行测容斥原理问题答题技巧

合集下载

行测集合容斥的公式

行测集合容斥的公式

行测集合容斥的公式
集合容斥原理是组合数学中的一种常用技巧,用于计算多个集
合的并、交等操作。

其公式可以表示为:
|A ∪ B ∪ C| = |A| + |B| + |C| |A ∩ B| |A ∩ C| |B ∩ C| + |A ∩ B ∩ C|。

其中,|A| 表示集合 A 的元素个数,A ∪ B 表示集合 A 和集
合 B 的并集,A ∩ B 表示集合 A 和集合 B 的交集。

公式中的加
减号用于排除重复计算,确保每个元素只被计算一次。

这个公式可以用于解决包括排列组合、概率统计等多个领域的
问题,是行测考试中常见的数学题型之一。

在实际应用中,可以根
据具体问题的情况,灵活运用集合容斥原理来求解复杂的集合问题。

2019国家公务员考试行测答题技巧:容斥问题求交集、补集和全集

2019国家公务员考试行测答题技巧:容斥问题求交集、补集和全集

2019国家公务员考试行测答题技巧:容斥问题求交
集、补集和全集
容斥问题是指集合与集合元素之间的相容与相斥问题,在国家公务员考试中容斥问题是一类重要的题型,其中又以求集合之间交集、补集和全集为重点和难点,想要突破这一难点,就必须要掌握这类题型的解题方法与技巧。

中公教育专家为大家总结了求集合交集、补集和全集的方法。

例1:某班有42人,其中36人爱打篮球,27人爱打排球,29人爱踢足球,19人既爱打篮球又爱踢足球,14人既爱打排球又爱踢足球,8人三种球都爱好,1人三种球都不爱好。

问既爱打篮球又爱打排球的有几人?
这是一个三者容斥问题,可以把各个部分设成如下集合:
全班人是一个集合——打篮球是一个集合——打排球是一个集合——踢足球是一个集合——画出文氏图如下:
容斥问题中求交集、补集和全集的题目只要按照本文所给的方法去多加练习,做到熟练运用,就不再困难!。

公务员考试:容斥原理问题方法谈(二)

公务员考试:容斥原理问题方法谈(二)

2014年公务员容斥原理问题方法谈(二)华图教育-刘莱宝容斥原理是指在不考虑重叠的情况下,先将所有对象的数目相加,然后再减去重复的部分,从而使得计算的结果既无遗漏又无重复。

行测考试中,容斥原理是根据集合的个数来进行区分,一般只有两集合容斥关系和三集合容斥关系两种类型。

如何运用公式法及文氏图法解决两集合容斥原理问题,在前面一章已经讲解过。

接下来我们通过不同的题目为大家讲解,如何利用公式法、文氏图法解决,三集合容斥原理问题。

三集合容斥原理难易程度数中等偏难。

随着公职考试的不断进步和成熟,题目的难度逐渐加深,容斥原理问题中,两集合容斥原理问题已经不再是出题的热点;三集合容斥原理问题,因涉及到三个集合之间的包含与被包含的关系变化,进而难度更大,更具有考查性,所以三集合容斥原理的出现比例逐年加大。

通过历年真题,我们可以总结出,在行测考试中,三集合容斥原理问题分为:标准型和非标准型容斥原理问题。

一、三集合容斥原理标准型(一)、三集合容斥问题公式法:同样适用于题目条件与问题都可直接代入公式的题目。

核心公式如下:注:∪是为“并”,∩是为交,|W|是为全集。

指非 。

满足条件的个数=满足条件A+B+C-同时满足AC 的个数-BC-AC+三者都满足的个数=总数-三者都不满足 【例1】:某公司招聘员工, 按规定每人至多可投考两个职位,结果共42人报名,甲、乙、丙三个职位报名人数分别是22人、16人、25人,其中同时报甲、乙职位的人数为8人, 同时报甲、丙职位的人数为6人,那么同时报乙、丙职位的人数为:A. 7人B. 8人C. 5人D. 6人 【答案】A【解析】:三集合容斥原理问题。

甲、乙、丙三职位,分别为集合A 、B 、C ,分别是C B A CB A22、16、25。

总数是42,由于所有人都报名,所以C B A 为零。

同时满足AB 、AC 的个数,分别为8和6。

又因题目给出限制,每人只能报两个职位,意味着C B A =0。

公务员考试行测技巧:容斥原理公式及运用

公务员考试行测技巧:容斥原理公式及运用
如果被计数的事物有A、B两类,那么,先把A、B两个集合的元素个数相加,发现既是A类又是B类的部分重复计算了一次,所以要减去。如下图所示。
【示例1】一次期末考试,某班有15人数学得满分,有12人语文得满分,并且有4人语、数都是满分,那么这个班至少有一门得满分的同学有多少人?
数学得满分人数→A,语文得满分人数→B,数学、语文都是满分人数→A∩B,至少有一门得满分人数→A∪B。A∪B=15+12-4=23,共有23人至少有一门得满分。
【示例2】某班有学生45人,每人都参加体育训练队,其中参加足球队的有25人,游泳都参加的有9人,排球、游泳都参加的有8人,问:三项都参加的有多少人?
参加足球队→A,参加排球队→B,参加游泳队→C,足球、排球都参加的→A∩B,足球、游泳都参加的→C∩A,排球、游泳都参加的→B∩C,三项都参加的→A∩B∩C。三项都参加的有A∩B∩C=A∪B∪C-A-B-C+A∩B+B∩C+C∩A=45-25-22-24+12+9+8=3人。
在计数时,必须注意无一重复,无一遗漏。为了使重叠部分不被重复计算,中公教育专家研究出一种新的计数方法。这种方法的基本思路是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。
一、容斥原理1:两个集合的容斥原理
二、容斥原理2:三个集合的容斥原理
如果被计数的事物有A、B、C三类,那么,将A、B、C三个集合的元素个数相加后发现两两重叠的部分重复计算了1次,三个集合公共部分被重复计算了2次。
如下图所示,灰色部分A∩B-A∩B∩C、B∩C-A∩B∩C、C∩A-A∩B∩C都被重复计算了1次,黑色部分A∩B∩C被重复计算了2次,因此总数A∪B∪C=A+B+C-(A∩B-A∩B∩C)-(B∩C-A∩B∩C)-(C∩A-A∩B∩C)-2A∩B∩C=A+B+C-A∩B-B∩C-C∩A+A∩B∩C。即得到:

容斥问题应用题解题技巧及公式

容斥问题应用题解题技巧及公式

容斥问题应用题解题技巧及公式容斥原理是一种组合数学中常用的计数方法,用于解决包含重叠部分的计数问题。

常见的应用有如下几种情况:
1.求集合的并:当求两个集合的并集大小时,可以使用容斥原理来避免重复计数。

公式为|A∪B| = |A| + |B| - |A∩B|,其中|A∪B|表示A和B的并集大小,|A|表示集合A的大小,|B|表示集合B的大小,|A∩B|表示A和B的交集大小。

2.求集合的交:当求两个集合的交集大小时,可以使用容斥原理来避免重复计数。

公式为|A∩B| = |A| + |B| - |A∪B|,其中|A∩B|表示A和B的交集大小,|A|表示集合A的大小,|B|表示集合B的大小,|A∪B|表示A和B的并集大小。

3.求不满足某个条件的情况:当求满足某个条件的情况时,可以使用容斥原理来求不满足该条件的情况。

假设有n个事件,A1到An,分别表示这些事件,那么不满足任何一个事件的情况数目为S =
∑|Ai| - ∑|Ai∩Aj| + ∑|Ai∩Aj∩Ak| - ... +/-
|A1∩A2∩...∩An|。

其中|Ai|表示事件Ai发生的情况数目,
|Ai∩Aj|表示事件Ai和Aj同时发生的情况数目,依此类推。

在应用容斥原理解题时,需要注意对问题进行合理的划分,避免出现重复计数或者漏计的情况。

同时,需要对问题进行适当的拓展和转化,以便更好地利用容斥原理解决更复杂的计数问题。

三集合容斥原理问题

三集合容斥原理问题

行测数学运算技巧:三集合容斥原理问题的解决方法容斥原理类型是目前国家、各地区公务员考试数学运算的“常客”题型,对于大部分应试者来说,还是比较头痛的一种类型。

这里我们介绍一下三集合容斥原理问题的解决方法。

1、三个集合的容斥关系公式:A+B+C=A∪B∪C+A∩B+B∩C+C∩A-A∩B∩C2、三个集合的容斥关系(三元)例题:假设有100人参加了三个兴趣小组。

其中参加数学兴趣小组的有55人,参加语文兴趣小组的有65人,参加英语兴趣小组的有70人,同时参加语文和数学兴趣小组的人数是31人,同时参加数学和英语兴趣小组的人数是40人,同时参加语文和英语兴趣小组的有25人,则三个兴趣小组都参加的人数是多少人?(1) A+B+T=至少参与一项的总人数(无重叠)(2) A+2B+3T=至少参与一项的总人数(含重叠部分)(3) B+3T=至少参与两项的总人数(含重叠)(4) T三项都参与的人数。

这里介绍一下A、B、T分别是什么A=x+y+z;表示只参加一个兴趣小组的人数,在图中反应的区域就是每个圆圈互不重叠的部分。

B=a+b+c;表示仅参加了两个兴趣兴趣小组的人数,是图中两两相交的部分总和(不含中间的T区域)T=全部都参加的人数。

也就是图形当中最中间的部分T。

例题通过公式有如下解法:(1) A+B+T=100;(2) A+2B+3T=55+65+70=190(3) B+3T=31+40+25=96实际上我们要求的是T, (1)+(3)-(2)=T。

即得到答案T=100+96-190=63、三元容斥公式应用实例三元容斥涉及的对象比较多。

我们通常建议考生根据不同提问情况区别对待。

本小节先对一般情况的题目做一些分析。

例:如图所示,X、Y、Z分别是面积为64、180、160的三个不同形状的纸片,覆盖住桌面的总面积是290,其中X与Y、Y与Z、Z与X重叠部分的面积依次是24、70、36,那么阴影部分的面积是:【09国考】A.15B.16C.14D.18【解析】参考答案为B。

社区工作者考试行测备考:两个集合的容斥原理

社区工作者考试行测备考:两个集合的容斥原理
容斥原理之两个集合的容斥原理
如果被计数的事物有A、B两类,那么,先把A、B两个集合的元素个数相加,发现既是A类又是B类的部分重复计算了一次,所以要减去。

如图所示:
公式:A∪B=A+B-A∩B
总数=两个圆内的-重合部分的
【例1】一次期末考试,某班有15人数学得满分,有12人语文得满分,并且有4人语、数都是满分,那么这个班至少有一门得满分的同学有多少人?
中公解析:数学得满分人数→A,语文得满分人数→B,数学、语文都是满分人数→A∩B,至少有一门得满分人数→A∪B。

A∪B=15+12-4=23,共有23人至少有一门得满分。

2017国家公务员考试行测解题方法:容斥问题公式法

2017国家公务员考试行测解题方法:容斥问题公式法公务员考试频道小编为大家整理2017国家公务员考试行测解题方法:容斥问题公式法,希望对您有所帮助!公务员考试行测中的容斥问题为包含与排斥问题,它是一种计数问题。

在计数时,几个计数部分有重复包含时,为了不重复计数,应从他们的和中排除重复部分,采用这种计数方法的题型称为容斥问题。

要解决这类问题,把重复数的次数变为只数1 次,或者说把重叠的面积变为一层,做到不重不漏,即先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,即然后再把计数时重复计算的数目排斥出去,把遗漏的数目补上,使得计算的结果既无遗漏又无重复。

这一类问题在公务员考试行测中时有出现,其实并不难。

主要有两者容斥和三者容斥两种情况。

今天着重讲用公式法如何解题。

一、两者容斥公式:I=A+B-X+Y二、三者容斥主要有三种问法:第一种:只喜欢AB的有e人,只喜欢BC的有f人,只喜欢AC 的有g人,三者都喜欢的有d人。

公式:I=A+B+C-e-f-g-2d+Y第二种:同时喜欢AB的有d+e人,同时喜欢BC的有d+f人,同时喜欢AC的有d+g人,三者都喜欢的有d人。

公式:I=A+B+C-(d+e)-(d+f)-(d+g)+d+Y第三种:至少喜欢两者的有d+e+f+g人。

公式:I=A+B+C-(d+e+f+g)-d+Y接下来我们用公式来解决几个简单的题目:例1.班里一共有40名同学,其中喜欢语文的有30个同学,喜欢数学的有30个同学,两者都喜欢的有25个同学,请问,两者都不喜欢的有多少个同学?A.5B. 6C.7D.8【解析】答案选A。

根据两者容斥基本公式,两者都不喜欢的设为,则可列式为:30+30-25+Y=40,解得:Y=5。

所以选A。

例2.班里一共有40名同学,其中喜欢语文的有25个同学,喜欢数学的有25个同学,喜欢英语的有25个同学,喜欢两门的有20人,三门都喜欢的有10人,请问,三门都不喜欢的有多少个同学?A.5B. 6C.7D.8【解析】答案选A。

行政职业能力测试答题技巧:容斥原理巧解数学运算题

来源:安徽事业单位招聘网(/anhui/)行政职业能力测试答题技巧:容斥原理巧解数学运算题【导语】在事业单位行测考试中,数学运算题作为数量关系题的重点题型颇受关注。

此类题型的解题方法和原理也各不相同。

中公事业单位考试网为考生带来行政职业能力测试答题技巧:容斥原理巧解数学运算题。

容斥原理又称包含排斥原理,它是解决组合计数问题的重要工具。

加法原理告诉我们,在集合间没有交集的情况下,求这些集合并集的简单计数公式。

容斥原理则告诉我们一般情况下的公式,此时集合间可以重叠而没有限制。

【例题】在1到30的正整数中,有多少个整数能被2整除或能被3整除?【点拨】由于从1开始每连续2个的第2个数能被2整除,所以1到30中能被2整除的整数共30÷2=15个,它们分别是2,4,6,8,10,12,14,16,18,20,22,24,26,28,30。

同理,由于从1开始每连续3个的第3个数能被3整除,所以1到30中能被3整除的整数共30÷3=10个,它们分别是3,6,9,12,15,18,21,24,27,30。

又,同时能被2和3整除的整数共30÷(2×3)=5个,分别是6,12,18,24,30。

所以计数时如果计算15+10=25,则重复计算了5个数。

容斥原理可以帮我们巧妙地解决这一问题。

P.S:两集合容斥原理公式①|A∪B|=|A|+|B|-|A∩B|②|A∪B∪C|=|A|+|B|+|C|-|A∩B|-|B∩C|-|C∩A|+|A∩B∩C|其中,两集合容斥原理用简单语言叙述就是:满足条件1的个数+满足条件2的个数-都满足的个数=总数-都不满足的个数=满足至少一个条件的个数。

微信:ahsydw更多详情:安徽事业单位招聘网新浪微博:安徽中公事业部。

公务员考试——容斥原理问题

知识框架数学运算问题一共分为十四个模块,其中一块是容斥原理问题。

在公务员考试中,根据集合的个数,容斥原理问题一般只有两集合容斥关系和三集合容斥关系两种类型,两集合容斥关系一般只要采用公式法就可轻松解决,三集合容斥关系又可分为标准型、图示标数型、整体重复型三类,对应解题方法分别是公式法、文氏图法、方程法。

无论集合中的元素怎么变化,同学只要牢牢把握这两类型,就能轻松搞定容斥原理问题。

核心点拨1、题型简介容斥原理是在不考虑重叠的情况下,先将所有对象的数目相加,然后再减去重复的部分,从而使得计算的结果既无遗漏又无重复。

掌握容斥原理问题,可以帮助同学们解决多集合元素个数的问题。

2、核心知识(1)两个集合容斥关系(2)三个集合容斥关系A、标准型公式B、图示标数型(文氏图法)画图法核心步骤:1画圈图;2数字(先填最外一层,再填最内一层,然后填中间层);③做计算。

C、整体重复型A、B、C分别代表三个集合(比如“分别满足三个条件的元素数量”);W代表元素总量(比如“至少满足三个条件之一的元素的总量”);x代表元素数量1(比如“满足一个条件的元素数量”);y代表元素数量2(比如“满足两个条件的元素数量”);z代表元素数量3(比如“满足三个条件的元素数量”)。

3、核心知识使用详解(1)容斥原理问题要清楚容斥原理公式中各项的实际含义,与题中的数据准确对应。

(2)容斥原理问题的关键在于把文字转化为文氏图,在图中应准备反应题中集合之间的关系。

(3)容斥问题的难度在于题中集合可能较多,某些集合之间的关系可能不确定,这需要仔细的分析,抓住不确定的。

夯实基础1. 两个集合容斥关系例1:(2007年中央第50题)小明和小强参加同一次考试,如果小明答对的题目占题目总数的,小强答对了27道题,他们两人都答对的题目占题目总数的,那么两人都没有答对的题目共有()。

A. 3道B. 4道C. 5道D. 6道【答案】D【解析】[题钥]由于不知道这次考试题目的总数,所以可先设题目总数即元素总量为。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

国考行测容斥原理解题技巧在行测考试中,容斥原理题令很多考生头痛不已,因为容斥原理题看起来复杂多变,让考生一时找不着头绪。

但该题型还是有着非常明显的内在规律,只要考生能够掌握该题型的内在规律,看似复杂的问题就能迎刃而解,下面就该题型分两种情况进行剖析,相信能够给考生带来一定的帮助。

一、两集合类型1、解题技巧题目中所涉及的事物属于两集合时,容斥原理适用于条件与问题都可以直接带入公式的题目,公式如下:A∪B=A+B-A∩B快速解题技巧:总数=两集合数之和+两集合之外数-两集合公共数2、真题示例【例1】现有50名学生都做物理、化学实验,如果物理实验做正确的有40人,化学实验做正确的有31人,两种实验都错的有4人,则两种实验都做对的有()A、27人B、25人C、19人D、10人【答案】B【解析】直接代入公式为:50=31+40+4-A∩B得A∩B=25,所以答案为B。

【例2】某服装厂生产出来的一批衬衫大号和小号各占一半。

其中25%是白色的,75%是蓝色的。

如果这批衬衫共有100件,其中大号白色衬衫有10件,小号蓝色衬衫有多少件?()A、15B、25C、35D、40【答案】C【解析】这是一种新题型,该种题型直接从求解出发,将所求答案设为A∩B,本题设小号和蓝色分别为两个事件A和B,小号占50%,蓝色占75%,直接代入公式为:100=50+75+10-A∩B,得:A∩B=35。

二、三集合类型1、解题步骤涉及到三个事件的集合,解题步骤分三步:①画文氏图;②弄清图形中每一部分所代表的含义,按照中路(三集合公共部分)突破的原则,填充各部分的数字;③代入公式(A∪B∪C=A+B+C-A∩B-A∩C-B∩C+A∩B∩C)进行求解。

2、解题技巧三集合类型题的解题技巧主要包括一个计算公式和文氏图。

公式:总数=各集合数之和-两集合数之和+三集合公共数+三集合之外数3、真题示例【例3】【国考2010-47】某高校对一些学生进行问卷调查。

在接受调查的学生中,准备参加注册会计师考试的有63人,准备参加英语六级考试的有89人,准备参加计算机考试的有47人,三种考试都准备参加的有24人,准备只选择两种考试都参加的有46人,不参加其中任何一种考试的都15人。

问接受调查的学生共有多少人?()A.120B.144C.177D.192【答案】A【解析】本题画图按中路突破原则,先填充三集合公共部分数字24,再推其他部分数字:根据每个区域含义应用公式得到:总数=各集合数之和-两两集合数之和+三集合公共数+三集合之外数=63+89+47-{(x+24)+(z+24)+(y+24)}+24+15=199-{(x+z+y)+24+24+24}+24+15根据上述含义分析得到:x+z+y只属于两集合数之和,也就是该题所讲的只选择两种考试都参加的人数,所以x+z+y的值为46人;得本题答案为120.【例4】对某单位的100名员工进行调查,结果发现他们喜欢看球赛和电影、戏剧。

其中58人喜欢看球赛,38人喜欢看戏剧,52人喜欢看电影,既喜欢看球赛又喜欢看戏剧的有18人,既喜欢看电影又喜欢看戏剧的有16人,三种都喜欢看的有12人,则只喜欢看电影的有多少人()A.22人B.28人C.30人D.36人【答案】A【解析】本题画图按中路突破原则,先填充三集合公共部分数字12,再推其他部分数字:根据各区域含义及应用公式得到:总数=各集合数之和-两两集合数之和+三集合公共数+三集合之外数100=58+38+52-{18+16+(12+ x)}+12+0,因为该题中,没有三种都不喜欢的人,所以三集合之外数为0,解方程得到:x=14。

52=x+12+4+Y=14+12+4+Y,得到Y=22人。

(曾凡稳)一、两集合类型1、解题技巧题目中所涉及的事物属于两集合时,容斥原理适用于条件与问题都可以直接带入公式的题目,公式如下:A∪B=A+B-A∩B快速解题技巧:总数=两集合数之和+两集合之外数-两集合公共数2、真题示例【例1】现有50名学生都做物理、化学实验,如果物理实验做正确的有40人,化学实验做正确的有31人,两种实验都做错的有4人,则两种实验都做对的有( )【答案】C【解析】直接代入公式为:50=31+40+4-A∩B得A∩B=25,所以答案为B。

【例2】某服装厂生产出来的一批衬衫大号和小号各占一半。

其中25%是白色的,75%是蓝色的。

如果这批衬衫共有100件,其中大号白色衬衫有10件,小号蓝色衬衫有多少件?()A、15B、25C、35D、40【答案】C【解析】这是一种新题型,该种题型直接从求解出发,将所求答案设为A∩B,本题设小号和蓝色分别为两个事件A和B,小号占50%,蓝色占75%,直接代入公式为:100=50+75+10-A∩B,得:A∩B=35。

二、三集合类型1、解题步骤涉及到三个事件的集合,解题步骤分三步:①画文氏图;②弄清图形中每一部分所代表的含义,按照中路(三集合公共部分)突破的原则,填充各部分的数字;③代入公式(A∪B∪C=A+B+C-A∩B-A∩C-B∩C+A∩B∩C)进行求解。

2、解题技巧三集合类型题的解题技巧主要包括一个计算公式和文氏图。

公式:总数=各集合数之和-两集合数之和+三集合公共数+三集合之外数文氏图如下:其中各区域含义分别为:1区域代表只属于A集合;2区域代表只属于A和B;3区域代表只属于B集合;4区域代表只属于B和C;5区域代表三集合公共部分;6区域代表只属于A和C;7区域代表只属于C集合;2+5区域代表A∩B;4+5区域代表B∩C;5+6区域代表A∩C;1+2+5+6区域代表属于A集合;3+2+5+4区域代表属于B集合;4+5+6+7区域代表属于C集合。

3、真题示例【例3】【国考2010-47】某高校对一些学生进行问卷调查。

在接受调查的学生中,准备参加注册会计师考试的有63人,准备参加英语六级考试的有89人,准备参加计算机考试的有47人,三种考试都准备参加的有24人,准备只选择两种考试都参加的有46人,不参加其中任何一种考试的都15人。

问接受调查的学生共有多少人?()A.120 B.144 C.177 D.192【答案】A【解析】本题画图按中路突破原则,先填充三集合公共部分数字24,再推其他部分数字,得下图:根据每个区域含义应用公式得到:总数=各集合数之和-两两集合数之和+三集合公共数+三集合之外数=63+89+47-{(x+24)+(z+24)+(y+24)}+24+15=199-{(x+z+y)+24+24+24}+24+15根据上术含义分析得到:x+z+y只属于两集合数之和,也就是该题所讲的只选择两种考试都参加的人数,所以x+z+y的值为46人;得本题答案为120.【例4】对某单位的100名员工进行调查,结果发现他们喜欢看球赛和电影、戏剧。

其中58人喜欢看球赛,38人喜欢看戏剧,52人喜欢看电影,既喜欢看球赛又喜欢看戏剧的有18人,既喜欢看电影又喜欢看戏剧的有16人,三种都喜欢看的有12人,则只喜欢看电影的有多少人()A.22人B.28人C.30人D.36人【答案】A【解析】本题画图按中路突破原则,先填充三集合公共部分数字12,再推其他部分数字,得下图:根据各区域含义及应用公式得到:总数=各集合数之和-两两集合数之和+三集合公共数+三集合之外数100=58+38+52-{18+16+(12+ x)}+12+0,因为该题中,没有三种都不喜欢的人,所以三集合之外数为0,解方程得到:x=14。

52=x+12+4+Y =14+12+4+Y,得到Y=22人。

公务员行测考试数量关系容斥原理题目巧解 2010年09月13日11:13 华图公务员容斥原理是公务员考试中较难的一类题目,一般的解题思路有两种:1、公式法,适用于“条件与问题”都可直接代入公式的题目;2、文氏图示意法,即当条件与问题不能直接代入公式时,需要利用该方法解决。

一般而言,能够直接代入公式的题目较容易,而需要利用文氏图的题目相对灵活,容易给考生解题带来不便。

如果大家能够对公式中的各个要素以及文氏图上的各个部分所代表的含义有深入了解,则可以快速抓住解题关键。

【例题】某班有35个学生,每个学生至少参加英语小组、语文小组、数学小组中的—个课外活动小组。

现已知参加英语小组的有17人。

参加语文小组的有30人,参加数学小组的有13人。

如果有5个学生三个小组全参加了,问有多少个学生只参加了一个小组?A.15B.16C.17D.18对于这个题目,一般思路为:将题目条件带入三集合文氏图,假设只参加两个小组的人数分别为x,y,z人,由加减关系可以得到只参加一个小组的人数的表示形式,根据总人数可以列出方程:(13-5-x-y)+(17-5-x-y)+(30-5-x-y)+x+y+z+5=35,从而得到x+y+z=15,即为所求。

该方法是利用文氏图和列方程的方法进行解题,方法简单易懂,但是实际操作起来消耗时间较多,下文将给出本题的另外两种解法:【解法1】文氏图与三集合标准型公式相结合。

三集合标准型的公式如下:AUBUC=A+B+C-(AB+AC+BC)+ABC。

将语文小组的人数视为A,数学小组人数视为B,英语小组人数视为C,分别代入公式可以得到AB+AC+BC=30。

“AB+AC+BC”中包含三个ABC,因此要减去两个,即AB+AC+BC-2ABC=20,即为至少选两个小组的人数,因此,得到只参加一个小组的人数=总人数(AUBUC=35)减去至少选两个小组的人数(AB+AC+BC-2ABC=20),等于15。

该方法将文氏图与三集合标准型公式结合使用,避免了求解不必要要素的过程,这需要各位考生对于基本公式和文氏图各部分的意义有深刻理解。

对于这道题目而言,还有更加快速的解题方法,如下:【解法2】通过读题,我们可以发现,英语小组、语文小组、数学小组在题目中都是同时出现,即这三个小组是并列关系,对于这三个小组的人数,即17、30、13三个数字只能用加法处理,等于60。

这样原题五个数字(35、17、30、13、5)就变为三个(35、60、5),而这三个数字之间只能做加减,而不能做乘除,因此,得到结果的尾数必为“0”或“5”。

在得到这个结论之后,我们观察一下选项,发现只有A选项尾数为5,因此,本题答案确定无疑,就是A。

本题成功实现“秒杀”。

关于容斥原理的考试题目千变万化,但是无论怎样变化都离不开基本公式和文氏图,考生在平时练习的时候一定要熟练掌握这两种方法,从而提高做题速度与正确率,并争取针对个性化的题目产生巧妙的方法。

山东公务员行测:数量关系之容斥问题解题原理及方法一、知识点1、集合与元素:把一类事物的全体放在一起就形成一个集合。

每个集合总是由一些成员组成的,集合的这些成员,叫做这个集合的元素。

相关文档
最新文档