控制系统稳定性分析
控制工程基础:第五章 控制系统稳定性分析

时,系统闭环后稳定。
2
Nyquist 稳定性判据2
1、若开环传递函数在s右半平面无极点时,当从0变化
时,如果Nyquist曲线不包围临界点(-1, j0),则系统稳定。
如果Nyquist曲线包围临界点(-1, j0),则系统不稳定。
❖ 系统稳定性定义:
❖
控制系统处于某一平衡状态下受到扰动作用而偏离了 原来的平衡状态,在干扰消失后系统又能够回到原来的平衡 状态或者回到原平衡点附近,则称该系统是稳定的,否则, 该系统就是不稳定的。
❖
稳定性是系统的一种固有特性,它只取决于系统本身的 结构和参数,而与初始状态和外作用无关。
m
F
F
单摆系统稳定
p(s)
p(s) DK (s)
系统稳定的充要条件:特征方程的根全部具有负实部
(闭环极点均在s平面的左半平面)。
即系统稳定的充要条件为:F(s)的零点都位于s平面 的左半平面。
GB(s)
F(s)
Gk(s)
零点
极点
零点
极点
极点
零点
1、若开环极点均在s平面左半面,则根据米哈伊洛夫定理推论:
arg[
DK
两种特殊情况
1、劳斯阵列表某一行中的第一列元素等于零,但其余各项不 等于零或不全为零 处理方法:
用一个很小的正数 代替该行第一列的零,并据此计算出
阵列中的其余各项。然后令 0 ,按第一列系数进行
判别。
如果零上下两项的符号相同,则系统存在一对虚根,处于临 界稳定状态:如果零上下两项的符号不同,则表明有一个符 号变化,系统不稳定。
0
1
c1
1
b1
a1 b1
a3 110 (7)5 6.43
非线性控制系统的稳定性分析

非线性控制系统的稳定性分析1. 引言非线性控制系统在工程领域中广泛应用,具有复杂性和不确定性。
稳定性是评估非线性控制系统性能的关键指标。
因此,稳定性分析是设计和评估非线性控制系统的重要环节。
2. 线性稳定性分析方法在介绍非线性稳定性分析之前,我们首先回顾线性稳定性分析的方法。
线性稳定性分析是基于系统的线性近似模型进行的。
常用方法包括传递函数法、状态空间法和频域法。
这些方法通常基于线性假设,因此在非线性系统中的适用性有限。
3. 动态稳定分析方法为了从动态的角度描述非线性系统的稳定性,研究人员引入了基于动态系统理论的非线性稳定性分析方法。
其中一个重要的方法是利用Lyapunov稳定性理论。
3.1 Lyapunov稳定性理论Lyapunov稳定性理论是非线性稳定性分析中常用的工具。
该理论基于Lyapunov函数,用于判断系统在平衡点附近的稳定性。
根据Lyapunov稳定性理论,系统在平衡点附近是稳定的,如果存在一个连续可微的Lyapunov函数,满足两个条件:首先,该函数在平衡点处为零;其次,该函数在平衡点的邻域内严格单调递减。
根据Lyapunov函数的特性,可以判断系统的稳定性。
3.2 构建Lyapunov函数对于非线性系统,构建合适的Lyapunov函数是关键。
常用的方法是基于系统的能量、输入输出信号或者状态空间方程。
通过选择合适的Lyapunov函数形式,可以简化稳定性分析的过程。
4. 永续激励法 (ISS)除了Lyapunov稳定性理论外,ISS也是非线性系统稳定性分析中常用的方法。
永续激励法是基于输入输出稳定性的概念,通过分析系统输入输出间的关系来评估系统的稳定性。
5. 李亚普诺夫指数在某些情况下,Lyapunov稳定性理论和ISS方法无法提供准确的稳定性分析结果。
这时,可以通过计算系统的Liapunov指数来评估系统的稳定性。
李亚普诺夫指数可以被视为非线性系统中线性稳定性的推广。
6. 非线性反馈控制为了提高非线性系统的稳定性,非线性反馈控制方法被广泛应用。
自动控制系统(第四版)李亚普诺夫稳定性分析

1)系统的每一个平衡状态是在李雅普诺夫意义下稳定的充要条 件是:系统矩阵A的全部特征值具有非正实部,且具有零实部的 特征值为A的最小多项式的单根。 2)渐近稳定的充要条件是:系统矩阵A的全部特征值具有负实
部,即
Re( i ) 0
5 不稳定性
x2 x(0)
x1
不论δ 取得得多么小,只要在 S ( ) 内有一条从x0 出发的轨迹跨 出 S ( ) ,则称此平衡状态是不稳定的。
二、李雅普诺夫第一法(间接判别法)
李雅普诺夫第一法(间接法) 是利用状态方程解的特性
来判断系统稳定性的方法,它适用于线性定常、线性时变及可
4 大范围(全局)渐近稳定性
当初始条件扩展至整个状态空间,且平衡状态具有渐近稳定性时, 称此平衡状态是大范围渐近稳定的。此时 , S ( ) 。
对于线性定常系统,因为线性系统稳定性与初始条件的 大小无关,所以如果其平衡状态是渐近稳定的,则一 定是大范围渐近稳定的。 但对于非线性系统则不然,渐近稳定性是一个局部性 的概念,而非全局性的概念。
早在1892年,俄国学者李雅普诺夫(Aleksandr Mikhailovich Lyapunov , 1857 – 1918) 发表题为“运动稳定性一般问题” 的著名文献,建立了关于运动稳定性研究的一般理论。 百余年来,李雅普诺夫 理论得到极大发展,在 数学、力学、控制理论、 机械工程等领域得到广 泛应用。
x2
xe x1 2范数下球域 x1
3) 李雅普诺夫意义下的稳定性 若状态方程 x f ( x, t ) 所描述的系统, 对于任意的>0和任意初始时刻t0,都对 应存在一个实数(,t0)>0, 从任意位于球域S(xe,)的初始状态x0 出发的状态方程的解x都位于球域S(xe, )内,则称系统的平衡状态xe是李雅普 诺夫意义下稳定的。
控制系统的瞬态响应及其稳定性分析

控制系统的瞬态响应及其稳定性分析控制系统的瞬态响应及其稳定性分析是控制理论的重要内容之一、瞬态响应描述了一个控制系统在输入信号改变时的响应情况,稳定性分析则是评估系统响应的稳定性和可靠性。
下面将从瞬态响应和稳定性分析两个方面进行探讨。
一、瞬态响应分析瞬态响应指的是一个控制系统在输入信号发生改变时,系统在一定时间范围内达到稳态的过程。
常见的瞬态响应包括过渡过程和超调量等指标。
1.过渡过程:在一个控制系统中,当输入信号发生改变时,系统输出信号不会立即达到稳定状态,而是经历一个从初值到最终稳定状态的过渡过程。
过渡过程的主要指标有上升时间、峰值时间和调整时间。
-上升时间(Tr):指的是信号从初始值开始,达到其最终稳定值之间的时间间隔。
上升时间越短,系统的响应越快速。
-峰值时间(Tp):指的是信号首次超过最终稳定值所需的时间。
峰值时间越短,响应越快。
-调整时间(Ts):指的是信号从初始值到最终值之间的时间。
调整时间越短,系统的响应越快。
2.超调量:超调量是指在过渡过程中系统输出信号超过最终稳定状态的幅度。
超调量的大小可以直接反映系统的稳定性。
一般来说,超调量越小,系统的稳定性越好。
瞬态响应分析是评估系统性能的重要工具。
通过对瞬态响应的分析,可以了解系统的响应速度、稳定性和鲁棒性,并对系统进行优化和改进。
稳定性分析是评估控制系统稳态响应和稳定性的重要方法。
一个稳定的控制系统应该满足输入信号的变化不会引起系统输出信号的不稳定或震荡。
常见的稳定性分析方法有频域分析法和时域分析法。
1.频域分析法:频域分析主要利用系统的频率特性来分析系统的稳定性。
通过绘制系统的频率响应曲线,可以得到系统的增益和相位特性。
稳定性条件为系统的增益在截止频率处不为负值,即系统的增益曲线应该位于0dB线以上。
2.时域分析法:时域分析主要关注系统的时间响应曲线。
稳定性条件为系统在有限时间内达到并保持在稳定状态。
稳定性分析是评估控制系统性能的关键环节,它不仅可以帮助设计者理解系统的稳定性和鲁棒性,还可以为系统的优化和改进提供指导。
控制系统稳定性分析方法简介

前言随着科学技术的不断发展,自动控制系统应用越来越广泛,已经深入应用于工农业生产、日常生活、科学研究、航空航天和国防军事等诸多领域,而当今的控制科学已经发展到以复杂系统为研究对象的智能控制阶段,并且有各种不同的研究方向。
但是即使最先进的控制技术,最高深的理论研究方向,都可以在自动控制原理中找到它的思想方法的源头,这正是我们学习自动控制原理这门课程的意义所在。
因此自动控制理论的学习与自动控制技术的运用至关重要。
1877年,大家学判据的,有个代数判据叫劳斯代数判据,劳斯判据怎么来的呢?劳斯就是麦克斯维尔的学生,就可能相当于我们现在的博士生了,麦克斯维尔就是给了任务,你把方程式根的性质给我判别一下。
最后到1877年,劳斯把这个拿出来了,劳斯拿出来行列式,得到了奖,当时叫做亚当奖。
在这个同时,1895年,胡尔维茨(Hurwitz)也在不同的情况下,不知道劳斯的情况下。
因为那个时候的欧洲不像现在学术交流这么频繁,当时没有什么学术交流。
我也不知道你到底搞了些什么,所以这基本上是平行的。
但是胡尔维茨(Hurwitz)的不一样,胡尔维茨(Hurwitz)解决的是瑞士达沃斯电厂的一个蒸汽机的一个调速系统的设计,就用稳定性理论来设计。
胡尔维茨(Hurwitz)被认为是真正用控制理论,来用到控制系统设计的第一个例子。
所以我现在这里列出来的这四个人,两个人是学校里的学究式的,就是麦克斯维尔跟劳斯,但是他的功劳也不能磨灭,维斯聂格拉斯基跟胡尔维茨(Hurwitz),都是实际上出来的,就解决实际问题,这是两个不同的。
但是最后,劳斯,胡尔维茨(Hurwitz),都拿出来,现在都有用的代数判据。
目录1 课程设计的目的及意义 (3)1.1 目的 (3)1.2 意义 (3)2 课程设计总体思路介绍 (3)2.1 系统稳定性的充要条件 (3)2.2 传递函数 (4)2.3 劳斯判据 (5)3 稳定性分析方法简介 (6)3.1 时域分析方法 (6)3.1.1 利用充要条件判断系统的稳定性 (6)3.1.2 利用劳斯判据判断系统的稳定性 (8)3.1.3 利用系统的输出响应曲线判断系统的稳定性 (8)3.2频域分析方法 (15)3.2.1利用奈奎斯特稳定判据判断系统的稳定性 (15)3.2.2 利用对数稳定判据判断 (17)3.2.3 利用稳定裕量判断 (18)4 时域分析和频域分析的比较 (20)4.1 频域特性与系统性能的关系 (20)4.1.1 系统稳态误差和开环频率特性的关系 (20)4.1.2系统的瞬态性能和开环频率特性中频段的关系 (20)4.1.3开环频率特性的高频段对系统性能的影响 (21)4.2 频域性能指标与时域性能指标之间的关系 (21)4.2.1 二阶系统 (21)4.3 时域分析方法适用范围与优缺点 (23)4.4 频域分析方法适用范围与优缺点 (23)5 总结 (24)6 参考文献 (25)自动控制系统稳定性分析方法简介1 课程设计的目的及意义1.1 目的根据课堂讲授内容,学生做相应的自主练习,消化课堂所讲解的内容。
自动控制原理实验 控制系统稳定性分析和时域响应分析

实验二 控制系统稳定性分析和时域响应分析一、实验目的与要求1、熟悉系统稳定性的Matlab 直接判定方法和图形化判定方法;2、掌握如何使用Matlab 进行控制系统的动态性能指标分析;3、掌握如何使用Matlab 进行控制系统的稳态性能指标分析。
二、实验类型设计三、实验原理及说明1. 稳定性分析 1)系统稳定的概念经典控制分析中,关于线性定常系统稳定性的概念是:若控制系统在初始条件和扰动共同作用下,其瞬态响应随时间的推移而逐渐衰减并趋于原点(原平衡工作点),则称该系统是稳定的,反之,如果控制系统受到扰动作用后,其瞬态响应随时间的推移而发散,输出呈持续震荡过程,或者输出无限偏离平衡状态,则称该系统是不稳定的。
2)系统特征多项式以线性连续系统为例,设其闭环传递函数为nn n n mm m m a s a s a s a b s b s b s b s D s M s ++++++++==----11101110......)()()(φ 式中,n n n n a s a s a s a s D ++++=--1110...)(称为系统特征多项式;0...)(1110=++++=--n n n n a s a s a s a s D 为系统特征方程。
3)系统稳定的判定对于线性连续系统,其稳定的充分必要条件是:描述该系统的微分方程的特征方程具有负实部,即全部根在左半复平面内,或者说系统的闭环传递函数的极点均位于左半s 平面内。
对于线性离散系统,其稳定的充分必要条件是:如果闭环系统的特征方程根或者闭环传递函数的极点为n λλλ,...,21,则当所有特征根的模都小于1时,即),...2,1(1n i i =<λ,该线性离散系统是稳定的,如果模的值大于1时,则该线性离散系统是不稳定的。
4)常用判定语句2.动态性能指标分析系统的单位阶跃响应不仅完整反映了系统的动态特性,而且反映了系统在单位阶跃信号输入下的稳定状态。
第三章 控制系统稳定性的时域分析
(3-1)
式中
dk nk 1 2
式(3-1)表明 当系统特征方程的根都具有负实部时,则各瞬态分量 都是衰减的,且有 lim C (t ) 0 ,此时系统是稳定的。
t
如果特征根中有一个或一个以上具有正实部,则该根 对应的瞬态分量是发散的,此时有 lim C (t ) ,系统是 t 不稳定的。
t
该系统就是稳定的。 系统稳定的充要条件? 设系统的闭环传递函数为
bm s m bm1 s m1 ... b0 ( s ) a n s n a n 1 s n 1 ... a0
特征方程为 如果特征方程的所有根互不相同,且有q个实 数根 i 和r对共轭复数根 k nk j nk 1 2 ,则在 单位脉冲函数 (t ) 的作用下,系统输出量为
C ( s) K r (s Z j )
j 1 2 2 ( s P ) ( s 2 s nk ) i k nk i 1 k 1 q r m
an s n an1 s n1 ... a0 0
1
将上式用部分分式法展开并进行拉氏反变换得
C (t ) i e it e k nkt ( k cos dk t C k sin dk t )
e2
计算劳斯表的各系数
a n 1 a n 4 a n a n 5 b2 a n 1 a n1a n6 a n a n7 b3 a n1
……
a n1a n2 a n a n3 b1 a n1
bi
系数的计算一直进行到其余的b值全部等于零为止。 用同样的前两行系数交叉相乘的方法,可以计算c , d, … …e , f , g各行的系数。
第5章现代控制理论之系统运动的稳定性分析
由稳定性定义知,球域S(δ) 限制着初始状态x0的取值,球域
S(ε)规定了系统自由运动响应 xt xt; x0的, t0边 界。
简单地说:1.如果 x t; x0, t0 有界,则称 xe 稳定;
2.如果 x t; x0, t0 不仅有界,而且当t→∞时收敛于原点,则
5.1.1 平衡状态
李雅普诺夫关于稳定性的研究均针对平衡状态而言。
1. 平衡状态的定义
设系统状态方程为: x f x,t , x Rn
若对所有t ,状态 x 满足 x 0 ,则称该状态x为平衡状
态,记为xe。故有下式成立:f xe ,t 0
由平衡状态在状态空间中所确定的点,称为平衡点。
2.平衡状态的求法
由定义,平衡状态将包含在 f x,t 这样0 一个代数方程组
中。
对于线性定常系统 x A,x其平衡状态为 xe 应满足代数
方程 。Ax 0
只有坐标原点处是线性系统的平衡状态点。
对于非线性系统,方程 方程而定。
如:
x1 x2
x1 x1
x2
x
3 2
f x的,t 解 可0 能有多个,视系统
稳定性是系统的重要特性,是系统正常工作的必要条件。
稳定性是指系统在平衡状态下受到扰动后,系统自由运动 的性质。因此,系统的稳定性是相对于系统的平衡状态而 言的。它描述初始条件下系统方程是否具有收敛性,而不 考虑输入作用。
1. 线性系统的稳定性只取决于系统的结构和参数,与系统 初始条件及外作用无关; 2. 非线性系统的稳定性既取决于系统的结构和参数,也与 系统初始条件及外作用有关;
当稳定性与 t0 的选择无关时,称一致全局渐近稳定。
自动控制原理控制系统的稳定性分析
Course 自动控制原理东南大学自动控制系Southeast University Dept. of Automatic Control Chap 4 控制系统的稳定性分析稳定性分析的意义稳定性是控制系统能够正常工作的首要条件。
稳定压倒一切。
只有稳定的情况下,性能分析和改进才有意义。
负反馈只是使系统稳定的一种手段,并不一定能够保证闭环系统的稳定。
例子:秋千东南大学自动控制系Southeast University Dept. of Automatic Control Chap 4 控制系统的稳定性分析4.1 稳定性stability的概念和定义d f b c a b c 平衡点单/多平衡点系统干扰,偏差稳定的物理意义东南大学自动控制系Southeast University Dept. of Automatic Control 稳定范围/区域a 4.1 稳定性的概念和定义若控制系统在任何足够小的初始偏差作用下,随着时间的推移,偏差会逐渐衰减并趋于零,具有恢复原平衡状态的性能,则称该系统是稳定stable的;否则,称该系统是不稳定unstable的。
可通过研究描述系统的微分或差分方程的解得到系统稳定性。
东南大学自动控制系Southeast University Dept. of Automatic Control 4.1 稳定性的概念和定义基于稳定性研究的问题是扰动作用去除后系统的运动情况与输入量和初始偏差无关。
稳定性是系统本身的“固有特性”,一个控制系统的稳定性取决于系统本身的结构和参数值。
线性系统稳定性分析只需考虑齐次系统情况即可。
东南大学自动控制系Southeast University Dept. of Automatic Control 4.1 稳定性的概念和定义李亚普诺夫Lyapunov 1892稳定性x t F x t t xc t F xc t t 0 x0 x t0 Lyapunov stability 0 0 if x0 xc then x t xc n Lyapunov asymptotic stability x xc xi xic 2 i 1 If in addition lim x t xc 0 t东南大学自动控制系Southeast University Dept. of Automatic Control 4.1 稳定性的概念和定义x2 x2 xc xc x1 x1东南大学自动控制系Southeast University Dept. of Automatic Control 4.1 稳定性的概念和定义x2 xc x1东南大学自动控制系Southeast University Dept. of Automatic Control 4.1 稳定性的概念和定义x x x t x 0e t x t 0 x 0 e t x 0 0 xx x t x 0et x1 x2 x2 x1 1 x1 0 x东南大学自动控制系Southeast University Dept. of Automatic Control Chap 4 控制系统的稳定性分析4.2 线性定常系统稳定的充分必要条件4.2.1 状态空间模型若讨论稳定性是基于状态空间模型的,则只关心是齐次状态方程的响应是否收敛到xe0-渐进稳定性连续线性定常系统渐近稳定的充分必要条件是:它的系数矩阵A的特征值全都具有负实部。
自动控制 控制系统的稳定性分析
例 已知控制系统特征方程,判断系统稳定性。 s6 +2s5 +8s4+12s3+20s2+16s+16=0 解: 劳斯表为: 由为零上一行的元素 s6 1 8 20 16 组成辅助多项式: s5 2 12 16 P(s)=2s4+12s2+16 dP(s)=8s3+24s s4 2 12 16 ds 3 s 代入 0 0 8 24 系统有虚根,不稳定。 2 s 6 16 劳斯表中某行同乘以某正数, s1 8/3 不影响系统稳定性的判断。 0 s 16
第五节 控制系统的稳定性分析
二、劳斯稳定判据
根据稳定的充分与必要条件 , 求得特 征方程的根 , 就可判定系统的稳定性 . 但对 于高阶系统求解方程的根比较困难。 劳斯稳定判据是根据闭环传递函数 特征方程式的各项系数 , 按一定的规则排 列成劳斯表,根据表中第一列系数正负符 号的变化情况来判别系统的稳定性。 下面具体介绍劳斯稳定判据的应用。
第五节 控制系统的稳定性分析
例 已知系统的特征方程,试用劳斯判据确定 方程的根在s平面上的分布。 s3-3s+2=0 解: 方程中的系数有负值,系统不稳定。 ε -2 = -∞ -3 劳斯表为: b31= ε -3 s3 1 b31→ -∞ ε →0 s2 ε0 2 第一列元素的符号变化了 1 s b ∞ 31 两次,有一对不稳定根。 0 s b 241 s3-3s+2=(s-1)2(s+2)=0 通过因式分解验证: s1.2=1 s3=-2
第五节 控制系统的稳定性分析
如果劳斯表中某一行的元素全为零, 表示系统中含有不稳定的实根或复数根。 系统不稳定。 此时,应以上一行的元素为系数,构 成一辅助多项式,该多项式对s求导后, 所得多项式的系数即可用来取代全零行。 同时由辅助方程可以求得这些根。 下面举例说明:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
控制系统稳定性分析
在控制系统的设计和应用中,稳定性是一个至关重要的指标。
控制系统的稳定性分析能够帮助工程师确定系统是否能够在各种工况下保持平稳运行,并避免产生不稳定或振荡的现象。
本文将介绍控制系统稳定性分析的基本概念和方法。
一、稳定性概述
稳定性是指在系统受到扰动或干扰的情况下,系统能够在一定的范围内保持平衡或恢复到平衡状态的能力。
对于控制系统来说,稳定性是一个必要条件,只有具备了稳定性,系统才能够实现准确、可靠的控制任务。
二、时域稳定性分析方法
时域稳定性分析方法主要通过观察系统的响应和特征方程的性质来判断系统的稳定性。
其中,常用的方法包括:
1. 判据法:通过判断系统的极点位置来确定稳定性。
当系统所有极点的实部都小于零时,系统是稳定的。
2. 力学振荡器法:将系统等效为一个力学振荡器进行分析,通过计算振荡器的振荡周期和阻尼比等参数来判断系统的稳定性。
3. Lyapunov稳定性分析法:利用离散或连续的Lyapunov函数来刻画系统的稳定性,通过判断Lyapunov函数的增减性来确定系统是否稳定。
三、频域稳定性分析方法
频域稳定性分析方法通过对系统传递函数进行频谱分析,利用频率响应特性来判断系统的稳定性。
常用的频域稳定分析方法包括:
1. Bode图法:将系统的传递函数表示为极形式,并将其转化为幅频特性和相频特性的曲线来分析系统的稳定性。
2. Nyquist图法:通过将系统的开环传递函数在复平面上绘制出极坐标图,根据图形上的奇点个数来判断系统的稳定性。
3. Nichols图法:将系统的开环传递函数在奈氏图上绘制出闭环频率响应曲线,通过曲线的形状和位置来判断系统的稳定性。
四、数值稳定性分析方法
数值稳定性分析方法是利用计算机仿真和数值模拟的手段来分析系统的稳定性。
通过将系统的差分方程或微分方程转化为数值算法,然后利用数值方法求解方程,观察系统的响应和稳定性指标来分析系统的稳定性。
五、稳定性分析的实际应用
控制系统的稳定性分析在实际工程中具有重要的应用价值。
通过对系统的稳定性进行分析,工程师可以确定合适的控制策略和参数,保证系统在各种工况下的平稳运行。
稳定性分析也有助于预测和避免系统产生不稳定或振荡的现象,减少设备损坏和生产事故的发生。
此外,稳定性分析还在控制系统的优化和改进中发挥着重要作用。
通过分析系统的稳定性,可以发现并修正系统中存在的问题和不足,
提高系统的性能和鲁棒性。
总结:
控制系统稳定性分析是控制工程领域中的重要内容之一。
从时域、
频域和数值方法来分析系统的稳定性,可以帮助工程师设计出稳定可
靠的控制系统,并优化系统性能。
稳定性分析方法具有很强的适应性,可以应用于各种不同类型的控制系统,为实际工程应用提供了有力支持。