新教材高一数学——第2课时 二次函数与一元二次方程、不等式(作业设计)

合集下载

高一数学必修一 教案 2.3 二次函数与一元二次方程、不等式

高一数学必修一 教案 2.3 二次函数与一元二次方程、不等式

2.3 二次函数与一元二次方程、不等式第1课时二次函数与一元二次方程、不等式学习目标 1.从函数观点看一元二次方程.了解函数的零点与方程根的关系.2.从函数观点看一元二次不等式.经历从实际情景中抽象出一元二次不等式的过程,了解一元二次不等式的现实意义.3.借助一元二次函数的图象,了解一元二次不等式与相应函数、方程的联系.知识点一一元二次不等式的概念定义只含有一个未知数,并且未知数的最高次数是2的不等式,叫做一元二次不等式一般形式ax2+bx+c>0,ax2+bx+c<0,ax2+bx+c≥0,ax2+bx+c≤0,其中a≠0,a,b,c均为常数知识点二一元二次函数的零点一般地,对于二次函数y=ax2+bx+c,我们把使ax2+bx+c=0的实数x叫做二次函数y=ax2+bx+c 的零点.知识点三二次函数与一元二次方程的根、一元二次不等式的解集的对应关系判别式Δ=b2-4ac Δ>0Δ=0Δ<0二次函数y=ax2+bx+c(a>0)的图象一元二次方程ax2+bx+c=0(a>0)的根有两个不相等的实数根x1,x2(x1<x2)有两个相等的实数根x1=x2=-b2a没有实数根ax2+bx+c>0(a>0)的解集{x|x<x1,或x>x2}⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x⎪⎪⎪x≠-b2aRax2+bx+c<0(a>0)的解集{x|x1<x<x2}∅∅预习小测自我检验1.下面所给关于x的几个不等式:①3x+4<0;②x2+mx-1>0;③ax2+4x-7>0;④x2<0.其中一定为一元二次不等式的有________.(填序号) 答案 ②④解析 一定是一元二次不等式的为②④. 2.不等式x (2-x )>0的解集为________. 答案 {x |0<x <2}解析 原不等式可化为x (x -2)<0,∴0<x <2. 3.不等式4x 2-9<0的解集是________.答案 ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-32<x <32 解析 原不等式可化为x 2<94,即-32<x <32.4.已知一元二次不等式ax 2+2x -1<0的解集为R ,则a 的取值范围是________. 答案 {a |a <-1} 解析 由题意知⎩⎪⎨⎪⎧a <0,Δ<0,∴⎩⎪⎨⎪⎧a <0,4+4a <0,∴a <-1.一、解不含参数的一元二次不等式 例1 解下列不等式: (1)-x 2+5x -6>0; (2)3x 2+5x -2≥0; (3)x 2-4x +5>0.解 (1)不等式可化为x 2-5x +6<0.因为Δ=(-5)2-4×1×6=1>0,所以方程x 2-5x +6=0有两个实数根:x 1=2,x 2=3. 由二次函数y =x 2-5x +6的图象(如图①),得原不等式的解集为{x |2<x <3}.(2)因为Δ=25-4×3×(-2)=49>0,所以方程3x 2+5x -2=0的两实根为x 1=-2,x 2=13.由二次函数y =3x 2+5x -2的图象(图②),得原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≤-2或x ≥13. (3)方程x 2-4x +5=0无实数解,函数y =x 2-4x +5的图象是开口向上的抛物线,与x 轴无交点(如图③).观察图象可得,不等式的解集为R .反思感悟 解一元二次不等式的一般步骤第一步:把一元二次不等式化为标准形式(二次项系数为正,右边为0的形式);第二步:求Δ=b 2-4ac ;第三步:若Δ<0,根据二次函数图象直接写出解集;若Δ≥0,求出对应方程的根写出解集. 跟踪训练1 解下列不等式: (1)4x 2-4x +1>0; (2)-x 2+6x -10>0.解 (1)∵方程4x 2-4x +1=0有两个相等的实根x 1=x 2=12.作出函数y =4x 2-4x +1的图象如图.由图可得原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠12.(2)原不等式可化为x 2-6x +10<0, ∵Δ=36-40=-4<0, ∴方程x 2-6x +10=0无实根, ∴原不等式的解集为∅.二、三个“二次”间的关系及应用例2 已知二次函数y =ax 2+(b -8)x -a -ab ,且y >0的解集为{x |-3<x <2}. (1)求二次函数的解析式;(2)当关于x 的不等式ax 2+bx +c ≤0的解集为R 时,求c 的取值范围. 解 (1)因为y >0的解集为{x |-3<x <2},所以-3,2是方程ax 2+(b -8)x -a -ab =0的两根,所以⎩⎪⎨⎪⎧-3+2=-b -8a,-3×2=-a -aba,解得⎩⎪⎨⎪⎧a =-3,b =5,所以y =-3x 2-3x +18.(2)因为a =-3<0,所以二次函数y =-3x 2+5x +c 的图象开口向下,要使-3x 2+5x +c ≤0的解集为R ,只需Δ≤0,即25+12c ≤0,所以c ≤-2512.所以当c ≤-2512时,-3x 2+5x +c ≤0的解集为R .反思感悟 三个“二次”之间的关系(1)三个“二次”中,二次函数是主体,讨论二次函数主要是将问题转化为一元二次方程和一元二次不等式的形式来研究.(2)讨论一元二次方程和一元二次不等式又要将其与相应的二次函数相联系,通过二次函数的图象及性质来解决问题,关系如下:特别提醒:由于忽视二次项系数的符号和不等号的开口易写错不等式的解集形式. 跟踪训练2 已知关于x 的不等式ax 2+5x +c >0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪13<x <12. (1)求a ,c 的值;(2)解关于x 的不等式ax 2+(ac +2)x +2c ≥0.解 (1)由题意知,不等式对应的方程ax 2+5x +c =0的两个实数根为13和12,由根与系数的关系,得⎩⎪⎨⎪⎧-5a =13+12,c a =12×13,解得a =-6,c =-1.(2)由a =-6,c =-1知不等式ax 2+(ac +2)x +2c ≥0可化为-6x 2+8x -2≥0,即3x 2-4x +1≤0,解得13≤x ≤1,所以不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪13≤x ≤1. 三、含参数的一元二次不等式的解法例3 设a ∈R ,解关于x 的不等式ax 2+(1-2a )x -2>0.解 (1)当a =0时,不等式可化为x -2>0,解得x >2,即原不等式的解集为{x |x >2}. (2)当a ≠0时,方程ax 2+(1-2a )x -2=0的两根分别为2和-1a.①当a <-12时,解不等式得-1a<x <2,即原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-1a <x <2;②当a =-12时,不等式无解,即原不等式的解集为∅;③当-12<a <0时,解不等式得2<x <-1a,即原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2<x <-1a ; ④当a >0时,解不等式得x <-1a或x >2,即原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-1a 或x >2. 反思感悟 解含参数的一元二次不等式的步骤特别提醒:对应方程的根优先考虑用因式分解确定,分解不开时再求判别式Δ,用求根公式计算. 跟踪训练3 (1)当a =12时,求关于x 的不等式x 2-⎝ ⎛⎭⎪⎫a +1a x +1≤0的解集;(2)若a >0,求关于x 的不等式x 2-⎝⎛⎭⎪⎫a +1a x +1≤0的解集.解 (1)当a =12时,有x 2-52x +1≤0,即2x 2-5x +2≤0,解得12≤x ≤2,故不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12≤x ≤2. (2)x 2-⎝⎛⎭⎪⎫a +1a x +1≤0⇔⎝ ⎛⎭⎪⎫x -1a (x -a )≤0,①当0<a <1时,a <1a ,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪a ≤x ≤1a; ②当a =1时,a =1a=1,不等式的解集为{1};③当a >1时,a >1a,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ 1a≤x ≤a. 综上,当0<a <1时,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪a ≤x ≤1a ; 当a =1时,不等式的解集为{1};当a >1时,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1a≤x ≤a.1.不等式9x 2+6x +1≤0的解集是( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠-13 B.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-13≤x ≤13 C .∅ D.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =-13 答案 D解析 原不等式可化为(3x +1)2≤0, ∴3x +1=0,∴x =-13.2.如果关于x 的不等式x 2<ax +b 的解集是{x |1<x <3},那么b a等于( ) A .-81 B .81 C .-64 D .64 答案 B解析 不等式x 2<ax +b 可化为x 2-ax -b <0, 其解集是{x |1<x <3},那么,由根与系数的关系得⎩⎪⎨⎪⎧1+3=a ,1×3=-b ,解得a =4,b =-3;所以b a=(-3)4=81.故选B. 3.不等式x 2-2x >0的解集是( ) A .{x |x ≥2或x ≤0} B .{x |x >2或x <0} C .{x |0≤x ≤2} D .{x |0<x <2}答案 B解析 解x 2-2x >0,即x (x -2)>0, 得x >2或x <0,故选B.4.不等式x 2-3x -10<0的解集是________. 答案 {x |-2<x <5}解析 由于x 2-3x -10=0的两根为-2,5,故x 2-3x -10<0的解集为{x |-2<x <5}.5.若方程x 2+(m -3)x +m =0有实数解,则m 的取值范围是________________. 答案 {m |m ≥9或m ≤1}解析 由方程x 2+(m -3)x +m =0有实数解, ∴Δ=(m -3)2-4m ≥0, 即m 2-10m +9≥0, ∴(m -9)(m -1)≥0, ∴m ≥9或m ≤1.1.知识清单:解一元二次不等式的常见方法 (1)图象法:①化不等式为标准形式:ax 2+bx +c >0(a >0)或ax 2+bx +c <0(a >0);②求方程ax 2+bx +c =0(a >0)的根,并画出对应函数y =ax 2+bx +c 图象的简图; ③由图象得出不等式的解集.(2)代数法:将所给不等式化为一般式后借助分解因式或配方求解. 2.方法归纳:数形结合,分类讨论.3.常见误区:当二次项系数小于0时,需两边同乘-1,化为正的.1.(2019·全国Ⅰ)已知集合M ={x |-4<x <2},N ={x |x 2-x -6<0},则M ∩N 等于( ) A .{x |-4<x <3} B .{x |-4<x <-2} C .{x |-2<x <2} D .{x |2<x <3}答案 C解析 ∵N ={x |-2<x <3},M ={x |-4<x <2}, ∴M ∩N ={x |-2<x <2},故选C.2.若0<m <1,则不等式(x -m )⎝⎛⎭⎪⎫x -1m <0的解集为( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1m <x <m B.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >1m 或x <m C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >m 或x <1m D.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪m <x <1m 答案 D解析 ∵0<m <1,∴1m>1>m ,故原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪m <x <1m ,故选D. 3.二次方程ax 2+bx +c =0的两根为-2,3,如果a <0,那么ax 2+bx +c >0的解集为( ) A .{x |x >3或x <-2} B .{x |x >2或x <-3} C .{x |-2<x <3} D .{x |-3<x <2}答案 C解析 由题意知-2+3=-ba ,-2×3=c a, ∴b =-a ,c =-6a ,∴不等式ax 2+bx +c >0可化为ax 2-ax -6a >0, 又a <0,∴x 2-x -6<0,∴(x -3)(x +2)<0, ∴-2<x <3,故选C.4.若不等式5x 2-bx +c <0的解集为{x |-1<x <3},则b +c 的值是( ) A .5 B .-5 C .-25 D .10 答案 B解析 由题意知-1,3为方程5x 2-bx +c =0的两根, ∴-1+3=b 5,-3=c5,∴b =10,c =-15,∴b +c =-5.故选B.5.若关于x 的二次不等式x 2+mx +1≥0的解集为R ,则实数m 的取值范围是( ) A .{m |m ≤-2或m ≥2} B .{m |-2≤m ≤2} C .{m |m <-2或m >2} D .{m |-2<m <2}答案 B解析 ∵x 2+mx +1≥0的解集为R , ∴Δ=m 2-4≤0,∴-2≤m ≤2,故选B. 6.不等式x 2-4x +4≤0的解集是________. 答案 {2}解析 原不等式可化为(x -2)2≤0,∴x =2. 7.不等式x 2+3x -4<0的解集为________. 答案 {x |-4<x <1}解析 易得方程x 2+3x -4=0的两根为-4,1,所以不等式x 2+3x -4<0的解集为{x |-4<x <1}.8.关于x 的不等式(mx -1)(x -2)>0,若此不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1m<x <2,则m 的取值范围是________. 答案 {m |m <0}解析 ∵不等式(mx -1)(x -2)>0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1m <x <2,∴方程(mx -1)(x -2)=0的两个实数根为1m和2,且⎩⎪⎨⎪⎧m <0,1m<2,解得m <0,∴m 的取值范围是m <0.9.已知不等式x 2-2x -3<0的解集为A ,不等式x 2+x -6<0的解集为B . (1)求A ∩B ;(2)若不等式x 2+ax +b <0的解集为A ∩B ,求不等式ax 2+x +b <0的解集. 解 (1)由x 2-2x -3<0,得-1<x <3, ∴A ={x |-1<x <3}. 由x 2+x -6<0,得-3<x <2,∴B ={x |-3<x <2},∴A ∩B ={x |-1<x <2}.(2)由题意,得⎩⎪⎨⎪⎧1-a +b =0,4+2a +b =0,解得⎩⎪⎨⎪⎧a =-1,b =-2.∴-x 2+x -2<0,∴x 2-x +2>0, ∵Δ=1-8=-7<0,∴不等式x 2-x +2>0的解集为R .10.若不等式(1-a )x 2-4x +6>0的解集是{x |-3<x <1}. (1)解不等式2x 2+(2-a )x -a >0; (2)b 为何值时,ax 2+bx +3≥0的解集为R?解 (1)由题意知1-a <0,且-3和1是方程(1-a )x 2-4x +6=0的两根,∴⎩⎪⎨⎪⎧1-a <0,41-a=-2,61-a =-3,解得a =3.∴不等式2x 2+(2-a )x -a >0,即为2x 2-x -3>0, 解得x <-1或x >32.∴所求不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-1或x >32. (2)ax 2+bx +3≥0,即为3x 2+bx +3≥0, 若此不等式解集为R ,则Δ=b 2-4×3×3≤0,∴-6≤b ≤6.11.下列四个不等式:①-x 2+x +1≥0;②x 2-25x +5>0;③x 2+6x +10>0;④2x 2-3x +4<1. 其中解集为R 的是( ) A .① B .② C .③ D .④ 答案 C解析 ①显然不可能;②中Δ=(-25)2-4×5>0,解集不为R ; ③中Δ=62-4×10<0.满足条件;④中不等式可化为2x 2-3x +3<0,所对应的二次函数开口向上,显然不可能.故选C.12.在R 上定义运算“⊙”:a ⊙b =ab +2a +b ,则满足x ⊙(x -2)<0的实数x 的取值范围为( ) A .{x |0<x <2} B .{x |-2<x <1} C .{x |x <-2或x >1} D .{x |-1<x <2}答案 B解析 根据给出的定义得,x ⊙(x -2)=x (x -2)+2x +(x -2)=x 2+x -2=(x +2)(x -1), 又x ⊙(x -2)<0,则(x +2)(x -1)<0, 故不等式的解集是{x |-2<x <1}.13.若关于x 的方程(a -2)x 2-2(a -2)x +1=0无实数解,则a 的取值范围是________. 答案 2≤a <3解析 若a -2=0,即a =2时,原方程为1=0不合题意, ∴a =2满足条件,若a -2≠0,则Δ=4(a -2)2-4(a -2)<0, 解得2<a <3,综上有a 的取值范围是2≤a <3.14.已知不等式x 2-2x +5≥a 2-3a 对∀x ∈R 恒成立,则a 的取值范围为________. 答案 {a |-1≤a ≤4}解析 x 2-2x +5=(x -1)2+4≥a 2-3a 恒成立, ∴a 2-3a ≤4,即a 2-3a -4≤0, ∴(a -4)(a +1)≤0,∴-1≤a ≤4.15.在R 上定义运算:⎪⎪⎪⎪⎪⎪a b cd =ad -bc .若不等式⎪⎪⎪⎪⎪⎪x -1 a -2a -1 x ≥1对任意实数x 恒成立,则实数a 的最大值为________. 答案 32解析 原不等式等价于x (x -1)-(a -2)(a +1)≥1,即x 2-x -1≥(a +1)(a -2)对任意x 恒成立,因为x 2-x -1=⎝ ⎛⎭⎪⎫x -122-54≥-54, 所以-54≥a 2-a -2,解得-12≤a ≤32. 16.已知不等式ax 2+2ax +1≥0对任意x ∈R 恒成立,解关于x 的不等式x 2-x -a 2+a <0.解 ∵ax 2+2ax +1≥0对任意x ∈R 恒成立.当a =0时,1≥0,不等式恒成立;当a ≠0时,则⎩⎪⎨⎪⎧ a >0,Δ=4a 2-4a ≤0,解得0<a ≤1.综上,0≤a ≤1.由x 2-x -a 2+a <0,得(x -a )[x -(1-a )]<0.∵0≤a ≤1,∴①当1-a >a ,即0≤a <12时,a <x <1-a ; ②当1-a =a ,即a =12时,⎝ ⎛⎭⎪⎫x -122<0,不等式无解; ③当1-a <a ,即12<a ≤1时,1-a <x <a . 综上,当0≤a <12时,原不等式的解集为{x |a <x <1-a };当a =12时,原不等式的解集为∅;当12<a ≤1时,原不等式的解集为{x |1-a <x <a }.。

2020高一数学新教材必修1教案学案 2.3 二次函数与一元一次方程、不等式(解析版)

2020高一数学新教材必修1教案学案 2.3 二次函数与一元一次方程、不等式(解析版)

(2)由题意,不等式 x2 x 12 (x 4)(x 3) 0 ,则不等式的解集为{x | 3 x 4} ;
1
(3)由题意,不等式 x2 3x 4 (x 4)(x 1) 0 ,则不等式的解集为{x | x 4 或 x 1} ;
(4)由题意,不等式 16 8x x2 (x 4)2 0 ,则不等式的解集为{x | x 4} ;
(6)-2x2+3x-2<0;
【答案】(1){x | x 1或 x 4};(2){x | 3 x 4} ;(3){x | x 4 或 x 1} ; 3
(4){x | x 4} .(5) (6)R(7)[-2,1)∪(2,5]
【解析】(1)由题意,不等式 3x2 x 4 (x 1)(x 4}; 3
a
a
综上原不等式的解集是:当 a=0 时,{x|x<1};
x|-1<x<1
当 a>0 时, a

3
当 a=-1 时,{x|x≠1};
当-1<a<0
时,
x|x<1

x>-1 a
.
x|x<-1或 x>1
当 a<-1 时,
a

【思路总结】
解含参数的一元二次不等式时
(1)关于不等式类型的讨论:二次项的系数 a>0,a=0,a<0; (2)关于不等式对应的方程的根的讨论:两根(Δ>0),一根(Δ=0),无根(Δ<0); (3)关于不等式对应的方程根的大小的讨论:x1>x2,x1=x2,x1<x2.
2 (2)
3 a 3 b
,
a
1,
b
6
,所以
a+b=7.故选:A
(2)由题意知: 4,1是方程 ax2 bx c 0 的两个解,代入方程得到

2.3二次函数与一元二次方程、不等式(第二课时)-2024-2025学年高一数学同步“导思议展评测”

2.3二次函数与一元二次方程、不等式(第二课时)-2024-2025学年高一数学同步“导思议展评测”

{|1 < < 2 }

{| ≠ − }
2



复习回顾
问题2 如何求一元二次不等式?
变形
通过变形化成标准的一元二次不等式的形式(要求二次项系数
为正且不等式的右边为0)
求根
求出相应的一元二次方程的根,有三种情况: ∆= 0 (两根相同,
1 = 2 ),∆> 0(两根不同,1 ,2 ),∆< 0(无实数根).
约应生产多少辆摩托车?
画出二次函数 = 2 − 110 + 3000的图象,结合图象得
不等式 2 − 110 + 3000 < 0的解集为{|50 < < 60},
从而不等式的解集为{|50 < < 60}.
因为只能取整数值,所以当这条流水线在一周内生产的摩托车数量在
51~59辆时,这家工厂能获得60000元以上的收益.
1
2
原不等式的解集为{| − 2 ≤ < −1或 ≤ < 3}.
方法小结
分式不等式等价于乘法不等式
同样经历:求根、图像、下结论的步骤
注意:分母不为零
高阶:奇穿偶返
课堂练习
例7 x是何值时, + − 有意义?
解: + − ≥
所以−3 ≤ ≤ 4
根号下大于等于0
(1)
+
>
++
;(2)
− +−
≥ .
分式不等式等价于乘法不等式
同样经历:
2−
2−
−2−1
解:(1)∵
> 1,∴
− 1 > 0,即

高中数学必修一课件:二次函数与一元二次方程、不等式(第2课时)

高中数学必修一课件:二次函数与一元二次方程、不等式(第2课时)
解析 ①m=0时,x+1≥0在R上不恒成立.
②m≠0时,则Δm>=0,(m+1)2-4m≤0,
即m(>m0-,1)2≤0, ∴m=1. 综上可知,m的取值集合为{1}.
自助餐
一、含参数的分式不等式的解法
例1 解关于x的不等式a(xx--21)>1(a>0).
【解析】
a(x-1) x-2
-1>0⇒
(a-1)x+2-a x-2
>0⇒[(a-1)x+2-a](x-
2)>0. ①当a=1时,不等式的解为x>2.
②当a≠1时,关键是比较aa- -21与2的大小.
∵aa- -21-2=a--a1,又a>0,
∴当0<a<1时,aa- -21>2,不等式的解为2<x<aa- -21;
当a>1时,aa- -21<2,不等式的解为x<aa- -21或x>2.
综上所述,当0<a<1时,原不等式的解集为
a-2
x|
2<x<a-1
;当a=1时,原不
等式的解集为{x|x>2};当a>1时,原不等式的解集为x|
x<aa- -21或x>2.
二、利用均值不等式求参数的取值范围
例2 若正数a,b满足ab=a+b+3,求: (1)ab的取值范围; (2)a+b的取值范围.
6
.
则原ቤተ መጻሕፍቲ ባይዱ等式的解集为x|
m- x<
m62+12m或x>m+
m2+12m
6
.
探究1 为什么对(1)进行分类讨论?就是由于a是式子(ax-2)中x的系数,要求 出ax-2=0的根,就要对a进行讨论,要比较2与2a的大小,就必须讨论a的值.

2.3二次函数与一元二次方程不等式说课课件高一上学期数学人教A版

2.3二次函数与一元二次方程不等式说课课件高一上学期数学人教A版

六、 教学过程
例题解析
【例1】求不等式 x2 5x 6 0的解集. 【例2】求不等式 9x2 6x 1 0的解集. 【例3】求不等式 x2 2x 3 0的解集.
设计意图:学生通过探究会发现当二次项系数小于零时,可以先化为 正再求解,而且这三道例题也分别体现了判别式大于0,等于0,小于0 对不等式解集的影响,具有典型性、层次性和学生的可接受性.通过例 题,使学生初步运用结论来解决具体的一元二次不等式.利用对比加深 印象,提高效果,进而总结出解不等式的步骤,提升逻辑推理、数学 运算等素养.
2.3二次函数与一元 二次方程、不等式
一、教材分析
教材分析 学情分析 教学目标 教学重难点 教学方法 教学过程 板书设计 教学反思
选自2019人教 版A版普通高 中数学必修第 一册第二章第 三节
教材分析 学情分析 教学目标 教学重难点 教学方法 教学过程 板书设计 教学反思
教材的地位和作用
二、学情分析
2
10
x
结论:
方程x2 12x 20 0的根为___x1___2_, x_2___1_0____二. 次函数的零点
不等式x2 12 x 20 0的解集为 ___x_2___x__1_0______.
不等式x2 12 x 20 0的解集为 ___x_x___2或 __x___1_0___.
一元二次不等式的解集
(1)将二次项系数化为正数 (a>0);
(2)计算判别式,判断方程是否有根;
(3)如果有根,求出方程的根; (4)画出相应二次函数的图象;
(5)画出相应二次函数的图象写出不等式的解集, 大于取两边、小于取中间。
3.数学思想方法: 数形结合
七、 板书设计
学情分析 教学目标
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.3二次函数与一元二次方程、不等式2
日期:10月10日
课题:二次函数与一元二次方程、不等式
设计者:
基础题A
1.若不等式ax
2
+bx-1>0的解集是{x|1

2.若关于x的不等式mx
2
-mx+1<0的解集不是空集,则m的

取值范围是 .
3. 在如图所示的锐角三角形空地中,欲建一个面积不小于300
m
2
的内接矩形花园(阴影部分),则其长x(单位:m)的取值范围是

( )

A.15≤x≤20 B.12≤x≤25 C.10≤x≤30 D.20≤x≤30
开拓创新B
4.某商人如果将进货单价为8元的商品按每件10元出售,每天
可销售100件,现在他采用提高售价,减少进货量的办法增加利润.已
知这种商品每件销售价提高1元,销售量就要减少10件,为保证每
天所赚的利润在300元以上,则他要将如何定价?
我要挑战C
5.某建筑工地决定建造一批简易房(房型为长方体,房高为2.5 m),
前后墙用2.5 m高的彩色钢板,两侧用2.5 m高的复合钢板,两种钢
板的价格都用长度来计算(钢板的高均为2.5 m,用钢板的长度乘以单
价就是这块钢板的价格),每米售价:彩色钢板为450元,复合钢板
为200元.房顶用其他材料建造,每平方米的材料费为200元.每套
房的材料费控制在32 000元以内.
(1)设房前后墙的长均为x m,两侧墙的长均为y m,每套房所用
材料费为P元,试用x,y表示P.

(2)当前面墙的长度为多少时,简易房的面积最大?并求出最大
面积.

相关文档
最新文档