继续以每小时24千米的速度前进,问A、B两地相距多少千米?解析:甲车行完全程用7小时,求得甲的速度就能求出全程.(24×4÷3)×(3+4)=224(km)例4 甲、乙两车分别从A、B两地同时相向而行。
甲车每小时行82千米,乙车每小时行72千米,两车在距离中点30千米处相遇。
A、B两地相距多少千米?解析:关键是求甲乙两车的相遇时间,由于在距离中点30km相遇可知二者的路程差为30×2=60km.用路程差除以速度差可求相遇时间.30×2÷(82—72)×(82+72)=924(km)例5 甲、乙两车同时从A、B两地相向而行,第一次相遇在距A地65千米处,相遇后,两车继续前进,分别到达目的地后立刻返回。
行程问题
在行车、行船、行走时,按照速度、时间和距离之间的相依关系,已知其中的两个量,要求第三个量,这类应用题,叫做行程应用题。
也叫行程问题。
行程应用题的解题关键是掌握速度、时间、距离之间的数量关系:距离=速度×时间速度=距离÷时间时间=距离÷速度按运动方向,行程问题可以分成三类:1、相向运动问题(相遇问题)2、同向运动问题(追及问题)3、背向运动问题(相离问题)一、相向运动问题相向运动问题(相遇问题),是指地点不同、方向相对所形成的一种行程问题。
两个运动物体由于相向运动而相遇。
解答相遇问题的关键,是求出两个运动物体的速度之和。
基本公式有:两地距离=速度和×相遇时间相遇时间=两地距离÷速度和速度和=两地距离÷相遇时间例1:两列火车同时从相距540千米的甲乙两地相向而行,经过3.6小时相遇。
已知客车每小时行80千米,货车每小时行多少千米?1、一辆客车和一辆货车同时从两站相对开出,客车每小时行35千米,货车每小时行45千米,2.5小时相遇,两站相距多远?2、两个县城相距52.5千米,甲、乙二人同时从两城相对开出,甲每小时行5千米,乙每小时行5.5千米,他们几小时相遇?3、甲、乙二人分别从相距110千米的两地相对开出,5小时相遇,甲每小时行12千米,乙每小时行多少千米?4、甲、乙两站相距486千米,两列火车同时相对而行,5小时相遇,第一列火车比第二列火车每小时多行1.7千米,两列火车的速度各是多少?5、两列火车同时从相距650千米的两地相向而行,甲车每小时行50千米,乙车每小时行52千米,四小时后两车相距多远?例2:两城市相距138千米,甲乙两人骑自行车分别从两城出发,相向而行。
甲每小时行13千米,乙每小时行12千米,乙在行进中因修车候车耽误1小时,然后继续行进,与甲相遇。
求从出发到相遇经过几小时?二、同向运动问题(追及问题)两个运动物体同向而行,一快一慢,慢在前快在后,经过一定时间快的追上慢的,称为追及。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
行程应用题1.甲,乙两地相距1080KM,一列快车从甲站开出,每小时行驶72KM,一列慢车从乙站开出,每小时行驶48KM。
(1)两车同时出发,多少小时相遇?(2)若快车先开出1小时后慢车才出发,问:慢车出发后几小时与快车相遇?(3)若慢车先开出2小时后快车才出发,问:快车出发后几小时与慢车相遇?(4)两车同时出发,多少小时后两车相距30KM?1,再乘坐公汽达到学校,结果2.小强以每小时5KM的速度步行去上学,若先走全程的3比步行上学提前2小时,已知公汽的速度是每小时20KM。
求小强家距学校的路程?3.甲、乙两汽车从A市出发. 丙汽车从B市出发. 甲车每小时行驶40千米. 乙车每小时行驶45千米. 丙车每小时行驶50千米. 如果三辆汽车同时相向而行. 丙车遇到乙车后10分钟才能遇到甲车. 求A、B两市的距离.4 A、B两地之间的距离为105km, 两名骑自行车的人分别从A地和B地同时相向而行, 出发后经过1小时45分钟相遇, 接着每人按各自的方向原速前进, 在他们相遇3分钟后, 以每小时40km的速度行驶的第一名骑车人和在同一条道路上迎面驶来的第三名骑车人相遇, 第三名骑车人在同第一名骑车人相遇后, 按原方向继续行驶, 并在C处赶上了第二名骑车人. 如果开始时第一名骑车人的速度比原速每小时少20km, 而第二名骑车人每小时增加2km, 那么第一名和第二名骑车人就会在C地相遇, 问第三名骑车人的速度是多少?5.甲、乙、丙的速度分别为4米/秒、2米/秒、3米/秒.甲、乙在A地, 丙在B地,他们同时出发相向而行,A、B两地路程为720米.(1)当甲与丙相遇时,乙与丙之间的路程是多少米?(2)经过多少秒时, 甲、丙之间的路程是乙、丙之间的路程的3倍?6、某人乘船由A地顺流而下到B地,然后又逆流而上到C地,共乘船4小时,已知船在静水中的速度为每小时7.5千米,水流速度为每小时2.5千米,若AC两地的距离为10千米,则AB两地的距离为多少千米?方案问题1一家游泳馆每年6-8月出售夏季会员证,每张会员证80元,只限本人使用,凭证购入场券每张1元,不凭证购入场券每张3元,讨论并回答:(1)什么情况下,购会员证与不购证付一样的钱?(2)什么情况下,购会员证比不购证更合算?(3)什么情况下,不购会员证比购证更合算?2丽水市为打造“浙江绿谷”品牌,决定在省城举办农副产品展销活动,某外贸公司推出品牌产品“山山牌”香菇、“奇尔”惠明茶共10吨前往参展,用6辆汽车装运,每辆汽车规定满载,且只能装运一种产品;因包装有限制,每辆汽车满载时能装香菇1.5吨或茶叶2吨。
问装运香菇、茶叶的汽车各需多少辆?3某同学在A、B两家超市分别发现他看中的随身听和书包单价之和是452元,且随身听的单价比书包单价的4倍少8元。
①求该同学看中的随身听和书包的单价各是多少元?②某一天该同学上街,恰好赶上商家促销。
A超市所有商品打八折销售,B超市全场购物满100元返购物券30%(不足100元不返券,购物券全场通用),但他只带了400元钱。
如果他只在一家超市购买这两样物品,你能说明他在哪一家购买更省钱?4商场出售A型冰箱每台售价2190元,每日耗电量为1度,而B型节能冰箱每台售价虽比A型冰箱高出10%,但每日耗电量却为0.55度,现将A型冰箱打折出售,问商场至少打几折,消费者购买才合算?(按使用期为10年,每年365天,每度电0.40元计算)5某地生产的一种绿色蔬菜,在市场上直接销售,每吨利润为1000元,经粗加工后销售每吨利润可达4500元,经精加工后,每吨利润涨至7500元。
当地一家公司收购这种蔬菜140吨,该公司加工厂的生产能力是:如果对蔬菜进行粗加工,每天可加工16吨;如果进行精加工,每天可加工6吨,但两种加工方法不能同时进行,受季节等条件限制,公司必须用15天的时间将这批蔬菜全部销售或加工完毕,为此,公司研制了三种可行方案:方案一:将蔬菜全部进行粗加工;方案二:尽可能多地对蔬菜进行精加工,没来得及进行加工的蔬菜,在市场上直接出售;方案三:将一部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好用15天完成。
你认为选择哪种方案获利最多?为什么?6某织布厂现有职工100名, 为获得更高的利润, 与港商签订制衣合同, 已知每人每天能织布20米, 或利用所织的布制衣5件, 制衣一件需布2米, 将布直接销售, 每米可获利2元, 将布制成衣服后销售, 每件衣服可获利20元. 若每名工人一天只能做一项工作, 且不计其它因素, 设安排了a名工人制衣, 回答下列问题:(1)一天中制衣所获得的利润A=________________元(用含a的代数式表示);(2)一天中剩余布所获得的利润B=________________元(用含a的代数式表示);(3)要使一天所获得总利润为6640元, 应安排多少工人制衣服, 多少工人织布?7电脑上网有“宽带网”和“拨号上网”等方式, 其中拨号上网的费用由电话费和上网费两部分组成, 以前收费标准为:电话费0.18元/3分钟, 上网费7.2元/时. 从1999年3月1日起, 信息产业部调整为:上网电话费0.22元/3分钟, 上网费为每月不超过60小时, 按4元/时计算, 超过60小时的部分, 按8元/时计算.(1)资费调整前, 网民张永在其家庭经济预算中, 一直有一笔每月70小时的上网支出,这笔预算为多少钱?(2)资费调整后, 预算不变, 张永每月至多可上网多少小时?8(2)班人数较多, 有50多人, 经估算, 如果两班都以班为单位分别购票, 则一共应付1240元.问:(1) 两班各有多少学生?(2) 如果两班联合起来, 作为一个团体购票, 可以省多少钱?9、某影碟出租店开设两种租碟方式:一种是零星租碟, 每张收费1元;另一种是会员卡租碟, 办卡费每月12元, 租碟费每张0.4元. 小彬经常来该店租碟, 若每月租碟的数量为x 张.(1)若零星租碟应付金额y1(元), 会员卡租碟应付金额y2(元), 试用含x的代数式分别表示y1、y2;(2)小彬选取哪种租碟方式更合算?10某地电话拨号入网有两种收费方式, 用户可以任选其一:(A)计时制:0.05元/分;(B)包月制:50元/月(限一部个人住宅电话上网)此外, 每一种上网方式都得加收通讯费0.02元/分.(1) 若上网时间为x个小时, A种方式每月支付的费用为y A元, B种方式每月支付的费用为y B元, 请用含x的代数式分别表示y A、y B;(2) 若某用户估计一个月内上网的时间为20小时, 你认为来用哪种方式较为合算?11“五一”期间, 某校由4位教师和若干位学生组成的旅游团, 拟到国家4A级旅游风景区――闽西冠豸山旅游, 甲旅行团的收费标准是:如果买4张全票, 则其余按七折优惠;乙旅行社的收费标准是:5人以上(含5人)可购团体票, 旅游团体票按原价的八折优惠.这两家旅行社的全票价格均为每人300元.(1)若有10位学生参加该旅游团, 问选择哪家旅行社更省钱?(2)参加该旅游团的学生人数是多少时, 两家旅行社收费一样?一、基本行程问题.基本行程问题的特点是:同一人(或物体)在去时与回时的运动过程中,改变了路程、速度或时间;也可以是两人(或两物体)在同一路程行进中,由于速度不同而导致到达的时间不同.解这类问题时,要抓住总路程或总时间不变,直接运用路程、速度与时间三者之间的关系式.例1某人从甲村去乙村,在乙村停留1小时后又绕道去丙村,再停留半小时返回甲村,去时的速度是5千米/时,回时的速度是4千米/时,来回包括停留时间共用去6小时30分钟,回来因绕道多走了2千米,求去时所走的路程.解:设去时的路程为x千米,则回时的路程是(x+2)千米.依题意,得方程:解之得 x=10(千米)答:去时所走的路程为10千米.二、相遇问题.相遇问题的特点是:两个运动着的人(或物体)从两地沿同一路线相向而行,最终相遇.解这类问题时,要抓住甲、乙同时出发至相遇时的基本等量关系:(1)甲行的路程+乙行的路程=两地间的路程,即:甲与乙的速度和×相遇时间=两地间的路程;(2)同时出发到相遇甲与乙所用的时间相等.例2 甲、乙两城相距100千米,摩托车和自行车同时从两城出发,相向而行,2.5小时两车相遇,自行车的速度是摩托车的,求摩托车和自行车的速度。
解:设摩托车的速度是每小时x千米,则自行车的速度是每小时千米。
依题意,得方程:答摩托车的速度是30千米/时,自行车的速度是10千米/时.三、追及问题.追及问题的特点是:两人(或两物体)同时沿同一路线,同一方向运动,慢者在前,快者在后,快者追赶慢者.解这类问题要抓住基本等量关系:(1)快者行的路程-慢者行的路程=两者间的距离,即:两者的速度差×追及时间=两者间的距离;(2)从开始追赶到追及时,快者与慢者所用的时间相等.例3 东西两村相距20千米,一人骑自行车从西村出发往东走,每小时走13千米,同时另一人步行从东村出发,沿同一条路也往东走,每小时走5千米,经过几小时后,骑自行车的人可以追上步行的人?解设x小时后,骑自行车的人追上步行的人.依题意,得方程13-5)x=20解之得 x=2.5(小时)答经2.5小时,骑自行车的人可以追上步行的人.四、航行问题.航行问题是一种特殊的行程问题,它的特殊性在于要考虑水速对船速的影响,其基本等量关系是:(1)船顺流速度=船的速度+水流速度;(2)船逆流速度=船的速度-水流速度.例4 一船在甲乙两地之间航行,顺流行驶要4小时,逆流行驶要5小时,已知水流的速度为每小时2千米,求这两地之间的距离.解设这两地间的距离为x千米.则依题意,得方程:解之得 x=80(千米)答这两地间的距离为80千米.五、环行问题.环行问题即封闭路线上的行程问题.如果同时从同一地点出发,到第一次相遇,有两种情况:同向环行类似追及问题,其基本等量关系是:快者走的路程-慢者走的路程=环形周长;反向环行类似相遇问题,其基本等量关系是:快者走的路程+慢者走的路程=环形周长.例5 一条环行跑道长400米,甲每分钟行550米,乙每分钟行250米.甲、乙两人同时同地同向出发,问多少分钟后他们再相遇?解:设x分钟后两人再相遇.依题意可得方程550x-250x=400答:1分20秒后,他们再相遇.1.甲、已两个车站相距168千米,一列慢车从甲站开出,速度为36千米/小时,一列快车从乙站开出,速度为48千米/小时。
(1)两列火车同时开出,相向而行,多少小时相遇?(2)慢车先开1小时,相向而行,快车开几小时与慢车相遇?2.甲、乙两人从同地出发前往某地。
甲步行,每小时走4公里,甲走了16公里后,乙骑自行车以每小时12公里的速度追赶甲,问乙出发后,几小时能追上甲?3.甲、乙两人练习50米短距离赛跑,甲每秒钟跑7米,乙每秒钟跑6.5米。