八年级下册7.2 统计图的选用同步练习(解析版)
苏科版八年级数学下册 7.2 统计表、 统计图的选用 同步测试试题(无答案)

7.2 统计图的选用同步测试题(满分120分;时间:120分钟)真情提示:亲爱的同学,欢迎你参加本次考试,祝你答题成功!题号一二三总分得分一、选择题(本题共计小题,每题分,共计分,)1. 宾馆有100间相同的客房,经过一段时间的经营,发现客房定价与客房的入住率之间有下表所示的关系,按照这个关系,要使客房的收入最高,每间客房的定价应为()每间房价(元)300280260220入住率65%75%85%95% 300元280元260元220元2. 某校共有2425名学生,其中各年级学生所占比例如扇形统计图,则学生最多的年级有()A.873名B.1115名C.485名D.1067名3. 小丽统计星期一至星期五每天完成数学作业的时间,列出下表,能从统计图中看出5天星期一二三四五作业时间/分钟1020152530折线统计图扇形统计图C.条形统计图D.折线统计图和条形统计图4. 如图是甲,乙两人10次射击成绩(环数)的条形统计图,则()A.甲的平均成绩比乙好B.乙的平均成绩比甲好C.甲、乙两人的平均成绩一样D.无法确定谁的平均成绩好5 武汉素有“首义之区”的美名,武汉与台湾将共同纪念辛亥革命一百周年.某校为了了解全校学生对辛亥革命的了解程度,随机抽取了部分学生进行问卷调查,并根据收集的信息进行了统计,绘制了下面尚不完整的统计图.根据以上的信息,下列判断:①参加问卷调查的学生有50名;②参加进行问卷调查的学生中,“基本了解”的有10人;③扇形图中“基本了解”部分的扇形的圆心角的度数是108∘;④在参加进行问卷调查的学生中,“了解”的学生占10%.其中结论正确的序号是()A.①②③B.①②④C.①③④D.②③④6 为了能较好地反映2018至2019年上青溪每年客流量的变化情况,采用的统计图最好的是()A.条形统计图B.折线统计图C.扇形统计图D.条形、折线、扇形统计图都可以7. 下面的两个统计图甲和图乙分别表示甲、乙两所学校男、女生比例的统计图,下列说法的不正确的是()A.甲校的女生数比男生数多B.乙校的男女生人数一样多C.甲校女生数比乙校的女生数要多D.不能比较两个学校的女生数8. 如图是张亮、李娜两位同学零花钱全学期各项支出的统计图.根据统计图,下列对两位同学购买书籍支出占全学期总支出的百分比作出的判断中,正确的是()A.张亮的百分比比李娜的百分比大B.张娜的百分比比张亮的百分比大C.张亮的百分比与李娜的百分比一样大D.无法确定二、填空题(本题共计8 小题,每题3 分,共计24分,)9 象形统计图最大的优点是________.10 如图,镇江四月份某日的温度变化情况,则这天中8时到18时的温差为________.11. 某校八年级(1)班共有45名同学,其中有15人参加了班级篮球队,20人参加了班级合唱队,10人参加了班级航模队(每位同学只参加了一项活动小组).如果用扇形图表示上述分布情况,代表参加篮球队人数的扇形的圆心角的度数是________度.12 小红坚持跳高训练,教练记录了她10天的成绩并制作了统计图(如图所示),则小红第7天的成绩是________米.她的最好成绩是________米,第________天到第________天的成绩较稳定.13. 如图是某电器商场五月份对甲、乙、丙三种品牌空调销售量所做的统计图,则所销售的甲种品牌空调数占总销售量的百分数为________.14. 如图,是瑞安日报“热线电话”12月份第一周接到的热线电话数量统计图.在这周内共接到热线电话________个.人.(2)视力在1.0以上(包括1.0)的为正常,则视力正常的有________人,视力正常的人数占全班人数的________%;(3)该班学生视力情况________(选填“好”“一般”“差”).16. 下图,是根据央视网站提供的信息,绘制的我国北方沙漠化土地成因的数据统计直方图.请根据以下文字信息,将下图空格处填上相应的百分比________.已知:“过度放牧与自然因素的百分比的和较过度采伐的百分比多2个百分点.”(1个百分点等于1%).三、解答题(本题共计7 小题,共计72分,)17 如图是某学校教师喜欢看的电视节目统计图.(1)实验小学喜欢《走进科学》栏目的老师占百分之几?(2)喜欢的《大风车》的老师比喜欢《焦点访谈》的多20人,实验小学一共有多少老师?(3)喜欢《新闻联播》的和喜欢《走进科学》的一共有多少人?(4)喜欢《新闻联播》的比喜欢《大风车》的多百分之几?18. 今年元旦节里,小明全家外出旅游,共用了8600元.回来后小明把费用支出情况制成了如下的统计图,请根据图上的信息解答下列问题:(1)图中哪一部分的费用占全部费用的1?4(2)他们在食宿方面用了多少元?(3)他们的交通费共支出了多少元?19. 学期结束前,学校想知道学生对这学期食品公司提供的营养午餐的满意程度,特向全体学生600人作问卷调查,结果如下:(1)作出反映此调查结果的条形统计图;(2)计算每一种反馈意见所占总人数的比率,并作出扇形统计图;(3)你认为本次调查结果对于校领导挑选午餐的供应商有影响吗?为什么?20 开学初,某校开展了“你在网上干什么”调查活动.七年级1(1)请把上表填写完整;(2)根据表中数据制作扇形统计图;(3)如果你为本校校长,看到这一情况有何想法?你会如何做?21. 如图是某晚报“百姓热线”一周内接到的热线电话的情况,其中有关环境保护问题的电话最多,共70个.请回答下列问题:(1)本周“百姓热线”共接热线电话多少个?(2)有关道路交通问题的电话有多少?(3)哪类问题热线电话最少?是多少个?请问:(1)140∼149的占全班总数的百分数为________;(2)149∼155的占全班总数的百分数为________;(3)155∼160的占全班总数的百分数为________;(4)求160∼167占的百分数,你有不同于(1)、(2)、(3)的计算方法吗?(5)哪一个范围内的人数占全班的一半?(6)哪一个范围的人数最少?23 下面是某家报纸公布的反映世界人口情况的数据.根据上图中所给出的信息,在下面的三个图中选择一个,并制成统计图,使其能够说明世界人口的变化趋势.。
7.2 统计表、统计图的选用(第1课时)

坚持做好每个学习步骤
武亦文的高考高分来自于她日常严谨的学习 态度,坚持认真做好每天的预习、复习。
“高中三年,从来没有熬夜,上课跟着老师 走,保证课堂效率。”武亦文介绍,“班主 任王老师对我的成长起了很大引导作用,王 老师办事很认真,凡事都会投入自己所有精 力,看重做事的过程而不重结果。每当学生 没有取得好结果,王老师也会淡然一笑,鼓
7.2 统计表、统计图的选用(1) 活动一
中华人民共和国从1953年到2000年共进行了5次人 口普查.根据第2次到第5次人口普查的结果,每10万 人受教育程度的人数情况如下:
第6次人口普查 2010年全国人口总数1 370 536 875人.我国每10 万人中,具有大学文化程度约8 930人;具有高中文化 程度的14 032人;具有初中文化程度的38 788人;有 小学文化程度的26 779人.
7.2 统计表、统计图的选用(1) 活动二
小明根据上面的结果绘制了上面的统计图: (1)图中各个扇形分别代表什么? (2)1982年我国每10万人中,各种受教育程度
人数在总人数中所占百分比是多少? (3)图中各个百分比是如何得到的?所占百分比
之和是多少?
7.2 统计表、统计图的选用(1)
像上面的统计图,以整个圆代表统计项目的总体, 每个统计项目分别用圆中不同的扇形表示,扇形面积占 圆面积的百分之几代表该统计项目占总体的百分之几, 这样的统计图称为扇形统计图.
眠。平时功课再多再忙,我也不会‘开夜 车’。身体健康,体力充沛才能保证有效学 习。”高三阶段,有的同学每天学习到凌晨 两三点,这种习惯在常方舟看来反而会影响 次日的学习状态。每天课后,常方舟也不会 花太多时间做功课,常常是做完老师布置的
作业就算完。
八年级数学下册7数据的收集整理描述7.2统计图统计图的选用2苏科版_227

89404
总值/亿元
9
4
5、根据下表人口增长率(2001 年)完成下列各题:
发 达 国 家 发展中国家
自然增长率%
0.5
2.4
少儿人口比重%
21.0
39.0
老年人口比重%
12.0
4.0
1)请根据表格中的数据画出一个适合的统计图.
2)发达国家的人口问题主要是什么?发展中国家的人口问题主要是什么 ?
3)你认为可采取的对策分别是什么?
信息,培养学生分析问题、解决问题的能力。
学习 认识三种统计图的特点,并能根据实际问题选择统计图.
重点 学习
根据实际问题灵活选择统计图. 难点
教学流程
预 1、常用的统计图有
、
、
.
习 2、要想了解某项目的数量的多少,最好绘制成
统计图.
导 3、据统计,近几年全世界森林面积以每年约 1700 万公顷的速度消校与乙校一样多.
C、甲校少于乙校.
D、不能确定.
2、某县气象局为表示一周内气温变化情况,采用( )
A、条形统计图
B、折线统计图
C、扇形统计图 D、统计表
3、地球上海洋面积占 71%,而陆地面积仅占 29%,为了直观地表示陆地面积占
整个地球面积的多少最好选用( )
A、条形统计图
航
来 20 年世界森林面积的变化趋势,应选用
统计图表示收集到的数据.
一、新知探究:
合 不同的统计图可以从不同的角度反应数据信息,根据不同的统计图的特点选取适当
作
的统计图表以便能更好地反映数据信息和数据特征.
探
问题 1 : 如何画扇形统计图?
究
问题 2 : 扇形统计图、条形统计图、折线统计图各有什么特点.
7.2统计表、统计图的选用(2)- 苏科版八年级数学下册培优训练

7.2统计表、统计图的选用(2)-苏科版八年级数学下册培优训练一、选择题1、不但可以表示数量的多少,而且能清楚地表示出数量增减变化情况的统计图是()A.扇形统计图B.条形统计图C.折线统计图D.以上都不对2、金庸先生笔下的“五岳剑派”在以下五大名山中:山名东岳泰山西岳华山南岳衡山北岳恒山中岳嵩山海拔(米)15452155130020161491若想根据表中数据绘制统计图,以便更清楚地比较这五座山的高度,最合适的是()A.扇形统计图B.折线统计图C.条形统计图D.以上都可以3、空气是由多种气体混合而成的,为了简明扼要的介绍空气的组成情况,较好地描述数据,最适合使用的统计图是()A.扇形统计图B.条形统计图C.折线统计图D.以上都不对4、某商店一周中每天卖出的计算器个数分别是15,13,17,18,21,26,31,为了反映这一周所售计算器的变化情况,应制作的统计图是()A.条形统计图B.折线统计图C.扇形统计图D.以上都不对5、在一次慈善基金捐款活动中,某单位对捐款金额分别是人民币100元、200元、300元、400元和500元的人数进行了统计,制成如图所示的统计图.小明从该统计图中获得四条信息,其中正确的是() A.捐款金额越高,捐款的人数越少B.捐款金额为500元的人数最多C.捐款金额为400元的人数比捐款金额为200元的人数要少D.捐款金额为100元的人数最少(5)(6)6、甲、乙两超市在1月至8月间的盈利情况统计图如图所示,下面结论不正确的是 ()A.甲超市的利润逐月减少B.乙超市的利润在1月至4月间逐月增加C.8月份两家超市的利润相同D.乙超市在9月份的利润必超过甲超市7、下面的统计图反映了我国与“一带一路”沿线部分地区的贸易情况.2011﹣2016年我国与东南亚地区和东欧地区的贸易额统计图(以上数据摘自《“一带一路”贸易合作大数据报告(2017)》)根据统计图提供的信息,下列推断不合理的是()A.与2015年相比,2016年我国与东欧地区的贸易额有所增长B.2011﹣2016年,我国与东南亚地区的贸易额逐年增长C.2011﹣2016年,我国与东南亚地区的贸易额的平均值超过4200亿美元D.2016年我国与东南亚地区的贸易额比我国与东欧地区的贸易额的3倍还多8、某校开设了艺术、体育、劳技、书法四门拓展性课程,要求每一名学生都要选且只能选一门课.小黄同学统计了本班50名同学的选课情况,并将结果绘制成条形统计图(如图,不完全),则选书法课的人数有()A.12人B.13人C.15人D.50人9、九年级(2)班同学根据兴趣分成五个小组,各小组人数分布如图所示,则在扇形图中,第一小组对应的圆心角度数是()A.45°B.60° C.72° D.120°10、九年级一班同学根据兴趣分成A,B,C,D,E五个小组,把各小组人数分布绘制成如图3所示的不完整的统计图,则D小组的人数是()A.10人B.11人C.12人D.15人11、以下是某手机店1~4月份的销售数据统计图,分析统计图,对3,4月份L牌手机的销售情况四个同学得出以下四个结论,其中正确的为()A.4月份L牌手机销售额为65万元B.4月份L牌手机销售额比3月份有所上升C.4月份L牌手机销售额比3月份有所下降D.3月份与4月份的L牌手机销售额无法比较,只能比较该店销售总额12、某校对全体学生开展心理健康知识测试,七、八、九三个年级共有800名学生,各年级的合格人数如表所示,则下列说法正确的是()年级七年级八年级九年级合格人数270 262 254A.七年级的合格率最高 B.八年级的学生人数为262名C.八年级的合格率高于全校的合格率 D.九年级的合格人数最少二、填空题13、一名学生统计某一天睡觉、学习、活动、吃饭及其他所用的时间在一天中所占的百分比,选用________统计图较为合适;气象局统计一昼夜的气温变化情况,选用________统计图较为合适.14、如图是镇江四月份某日的温度变化情况,则这天中8时到18时的最大温差为________.15、某校报名参加甲、乙、丙、丁四个兴趣小组的学生人数如图所示,那么报名参加甲组和丙组的人数之和占所有报名人数的百分比为________.16、某校随机调查了若干名家长与中学生对带手机进校园的态度统计图(如图),已知调查家长的人数与调查学生的人数相等,则家长反对学生带手机进校园的人数有.17、在某公益活动中,小明对本年级同学的捐款情况进行了统计,绘制成如图所示的不完整的统计图,其中捐10元的人数占年级总人数的25%,则本次捐款20元的人数为人.18、某市对九年级学生进行“综合素质”评价,评价结果分为A,B,C,D,E五个等级.现随机抽取了500名学生的评价结果作为样本进行分析,绘制了如图所示的统计图.已知图中从左到右的五个长方形的高之比为2∶3∶3∶1∶1,据此估算该市80000名九年级学生中“综合素质”评价结果为“A”的学生约为人.19、某校开展“我最喜爱的一项体育运动”调查,每名学生必选且只能选一项,现随机抽查了m名学生,并将其结果绘制成如下不完整的条形图和扇形图,在抽查的m名学生中喜欢足球运动的有人.20、如图是小强根据全班同学喜爱四类电视节目的人数而绘制的两幅不完整的统计图,则喜爱“体育”节目的人数是.21、某学校计划购买一批课外读物,为了了解学生对课外读物的需求情况,学校进行了一次“我最喜爱的课外读物”的调查,设置了“文学”“科普”“艺术”和“其他”四个类别,规定每人必须并且只能选择其中一类,现从全体学生的调查表中随机抽取了部分学生的调查表进行统计,并根据统计结果绘制了如图所示的两幅不完整的统计图,则在扇形统计图中,艺术类读物所在扇形的圆心角是_______度.三、解答题22、小李对某班全体同学的业余兴趣爱好进行了一次调查,据采集到的数据绘制了下面的统计图表.请据图中提供的信息,解答下列问题:(1)该班共有学生人(2)在图1中,请将条形统计图补充完整;(3)在图2中,在扇形统计图中,“音乐”部分所对应的圆心角的度数度:(4)求爱好“书画”的人数占该班学生数的百分数.23、某校积极开展中学生社会实践活动,决定成立文明宣传、环境保护、交通监督三个志愿者队伍,每名学生最多选择一个队伍,为了了解学生的选择意向,随机抽取A,B,C,D四个班,共200名学生进行调查.将调查得到的数据进行整理,绘制成如图所示的统计图(不完整).(1)求扇形统计图中交通监督所在扇形的圆心角度数;(2)求D班选择环境保护的学生人数,并补全折线统计图;(3)若该校共有学生2500人,试估计该校选择文明宣传的学生人数.24、为了丰富学生课余生活,某区教育部门准备在七年级开设兴趣课堂.为了了解学生对音乐、书法、球类、绘画这四个兴趣小组的喜爱情况,在全区进行随机抽样调查,并根据收集的数据绘制了下面两幅统计图(信息不完整),请根据图中提供的信息,解答下面的问题:(1)此次共调查了多少名同学?(2)将条形图补充完整,并计算扇形统计图中音乐部分的圆心角的度数(3)如果该区七年级共有2000名学生参加这4个课外兴趣小组,而每名教师最多只能辅导本组的20名学生,则绘画兴趣小组至少需要准备多少名教师?25、某软件科技公司20人负责研发与维护游戏、网购、视频和送餐4款软件,投入市场后,游戏软件的利润占这4款软件总利润的40%.如图是这4款软件研发与维护人数的扇形统计图和利润的条形统计图.根据以上信息,回答下列问题:(1)直接写出a,m的值.(2)分别求网购和视频软件的人均利润.(3)在总人数和各款软件人均利润都保持不变的情况下,能否只调整网购与视频软件的研发与维护人数,使总利润增加60万元?如果能,写出调整方案;如果不能,请说明理由.26、以下是某网络书店1~4月关于图书销售情况的两个统计图:某网络书店1﹣4月销售总额统计图绘本类图书销售额占该书店当月销售总额的百分比统计图(1)求1月份该网络书店绘本类图书的销售额.(2)若已知4月份与1月份这两个月的绘本类图书销售额相同,请补全统计图2.(3)有以下两个结论:①该书店第一季度的销售总额为182万元.②该书店1月份到3月份绘本类图书销售额的月增长率相等.请你判断以上两个结论是否正确,并说明理由.7.2统计表、统计图的选用(2)-苏科版八年级数学下册培优训练(答案)一、选择题1、不但可以表示数量的多少,而且能清楚地表示出数量增减变化情况的统计图是(C)A.扇形统计图B.条形统计图C.折线统计图D.以上都不对2、金庸先生笔下的“五岳剑派”在以下五大名山中:山名东岳泰山西岳华山南岳衡山北岳恒山中岳嵩山海拔(米)15452155130020161491若想根据表中数据绘制统计图,以便更清楚地比较这五座山的高度,最合适的是(C)A.扇形统计图B.折线统计图C.条形统计图D.以上都可以3、空气是由多种气体混合而成的,为了简明扼要的介绍空气的组成情况,较好地描述数据,最适合使用的统计图是()A.扇形统计图B.条形统计图C.折线统计图D.以上都不对[解析] 根据题意,要求直观反映空气的组成情况,即各部分在总体中所占的百分比,结合统计图各自的特点,应选择扇形统计图.故选A.4、某商店一周中每天卖出的计算器个数分别是15,13,17,18,21,26,31,为了反映这一周所售计算器的变化情况,应制作的统计图是(B)A.条形统计图B.折线统计图C.扇形统计图D.以上都不对5、在一次慈善基金捐款活动中,某单位对捐款金额分别是人民币100元、200元、300元、400元和500元的人数进行了统计,制成如图所示的统计图.小明从该统计图中获得四条信息,其中正确的是(D) A.捐款金额越高,捐款的人数越少B.捐款金额为500元的人数最多C.捐款金额为400元的人数比捐款金额为200元的人数要少D.捐款金额为100元的人数最少6、甲、乙两超市在1月至8月间的盈利情况统计图如图所示,下面结论不正确的是 (D)图2A.甲超市的利润逐月减少B.乙超市的利润在1月至4月间逐月增加C.8月份两家超市的利润相同D.乙超市在9月份的利润必超过甲超市7、下面的统计图反映了我国与“一带一路”沿线部分地区的贸易情况.2011﹣2016年我国与东南亚地区和东欧地区的贸易额统计图(以上数据摘自《“一带一路”贸易合作大数据报告(2017)》)根据统计图提供的信息,下列推断不合理的是()A.与2015年相比,2016年我国与东欧地区的贸易额有所增长B.2011﹣2016年,我国与东南亚地区的贸易额逐年增长C.2011﹣2016年,我国与东南亚地区的贸易额的平均值超过4200亿美元D.2016年我国与东南亚地区的贸易额比我国与东欧地区的贸易额的3倍还多【解答】解:A、由折线统计图可得:与2015年相比,2016年我国与东欧地区的贸易额有所增长,正确,不合题意;B、由折线统计图可得:2011﹣2014年,我国与东南亚地区的贸易额2014年后有所下降,故逐年增长错误,故此选项错误,符合题意;C、2011﹣2016年,我国与东南亚地区的贸易额的平均值为:(3632.5+4003.0+4436.5+4803.6+4718.7+4554.4)÷6≈4358,故超过4200亿美元,正确,不合题意,D、∵4554.4÷1368.2≈3.33,∴2016年我国与东南亚地区的贸易额比我国与东欧地区的贸易额的3倍还多,故选:B.8、某校开设了艺术、体育、劳技、书法四门拓展性课程,要求每一名学生都要选且只能选一门课.小黄同学统计了本班50名同学的选课情况,并将结果绘制成条形统计图(如图,不完全),则选书法课的人数有(A)A.12人B.13人C.15人D.50人9、九年级(2)班同学根据兴趣分成五个小组,各小组人数分布如图所示,则在扇形图中,第一小组对应的圆心角度数是()A.45°B.60° C.72° D.120°【解答】解:由题意可得,第一小组对应的圆心角度数是:×360°=72°,故选C.10、九年级一班同学根据兴趣分成A,B,C,D,E五个小组,把各小组人数分布绘制成如图3所示的不完整的统计图,则D小组的人数是(C)A.10人B.11人C.12人D.15人11、以下是某手机店1~4月份的销售数据统计图,分析统计图,对3,4月份L牌手机的销售情况四个同学得出以下四个结论,其中正确的为(B)A.4月份L牌手机销售额为65万元B.4月份L牌手机销售额比3月份有所上升C.4月份L牌手机销售额比3月份有所下降D.3月份与4月份的L牌手机销售额无法比较,只能比较该店销售总额12、某校对全体学生开展心理健康知识测试,七、八、九三个年级共有800名学生,各年级的合格人数如表所示,则下列说法正确的是()年级七年级八年级九年级合格人数270 262 254A.七年级的合格率最高 B.八年级的学生人数为262名C.八年级的合格率高于全校的合格率 D.九年级的合格人数最少【解答】解:∵七、八、九年级的人数不确定,∴无法求得七、八、九年级的合格率.∴A错误、C错误.由统计表可知八年级合格人数是262人,故B错误.∵270>262>254,∴九年级合格人数最少.故D正确.故选;D.二、填空题13、一名学生统计某一天睡觉、学习、活动、吃饭及其他所用的时间在一天中所占的百分比,选用________统计图较为合适;气象局统计一昼夜的气温变化情况,选用________统计图较为合适.答案:扇形折线14、如图是镇江四月份某日的温度变化情况,则这天中8时到18时的最大温差为____15.5 ℃____.15________.[解析+80+30+40=200(人),则报名参加甲组和丙组的人数之和占所有报名人数的百分比为(50+30)÷200×100%=40%. 16、某校随机调查了若干名家长与中学生对带手机进校园的态度统计图(如图),已知调查家长的人数与调查学生的人数相等,则家长反对学生带手机进校园的人数有220 .17、在某公益活动中,小明对本年级同学的捐款情况进行了统计,绘制成如图所示的不完整的统计图,其中捐10元的人数占年级总人数的25%,则本次捐款20元的人数为35人.18、某市对九年级学生进行“综合素质”评价,评价结果分为A,B,C,D,E五个等级.现随机抽取了500名学生的评价结果作为样本进行分析,绘制了如图所示的统计图.已知图中从左到右的五个长方形的高之比为2∶3∶3∶1∶1,据此估算该市80000名九年级学生中“综合素质”评价结果为“A”的学生约为16000 人.19、某校开展“我最喜爱的一项体育运动”调查,每名学生必选且只能选一项,现随机抽查了m名学生,并将其结果绘制成如下不完整的条形图和扇形图,在抽查的m名学生中喜欢足球运动的有30人.20、如图是小强根据全班同学喜爱四类电视节目的人数而绘制的两幅不完整的统计图,则喜爱“体育”节目的人数是10.21、某学校计划购买一批课外读物,为了了解学生对课外读物的需求情况,学校进行了一次“我最喜爱的课外读物”的调查,设置了“文学”“科普”“艺术”和“其他”四个类别,规定每人必须并且只能选择其中一类,现从全体学生的调查表中随机抽取了部分学生的调查表进行统计,并根据统计结果绘制了如图所示的两幅不完整的统计图,则在扇形统计图中,艺术类读物所在扇形的圆心角是_______度.[解析] 抽查总人数为90÷30%=300(人),艺术类读物所在扇形的圆心角为60÷300×360°=72°.三、解答题22、小李对某班全体同学的业余兴趣爱好进行了一次调查,据采集到的数据绘制了下面的统计图表.请据图中提供的信息,解答下列问题:(1)该班共有学生人(2)在图1中,请将条形统计图补充完整;(3)在图2中,在扇形统计图中,“音乐”部分所对应的圆心角的度数度:(4)求爱好“书画”的人数占该班学生数的百分数.解:(1)该班共有学生14÷35%=40(人),(2)选择书画的人数为40﹣(14+12+4)=10(人),补全图象如答图.(3)“音乐”部分所对应的圆心角的度数为360°×=108°,(4)爱好“书画”的人数占本班学生数的百分数是×100%=25%.23、某校积极开展中学生社会实践活动,决定成立文明宣传、环境保护、交通监督三个志愿者队伍,每名学生最多选择一个队伍,为了了解学生的选择意向,随机抽取A,B,C,D四个班,共200名学生进行调查.将调查得到的数据进行整理,绘制成如图所示的统计图(不完整).(1)求扇形统计图中交通监督所在扇形的圆心角度数;(2)求D班选择环境保护的学生人数,并补全折线统计图;(3)若该校共有学生2500人,试估计该校选择文明宣传的学生人数.解:(1)选择交通监督的人数是12+15+13+14=54(人),选择交通监督的人数所占百分比是×100%=27%,扇形统计图中交通监督所在扇形的圆心角度数是360°×27%=97.2°.(2)D班选择环境保护的学生人数是200×30%-15-14-16=15(人).补全折线统计图如下:(3)2500×(1-30%-27%-5%)=950(人), 即估计该校选择文明宣传的学生人数是950人.24、为了丰富学生课余生活,某区教育部门准备在七年级开设兴趣课堂.为了了解学生对音乐、书法、球类、绘画这四个兴趣小组的喜爱情况,在全区进行随机抽样调查,并根据收集的数据绘制了下面两幅统计图(信息不完整),请根据图中提供的信息,解答下面的问题:(1)此次共调查了多少名同学?(2)将条形图补充完整,并计算扇形统计图中音乐部分的圆心角的度数(3)如果该区七年级共有2000名学生参加这4个课外兴趣小组,而每名教师最多只能辅导本组的20名学生,则绘画兴趣小组至少需要准备多少名教师?解:(1)此次调查的学生人数为120÷40%=300(名);(2)音乐的人数为300﹣(60+120+40)=80(名),补全条形图如答图.扇形统计图中音乐部分的圆心角的度数为360°×=96°;(3)60÷300×2000÷20=20.∴需准备20名教师辅导.25、某软件科技公司20人负责研发与维护游戏、网购、视频和送餐4款软件,投入市场后,游戏软件的利润占这4款软件总利润的40%.如图是这4款软件研发与维护人数的扇形统计图和利润的条形统计图.根据以上信息,回答下列问题:(1)直接写出a,m的值.(2)分别求网购和视频软件的人均利润.(3)在总人数和各款软件人均利润都保持不变的情况下,能否只调整网购与视频软件的研发与维护人数,使总利润增加60万元?如果能,写出调整方案;如果不能,请说明理由.解:(1)a=100-(10+40+30)=20.∵软件总利润为1200÷40%=3000(万元), ∴m=3000-(1200+560+280)=960.(2)网购软件的人均利润为=160(元/人),视频软件的人均利润为=140(元/人).(3)能.设调整后网购软件的人数为x,则视频软件的人数为10-x.根据题意,得1200+280+160x+140(10-x)=3000+60,解得x=9. 即安排9人负责网购软件、安排1人负责视频软件可以使总利润增加60万元.26、以下是某网络书店1~4月关于图书销售情况的两个统计图:某网络书店1﹣4月销售总额统计图绘本类图书销售额占该书店当月销售总额的百分比统计图(1)求1月份该网络书店绘本类图书的销售额.(2)若已知4月份与1月份这两个月的绘本类图书销售额相同,请补全统计图2.(3)有以下两个结论:①该书店第一季度的销售总额为182万元.②该书店1月份到3月份绘本类图书销售额的月增长率相等.请你判断以上两个结论是否正确,并说明理由.解:(1)1月份绘本类图书的销售额为70×6%=4.2(万元).(2)4月份绘本类图书销售总额占的百分比为4.2÷60=7%.补全图形如答图.(3)第一季度销售总额为70+62+50=182(万元).①正确.1月份到2月份,绘本类图书销售额增长率为(62×8%﹣70×6%)÷4.2=0.76÷4.2≈18.1%.2月份到3月份增长率为(50×10%﹣62×8%)÷(62×8%)≈0.8%.②错误.。
八年级数学下册7数据的收集整理描述7.2统计图统计图的选用2苏科版_227

统计图的选用课题7.2 统计图的选用(2)自主空间学习目标知识与技能:了解常用的统计图,知道三种统计图各自的特点;能根据不同情况和不同需要选择合适的统计图来描述数据,从而做出合理的决策。
过程与方法:能选取适当的统计图,更好地反映数据的特征从而解决问题.情感、态度与价值观:通过练习的方式,引导学生分析统计图,从统计图中找出相关信息,培养学生分析问题、解决问题的能力。
学习重点认识三种统计图的特点,并能根据实际问题选择统计图.学习难点根据实际问题灵活选择统计图.教学流程预习导航1、常用的统计图有、、 .2、要想了解某项目的数量的多少,最好绘制成统计图.3、据统计,近几年全世界森林面积以每年约1700万公顷的速度消失,为了预测未来20年世界森林面积的变化趋势,应选用统计图表示收集到的数据.合作探究一、新知探究:不同的统计图可以从不同的角度反应数据信息,根据不同的统计图的特点选取适当的统计图表以便能更好地反映数据信息和数据特征.问题 1 :如何画扇形统计图?问题 2 :扇形统计图、条形统计图、折线统计图各有什么特点.二、例题分析:在网络、书籍、杂志、报纸上我们经常看到各种形式的统计图,如图是某家报纸公布的反映世界人口情况的三种不同类型的统计图.(1)指出它们各是哪种类型的统计图?(2)你从这些统计图上能知道哪些信息?(3)选用哪种统计图能更准确地反映出要表达的信息?它们各有什么特点?世界人口变化情况统计图20406080100195719741987199920252050年代/年人口/亿三、展示交流:1、以下分别是2050年世界人口预测的条形统计图、扇形统计图、折线统计图:2050年世界人口预测图(单位:亿)试回答下列问题:⑴从哪幅统计图中能看出世界人口的变化情况?⑵2050年亚洲人口数约占多少?你是从哪个图形中得到的这一数据?⑶2050年亚洲人口将达到亿,这一数据你是从统计图中得到的。
四、提炼总结:举例说明条形统计图、扇形统计图、折线统计图的特点分别是什么?当堂达标1、甲校女生占全校总人数的50%,乙校男生占全校总人数的50%,则女生人数()A、甲校多于乙校.B、甲校与乙校一样多.C、甲校少于乙校.D、不能确定.2、某县气象局为表示一周内气温变化情况,采用()A、条形统计图B、折线统计图C、扇形统计图D、统计表3、地球上海洋面积占71%,而陆地面积仅占29%,为了直观地表示陆地面积占整个地球面积的多少最好选用()A、条形统计图B、折线统计图C、扇形统计图D、统计表4、制作适当的统计图表示下列数据:(1)孵化期统计表:鸽子鹅鸭鸡16天30天30天21天(2)我国不同年份的国内生产总值统计表:年份1952 1962 1970 1980 1990 2000国内生产总值/亿元678 1149.3 2252.7 4517.818547.9894045、根据下表人口增长率(2001年)完成下列各题:发达国家发展中国家自然增长率% 0.5 2.4少儿人口比重% 21.0 39.0老年人口比重% 12.0 4.01)请根据表格中的数据画出一个适合的统计图.2)发达国家的人口问题主要是什么?发展中国家的人口问题主要是什么?3)你认为可采取的对策分别是什么?学习反思:。
八年级数学下册第7章数据的收集、整理、描述7.2统计表、统计图的选用(1)练习苏科版(new)

7。
2统计表、统计图的选用(1)练习一、填空题:(每小题4分,共20分)1。
扇形统计图是利用圆和_______表示______和部分的关系,圆代表的是总体, 即100%,扇形代表______,圆的大小与总数量无关.2。
扇形统计图能清楚地表示出各部分在总体中所占的_______.3.如图1,如果用整个图表示总体,那么_______扇形表示总体的13,______ 扇形表示总体的12_______。
(1)CAB 300亩油菜500亩小麦450亩大麦(2)A 65%B 28%(3)C4。
红星村今年对农田秋季播种作物如图2规划,且只种植这三种农作物,则该村种植的大麦占种植所有农作物的____%.5。
光明中学对图书馆的书分成3类,A 表示科技类,B 表示科学类,C 表示艺术类,所占的百分比如图3所示,如果该校共有图书8500册,则艺术书共有______册。
二、选择题:(每小题5分,共15分)6。
某校对初一300名学生数学考试作一次调查,在某范围内的得分率如图4的扇形,则在60分以下这一分数线中的人数为( )A 。
75B 。
60C 。
90 D.507.某公司有员工700人,元旦举行活动,图5,A 、B 、C 分别表示参加各种活动的人数的百分比,规定每人只参加一项且每人均参加,则不下围棋的人共有( )A.259人B.441人C.350人 D 。
490人8.某校男、女生比例如图6中的扇形区,则男生占全校人数的百分数为( )A 。
48%B 。
52% C.92。
3% D 。
4%三、解答题:(共25分)9。
(7分)全班约25是男生,约35是女生,请根据所给数据完成扇形统计图.10。
(10分)(1)由图中提供信息:乒乓球、排球、足球、篮球4项球类活动中, 哪一类球类运动能够获得全班近14的支持率?(2)若全班人数为50人,体育委员组织一次排球比赛, 估计会有多少人积极参加比赛? 蓝球16%排球18%足球24%其它乒乓球32%11。
八年级数学下册 7.2 统计表、统计图的选用 统计图的选择素材 (新版)苏科版
统计图的选择我们知道,数学统计的基本知识包括数据的收集、数据的整理、统计图,其中统计图的绘制是描述数据的有力工具,其中含有:扇形统计图、条形统计图、折线统计图.这是我们常见的且在初中统计知识中常用的三种统计图,它们能从不同的方面形象、直观地表现出我们想探究的规律和趋势,它们又各有自己的优点,把握住其优点,正确选择合适的统计图,对我们研究问题会带来很大的方便.因此,我们要根据不同的特征合理选择统计图.一、扇形统计图扇形统计图可以清楚地表示各部分在总体中的百分比.因此,根据扇形统计图可看出被统计对象所占的比例.例如:小明、小红两家为了了解2009年家庭上半年支出各种费用的情况,画出上半年支出费用的扇形统计图,如图1所示.其他24%教育19%食品34%衣着23%图 1小红家 小明家食品31%其他21%教育23%衣着25%从统计图中可以清楚地看出两家均是食品支出所占比例最多,小明家是其他方面的支出较少,小红家在教育方面的支出较少.二、条形统计图条形统计图可以直观地看出各种数量的大小与多少,因此,如果只想清楚地表示数量的多少,一般采用条形统计图.例如:某校学生在电脑培训前后都参加了一次水平相同的考试,考分都以同一标准划分成“不合格”、“合格”、“优秀”三个等级,为了了解电脑培训的效果,将30名学生两次考试考分等级制成条形统计图,如图2所示.等级图2从这个统计图中可以清楚地看出培训前后各等级的人数的变化,从而可以看出,培训后不合格的人数减少了,合格及优秀的人数增加了,培训后学生的计算机水平有了很大的提高.三、折线统计图折线统计图不但可以表示出各部分数量的多少,而且能够清楚地表示出数量增减变化的情况.因此,当既要知道各部分数量的多少,又要清楚地表示各部分数量增减的情况时,应采用折线统计图.例如:为了解某品牌A、B两种型号冰箱的销售状况,公司统计员小虎对其专卖店开业以来连续七个月的销售情况进行了统计,并将得到的数据制成如下的折线统计图(如图3).月份图3从这个统计图中可以发现,B型冰箱的月销售量呈上升趋势,若考虑增长势头,进货时可考虑多进B型冰箱.。
7.2 统计图的选用(第1课时)(课件)八年级数学下册(苏科版)
名称和百分比
统计图的__________________.
名称和数据来源
讨论与交流
问题1
制作扇形统计图的关键是什么?
制作扇形统计图的关键:计算各项目占总体的百分比,并计算扇形圆
心角的度数.
问题2
扇形统计图的特点是什么?
特点:扇形统计图能清楚地反映出各部分在总体中所占的百分比.
8930
14032
38788
26779
11471
2020
15467
15088
34507
24767
10171
年份
数据来源:第2~7次全国人口普查
你能从中迅速判断出我
国哪一年每10万人中具有大
学文化程度的人最多吗?
从左面的统计表中,
可以清楚地看出全国公
民具有各类文化程度的
人数及变化情况.
讨论与交流
用统计表表示数据有什么优点?
第5次全国人口普查
2000年全国总人口为1 295 330 000人.我国每10万人中,具有大
学文化程度约3 611人,具有高中文化程度的11 146人,具有初中文
化程度的33 961人,具有小学文化程度的35 70l人.
问题情境
第6次全国人口普查
2010年全国总人口为1 370 536 875人.我国每10万人中,具有大
(3)这些百分比的和是多少?表示什么?
(4)图中的各个扇形分别代表了什么?
(5)图中每一个扇形面积的大小与百分比的关系是什么?
(6)这几个扇形面积的不同大小与这个圆的半径有关还
是与圆心角有关?有怎样的关系?
初中数学苏科版八年级下册第七章7.2统计图的采用练习题-普通用卷
初中数学苏科版八年级下册第七章7.2统计图的采用练习题一、选择题1.自来水公司调查了若干用户的月用水量x(单位:吨),按月用水量将用户分成A、B、C、D、E五组进行统计,并制作了如图所示的扇形统计图,已知除B组以外,参与调查的用户共64户,则所有参与调查的用户中用水量在6吨以下的共有()组别月用水量x(单位:吨)A0≤x<3B3≤x<6C6≤x<9D9≤x<12E x>12A. 18户B. 20户C. 22户D. 24户2.某校九(1)班的全体同学最喜欢的球类运动用如图所示的统计图来表示,下面说法正确的是()A. 从图中可以直接看出喜欢各种球类的具体人数B. 从图中可以直接看出全班的总人数C. 从图中可以直接看出全班同学初中三年来喜欢各种球类的变化情况D. 从图中可以直接看出全班同学现在最喜欢各种球类的人数的大小关系3.如图,是根据某市2010年至2014年工业生产总值绘制的折线统计图,观察统计图获得以下信息,其中信息判断错误的是()A. 2010年至2014年间工业生产总值逐年增加B. 2014年的工业生产总值比前一年增加了40亿元C. 2012年与2013年每一年与前一年比,其增长额相同D. 从2011年至2014年,每一年与前一年比,2014年的增长率最大4.下列四个统计图中,用来表示不同品种的奶牛的日平均产奶量最为合适的是()A.B.C.D.5.某初中学校的男生、女生以及教师人数的扇形统计图如图所示,若该校男生、女生以及教师的总人数为1500人,则该校教师共有()A. 108人B. 135人C. 150人D. 165人6.某中学将为初一学生开设A、B、C、D、E、F6种运动项目,现选取部分学生进行了“我最喜欢的一种运动项目”调查,将调查结果绘制成如下统计图表(不完整),根据图表提供的信息,下列判断中,不正确的是()运动A B C D E F项目人数4060100A. 这次被调查的学生人数为400B. 扇形统计图中D部分扇形的圆心角为90∘C. 被调查的学生中喜欢运动项目E的人数为80D. 喜欢运动项目C的人数最少7.如图,在平面直角坐标系中,点B、C、E在y轴上,Rt△ABC经过变换得到Rt△ODE,若点C的坐标为(0,1),AC=2,则这种变换可以是()A. △ABC绕点C顺时针旋转90∘,再向下平移3个单位长度B. △ABC绕点C顺时针旋转90∘,再向下平移1个单位长度C. △ABC绕点C逆时针旋转90∘,再向下平移1个单位长度D. △ABC绕点C逆时针旋转90∘,再向下平移3个单位长度8.空气是混合物,为直观介绍空气各成分的百分比,最适合用的统计图是()A. 折线统计图B. 条形统计图C. 扇形统计图D. 以上都不对9.某校学生到校方式情况的统计图如图所示,若该校步行到校的学生有100人,则乘公共汽车到校的学生有()A. 75人B. 100人C. 125人D. 200人10.要反映一个家庭在教育方面支出占总收人的比,宜采用()A. 条形统计图B. 扇形统计图C. 折线统计图D. 以上都不对二、填空题11.据资料表明:中国已成为全球机器人第二大专利来源国和目标国.机器人几大关键技术领域包括:谐波减速器、RV减速器、电焊钳、3D视觉控制、焊缝跟踪、涂装轨迹规划等,其中涂装轨迹规划的来源国结构(仅计算了中、日、德、美)如图所示,在该扇形统计图中,美国所对应的扇形圆心角是______度.12.某学校为了增强学生体质,决定开放以下体育课外活动项目:A.篮球、B.乒乓球、C.跳绳、D.踢毽子.为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,其中A所在扇形的圆心角为30°,则在被调查的学生中选择跳绳的人数是______ .13.如图,某校根据学生上学方式的一次抽样调查结果,绘制出一个未完成的扇形统计图,若该校共有学生1000人,则估计步行上学的有________人.14.如图是小强根据全班同学喜爱四类电视节目的人数而绘制的两幅不完整的统计图,则喜爱“体育”节目的有人.三、解答题15.为了取得扶贫工作的胜利,某市对扶贫工作人员进行了扶贫知识的培训与测试,随机抽取了部分人员的测试成绩作为样本,并将成绩划分为A、B、C、D四个不同的等级,绘制成不完整统计图如图,请根据图中的信息,解答下列问题:(1)求样本容量;(2)补全条形图,并填空:n=______;(3)若全市有5000人参加了本次测试,估计本次测试成绩为A级的人数为多少?16.我市组织学生书法比赛,对参赛作品按A、B、C、D四个等级进行了评定,现随机抽取部分学生书法作品的评定结果进行统计,并绘制如图所示的扇形统计图和条形统计图.根据上述信息完成下列问题:(1)求这次抽取的样本容量;(2)请在图 ②中把条形统计图补充完整;(3)已知这次活动共收到参赛作品750份,请你估计参赛作品达到B级以上(即A级和B级)有多少份.17.某商场对今年端午节这天销售A,B,C三种品牌粽子的情况进行了统计,绘制如图①和图②所示的统计图.根据图中信息解答下列问题:(1)哪一种品牌粽子的销售量最大?(2)补全图①中的条形统计图.(3)写出A品牌粽子在图②中所对应的圆心角的度数.(4)根据上述统计信息,明年端午节期间该商场对A,B,C三种品牌的粽子如何进货?请你提一条合理化的建议.18.为了增强学生的环保意识,某校组织了一次全校2000名学生都参加的“环保知识”考试,考题共10题.考试结束后,学校团委随机抽查部分考生的考卷,对考生答题情况进行统计分析,发现所抽查的考卷中答对题量最少为6题,并且绘制了如下两幅不完整的统计图.请根据统计图提供的信息解答以下问题:(1)本次抽查的样本容量是多少?(2)在扇形统计图中,试确定m、n的值.(3)在扇形统计图中,“答对8题”所对应扇形的圆心角是多少度?(4)将条形统计图补充完整.(5)请根据以上调查结果,估算出该校答对不少于8题的学生人数.答案和解析1.【答案】D【解答】=80(户),解:∵被调查的户数为6410%+35%+30%+5%其中B组用户数占被调查户数的百分比为:1−10%−35%−30%−5%=20%,则所有参与调查的用户中月用水量在6吨以下的共有:80×(10%+20%)=24(户),故选:D.2.【答案】D解:因为扇形统计图直接反映部分占总体的百分比大小,不能反映具体数量的多少和变化情况,所以A、B、C都错误,故选:D.利用扇形统计图的特点,可以得到各类所占的比例,但总数不确定,不能确定每类的具体人数.本题考查了扇形统计图的知识,扇形统计图直接反映部分占总体的百分比大小.解题的关键是能够读懂扇形统计图并从中整理出进一步解题的有关信息.3.【答案】D【解答】解:A.2010年至2014年间工业生产总值逐年增加,正确,不符合题意;B.2014年的工业生产总值比前一年增加了40亿元,正确,不符合题意;C.2012年与2013年每一年与前一年比,其增长额相同,正确,不符合题意;D.从2011年至2014年,每一年与前一年比,2012年的增长率最大,错误,故D符合题意;故选:D.4.【答案】D【解答】解:根据统计图的特点,知条形统计图能清楚地表示出每个项目的具体数目,也正符合这道题要把不同品种的奶牛的平均产奶量显示清楚的目的;而图B中的奶牛瓶这样一个立体物显示,容易使人们从体积的角度比较这几种不同品种奶牛的平均产奶量,从而扩大了它们的差距,是不合适的.故选D.5.【答案】B解:∵该校教师所占百分比为1−46%−45%=9%,∴该校教师共有1500×9%=135人,故选:B.首先求得教师所占百分比,乘以总人数即可求解.本题主要考查了扇形统计图,扇形统计图直接反映部分占总体的百分比大小.6.【答案】D【解答】解:A.本次调查的学生人数为60÷15%=400(人),此选项正确;=90°,此选项正确;B.扇形统计图中D部分扇形的圆心角为360°×100400C.喜欢C项目的人数为400×12.5%=50(人),喜欢F项目的人数为400×17.5%=70(人),则喜欢E项目的人数为400−(40+60+50+100+70)=80(人),此选项正确;D.喜欢运动项目A的人数最少,为40人,此选项错误;故选D.7.【答案】A【解答】解:将△ABC绕点C顺时针旋转90∘,由题意可得OE=AC=2,且点C的坐标为(0,1),所以CE=3,故需向下平移3个单位长度,故选A.8.【答案】C9.【答案】D【解答】解:总人数为100÷20%=500(人),∴乘公共汽车到校的学生有500×40%=200(人),故选D.10.【答案】B【解答】解:由统计图的特点知要反映一个家庭在教育方面支出占总收入的比,宜采用扇形统计图.故选B.11.【答案】57.6解:美国所对应的扇形圆心角=360°×(1−21%−32%−31%)=57.6°,故答案为57.6.根据圆心角=360°×百分比,计算即可;本题考查了扇形统计图,读懂统计图是解决问题的关键,扇形统计图直接反映部分占总体的百分比大小.12.【答案】100人解:由题意可得,=240(人),被调查的学生有:20÷30°360∘则选择跳绳的有:240−20−80−40=100(人),故答案为:100人.根据统计图中的信息可以求得本次调查的学生人数,从而可以求得被调查的学生中选择跳绳的人数.本题考查条形统计图、扇形统计图,解答本题的关键是明确题意,利用数形结合的思想解答.13.【答案】400【解答】×100%=35%,解:∵骑车的学生所占的百分比是126360∴步行的学生所占的百分比是1−10%−15%−35%=40%,∴若该校共有学生1000人,则据此估计步行的有1000×40%=400(人).故答案为400.14.【答案】10解:5÷10%=50(人),50×30%=15(人),50−5−15−20=10(人).答:喜爱“体育”节目的人数是10人.故答案为10.15.【答案】(1)样本容量为18÷30%=60;(2)10;=2000人.(3)估计本次测试成绩为A级的人数为5000×246016.【答案】解:(1)这次抽取的样本容量为24÷20%=120.(2)C等级份数为120×30%=36,D等级份数为120−(24+48+36)=12,补全条形统计图如下:=450(份).(3)750×24+48120答:估计参赛作品达到B级以上(即A级和B级)有450份.17.【答案】解:(1)∵1200÷50%=2400,∴B品牌销量为:2400−1200−400=800件;∴在A,B,C三种品牌粽子的销量中C的销量最大.(2)根据B品牌销量为:2400−1200−400=800件;画图即可.(3)400÷2400×360°=60°;(4)根据上述统计信息,A品牌销量为400,B品牌销量为800,C品牌销量为1200,因此建议该商场对C品牌多进点,而A品牌要少进.18.【答案】【解答】解:(1)5÷10%=50(人),本次抽查的样本容量是50,=0.16=16%,1−10%−16%−24%−20%=30%,(2)850即m=16,n=30,=86.4°,(3)360°×24100(4);(5)2000×(24%+20%+30%)=1480(人),答:该校答对不少于8题的学生人数是1480人.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7.2统计图的选用一、选择题(本大题共10小题,共30.0分)1.某校为开展第二课堂,组织调查了本校150名学生各自最喜爱的一项体育活动,制成了如下扇形统计图,则在该被调查的学生中,跑步和打羽毛球的学生人数分别是( )A. 30,40B. 45,60C. 30,60D. 45,402.如图,某中学制作了300名学生选择棋类、摄影、书法、短跑四门校内课程情况的扇形统计图,从图中可以看出选择短跑的学生人数为( )A. 33B. 36C. 39D. 423.在某时段由50辆车通过一个雷达测速点,工作人员将测得的车速绘制成如图所示的条形统计图,则这50辆车的车速的众数(单位:km/ℎ)为( )A. 60B. 50C. 40D. 154.某校学生来自甲、乙、丙三个地区,其人数比为3:4:3,如图所示的扇形图表示上述分布情况.若来自甲地区有180人,则该校学生总数为( )A. 600人B. 450人C. 720人D. 360人5.某校九年级(1)班全体学生2016年初中毕业体育考试的成绩统计如下表:成绩(分)24252627282930人数(人)2566876根据上表中的信息判断,下列结论中错误的是( )A. 该班一共有40名同学B. 该班学生这次考试成绩的众数是28分C. 该班学生这次考试成绩的中位数是28分D. 该班学生这次考试成绩的平均数是28分6.蜀山区三月中旬每天平均空气质量指数(AQI)分别为:118,96,60,82,56,69,86,112,108,94,为了描述这十天空气质量的变化情况,最适合用的统计图是( )A. 折线统计图B. 频数分布直方图C. 条形统计图D. 扇形统计图7.如图所示,是甲、乙两所学校男、女生人数的扇形统计图,请你根据这两个扇形统计图确定甲、乙两所学校女生人数较多的是()A. 甲校B. 乙校C. 甲、乙两校女生人数一样多D. 无法确定8.某中学公布了该校各年级学生总人数和体育达标人数的统计图,如图.已知该校七、八、九三个年级共有学生2500人,体育达标率最高的年级是( )A. 七年级B. 八年级C. 九年级D. 无法确定9.我国五座名山的海拔高度如下表:山名泰山华山黄山庐山峨眉山海拔(米)15452155186414743099若想根据表中数据绘制统计图,以便更清楚地比较五座山的高度,最合适的是( )A. 条形统计图B. 折线统计图C. 扇形统计图D. 以上都可以10.某老师为了解学生周末学习时间的情况,在所教班级中随机抽查了10名学生,绘成如图所示的条形统计图,则估计全班学生周末的平均学生时间是( )A. 4小时B. 3小时C. 2小时D. 1小时二、填空题(本大题共6小题,共18.0分)11.一个扇形统计图中,扇形A、B、C、D的面积之比为2:3:3:4,则最大扇形的圆心角为______.12.某校征集校运会会徽,遴选出甲、乙、丙三种图案.为了解何种图案更受欢迎,随机调查了该校100名学生,其中60名同学喜欢甲图案,若该校共有2000人,根据所学的统计知识可以估计该校喜欢甲图案的学生有______人.13.某校图书管理员清理阅览室的课外书籍时,将其中甲、乙,丙三类书籍的有关数据制成如图不完整的统计图,已知甲类书有45本,则丙类书有______本.14.为了估计虾塘里海虾的数目,第一次捕捞了500只虾,将这些虾一一做上标记后放回虾塘.几天后,第二次捕捞了2000只虾,发现其中有20只虾身上有标记,则可估计该虾塘里约有________只虾.15.“手机阅读”已逐渐成了眼科病的主要病因,据调查表明在“中年人”中有“手机阅读”习惯的占比约达66%.若随机选择150名“中年人”进行调查,则估计有______人有此习惯.16.某人把50粒黄豆染色后与一袋黄豆充分混匀,从中随意抓出100粒黄豆,发现其中有5粒黄豆是染过色的,则这袋黄豆原来大约有______粒.三、解答题(本大题共4小题,共32.0分)17.某跳水队为了解运动员的年龄情况,作了一次年龄调查,根据跳水运动员的年龄(单位:岁),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(1)本次接受调查的跳水运动员人数为______,图①中m的值为______;(2)求统计的这组跳水运动员年龄数据的平均数、众数和中位数.18.某企业工会开展“一周工作量完成情况”调查活动,随机调查了部分员工一周的工作量剩余情况,并将调查结果统计后绘制成如图1和图2所示的不完整统计图.(1)被调查员工的人数为______人:(2)把条形统计图补充完整;(3)若该企业有员工10000人,请估计该企业某周的工作量完成情况为“剩少量”的员工有多少人?19.某县教育局为了丰富初中学生的大课间活动,要求各学校开展形式多样的阳光体育活动.某中学就“学生体育活动兴趣爱好”的问题,随机调查了本校某班的学生,并根据调查结果绘制成如下的不完整的扇形统计图和条形统计图:(1)在这次调查中,喜欢篮球项目的同学有______人,在扇形统计图中,“乒乓球”的百分比为______%,如果学校有800名学生,估计全校学生中有______人喜欢篮球项目.(2)请将条形统计图补充完整.(3)在被调查的学生中,喜欢篮球的有2名女同学,其余为男同学.现要从中随机抽取2名同学代表班级参加校篮球队,请直接写出所抽取的2名同学恰好是1名女同学和1名男同学的概率.20.央视“经典咏流传”开播以来受到社会广泛关注我市某校就“中华文化我传承--地方戏曲进校园”的喜爱情况进行了随机调查.对收集的信息进行统计,绘制了下面两幅尚不完整的统计图.请你根据统计图所提供的信息解答下列问题:图中A表示“很喜欢”,B表示“喜欢”、C表示“一般”,D表示“不喜欢”.(1)被调查的总人数是______人,扇形统计图中C部分所对应的扇形圆心角的度数为______;(2)补全条形统计图;(3)若该校共有学生1800人,请根据上述调查结果,估计该校学生中A类有______人;(4)在抽取的A类5人中,刚好有3个女生2个男生,从中随机抽取两个同学担任两角色,用树形图或列表法求出被抽到的两个学生性别相同的概率.答案和解析1.【答案】B【解析】【分析】本题考查了扇形统计图及相关计算.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.先求出打羽毛球学生的比例,然后用总人数×跑步和打羽毛球学生的比例求出人数.【解答】解:由题意得,打羽毛球学生的比例为:1−20%−10%−30%=40%,则跑步的人数为:150×30%=45,打羽毛球的人数为:150×40%=60.故选B.2.【答案】C【解析】解:根据题意得:300×(1−33%−26%−28%)=39(名).答:选择短跑的学生有39名.故选C.先求出选择短跑的学生所占的百分比,再乘以总人数即可.此题考查了扇形统计图,扇形统计图直接反映部分占总体的百分比大小,关键是求出选择短跑的学生所占的百分比.3.【答案】C【解析】【分析】本题主要考查众数,熟练掌握众数的定义是解题的关键.根据众数的定义求解可得.【解答】解:由条形图知,车速40km/ℎ的车辆有15辆,为最多,所以众数为40.故选C.4.【答案】A=30%,【解析】解:甲占33+4+3∴该校学生总数为180÷30%=600,故选:A.根据百分比=所占人数,计算即可;总数本题考查扇形统计图、解得的关键是熟练掌握基本知识,属于中考基础题.5.【答案】D【解析】解:A、该班人数为:2+5+6+6+8+7+6=40,故选项A正确,不符合题意要求;B、得28分的人数最多,众数为28,故选项B正确,不符合题意要求;C、第20和21名同学的成绩的平均值为中位数,中位数为:(28+28)÷2=28,故选项C正确,不符合题意要求;D、平均数为:(24×2+25×5+26×6+27×6+28×8+25×8+29×7+30×6)÷40=28.125.故选项D错误,符合题意要求.故选:D.结合表格提供数据以及众数、平均数、中位数的概念求解即可.本题考查了众数、平均数、中位数的知识,掌握各知识点的概念是解答本题的关键.6.【答案】A【解析】解:这七天空气质量变化情况最适合用折线统计图,故选:A.根据统计图的特点进行分析可得:扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.此题根据扇形统计图、折线统计图、条形统计图各自的特点来判断.7.【答案】D【解析】解:∵甲、乙两班的学生数不确定,∴无法比较甲、乙两班的男生多少、女生多少以及两班人数的多少,故选:D.根据扇形统计图反映部分占总体的百分比大小求解可得.本题考查的是扇形统计图的认识,掌握扇形统计图直接反映部分占总体的百分比大小是解题的关键.8.【答案】C【解析】【分析】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据,扇形统计图直接反映部分占总体的百分比大小.分别求出七、八、九年级的学生数,再求出七、八、九年级的达标率,然后再进行进行比较即可判断.【解答】解:由扇形统计图可以看出:七年级共有学生2500×35%=875人;八年级共有学生2500×33%=825人;九年级共有学生2500×32%=800人;×100%≈93.7%;七年级的达标率为:820875八年级的达标率为:800825×100%≈97.0%; 九年级的达标率为:780800×100%=97.5%. 综上可得:九年级的达标率最高. 故选:C .9.【答案】A【解析】解:根据题意,知:要求直观比较五座山的高度,结合统计图各自的特点,应选择条形统计图. 故选:A .扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.本题主要考查统计图的选择,根据扇形统计图、折线统计图、条形统计图各自的特点来判断.10.【答案】B【解析】解:估计全班学生周末的平均学生时间是1×1+2×2+3×4+4×2+5×110=3(小时),故选:B .平均数的计算方法是求出所有数据的和,然后除以数据的总个数.本题利用加权平均数的公式即可求解.此题考查了加权平均数以及条形统计图的应用,从条形图可以很容易看出数据的大小.对于一组不同权重的数据,加权平均数更能反映数据的真实信息.11.【答案】120°【解析】解:∵扇形A ,B ,C ,D 的面积之比为2:3:3:4 ∴其所占扇形比分别为16、14、14、13 ∵16<14=14<13, ∴最大扇形的圆心角为: 360°×13=120°. 故答案为:120°.因为扇形A ,B ,C ,D 的面积之比为2:3:3:4,所以其所占扇形比分别为16、14、14、13,则最大扇形的圆心角度数可求.此题考查了扇形统计图及相关计算.圆心角的度数=360°×该部分占总体的百分比是解题关键.12.【答案】1200【解析】解:由题意得:2000×60100=1200人,故答案为:1200.用总人数乘以样本中喜欢甲图案的频率即可求得总体中喜欢甲图案的人数.本题考查了用样本估计总体的知识,解题的关键是求得样本中喜欢甲图案的频率,难度不大.13.【答案】120【解析】解:总数是:45÷15%=300(本),丙类书的本数是:300×(1−15%−45%)=300×40%=120(本)故答案为:120.根据甲类书籍有30本,占总数的15%即可求得总书籍数,丙类所占的比例是1−15%−45%,所占的比例乘以总数即可求得丙类书的本数.本题考查了扇形统计图,从扇形图上可以清楚地看出各部分数量和总数量之间的关系,正确求得书籍总数是关键.14.【答案】50000【解析】【分析】本题考查了用样本估计总体.用样本推断总体是统计中的一种重要思想.在抽样调查时,由于我们只抽取部分数据成样本,而总体是未知的,因此我们希.望寻找一个好的抽取样本的方法,使得样本能够代表总体,能客观地反映实际情况.在大多数情况下,当样本容量够大时,这种估计是比较合理的.此题中将捕捞的2000只虾看作一个样本,然后根据样本和池塘中有标记虾的数量估计池塘虾的总量.1、将捕捞的2000只虾看作一个样本,如何利用样本估计总体的数量呢⊕2、首先计算出样本中有标记的虾占样本总量的比例;3、然后根据池塘中有标记虾的数量估计池塘中虾的总量.【解答】解:第二次捕捞的的2000只虾可以看作一个样本,其中身上有标记的占样本总数的20 2000=1100.由此估计池塘里虾的数量约为:500÷1100=50000(只).故答案为50000.15.【答案】99【解析】解:根据题意知估计有此习惯的人数为150×66%=99(人),故答案为:99.用总人数乘以有“手机阅读”习惯的百分比,据此可估计总体中有此习惯的人数.本题主要考查用样本估计总体,一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.16.【答案】950−50=950(粒).【解析】解:50÷5100故答案为:950.100粒黄豆中有5粒黄豆被染色,说明在样本中有色的占到5%.而在总体中,有色的共有50粒,据此比例可求出有色、无色的总数,从中去掉有色的即为所求.本题考查了用样本的数据特征来估计总体的数据特征,利用样本中的数据对整体进行估算是统计学中最常用的估算方法.17.【答案】(1)40人,30;(2)平均数=(13×4+14×10+15×11+16×12+17×3)÷40=15(岁),16岁出现12次,次数最多,众数为16岁;按大小顺序排列,中间两个数都为15岁,中位数为15岁【解析】【分析】本题考查了条形统计图,扇形统计图,掌握平均数、众数和中位数的定义是解题的关键.(1)频数÷所占百分比=样本容量,m=100−27.5−25−7.5−10=30;(2)根据平均数、众数和中位数的定义求解即可.【解答】解:(1)4÷10%=40(人),m=100−27.5−25−7.5−10=30;故答案为40人,30.(2)见答案.18.【答案】(1)800;(2)“剩少量”的人数为800−(400+80+40)=280人,补全条形图如下:=3500人.(3)估计该企业某周的工作量完成情况为“剩少量”的员工有10000×280800【解析】解:(1)被调查员工人数为400÷50%=800人,故答案为:800;(2)见答案;(3)见答案.(1)由“不剩”的人数及其所占百分比可得答案;(2)用总人数减去其它类型人数求得“剩少量”的人数,据此补全图形即可;(3)用总人数乘以样本中“剩少量”人数所占百分比可得.本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了用样本估计总体.19.【答案】(1)520 80(2)如图,(3)3 5【解析】解:(1)调查的总人数为20÷40%=50(人),所以喜欢篮球项目的同学的人数=50−20−10−15=5(人);“乒乓球”的百分比=1050=20%,因为800×550=80,所以估计全校学生中有80人喜欢篮球项目;故答案为5,20,80;(2)见答案;(3)画树状图为:共有20种等可能的结果数,其中所抽取的2名同学恰好是1名女同学和1名男同学的结果数为12,所以所抽取的2名同学恰好是1名女同学和1名男同学的概率=1220=35.(1)先利用跳绳的人数和它所占的百分比计算出调查的总人数,再用总人数分别减去喜欢其它项目的人数可得到喜欢篮球项目的人数,再计算出喜欢乒乓球项目的百分比,然后用800乘以样本中喜欢篮球项目的百分比可估计全校学生中喜欢篮球项目的人数;(2)画树状图展示所有20种等可能的结果数,再找出所抽取的2名同学恰好是1名女同学和1名男同学的结果数,然后根据概率公式求解,本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.20.【答案】(1)50;216°(2)见解析;(3)180(4)2 5【解析】解:(1)被调查的总人数为5÷10%=50人,扇形统计图中C部分所对应的扇形圆心角的度数为360°×3050=216°,故答案为:50、216°;(2)B类别人数为50−(5+30+5)=10人,补全图形如下:(3)估计该校学生中A类有1800×10%=180人,故答案为:180;(4)列表如下:所有等可能的结果为20种,其中被抽到的两个学生性别相同的结果数为8,∴被抽到的两个学生性别相同的概率为820=25.(1)由A类别人数及其所占百分比可得总人数,用360°乘以C部分人数所占比例可得;(2)总人数减去其他类别人数求得B的人数,据此即可补全条形图;(3)用总人数乘以样本中A类别人数所占百分比可得;(4)用树状图或列表法即可求出抽到性别相同的两个学生的概率.此题考查了列表法或树状图法求概率以及条形统计图与扇形统计图的应用.解题时注意:概率=所求情况数与总情况数之比.一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.。