翻译-液压外文翻译

翻译-液压外文翻译
翻译-液压外文翻译

英文原文

FEATURE-BASED COMPONENT MODELS FOR VIRTUAL

PROTOTYPING OF HYDRAULIC SYSTERM

Abstract:This paper proposes a feature-based approach for the virtual prototyping of hydraulic systems. It presents a framework which allows the designer to develop a virtual hydraulic system prototype in a more intuitive manner, i.e. through assembly of virtual components with engineering data. The approach is based on identifying the data required for the development of the virtual prototypes, and separating the information into behaviour, structural, and product attributes. Suitable representations of these attributes are presented, and the framework for the feature-based virtual prototyping approach is established,based on the hierarchical structure of components in a hydraulic system. The proposed framework not only provides a precise model of the hydraulic prototype but also offers the possibility of designing variation classes of prototypes whose members are derived by changing certain virtual components with different features.

Key words: Computer-aided engineering; Fluid power systems;Virtual prototyping

1.Introduction

Hydraulic system design can be viewed as a function-to-form transformation process that maps an explicit set of requirements into a physical realisable fluid power system. The process involves three main stages: the functional specification stage,the configuration design stage, and the prototyping stage.The format for the description of the design in each stage is different.

The functional specification stage constitutes the initial design work. The objective is to map the design requirements. To achieve this, the design problems are specified Correspondence and offprint requests to: Dr S. C. Fok, Schoool of Mechanical and Production Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798. The designer must identify the performance attributes, which can include pressure, force, speed, and flowrate, with the required properties such as size, cost, safety and operating sequence. performance requirements for each attribute. In this stage, the design is abstracted in terms of the performance attributes with associated values.

The objective of the configuration design stage is to synthesise a hydraulic circuit that performs the required functions conforming to the performance standards within defined constraints. A typical hydraulic system is made up of many subsystems. The smallest building block in a subsystem is the standard hydraulic component (such as valves, cylinders,pumps, etc.). Each type of

standard component serves a specific elemental function. The design effort in the configuration design stage is fundamentally a search for a set of optimal arrangements of standard components (i.e. hydraulic circuit) to fulfil the functional requirements of the system. Based on this framework, the designers would normally decompose the overall system functions in terms of subfunctions. This will partition the search space and confine the search for smaller hydraulic subcircuits to perform the subfunctions.

Computers are often used to support the configuration design process. For example, Kota and Lee devised a graph-based strategy to automate the configuration of hydraulic circuits. After the development of the hydraulic circuits, digital simulation tools are often used to study and evaluate these configurations. With these tools, designers can compare the behaviour of different circuits and also analyse the effects when subcircuits are combined. In the configuration design stage, the design is traditionally represented as a circuit drawing using standard icons to symbolise the type of standard component. This is a form of directed graph S(C,E) where the circuit S contains components C in the form of nodes with relations between components denoted by edges E.

The prototyping stage is the verification phase of the system design process where the proposed hydraulic circuit from the configuration design stage is developed and evaluated. Physical prototyping aims to build a physical prototype of the hydraulic system 666 S. C. Fok et al. using industrial available components. The process of physical prototyping involves the following: Search for appropriate standard components from different manufacturers. Pre-evaluation and selection of components based on individual component cost, size, and specification, and compatibility factors between components. Procurement and assembly of the selected components.Test and evaluate the physical prototype based on the overall system requirements. Use other components or redesign the circuit (or subcircuits)

if necessary.Besides dynamics, the development of the physical prototype must take into consideration other factors including structure,cost, and weight. The dynamics data are used to confirm the fluid power system behaviour whereas the geometric information is used to examine the assembly properties. The development of the physical prototype will provide the actual performance,structure, and cost of the design.

The main disadvantage of physical prototyping is that it is very tedious and time consuming to look for a set of suitable combinations of standard components from among so many manufacturers. Although the basic functions of the same types of standard component from different manufacturers do not differ, their dynamics, structural and cost characteristics may not be similar, because of design variation. Hence, for a given hydraulic circuit, different combinations of

parts from different

manufacturers can have implications on the resulting system,in terms of dynamics, structure, and cost. Value engineering can be used at this stage to improve the system design by improving the attributes at the component level. This includes maximizing the performance-to-cost ratio and minimising the size-to-performance ratio. Virtual prototyping can be viewed as a computer-aided design process, which employs modelling and simulating tools to address the broad issues of physical layout, operationalconcept, functional specifications, and dynamics analysis under various operating environments. The main advantage of virtual prototyping is that a hydraulic system prototype can be assembled, analysed, and modified using digital computers without the need for physical components, thus saving lead time and cost.

The main requirement of a virtual hydraulic system prototype is to provide the same information as a physical prototype for the designer to make decisions.To achieve this, the virtual prototype must provide suitable and comprehensive representations of different data. Furthermore, transformation from one representation to another should proceed formally. Xiang et al. have reviewed the past and current computer-aided design and prototyping tools for fluid power systems. The work revealed that the current tools could not provide a complete representation of the design abstractions at the prototyping stage for design judgement. Most of the tools concentrate on the dynamics behaviour. Vital geometrical and product information that relates to the system prototype consideration and evaluation is frequently missing.To advance the development of computer-aided virtual prototyping tools for fluid power systems, there is a need to address the formal representations of different abstractions of behaviour,structural, and product data along with their integration. This paper focuses on these issues and proposes the formalism of a unified component model and the taxonomy based on the feature-based approach. In Section 2, we discuss the feature- based approach focusing on the key information and their representations required for hydraulic system prototyping. Section 3 presents a formalism of the feature-based model and structure for the development of virtual hydraulic system prototypes.The structure is illustrated with an example. Future work and conclusions are given in Section 4.

2. Feature-Based Approach

Features can be defined as information sets that refer to aspects of attributes that can be used in reasoning about the design, engineering or manufacturing processes. The concept of using features to integrate CAD/CAPP/CAM is not new and there are many papers on the application of this approach in CIM. In all these applications, the feature model is regarded as the basis whereas design by features is the key for the integration. To develop a feature model, the relevant

information concerning the design must be identified and grouped into sets based on the nature of the information. The relevant information should contain sufficient knowledge for activities such as design, analysis, test, documentation, inspection, and assembly, as well as support various administrative and logistic functions. Design by features is the process of building a model of the design using features as primitive entities. The feature model provides the standardisation of relevant data. Through the design by features approach, vital knowledge of the design will be generated and stored. Together, the feature model and the design by features approach will provide the essential information, which can be used, not only for the simultaneous consideration of many different concerns with the design, but also to interface the many activities in the design realisation process, including the life cycle support operations. The main drawback of the feature-based design approach is that the feature model should be properly defined . This can be difficult, as features are sets of knowledge that are application dependent. The organisation of the features can also be application specific. Non-trivial data-management problems could arise if the feature model is not properly defined. To avoid these problems, the type,representation and structure of the features should be resolved prior to using the feature-based design methodology. The main concern when developing a feature model is that it is application-specific. In the domain of virtual prototyping of hydraulic systems, the details of the constituent standard components must be able to be used to describe the overall system. The component features are bearers of knowledge about that part. To create a suitable feature model for hydraulic system design based on the assembly of standard components, the relevant information associated with various standard components must be identified and classified. This definition Feature-Based Component Models 667 of the component feature set can then be extended to encompass the subsystem feature set based on the hierarchical structure between the components in the subsystem. In the same manner, a hierarchical structure for the hydraulic system feature representation would evolve by considering the system as a hierarchy of subsystems.

The necessary information required for a proper description of the virtual prototype must be no less than that derived by the designer from a physical prototype for decision making. These data should generally include the shape, weight, performance properties, cost, dimensions, functionality data, etc. Comparison with the physical prototyping process, the information required for each standard component could be separated into three distinct groups: behaviour attributes, structural attributes, and product attributes.

2.1 Behaviour Attributes

The behaviour of a hydraulic component can be defined in terms of the dynamics

characteristics used to satisfy the functional requirements. Consider a hydraulic cylinder connected to a load. Its function is to transmit a force from the stroke of the piston to the load. The maximum force it can transmit can be used to define the functionality and the behaviour requirements can be specified in terms of the desired load acceleration characteristics. Hence for a hydraulic component, behaviour attributes express functionality and can be reflected in the dynamics characteristics. The designer is responsible for the proper definition of the overall system behaviour characteristics in terms of the desired dynamics. A standard component will have its own behaviour and provide a specific https://www.360docs.net/doc/cc4437849.html,plex functions that cannot be achieved by a single standard component are derived using a combination of components. Hence, the behaviour of the standard component will play an important role as the individual behaviours of components together with their arrangement can alter the overall system function .

The behaviour of a standard component can be nonlinear and can be dependent on the operating conditions. When two components are combined, it is possible that their behaviours can interact and produce undesired or unintended characteristics. These unwanted behaviours are assumed to have been resolved during the configuration design stage. The hydraulic circuit used in the prototyping stage is assumed to be realisable and without any undesirable interacting behaviours. This means that the output behaviour of a component will provide the input to the subsequent component.

The representation of behaviours for hydraulic systems has been widely investigated. These representations include transfer functions, state-space and bond graphs. Transfer functions (for single-input–single-output systems) and state-space equations (for multiple-input–multiple-output systems) are based on the approximation of the dynamics about a nominal operating condition. The power bond graph model is based on the causal effects that describe the energy transformations in the hydraulic system. This approach is appealing for hydraulic system analysis. The main disadvantage is that the derivation of the dynamics equation in a bond graph of a complicated fluid power system can become very tedious. As a result, recent work has concentrated on the used of artificial intelligence to represent the nonlinear mapping between the input and output data, which can be obtained via experimental work. These nonlinear mappings can be accomplished using artificial neural networks .

It is quite natural for a hydraulic system designer to use input–output data to describe the behaviour of a hydraulic component. The configuration design of a hydraulic system is often achieved through steps of function decomposition. To design a hydraulic system, the designer often tries to decompose the functions and their requirements down to the component level.

中文译文

基于原型液压系统特征的机构模型

摘要:本文为原型液压系统的设计提出了一种基于特征的方法。它提出了一个框架,允许设计师以更加直觉的方式开发一个真实液压机构原型,例如,通过真实的工程学数据进行设计。这种方法是在真正原型数据的基础上发展起来的,它可以分离信息入行为,结构,和产品属性。这些属性被用适当的表示法提出,并且框架为基于特点的真正原型的方法建立,根据组分等级结构在一种液压机构。它所提出的框架不只是真实的液压系统的一个精确模型,而且为设计成员提供了当由于某些零件的一些特性改变导致系统改变而获得一个新的液压系统精确模型的可能性。

关键词: 计算机辅助工程; 液压动力系统;真实样机

1. 介绍

液压机构设计可能被看作是一个为映射明确套要求入物理可实现的液

压能力系统的作用对形式变革过程。这个过程涉及三个主要阶段: 功能规划阶段,结构设计阶段,和样机制造阶段。描述各个设计阶段的所用的格式是不同的。

功能的规划是所有设计中最初的工作。为了达到这个要求,设计问题是以指定的书信和印成单行本发给新加坡南阳大道南阳技术大学机械和制

造工程的Dr S. C. Fok。明确地根据作用和表现。设计师必须确定产品的性能和属性,其中包括压力,强度,速度和流体速度,以及一些所必需的东西如尺寸大小,成本, 安全要求和操作顺序。其次,设计师必须叙述出各个特征的精确性能要求。在这个阶段,设计以摘要的形式写出产品的相关性能要求。

结构设计阶段的目标是完成一个液压系统回路。这个回路能完成系统设计参数规定的各个功能。一种典型的液压机构由许多子系统组成。组成子系统的最小模块是标准液压系统元件(譬如阀门,气缸,液压泵等。). 每种

液压标准元件都有各自的特殊作用。结构设计阶段的任务就是从根本上找到一个基本液压元件(例如液压回路)的布置图。这个基本的液压回路能达到系统的各个功能要求。根据这个结构,设计师通常把整个系统功能模块分成一个个最基本的子函数。这样就能隔开搜索空间,通过搜索较小一级的液压系统基本回路去实现各个子函数的功能要求。

在外观设计过程中计算机往往会发挥很大的作用。例如, Kota 和Lee 想出了一个基于图表的液压系统回路结构的自动设计方法。在液压回路被发展以后,人们经常被使用数字模拟实验工具来学习和评估这些结构。通过这些工具,设计师能比较不同的电路块的功能,并且能够分析出这些功能块结合后的效果。在结构设计阶段,传统上设计往往用一张回路图来代表标准元件。这里是被(C ,E)包含结构C 的回路S以结的形式联系组分之间由边E 表示的地方图表的形式。

样机设计阶段是结构设计过程中提出的液压回路的证明阶段。通过这个阶段能证明结构设计中对回路的提出与评估是否正确。实际样机的目的是建立液压机构666 S 的一个物理原型。使用工业可利用的零件。涉及真实样机的过程以下: 从不同的制造商手中寻找适当的标准零件。零件的选择和评估是建立在零件之间的成本,尺寸大小,规格和互换性等因素之上的。选择的零件取得和装配。根据整个系统要求测试和评估物理原型。使用其它零件或重新设计电路(或支电路) 如果需要。除动力学以外,物理原型的发展必须考虑到其它因素包括结构,成本与重量。动力学数据用来确认液压动力系统的性能,但是几何学信息用来系统的安装性能。物理样机的研制将提供设计产品的真实性能,结构和设计成本。

物理样机的主要缺点是, 它必须非常繁琐和费时地从在许多制造商手中寻找一套标准零件的适当组合。由于设计的变化,从不同的制造商购买的同样类型的标准零件的作用都不相同,他们的动力学,结构和费用特征也不可能相似。因此,为同样的一个液压回路,选择不同的制造商的标准零

件去组装,所完成的系统,最后在力学、结构和产品的成本等方面也会不同。在这一过程中可以使用评估工程,通过在零件标准特性上的改变来改进在这个情况下的系统设计。其中就包括最优化的性价比率和对零件大小进行最合理的设计。真正样机设计过程可能被观看作为一个计算机辅助设计过程,它可以使用模拟制造和模拟仿真工具来验证样机的物理布局,操作,功能规格,以及在在各种各样的操作环境下的力学分析。虚拟样机的主要好处是, 不需要实际零件,通过使用数字计算机就可以对一个液压机构原型进行装配和分解,因而大大的节省了时间和费用。

一个真正虚拟液压机构样机的主要要求是,它必须能像真实的产品一样,为设计者提供信息和帮助他们做出决定。为了达到这个要求,虚拟样机必须提供另外不同数据的适当和全面表示法。此外,从一个表示方法到另一个表示方法的改进应该进行下去。 Xiang 等。回顾了过去和当前的液压动力系统的计算机辅助设计和样机制造工具。工作显示, 当前的工具不能在样机制造阶段为设计评断提供一个完全抽象的设计表示法。大多工具集中在动力学行为。而与系统原型需要考虑和评估关系密切的重要几何信息和产品信息往往被错过。在液压动力系统的虚拟样机制造方面,为推进虚拟样机计算机辅助设计工具的发展,有必要找到一种把性能、结构和产品数据这些独立的抽象信息综合在一起的正式表示法。这篇论文以这些问题中心,提出一个统一元件模型的标准和以基于特征方法为基础的分类学。在第二部分,我们讨论了基于特征的方法,这些方法主要集中在液压系统模型化所要求的关键信息和他们的表示方法上。第三部分主要介绍的是基于特点的模型标准和为虚拟液压系统模型发展而提出的结构。并通过一个例子来说明这种结构。论文的第四部分是结论和展望。

2.基于特的方法

那些特征可以定义为信息块,这些信息块是涉及到设计、工程或者制造过程方面的特性。其中使用的特性集成CAD、CAPP与CAM的概念并不是新出现

的,在CIM中就有许多有关这种应用的论文。在所有这些应用中,特征模型被认为是基础,而通过特征进行设计是所有东西综合的钥匙。为了开发一个特征模型,必须能够识别与设计有关的信息,并能根据信息的性质进行分组。有关的信息应该包含诸如设计,分析,测试,文件,检查和收集活动的足够的知识,还有支持各种各样管理和后勤的功能。基于特征的设计是使用特征作为原始实体模型过程的设计。特征模型提供了标准化的有关数据。通过特性接近的设计,设计中的至关重要的知识将被产生和存储。为了避免这些问题,特性的类型,表示和结构问题应该在使用基于特征的设计方法之前被解决。当开发一个特征模型时,主要关注的是它的具体应用。在液压系统的虚拟模型制造领域中,标准元件组成部分的细节必须能够用来描述整个系统。同样的,用于液压的系统特性表示的一种分层结构将通过把系统考虑为子系统的分层而得以进化。为虚拟模型的一个适当的描述所要求的必要信息必然不少于设计者为了决策而引出物理的原型中的信息。这些数据应该一般包括形状,重量,性能特性,成本,尺寸,功能参数等。与物理的原型化过程所要求的信息相比,对每种标准元件所需要信息能被分成完全不同的三类:行为属性,结构属性,和制造属性。依据用于满足功能要求的动力学特征可以定义一个液压元件的行为。考虑到液压的圆筒连接装载,其功能是把力从活塞传送到负载。它能传送的最大力能被用来定义功能和行为。在期望的根据期望的负载加速度特性可以划分各种要求。因此,对于一个液压元件,并且为动力学特征所反映的行为属性可以表达功能。依据期望的动力学特性,设计者对整个系统的行为特征的适当定义负责。一个标准元件有其自身的行为并且提供具体功能。不能被一个单一的标准元件完成的复杂功能使用使用多个元件。因此,标准元件的行为将起重要的作用,因为与各个元件的独自功能以及它们的布置同时改变整个系统的功能。

一个标准元件的性能可能是非线性的并且可以依赖于操作的条件。当两个组成部分被组合时,它们的行为相互作用并且产生不希望得到或者非故

意的特性是可能的。这些不需要的行为被假定在配置期间被解决设计阶段。用于原型阶段的液压的电路被假定实现同时,没有任何不受欢迎的人相互作用的行为。这意味着一个组成部分的输出行为将提供输入到后来的组成部分。表示行为因为液压的系统广泛地已被调查。这些表示包括转移功能,状态空间和合同图表。转移功能(对于单一输入的单一输出系统)和状态空间方程(对于多重输入的多重输出系统)基于关于一个名义的操作条件的动

力学的逼近。力量合同图表模型基于在液压的系统中描述能量转换的有原因的结果。这接近对液压的系统分析有感染力。主要的不利是一种复杂的流体力量系统的一张合同图表中的动力学方程的起源能变得十分乏味。因此,最近工作已集中于代表在输入和输出数据之间绘制地图的非线性使用人工

智能,这能通过实验的工作被获得。这些非线性能使用人工的网络被完成。

液压的系统设计者一般会使用输入输出来数据描述一个液压的组成元

件的特性一个液压的系统的结构设计经常通过功能分解的步骤取得。为了设计一个液压系统,设计者常常把它的功能和要求分成一个个最简单的基本单元。

液压系统及液压缸-外文翻译

液压传动 第十讲 制动器 力流体动力系统的优秀的特性之一是由电源产生,通过适当的控制和指导,并通过电线传输,就可以轻松转换到几乎任何类型的机械运动所需要用到的地方。使用一个合适的驱动装置,可以获得线性(直线)或者是旋转运动。驱动器是一种转换流体动力机械力和运动的装置。缸、马达和涡轮机是最常见的将流体动力系统应用于驱动设备的类型。这一章描述了各种类型的动作汽缸和他们的应用程序、不同类型的流体汽车和使用流体动力系统的涡轮机。 汽缸 制动汽缸是一种将流体动力转换成线性或直线、力和运动的装置。因为线性运动是沿着一条直线前后移动的往复运动。这种类型的制动器有时被称为一个往复、或线性、电动机。由ram或活塞组成的汽缸在一个圆柱孔内操作。制动汽缸可以安装,以便汽缸被固定在一个固定的结构,ram或活塞被连接到该机制来操作,或者是活塞和ram可能被固定到固定结构,汽缸附加到机械装置来操作。制动汽缸气动和液压系统的设计和操作是类似的。一些变化的ram和活塞式制动汽缸的内容将在后面的段落中描述。 冲压式缸 术语ram和活塞通常可以互换使用。然而,一个冲压式缸通常被认为是一个截面积活塞杆超过一半的截面积活动元件。在大多数这种类型的制动汽缸中,杆和活动元件各占一半。这种类型的活动元件经常被称为柱塞。冲压式缸主要是用来推动而不是拉。一些应用程序需要ram的一部分在平坦的外部来推动或升降单位操作。其他应用程序需要一些机械装置的附件,如一个U型夹或有眼螺栓。冲压式缸的设计在很多其他方面不同,以满足不同应用程序的要求。 单作用千斤顶 单作用千斤顶(如图:10-1)试用力只在一个方向。流体定向的汽缸取代ram 和他外部的弹性元件,将物体举起放在上面。

液压马达外文文献翻译、中英文翻译

外文资料 In recent years, the hydraulic motor with brachytely and big torsional moment has great changes, the new structure continuously appears. But, all these hydraulic motors can be divided into two broad categories of single and multi-role according to the role of the number of plunger in each turn. The motors also can be divided into radial and horizontal direction according to the arrangement of the plunger. And the radial motors can be divided into different types according to structure and the summon power way of the plunger. No matter single and multi-role, the plug-hole of radial-piston hydraulic motor is equated by circle, arrayed radial. The plunger displaced by the impulse of pressure oil, then the volume of the cylinder changed, the summon power formed the rotation of the motor, all of these above are the mechanism of action of the motors. The rotor of the single role hydraulic motor has a circle of rotation, each plunger worker once reciprocation. The principal axis is eccentric axis in all the radial-piston hydraulic motors. The multi-role hydraulic motor had a guide rail curve, whose numbers are the action times. The rotor had a circle of rotation, the plunger worker many times reciprocal at the same time. The radial motors can be divided into several categories of plunger, ball blocker, blade. The structure of the single-role motors is simpler, the machine element number of it is less, the technology is better, and the cost is less. But the structure dimension of the single-role motor is longer than the multi-role motor in the same displacement each turn (or output torsional moment), and the single-role motor also have fluctuation of the output torsional moment and rotary speed.The homonymy high-pressure column tune of the single-role motor had major radial unbalance force that causes the brachytely stabilization of the motor became worse. Only increasing the capacity of the bearing, it can meet the requirements of the operating life of the bearing at the same time.

(完整版)冲压类外文翻译、中英文翻译冲压模具设计

附件1:外文资料翻译译文 冲压模具设计 对于汽车行业与电子行业,各种各样的板料零件都是有各种不同的成型工艺所生产出来的,这些均可以列入一般种类“板料成形”的范畴。板料成形(也称为冲压或压力成形)经常在厂区面积非常大的公司中进行。 如果自己没有去这些大公司访问,没有站在巨大的机器旁,没有感受到地面的震颤,没有看巨大型的机器人的手臂吧零件从一个机器移动到另一个机器,那么厂区的范围与价值真是难以想象的。当然,一盘录像带或一部电视专题片不能反映出汽车冲压流水线的宏大规模。站在这样的流水线旁观看的另一个因素是观看大量的汽车板类零件被进行不同类型的板料成形加工。落料是简单的剪切完成的,然后进行不同类型的加工,诸如:弯曲、拉深、拉延、切断、剪切等,每一种情况均要求特殊的、专门的模具。 而且还有大量后续的加工工艺,在每一种情况下,均可以通过诸如拉深、拉延与弯曲等工艺不同的成形方法得到所希望的得到的形状。根据板料平面的各种各样的受应力状态的小板单元体所可以考虑到的变形情形描述三种成形,原理图1描述的是一个简单的从圆坯料拉深成一个圆柱水杯的成形过程。 图1 板料成形一个简单的水杯

拉深是从凸缘型坯料考虑的,即通过模具上冲头的向下作用使材料被水平拉深。一个凸缘板料上的单元体在半径方向上被限定,而板厚保持几乎不变。板料成形的原理如图2所示。 拉延通常是用来描述在板料平面上的两个互相垂直的方向被拉长的板料的单元体的变形原理的术语。拉延的一种特殊形式,可以在大多数成形加工中遇到,即平面张力拉延。在这种情况下,一个板料的单元体仅在一个方向上进行拉延,在拉长的方向上宽度没有发生变化,但是在厚度上有明确的变化,即变薄。 图2 板料成形原理 弯曲时当板料经过冲模,即冲头半径加工成形时所观察到的变形原理,因此在定向的方向上受到改变,这种变形式一个平面张力拉长与收缩的典型实例。 在一个压力机冲程中用于在一块板料上冲出一个或多个孔的一个完整的冲压模具可以归类即制造商标准化为一个单工序冲孔模具,如图3所示。

液压系统外文资料翻译

外文资料译文 液压系统 绪论 液压站又称液压泵站,是独立的液压装置。 它按逐级要求供油。并控制液压油流的方向、压力和流量,适用于主机与液压装置可分离的各种液压机械上。 用户购后只要将液压站与主机上的执行机构(油缸或油马达)用油管相连,液压机械即可实现各种规定的动作和工作循环。 液压站是由泵装置、集成块或阀组合、油箱、电气盒组合而成。各部件功能为: 泵装置--上装有电机和油泵,是液压站的动力源,将机械能转化为液压油的压力能。 集成块--由液压阀及通道体组装而成。对液压油实行方向、压力和流量调节。 阀组合--板式阀装在立板上,板后管连接,与集成块功能相同。 油箱--板焊的半封闭容器,上还装有滤油网、空气滤清器等,用来储油、油的冷却及过滤。 电气盒--分两种型式。一种设置外接引线的端子板;一种配置了全套控制电器。 液压站的工作原理:电机带动油泵转动,泵从油箱中吸油供油,将机械能转化为液压站的压力能,液压油通过集成块(或阀组合)实现了方向、压力、流量调节后经外接管路并至液压机械的油缸或油马达中,从而控制液动机方向的变换、力量的大小及速度的快慢,推动各种液压机械做功。 1.1发展历程 我国液压(含液力,下同)、气动和密封件工业发展历程,大致可分为三个阶

段,即:20世纪50年代初到60年代初为起步阶段;60~70年代为专业化生产体系成长阶段;80~90年代为快速发展阶段。其中,液压工业于50年代初从机床行业生产仿苏的磨床、拉床、仿形车床等液压传动起步,液压元件由机床厂的液压车间生产,自产自用。进入60年代后,液压技术的应用从机床逐渐推广到农业机械和工程机械等领域,原来附属于主机厂的液压车间有的独立出来,成为液压件专业生产厂。到了60年代末、70年代初,随着生产机械化的发展,特别是在为第二汽车制造厂等提供高效、自动化设备的带动下,液压元件制造业出现了迅速发展的局面,一批中小企业也成为液压件专业制造厂。1968年中国液压元件年产量已接近20万件;1973年在机床、农机、工程机械等行业,生产液压件的专业厂已发展到100余家,年产量超过100万件,一个独立的液压件制造业已初步形成。这时,液压件产品已从仿苏产品发展为引进技术与自行设计相结合的产品,压力向中、高压发展,并开发了电液伺服阀及系统,液压应用领域进一步扩大。气动工业的起步比液压稍晚几年,到1967年开始建立气动元件专业厂,气动元件才作为商品生产和销售。含橡塑密封、机械密封和柔性石墨密封的密封件工业,50年代初从生产普通O型圈、油封等挤压橡塑密封和石棉密封制品起步,到60年代初,开始研制生产机械密封和柔性石墨密封等制品。70年代,在原燃化部、一机部、农机部所属系统内,一批专业生产厂相继成立,并正式形成行业,为密封件工业的发展成长奠定了基础。 进入80年代,在国家改革开放的方针指引下,随着机械工业的发展,基础件滞后于主机的矛盾日益突出,并引起各有关部门的重视。为此,原一机部于1982年组建了通用基础件工业局,将原有分散在机床、农业机械、工程机械等行业归口的液压、气动和密封件专业厂,统一划归通用基础件局管理,从而使该行业在规划、投资、引进技术和科研开发等方面得到基础件局的指导和支持。从此进入了快速发展期,先后引进了60余项国外先进技术,其中液压40余项、气动7项,经消化吸收和技术改造,现均已批量生产,并成为行业的主导产品。近年来,行业加大了技术改造力度,1991~1998年国家、地方和企业自筹资金总投入共约20多亿元,其中液压16亿多元。经过技术改造和技术攻关,一批主要企业技术水平进一步提高,工艺装备得到很大改善,为形成高起点、专业化、批量生产打下了良好基础。近几年,在国家多种所有制共同发展的方针指引下,不同所有制的中小企业迅猛崛起,呈现出

液压机外文翻译文献

液压机外文翻译文献 (文档含中英文对照即英文原文和中文翻译) 原文: The Analysis of Cavitation Problems in the Axial Piston Pump shu Wang Eaton Corporation, 14615 Lone Oak Road, Eden Prairie, MN 55344 This paper discusses and analyzes the control volume of a piston bore constrained by the valve plate in axial piston pumps. The vacuum within the piston bore caused by the rise volume needs to be compensated by the flow; otherwise, the low pressure may cause the cavitations and aerations. In the research, the valve plate geometry can be optimized by some analytical limitations to prevent the piston pressure below the vapor pressure. The limitations provide the design guide of the timings and

overlap areas between valve plate ports and barrel kidneys to consider the cavitations and aerations. _DOI: 10.1115/1.4002058_ Keywords: cavitation , optimization, valve plate, pressure undershoots 1 Introduction In hydrostatic machines, cavitations mean that cavities or bubbles form in the hydraulic liquid at the low pressure and collapse at the high pressure region, which causes noise, vibration, and less efficiency. Cavitations are undesirable in the pump since the shock waves formed by collapsed may be strong enough to damage components. The hydraulic fluid will vaporize when its pressure becomes too low or when the temperature is too high. In practice, a number of approaches are mostly used to deal with the problems: (1) raise the liquid level in the tank, (2) pressurize the tank, (3) booster the inlet pressure of the pump, (4) lower the pumping fluid temperature, and (5) design deliberately the pump itself. Many research efforts have been made on cavitation phenomena in hydraulic machine designs. The cavitation is classified into two types in piston pumps: trapping phenomenon related one (which can be prevented by the proper design of the valve plate)and the one observed on the layers after the contraction or enlargement of flow passages (caused by rotating group designs) in Ref. (1). The relationship between the cavitation and the measured cylinder pressure is addressed in this study. Edge and Darling (2) reported an experimental study of the cylinder pressure within an axial piston pump. The inclusion of fluid momentum effects and cavitations within the cylinder bore are predicted at both high speed and high load conditions. Another study in Ref. (3) provides an overview of hydraulic fluid impacting on the inlet condition and cavitation potential. It indicates that

液压系统液压传动和气压传动毕业论文中英文资料对照外文翻译文献综述

中英文资料对照外文翻译文献综述 液压系统 液压传动和气压传动称为流体传动,是根据17世纪帕斯卡提出的液体静压力传动原理而发展起来的一门新兴技术,1795年英国约瑟夫?布拉曼(Joseph Braman,1749-1814),在伦敦用水作为工作介质,以水压机的形式将其应用于工业上,诞生了世界上第一台水压机。1905年将工作介质水改为油,又进一步得到改善。 第一次世界大战(1914-1918)后液压传动广泛应用,特别是1920年以后,发展更为迅速。液压元件大约在 19 世纪末 20 世纪初的20年间,才开始进入正规的工业生产阶段。1925 年维克斯(F.Vikers)发明了压力平衡式叶片泵,为近代液压元件工业或液压传动的逐步建立奠定了基础。20 世纪初康斯坦丁?尼斯克(G?Constantimsco)对能量波动传递所进行的理论及实际研究;1910年对液力传动(液力联轴节、液力变矩器等)方面的贡献,使这两方面领域得到了发展。 第二次世界大战(1941-1945)期间,在美国机床中有30%应用了液压传动。应该指出,日本液压传动的发展较欧美等国家晚了近 20 多年。在 1955 年前后 , 日本迅速发展液压传动,1956 年成立了“液压工业会”。近20~30 年间,日本液压传动发展之快,居世界领先地位。 液压传动有许多突出的优点,因此它的应用非常广泛,如一般工业用的塑料加工机械、压力机械、机床等;行走机械中的工程机械、建筑机械、农业机械、汽车等;钢铁工业用的冶金机械、提升装置、轧辊调整装置等;土木水利工程用的防洪闸门及堤坝装置、河床升降装置、桥梁操纵机构等;发电厂涡轮机调速装置、核发电厂等等;船舶用的甲板起重机械(绞车)、船头门、舱壁阀、船尾推进器等;特殊技术用的巨型天线控制装置、测量浮标、升降旋转舞台等;军事工业用的火炮操纵装置、船舶减摇装置、飞行器仿真、飞机起落架的收放装置和方向舵控制装置等。 一个完整的液压系统由五个部分组成,即动力元件、执行元件、控制元件、辅助元

液压传动系统外文文献翻译、中英文翻译、外文翻译

中国地质大学长城学院 本科毕业设计外文资料翻译 系别工程技术系 专业机械设计制造及其自动化 学生姓名彭江鹤 学号 05211534 指导教师王泽河 职称教授 2015 年 5 月 4 日

液压传动系统 作者:Hopmans, ArthurH. 摘要 液压传动是由液压泵、液压控制阀、液压执行元件和液压辅件组成的液压系统。液压泵把机械能转换成液体的压力能,液压控制阀和液压辅件控制液压介质的压力、流量和流动方向,将液压泵输出的压力能传给执行元件,执行元件将液体压力能转换为机械能,以完成要求的动作。 关键词:液压传动;气压传动;传动系统; 许多液压传动先前已经设计出允许操作者无限变化输出的变速器,或甚至逆转的传动装置的输出作为相对于输入。通常情况下,这已经通过使用一个旋转斜盘是要么由操作者手动或操作液压动机来改变通过旋转泵头部具有轴向移动的活塞流动的液压流体的。液压流体从泵头活塞的流动,依次转动的马达头通过激励相应的一组活塞在其中违背一固定凸轮的,因此,旋转安装在电动机头的输出轴。 通常情况下,在现有技术的变速器已被被设置有各种功能,例如齿轮减速,刹车设定装置等。不幸的是,这些功能通常是提供外部发送的和显著增加整个装置的体积和质量。申请人确定,这是很期望具有其中基本上所有的这些需要或希望的功能,可以在内部提供的发送,同时还产生一个非常有效的和非常有效的传输的综合传输。 特别是,这种类型的变速器上经常使用的设备,如“零转动半径”剪草机之类的其中一个潜在的危险情况面对操作者,旁观者和设备本身,如果设备我们允许继续被推进应的操作者释放控制,由于当操作者无意中从装置抛出或变得受伤。因此,“故障自动刹车”机制经常被设置为传输自动地返回到中立配置在这种情况下,使得该装置不会继续供电,如果控制被释放。 先前传输这种类型的一般依靠某种外部设备,比如其目的是为了在操作者控制轴返回到中立位置应操作者释放所述轴的反操作偏压弹簧。这种类型的外部设备,可以容易地由用户或篡改损坏。这种回归函数中性到传输本身的整合允许在外部零件的减少可被损坏或不适当取出并大大降低,以支持传输的各种功能所需的外部结构。 在这种类型的用于割草机的使用和类似的传输经常遇到的另一个问题是,操作时会略生涩或有弹性,因为操作者通常无法顺利地控制从一个速度到另一个的过渡,往往试图使突然变化。从这些生涩的操作震动有一种倾向,穿更重的机器和操作上也是如此。因此,理想的是抑制这种传输的输出,以防止这种不平稳的运动。 不仅是它是期望能够有一个返回到中立的功能,如desribed以上,但还希望为操作者有积极的感觉为中立位置时,不论操作者从空档移动到前进或从中立扭转。此功能在本文中称为积极中性功能,并且在一般情况下,该功能需要操作者在从发送到任何一个正向或反向方向的中立姿势变换扩展更多的能量或运动相比,量能量消耗或运动需从一个速度转移到另一个在一个特定的方向。与上面提到的其它特征,最好是需要提供此功能的结构的发送本身内掺入。

外文翻译- 液压系统概述

附录: 外文资料与中文翻译 外文资料: Hydraulic System Hydraulic presser drive and air pressure drive hydraulic fluid as the transmission is made according to the 17th century, Pascal's principle of hydrostatic pressure to drive the development of an emerging technology, the United Kingdom in 1795 ? Braman Joseph (Joseph Braman ,1749-1814), in London water as a medium to form hydraulic press used in industry, the birth of the world's first hydraulic press. Media work in 1905 will be replaced by oil-water and further improved. After the World War I (1914-1918) ,because of the extensive application of hydraulic transmission, espec- ially after 1920, more rapid development. Hydraulic components in the late 19th century about the early 20th century, 20 years, only started to enter the formal phase of industrial production. 1925 Vickers (F. Vikers) the invention of the pressure balanced vane pump, hydraulic components for the modern industrial or hydraulic transmission of the gradual establishment of the foundation. The early 20th century G ? Constantimscofluct- uations of the energy carried out by passing theoretical and practical research; in 1910 on the hydraulic trans- mission (hydraulic coupling, hydraulic torque converter, etc.) contributions, so that these two areas of develo- pment. The Second World War (1941-1945) period, in the United States 30% of machine tool applications in the hydraulic transmission. It should be noted that the development of hydraulic transmission in Japan than Europe

液压系统外文文献翻译、中英文翻译、外文文献翻译

附录 Hydraulic System Hydraulic presser drive and air pressure drive hydraulic fluid as the transmission is made according to the 17th century, Pascal's principle of hydrostatic pressure to drive the development of an emerging technology, the United Kingdom in 1795 ?Barman Joseph (Joseph Barman, 1749-1814), in London water as a medium to form hydraulic press used in industry, the birth of the world's first hydraulic press. Media work in 1905 will be replaced by oil-water and further improved. After the World War I (1914-1918) ,because of the extensive application of hydraulic transmission, especially after 1920, more rapid development. Hydraulic components in the late 19th century about the early 20th century, 20 years, only started to enter the formal phase of industrial production. 1925 Vickers (F. Vickers) the invention of the pressure balanced vane pump, hydraulic components for the modern industrial or hydraulic transmission of the gradual establishment of the foundation. The early 20th century G ? Constantia scofluctuations of the energy carried out by passing theoretical and practical research; in 1910 on the hydraulic trans- mission (hydraulic coupling, hydraulic torque converter, etc.) contributions, so that these two areas of development. The Second World War (1941-1945) period, in the United States 30% of machine tool applications in the hydraulic transmission. It should be noted that the development of hydraulic transmission in Japan than Europe and the United States and other countries for

液压系统外文翻译

Hydraulic System Hydraulic presser drive and air pressure drive hydraulic fluid as the transmission is made according to the 17th century, Pascal's principle of hydrostatic pressure to drive the development of an emerging technology, the United Kingdom in 1795 ?Braman Joseph (Joseph Braman ,1749-1814), in London water as a medium to form hydraulic press used in industry, the birth of the world's first hydraulic press. Media work in 1905 will be replaced by oil-water and further improved. After the World War I (1914-1918) ,because of the extensive application of hydraulic transmission, espec- ially after 1920, more rapid development. Hydraulic components in the late 19th century about the early 20th century, 20 years, only started to enter the formal phase of industrial production. 1925 Vickers (F. Vikers) the invention of the pressure balanced vane pump, hydraulic components for the modern industrial or hydraulic transmission of the gradual establishment of the foundation. The early 20th century G ? Constan timscofluct- uations of the energy carried out by passing theoretical and practical research; in 1910 on the hydraulic trans- mission (hydraulic coupling, hydraulic torque converter, etc.) contributions, so that these two areas of develo- pment. The Second World War (1941-1945) period, in the United States 30% of machine tool applications in the hydraulic transmission. It should be noted that the development of hydraulic transmission in Japan than Europe and the United States and other countries for nearly 20 years later. Before and after in 1955, the rapid development of Japan's hydraulic drive, set up in 1956, "Hydraulic Industry." Nearly 20 to 30 years, the development of Japan's fast hydraulic transmission, a world leader. Hydraulic transmission There are many outstanding advantages, it is widely used, such as general industr- ial use of plastics processing machinery, the pressure of machinery, machine tools, etc.; operating machinery engineering machinery, construction machinery, agricultural machinery, automobiles, etc.; iron and steel indu- stry metallurgical machinery, lifting equipment, such as roller adjustment device; civil water projects with flo- od control and dam gate devices, bed lifts installations, bridges and other manipulation of institutions; speed turbine power

液压机械英文翻译

液压机械行业中文英文对比 液压机械行业所涉及的专业名词。 液压机械英语 液压专业词汇 流体传动(水力)hydraulic power 液压技术(水力学)hydraulics 液力技术(流体力学;水动力学)hydrodynamics 气液技术(液压气动学)hydro-pneumatics 运行工况operating working conditions 额定工况rated working conditions 极限工况limited working conditions 瞬态工况instantaneous working conditions 稳态工况steady-state working conditions 许用工况acceptable working conditions 连续工况continuous working conditions 实际工况actual working conditions 效率efficiency 旋转方向direction of rotation 公称压力nominal pressure 工作压力working pressure 进口压力inlet pressure 出口压力outlet pressure 压降pressure drop;differential pressure 背压back pressure 启动压力breakout pressure 充油压力charge pressure 开启压力cracking pressure 峰值压力peak pressure 运行压力operating pressure 耐压试验压力proof pressure 冲击压力surge pressure 静压力static pressure 系统压力system pressure 控制压力pilot pressure 充气压力precharge pressure 吸入压力suction pressure 调压偏差override pressure 额定压力rated pressure 耗气量air consumption 泄漏leakage 内泄漏internal leakage 外泄漏external leakage

液压系统外文翻译

液压系统 液压传动和气压传动称为流体传动,是根据17世纪帕斯卡提出的液体静压力传动原理而发展起来的一门新兴技术,1795年英国约瑟夫?布拉曼(Joseph Braman,1749-1814),在伦敦用水作为工作介质,以水压机的形式将其应用于工业上,诞生了世界上第一台水压机。1905年将工作介质水改为油,又进一步得到改善。 第一次世界大战(1914-1918)后液压传动广泛应用,特别是1920年以后,发展更为迅速。液压元件大约在 19 世纪末 20 世纪初的20年间,才开始进入正规的工业生产阶段。1925 年维克斯(F.Vikers)发明了压力平衡式叶片泵,为近代液压元件工业或液压传动的逐步建立奠定了基础。20 世纪初康斯坦丁?尼斯克(G?Constantimsco)对能量波动传递所进行的理论及实际研究;1910年对液力传动(液力联轴节、液力变矩器等)方面的贡献,使这两方面领域得到了发展。 第二次世界大战(1941-1945)期间,在美国机床中有30%应用了液压传动。应该指出,日本液压传动的发展较欧美等国家晚了近 20 多年。在 1955 年前后 , 日本迅速发展液压传动,1956 年成立了“液压工业会”。近20~30 年间,日本液压传动发展之快,居世界领先地位。 液压传动有许多突出的优点,因此它的应用非常广泛,如一般工业用的塑料加工机械、压力机械、机床等;行走机械中的工程机械、建筑机械、农业机械、汽车等;钢铁工业用的冶金机械、提升装置、轧辊调整装置等;土木水利工程用的防洪闸门及堤坝装置、河床升降装置、桥梁操纵机构等;发电厂涡轮机调速装置、核发电厂等等;船舶用的甲板起重机械(绞车)、船头门、舱壁阀、船尾推进器等;特殊技术用的巨型天线控制装置、测量浮标、升降旋转舞台等;军事工业用的火炮操纵装置、船舶减摇装置、飞行器仿真、飞机起落架的收放装置和方向舵控制装置等。 一个完整的液压系统由五个部分组成,即动力元件、执行元件、控制元件、辅助元件和液压油。 动力元件的作用是将原动机的机械能转换成液体的压力能,指液压系统中的油泵,它向整个液压系统提供动力。液压泵的结构形式一般有齿轮泵、叶片泵和柱塞泵。 执行元件(如液压缸和液压马达)的作用是将液体的压力能转换为机械能,驱动负载作直线往复运动或回转运动。 控制元件(即各种液压阀)在液压系统中控制和调节液体的压力、流量和方向。根据控制功能的不同,液压阀可分为压力控制阀、流量控制阀和方向控制阀。压力控制阀又分为益流阀(安全阀)、减压阀、顺序阀、压力继电器等;流量控制阀包括节流阀、调整阀、分流集流阀等;方向控制阀包括单向阀、液控单向阀、梭阀、换向阀等。根据控制

液压系统的外文文献翻

毕业设计(论文)外文文献翻译 译文题目 Hydraulic System 专 业机械设计制造及其自动化 班 级 09机制一班 姓 名 汪康 学 号 2009403010107 指导教师 王霞 机械工程学院 JINGCHU UNIVERSITY OF TECHNOLOGY

Hydraulic System There are only three basic methods of transmitting power:Electrical,mechanical.and fluid power.Most applications actually use a combination of the three methods to obtain the most efficient overall system.To properly determine which principle method to use。it is important to know the salient features of each type.For example,fluid systems call transmit power more economically Over greater distances than Can mechanical types.However。fluid systems are restricted to shorter distances than are electrical systems. Hydraulic transmission there are many outstanding advantages, it is widely used, such as general industrial use of plastics processing machinery, the pressure of machinery, machine tools, etc.; operating machinery engineering machinery, construction machinery, agricultural machinery, automobiles, etc.; iron and steel industry metallurgical machinery, lifting equipment, such as roller adjustment device; civil water projects with flood control and dam gate devices, bed lifts installations, bridges and other manipulation of institutions; speed turbine power plant installations, nuclear power plants, etc.; ship from the deck heavy machinery (winch), the bow doors, bulkhead valve, stern thruster, etc.; special antenna technology giant with control devices, measurement buoys, movements such as rotating stage; military-industrial control devices used in artillery, ship anti- rolling devices, aircraft simulation, aircraft retractable landing gear and rudder control devices and other devices. The role of the hydraulic system to increase the force by changing the pressure. A hydraulic system is good or bad depends on the system design is reasonable, the merits of the performance system components, system, pollution prevention and treatment, while the last point is particularly important. In recent years, China's domestic hydraulic technology has greatly improved, not simply using hydraulic technology from abroad for processing. A complete hydraulic system consists of five parts, namely, power components, the implementation of components, control components, auxiliary components (Annex) and the hydraulic oil. The role of dynamic components is the original motivation of the mechanical energy into fluid pressure energy, the hydraulic system of pumps, which provide power to the entire hydraulic system. Structures of hydraulic pumps generally have gear pumps, vane pumps and piston pumps.

相关文档
最新文档