淀粉微球研究进展

合集下载

介入栓塞用微球制剂的应用和研究进展

介入栓塞用微球制剂的应用和研究进展

4例 , 现肿 块 消失 . 体 柔 软 , 发 舌 提示 可作 为舌 癌综
合 治 疗行之 有效 的方法 之一 。 ( )明 胶 微 球 ( e t eop ee) 明 胶 是 二 g l i mi s hrs an r
聚乳 酸是一 种可 生物 降解载 体 , 降解速 度快 , 在体 内不易 蓄积 , 于 多次重 复栓 塞用 。 适 国内 已制 成 顺 铂 P A 微 球 、 裂霉 素 P A微 L 丝 L 球 、- u P A 微 球 , 床用 于 肝 癌 、 癌 的 辅 助 治 5F L 临 肾 疗 , 塞效 果好 , 减 少 术 中 出血 , 纯用 于 栓 塞 化 栓 可 单 疗 , 期疗效 满 意 国外 F j aa l 近 ui r 等 1 表 阿霉 素 w 用 聚乳酸 微球栓 塞 日本 大 白兔 肾 动 脉 , 可显 著 延 缓 表 阿 霉素的 半衰期 , 并使 药物 局部浓 集
临 床 上 成 功 的 应 用 T A 技 术 必 须 具 备 3个 基 本 C E 要 素 ]① 理 想 的栓 塞 剂 ; 严 格 的 适 应 证 ; 熟 练 : ② ③
血管造 影导 管 内快 速注 射 , 安全有效 。 国 内近 年研 制 的 载 药 明胶 微 球 有 5F 一 u明胶 微
( ) 白 蛋 白 微 球 (lu i cop ee) 白 一 a m n mi sh rs b r 蛋 白 化 学 性 能 稳 定 、 毒 、 原 性 弱 , 种 微 球 是 应 无 抗 此
公 司的 S h rx生物 降解 淀粉微 球 用 于肝 脏 肿瘤 的 p ee 靶 向桂塞 治疗 , 果 良好 。 效 近 年关 于淀 粉微球 应用 的研 究多集 中在将 微 球 栓塞 与 其 它 疗 法 的 结 合 上 Muaa等 用淀 粉 微 rt 球栓 塞结 合热疗 和化 疗的方 法治 疗家 兔 VX 2肝 癌 , 效果 比单 一应用 热疗 和化疗 显 著 ; a mo Y ma m 采 用 淀粉微 球栓 塞 肿瘤 供 血 动 脉 , 同时 进 行 射频 热疗 和 化疗 的方 法 , 治疗 4 5例 晚期 肝 癌 患 者 , 果 显示 不 结 良反应少 , 者 生存 时 间 延 长 。国 内制 成 米 托蒽 醌 患 羧 甲基淀 粉微 球 , 理化 性 质检 测 及药 代 动 力 学研 究 证 明其 符 合 栓 塞 化疗 的 应 用 J 。还 有 人 用 顺 铂 淀 粉微球 进行 胃动 脉栓 塞 化 疗 的 实验 研 究 , 明无 胃 表 出血 、 死 、 坏 穿孔 等 严重 并 发 症 , 要 脏器 组 织 切 片 主 未见异 常栓 塞 , 可能 是 一 种新 的 中晚 期 胃癌 的 介 入

高分子微球材料分析与载药控释研究总结

高分子微球材料分析与载药控释研究总结

1.药物释放机理【2】
• 从微球表面直接溶解
• 从可溶胀基体中扩散
• 材料的降解
多数情况下都不是通过单一机理来释放的,亲水性聚合 物以前两种为主,疏水的合成高分子主要通过材料的降 解释放药物。
2.药物包埋与释放形式【4,5】
(1) 分散在高分子构成的囊壁基材中 (2) 包埋在微囊中空部分
(1) 从微囊表面直接释放 (2) 通过可渗透的囊壁扩散 (3) 材料的溶蚀
容性好又可降解的纳米空心微球。
来源:《Soft Matter》英
文文摘
空心微球电镜图
复合层次结构中空微球
双层无机物中空微球
化学所在腔体结构与材料领域取得系列进展 Adv. Funct. Mater. 2005, 15, 1523 Angew. Chem. Int. Ed. 2005, 44, 6727
实心微球电镜图片
来源:沈阳理工大学 环境与化学工程学 院 作者:穆锐,何广
洲,邓爱民
中空聚合物微球的 制备及其在涂料中 的应用研究 实心微
球扫描电镜图
自组装空心微球
• 自组装空心微球的新进展 问题:制备方法复杂、材料相容性差、难降解
聚乙二醇接枝海藻酸钠的合成,发现它与a-环糊精包合在水体系中自组装成相
• 半合成高分子
• 多系纤维素衍生物,如羧甲基纤维素,琥珀酸醋酸纤维 素等
• 合成高分子
• 可降解,不可降解,根据应用需要主要是研究可降解的 聚合物,主要的基材:天然蛋白类、多糖、生物合成聚 酯
可生物降解高分子材料载体形式【1】
• 微(纳)球 • 微胶囊 • 胶束 • 水凝胶 • 前体药物
高分子载体的材料
对于非刺激响应载体遵从扩散控制机理 符合Fick扩散定律,响应载体类似脉冲 方式给药

交联淀粉研究进展

交联淀粉研究进展

交联淀粉研究进展倪海明;蓝丽;柳春;罗想平;孔妮;邓艳;吕旷;郭佳文;陈专;蔡广超【摘要】交联淀粉是一种重要的淀粉衍生物,在化工、材料、食品、环保等领域有着广泛的应用,文章从交联淀粉的结构、性质出发,详细综述了交联淀粉的合成方法及应用。

%Cross-linked starch was an important starch derivative, which had wide applications in the field of chemicalindustry,materials,Foods, Environmental Protection and so on, In this paper, starting from the structures and properties , the synthesis and applicationof the cross-linked starch was reviewed in detail .【期刊名称】《大众科技》【年(卷),期】2015(000)003【总页数】6页(P71-76)【关键词】交联淀粉;交联;性质;应用;研究进展【作者】倪海明;蓝丽;柳春;罗想平;孔妮;邓艳;吕旷;郭佳文;陈专;蔡广超【作者单位】中国科技开发院广西分院,广西南宁 530022;中国科技开发院广西分院,广西南宁 530022;中国科技开发院广西分院,广西南宁 530022;中国科技开发院广西分院,广西南宁 530022;中国科技开发院广西分院,广西南宁530022;中国科技开发院广西分院,广西南宁530022;中国科技开发院广西分院,广西南宁 530022;中国科技开发院广西分院,广西南宁 530022;中国科技开发院广西分院,广西南宁 530022;中国科技开发院广西分院,广西南宁 530022【正文语种】中文【中图分类】TS235.1淀粉是一种在自然界分布广泛的天然高分子材料,广泛存在于薯类、禾谷类、豆类等植物之中,,其结构是由D-葡萄糖通过α-1,4-糖苷键连接而成。

淀粉类功能材料在新型药物载体中的研究与应用

淀粉类功能材料在新型药物载体中的研究与应用
或果实当中 ,在一些 中
使 用对象 和用途的不 同,制成供 口服、注射 、包埋 、栓剂 、贴 剂 、药浴 、泼淋、涂擦等各种剂型 。淀粉类功能材料作为一类
医药学 中,有 关淀粉和糖类 的应 用报道很多…,某 些中药含有

定量的淀粉 ,如薏苡、莲 子、山药、葛根等。有些则是人工
维普资讯
广
6 2



20 0 7年 第 8 期 第3 4卷 总第 12 7 期
www.d h m.o g c e c m
Ab t a t S a c , a e n i h r ce it so en i l g c l e r d b ea d b i gc o sl k d a d s b t u e a i t , ly n sr c : t rh b s d o s a a trsi f i g b o o ia l d g a a l n en r s —i e n u si td e sl e c p a s tc c b y n t y a
维普资讯
20 0 7年 第 8 期 第3 4卷 总第 12期 7
广 东 化 工
www.d h m.o g c e c m 61
淀粉类功能材料在新型药物载体 中的研 究与应 用
张宏梅
( 广东 工 业大学 轻 工化 工学 院 ,广东 广州 5 0 6 0) 1 0
i p tntr l n t e p r a eu ia e d.Es e i ly tc n b e a a m a e i a ar e n c ntole r ee s yse .Re e t m ora o e i h ham c tc lf l i p c al ,i a e us d sph r c utc lc t r i o r ld d ug r la e s t m i c n p og e sw a riulry itod edi hi a e n s m es sa n d—ee s yse si l i g sa c xc pen . r r s spa tc a l n r uc nt sp p ri o u ti e r la e s t m ncud n t r h e i i t Ke ywor :dr g; c n r lr l a e; sa c ds u o to e e s trh

载药微球制备的研究进展

载药微球制备的研究进展

经壳聚糖包衣的海藻酸钙微球 仅为 7 ~8 。Hu n 5 O a g等 )
采用喷雾干燥法制 备倍他米 松壳 聚糖微 球 , 通过加入 明胶 和 普 朗尼克 调节 微球 的粒 径 和表 面形态 。所 制 得微 球 表 面光 滑, 带正 电荷 , 径 1 4 m, 备 良好 的肺 靶 向 性 。Pu h 粒 ~ “ 具 is
方法 , 包括相分离 法 ,包括 单凝 聚法 , ( 复凝 聚法 , 溶剂 一非溶
剂法 、 改变温度法 ) 液 中干燥法 、 、 喷雾 干燥 法 ; 另一类 为化 学 法, 包括乳化交联法 、 界面缩 聚法 、 辐射 交联法 。根据 药物 、 载
体 材料 性 质 、 球 的 释 药 性 能 和 临 床 给 药 途 径 可 选 择 不 同 的 微 制 备方 法 。
1 不 同载体微球 制剂 的制备 1 1 壳 聚糖 载药微球 的制备 . 1 1 1 壳聚糖是 甲壳素脱 乙酰衍生 物 , .. 具有 生物黏 附性 和生 物相容性好 、 毒性低等优点 。是一种 带正 电荷 的直链多 糖 , 其
天然交联剂栀子苷元制 备壳 聚糖 微球 , 究结果证 明 , 研 与传统
J u n lo ah maia e iie o r a fM t e t lM dcn c
Vo 25 1

No 3 .
2 2 01
文 章 编 号 :0 44 3 (0 2 0—3 20 10 ~3 7 2 1 )305 —4
中图 分 类 号 : 4 . R94 9
文 献标 识码 : A
较 大 。半合 成高分子 材料 多为纤维素 衍生 物类 , 包括 羧 甲基
纤维素(S MC 邻苯二甲酸醋 酸纤维素 ( A )甲基 纤维素 C )、 C P ( MC) 乙基纤维素 ( C 羟丙 甲纤维素 ( MC 等 。其特点 、 E )、 HP ) 是毒性小 、 黏度 大 、 成盐后溶解度增 大。合 成高分子 材料主要

α-淀粉酶分离提纯技术研究进展

α-淀粉酶分离提纯技术研究进展

α-淀粉酶分离提纯技术研究进展摘要:为了更好地研究α-淀粉酶的性质与应用α-淀粉酶,我们需要不断地从不同的生物体内提取α-淀粉酶并将其高纯化。

随着生物技术的不断发展,分离提纯的方法也越来越复杂越精确,然而它却为生物学的发展奠定了一定的基础,此篇综述简要地说明近年来国内外在α-淀粉酶的分离纯化等方面成就,也部分介绍了α-淀粉酶的研究现状和工业应用以及发展前景。

关键字:α-淀粉酶分离提纯现状应用前景α-淀粉酶(α-Amylase)是一种内切葡萄糖苷酶,属于淀粉酶。

米黄色、灰褐色粉末。

能水解淀粉中的α-1,4,葡萄糖苷键,在催化水解α-1,4-糖苷键只能催化水解直链淀粉,生成α-麦芽糖和少量葡萄糖。

能将淀粉切断成长短不一的短链糊精和少量的低分子糖类,从而使淀粉糊的黏度迅速下降,即起到降低稠度和“液化”的作用,所以此类淀粉酶又称为液化酶。

作用温度范围60-90℃,最适宜作用温度为60-70℃,作用pH值范围5.5-7.0,最适pH值为6.0。

Ca2+具有一定的激活、提高淀粉酶活力的能力,并且对其稳定性的提高也有一定效果。

主要存在于人的唾液和胰脏中也存在于麦芽、蟑螂涎腺、芽胞杆菌、枯草杆菌、黑曲霉和米曲霉中。

一、α-淀粉酶分离提纯的研究历史与现状1991年中科院北京微生物研究所孔显良等将米曲霉(Aspergillur oryzae)突变株6-193的麦麸固体培养物,经水浸泡其中α-淀粉酶活力为每克于曲 600单位。

用硫酸铵分段沉淀,Sephadex G一75凝胶过滤和制备垂直平板电泳纯化,经PAGE 鉴定为一条带。

以此来研究其性质,对其与可溶性淀粉溶液作用后的产物经薄层色谱分析,根据扫描结果,葡萄糖、麦芽糖、麦芽三糖、麦芽四糖分别占6.4%、32.3%、37.1%、10.9%。

麦芽糖和麦芽三糖二者之和占69.4%,与Novo公司Norman报道的相似,属糖化型α-淀粉酶,可用于制糖、啤酒和面包食品工业,并可以替代一淀粉酶生产麦芽糖浆。

微球给药系统载体材料的研究进展

微球给药系统载体材料的研究进展
学报
528
Journal of China Pharmaceutical University 2018ꎬ49(5):528 - 536
微球给药系统载体材料的研究进展
陆新月ꎬ吕慧侠∗
( 中国药科大学药剂学教研室ꎬ南京 210009)
摘 要 微球给药系统具有广阔的开发和应用前景ꎬ一直是药剂学研究的热点ꎮ 通过检索 2016 年我国学者在国内外期刊 上发表的相关论文ꎬ从天然高分子材料、合成高分子材料和无机材料 3 个方面ꎬ分类综述了我国在微球给药系统载体材料 领域的研究进展ꎬ并结合国内外微球产品进行总结分析ꎬ为相关研究员提供参考ꎮ 关键词 微球ꎻ天然高分子材料ꎻ合成高分子材料ꎻ无机材料ꎻ载体材料 中图分类号 R944 文献标志码 A 文章编号 1000 - 5048(2018)05 - 0528 - 09
以实现提高药物疗效、降低其不良反应和延缓给药 周期ꎬ提高用药顺应性ꎮ 对微球给药系统的载体材 料、制备方法以及应用范围等的研究已成为目前药 剂学的热点ꎮ
载体材料的选择对微球的制备方法以及临床 应用至关重要ꎮ 本文精选 2016 年我国学者在微球 给药系统领域发表的高质量文章ꎬ以 Web of Sci ̄ ence、Science Direct 和中国知网等数据库为搜索平 台ꎬ以“ 微球给药系统” 、“ 微球载体材料” 、“ 国内学
material
This study was supported by the National Natural Science Foundation of China No. 81673830
微球( microspheres) 是指药物溶解或分散在成 球材料中ꎬ形成的骨架型微小球形或类球形微粒ꎬ 其粒径范围一般在 1 ~ 250 μmꎬ可以供口服、注射、 滴鼻或皮下埋植使用ꎮ 与普通剂型相比ꎬ微球包裹 药物后掩味、提高药物的稳定性、减少药物对胃肠 道的刺激、液体药物固体化便于应用与贮存、缓控 释和靶向给药等优点ꎮ 借助特定高分子材料的生 物降解性和降解时间的可控性ꎬ微球给药可以实现 超长时间的缓控释作用ꎬ并使药物浓集于靶区ꎬ可

带药微球缓释栓塞制剂的研究现状

带药微球缓释栓塞制剂的研究现状

() 4 聚乳酸 微球 : 聚乳酸 是合 成降 解性 高分 子 药物 载 体材 料, 具有无毒性 、 可控制生物 降解 、 原料 易得、 物相容性 较好等 生
优点 , 在人体 内最终代谢 为水 和二 氧化 碳 , hn Z ag等 实 验用 聚 乳酸微球加载 氯诺昔康 体外 药物释放可以延长至 3 。 2d ( ) 聚糖微 球 : 聚糖是 由甲壳素脱 乙酰化后 制得 的一 种 5壳 壳 天然 可生 物降解 的聚 阳离子 多糖 , 具有 良好 的物理 化学 特性 和 生物相容性。Z ag " 制备 的阿魏 酸壳 聚糖 脂 质微球 试验 显 hn 等 示 ,2h阿魏酸释放 3 .3 , 1 2 3 % 比对 照组 效果 好 , 具有 良好持 续 的
张虎 , 史本涛 , 邓小林 , V L病的基 因及临床研 究进展 [/ D] 中华临床 医师杂志 : 等. H JC . 电子版 ,02,( 3 :6 237 2 1 6 1 )3 7 -6 4
带 药微 球 缓 释栓 塞 制 剂 的研 究 现状
石拯 拯 敖 国 昆
材料来 源广 , 成本低 , 无抗 原性 。瑞典 Sa e kn 大学 S ̄ss jr 等 对 e
酸钠微球 实验组 、 海藻酸钠微球实验组 相 比对 照组 , 子宫动 脉 在 栓塞 治疗后子 宫重 量、 子宫系数 、 宫颈最大 直径 、 宫角最 大直径 、 肌瘤结节 数 目明显下降和减少。 2 .非生物 降解类微球 : 非生 物降解类 微球 的基质 材料 主要 有乙基纤 维素 、 乙烯醇 、 聚 聚丙交酯等 。
物相容性 , 天然可降解 。海藻 酸钠微 球与 明胶 海绵介 入栓 塞支 气管动脉治疗急性 肺结核 大咯 血的 临床研 究 比较 中表 明 , 海藻 酸钠微球 的作用更稳定 、 持久、 有效 J 。雷呈志 在达 那唑海藻 酸钠微球用于子宫 动脉栓 塞术 基础研 究结 果显 示 , 达那 唑海 藻
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

粮食与油脂2009年第8期 1

淀粉微球研究进展冀国强,邵秀芝(山东轻工业学院食品与生物工程学院, 山东济南 250353)摘 要:该文综述淀粉微球特点、典型合成方法、作用机制及应用领域。关键词:淀粉微球;淀粉;变性淀粉

Research progress on starch microspheres

JI Guo-qiang,SHAO Xiu-zhi(School of Food & Bioengineering,Shandong Institute of Light Industry,Jinan 250353,China)

Abstract: The features,typical synthetic methods and mechanism,application field of starch microspheres are reviewed in this article.Key words: starch microspheres;starch;modified starch中图分类号:TS236.9 文献标识码:A 文章编号:1008―9578(2009)08―0001―03

收稿日期:2009–06–12淀粉微球是天然淀粉一种人造衍生物,系为淀粉在引发剂作用下,淀粉上羟基与交联剂进行适度交联而制得一种微球。淀粉微球有一定粒径及粒径分布要求,这是其与一般交联淀粉显著区别。淀粉微球因具有生物相容性、可生物降解性、无毒性、贮存稳定、原料来源广泛、价格低廉等优点,已作为靶向制剂的药物载体在鼻腔给药系统、动脉栓塞技术、放射性治疗、免疫分析等领域得到应用;淀粉微球还可用作吸附剂及包埋剂吸附或包埋除药物之外其它物质,如香精、香料和一些酶、孢子;交联淀粉微球在金属离子吸附分离或废水处理等领域应用前景也十分广阔。国外对淀粉微球研究起步较早,合成微球已有十几年历史,已合成出一些产品,如瑞典Uppsalla大学开发研制名为Sephere制品已工业化生产。我国对淀粉微球研究起步较晚,对微球研究尚未深入,至今仍未见有工业化生产,与国外先进水平尚有一定差距。本文拟对近年来国内外淀粉微球研究进展作一综述。1 淀粉微球作用机制1.1 香精香料缓释作用淀粉微球在众多控释制剂中具有独特生物降解性、生物相容性、可调节降解速度、无毒、无免疫原性、贮存稳定等优点,将香精香料吸附于淀粉微球中,可延长香味散发时间,并将通常液态香精转换成固态,使物质不易变质。与不可降解聚合物控释体系相比,生物降解型体系释放速率更稳定、且适于不稳定物质释放要求。1.2 靶向给药和控释作用将药物结合于磁性淀粉微球用于体内,利用外加磁场引导微球在体内定向移动和集中,达到定向作用于靶组织目的;不仅能明显增加抗肿瘤药剂有效治疗指数,还能减少或消除全身毒性〔1〕。淀粉微球在水中膨胀,具有可变性,在血液循环过程中能根据血管微环境改变形状;在酶作用下,在骨架崩解前能保持相当长时间〔2〕。1.3 改变物质物化性质液态物质吸附在微球表面或包埋在微球内部,可得到细粉末状产物,称为拟固体〔2〕。如薄荷油系为一种挥发油,且在水中几乎不溶,分散性较差,成品质量不够稳定,致使其进一步开发受限。而薄荷油经淀粉微球吸附包载后可提高其稳定性〔3〕,并由液态变为固态。淀粉属高分子物质,当其尺寸减小至纳米量级后,特性发生很大变化,主要表现在表面效应和体积效应两个方面。这两种效应使纳米淀粉微球表面积激增,官能团密度和选择性吸附能力变大,达到吸附平衡时间大大缩短,胶体稳定性显著提高〔4〕。2 淀粉微球制备合成淀粉微球可采用界面缩聚法、反相悬浮交联等方法。现对微球制备研究主要集中在交联剂和油相选择上。常用交联剂有环氧氯丙烷、POCl3、Na3P3O9、对苯二甲酰氯等〔5~7〕。而油相选择主要有两类:一类为混合油,即有机溶剂,如甲苯、氯仿、环己烷等与矿物油按一定比例混合而成;另一类为纯植物油,如大豆油、蓖麻油等。反应一般是在W/O型反相乳液中进行,根据其不同用途,目前文献中较典型制备微球方法有:2.1 香精吸附剂、缓释用淀粉微球制备将香精香料吸附或包埋于淀粉微球中,能起到缓释作用。刘爱芳等〔8〕以马铃薯淀粉为原料,以新配过硫酸钾及少许亚硫酸氢钠水溶液作引发剂,Span 60为乳化剂,植物油为分散剂,N,N'–亚甲基双丙烯酰胺为交联剂,采用悬浮交联聚合法制备淀粉微球。电镜扫描显示,微球表面粗糙,微球分散性良好,微球粒径10~180 μm,平均粒径72 μm,其对玫瑰香精吸附量达133 mg/g。朱强等〔9〕以可溶性淀粉为原料,环氧氯丙烷为交联剂,采用反相悬乳法合成淀粉微球,制备具有一定缓释性能香精缓释制剂;并研究淀粉微球对玫瑰香精吸附性能、相应缓释制剂释放性能及相关释放动力学。研究表明,制得淀粉微球形态圆整、颗粒均匀、平均粒径10 μm,吸附量大,但表面粗糙,在玫瑰香精体积分数为40%、吸附时间为115 h、温度为45℃条件下,其对玫瑰香精吸附量达0.85 g/g,可作为玫瑰香精缓释制剂。缓释分为香精在固体表面释放阶段和进入固体微孔内释放阶段,从紫外分光光度法得出,随粮食与油脂2 2009年第8期

着时间延长,质量相等固体中香精含量缓慢下降,释放速率也逐渐减小。朱强等并据此拟合得出吸附于淀粉微球中香精分子释放一级动力学方程和释放进入微孔阶段行为二级动力学方程。李静茹等〔3〕以可溶性淀粉为原料,大豆色拉油为分散剂,环氧氯丙烷为交联剂,以反相乳液聚合法合成可降解淀粉微球(DSM),并用可降解淀粉微球吸附薄荷油制得包合物,测定吸附时间和投油量对饱和吸附量影响。结果表明,吸附2 h,薄荷油体积分数为4%,饱和吸附量为84.74 μl/g淀粉微球时为最佳吸附条件。2.2 药物载体用淀粉微球制备某些药物只有在特定部位才能发挥其药效,同时又易被消化液中各种酶分解,因此,作为口服药药效并不理想;但可用淀粉微球作为药物载体,避免药物受酶作用,并可控制药物释放速度〔10〕。对大多数药物而言,可将干燥“空白”微球放人药液中溶胀,这种方式简单,能大量载药;但药物与微球结合不牢,随血液流动,药物很快释放,缓释能力弱。对酶、蛋白质等大分子药物,可在制备微球时以水溶性药物与淀粉共同构成水相,经乳化聚合成球后,药物直接被包埋球内,此时微球也可称为微胶囊。此种方式较理想,可兼顾载药率和缓释性。对小分子药物较有效方法是偶联,即通过某些桥联化合物将微球与药物连接起来,通过化学方法将药物分子连接到微球上。但这种方式对药物分子结构有一定要求,且载药率低,药物与载体之间偶联与去偶联并不总是可逆的,这些因素限制其在偶联载药方面进一步应用。故目前对淀粉微球载药研究主要集中在吸附法和包埋法〔4〕。史黎明等〔11〕以玉米淀粉为原料,环氧氯丙烷为交联剂,采用逆相悬浮交联聚合法合成淀粉微球。电镜扫描显示,微球为圆形,分散性良好,表面粗糙,以酮洛芬为模型药物,微球吸附载药量为140 mg/g。孙庆元等〔12〕以可溶性淀粉为原料,环氧氯丙烷为交联剂,Span 60为乳化剂,植物油为油相,采用反相微乳法合成淀粉微球。制得淀粉微球形态圆整,颗粒均匀,吸附量大,基本可满足作为药物载体需要。王文莹等〔13〕对以马铃薯淀粉为主要原料所制得淀粉微球性能进行测定与研究,结果表明,所制得马铃薯淀粉微球呈圆形,表面粗糙;傅立叶红外光谱和元素分析显示,淀粉微球明显交联;在pH 7.4磷酸缓冲液及0.9%生理盐水中淀粉微球也表现出较好载药、释缓性能。2.3 碳糊电极修饰用淀粉微球制备碳糊电极是一种应用颇为广泛的化学修饰电极,制作简便,灵敏度高,稳定性好,常用以检测痕量物质(10–4~10–8 mol/L)。在碳糊电极中加入特定修饰剂即得到修饰碳糊电极,其基本原理在于所含修饰剂对分析物富集作用。常用修饰剂有离子交换树脂、吸附剂、络合剂、金属配合物、生物材料(如变性淀粉)等〔14〕。苏秀霞等〔15〕以玉米淀粉为主要原料,菜籽油为分散剂,Span 60和Tween 60复配为乳化剂,以N,N'–亚甲基双丙烯酰胺(MDAA)为交联剂,采用反相乳液法制备淀粉微球,其粒径为10~15 μm,玻璃化转变温度为188.7℃~194.7℃。结果表明,以此微球为修饰剂制备修饰碳糊电极(CMCPE),伏安法(CV)研究显示微球对抗坏血酸有富集作用,这种富集作用可能与两者发生分子氢键缔合作用有关。赵新法等〔14〕以淀粉微球为修饰剂制备修饰碳糊电极,选择具有多个羟基和烯醇结构抗坏血酸为模型药物,采用循环伏安法扫描,通过比较不同工作电极作用下抗坏血酸氧化特征,可推论淀粉微球对抗坏血酸富集作用更多依赖于微球结构中–OH、–NH2与抗坏血酸分子中–OH之间氢键缔合作用。2.4 磁性淀粉微球制备淀粉微球用作酶、孢子吸附剂,可提高其化学稳定性,且有利于酶等活性物质活性发挥。如采用磁性淀粉微球固定化脂肪酶,大大提高酶稳定性,且利用磁场很简便把酶从含有胶体物质或不溶物反应液中回收并重复使用,因此,磁性固定化脂肪酶具有很广泛应用价值和经济效益〔16〕。邱广亮等〔1〕采用乳化复合技术制备粒径为50~375 mm、分散系数为0.2376、Fe3O4质量分数为38%的具有磁性淀粉复合微球。微球呈球形,表面光滑,在水中可形成稳定分散液,在0.05 T弱磁场中具有强磁响应性。邱广亮等〔17〕采用复合技术制备粒径为100~300 nm磁性淀粉复合微球,并以此为载体通过物理吸附法、交联法、共价结合法固定化ALDC(Acetolactate decarboxylasd,α–乙酰乳酸脱羧酶,EC. 4.1.1.5),制备磁性固定化ALDC,并将其应用于啤酒发酵,证明降低双乙酰效果良好,啤酒熟化期缩短。磁性固定化ALDC可稳定分散于发酵液中,施以外部磁场,可简单方便与酒液分离,不影响啤酒风味,从而实现生产连续化、自动化,缩短生产周期,大大降低生产成本。杨小玲等〔18〕先合成表面接羟基磁流体,再在表面包覆上一层可溶性淀粉,采用悬浮聚合法和分散聚合法交联聚合成球,制得表面带羟基磁性复合微球。经红外光谱、扫描电镜及粒度分析,结果表明,悬浮聚合法合成效果好,磁性淀粉复合微球分散性优,粒径为16~120 μm占77%,Fe3O4

在微球中平均含量为2.55 mg/g,微球结构坚韧,抗水

溶性好。2.5 离子化淀粉微球制备交联淀粉微球(CSM),其粒度分布较均匀、机械强度好、孔隙率较高、相当孔容积和比表面积,具有较强吸附性能,是一种有巨大开发潜力吸附材料,可用于金属离子吸附分离或废水处理等领域。李仲谨等〔19〕以淀粉为原料,N,N'–亚甲基双丙烯酰胺为交联剂,采用反相悬浮聚合得到一种交联淀粉微球(CSM),并研究CSM对Cr3+吸附行为。结果表明,淀粉微球表面粗糙多孔,交联后淀粉微球结晶性下降,吸附Cr3+后其结晶性进一步下降,淀粉微球对Cr3+吸附行为很好符合Langmiur方程和Freundlich方程,为淀粉微球在含铬工业废水中应用提供理论依据。肖昊江等〔20〕以可溶性淀粉为原料,环己烷和水构成反相悬浮体系,

相关文档
最新文档