概率初步知识点总结和题型讲解学习

合集下载

九年级数学上人教版《概率初步》课堂笔记

九年级数学上人教版《概率初步》课堂笔记

《概率初步》课堂笔记
一、概率的定义和意义
1.定义:一般地,在大量重复试验中,如果事件A发生的频率会稳定在某个常数
p附近,那么这个常数p就叫做事件A的概率,记为P(A) = p。

2.意义:概率是频率(多个)的波动稳定值,是对事件发生可能性大小的量的表
现。

二、等可能事件和不可能事件
1.等可能事件:当一次试验要分成若干个相等的机会,并且这些机会是可数的,
或是有确定的数量时,出现各不相同的结果并且出现每种结果的可能性都相等的随机事件。

2.不可能事件:在一定条件下不可能发生的事件。

三、简单事件的概率计算
1.公式:P(A) = m/n,其中m是事件A发生的次数,n是试验总次数。

2.注意事项:在计算概率时,需要注意以下几点:
•要注意区分频率与概率的不同。

频率是试验中某个事件出现的次数与试验总次数的比值,而概率是频率的稳定值。

•要注意在等可能事件中,不同的试验结果出现的可能性是相等的。

•要注意任何一个事件的概率都应该是0到1之间的一个实数。

四、实例应用
通过实例分析,理解概率的概念和计算方法。

例如,抛硬币、掷骰子等实例的分析,可以引出概率的定义和计算方法。

同时,通过实例分析,也可以让学生更好地理解概率的意义和应用。

五、课堂小结
本节课学习了概率初步这一节内容,主要包括了概率的定义和意义、等可能事件和不可能事件、简单事件的概率计算等方面的知识。

通过本节课的学习,学生应该能够初步掌握概率的概念和计算方法,并且能够运用这些知识解决实际问题。

同时,学生也应该能够认识到概率在生活和其他领域中的应用,激发学习兴趣。

2024九年级数学上册“第二十五章 概率初步”必背知识点

2024九年级数学上册“第二十五章 概率初步”必背知识点

2024九年级数学上册“第二十五章概率初步”必背知识点一、随机事件与概率1. 随机事件定义:在一定条件下,可能发生也可能不发生的事件,称为随机事件。

对比:与随机事件相对的是确定事件,确定事件又分为必然事件和不可能事件。

必然事件是事先能肯定它一定会发生的事件;不可能事件是事先能肯定它一定不会发生的事件。

2. 概率的定义一般定义:在大量重复实验中,如果事件A发生的频率m/n稳定在某个常数p附近,那么这个常数p就叫做事件A的概率,记为P(A)=p。

取值范围:概率的取值范围是0≤p≤1。

特别地,P(必然事件)=1,P(不可能事件)=0。

二、概率的计算方法1. 理论概率在一次试验中,如果包含n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m种结果,那么事件A发生的概率P(A)=m/n。

2. 列举法求概率列表法:当试验中存在两个元素且出现的所有可能的结果较多时,常用列表法列出所有可能的结果,再求出概率。

树状图法:当试验涉及三个或更多元素时,为不重不漏地列出所有可能的结果,通常采用树状图法。

三、用频率估计概率原理:在大量重复试验中,如果事件A发生的频率m/n 稳定于某一个常数p,那么可以认为事件A发生的概率为p。

即,频率可以作为概率的近似值,随着试验次数的增加,频率会越来越接近概率。

四、概率的应用与理解1. 概率的意义概率是对事件发生可能性大小的量的表现,它反映了随机事件的稳定性和规律性。

2. 游戏公平性判断游戏公平性需要计算每个事件的概率,并比较它们是否相等。

如果概率相等,则游戏公平;否则,游戏不公平。

五、综合应用概率知识在解决实际问题中的应用:如抽奖、天气预测、投资决策等领域的概率计算和分析。

示例题目1. 理论概率计算例题:从一副扑克牌中随机抽取一张,求抽到红桃的概率。

解析:一副扑克牌共有54张 (包括大王和小王),其中红桃有13张。

因此,抽到红桃的概率为P=13/54。

2. 列举法求概率例题:一个不透明的袋子中装有3个红球和2个白球,每个球除颜色外都相同。

概率初步例题和知识点总结

概率初步例题和知识点总结

概率初步例题和知识点总结一、概率的定义在一定条件下,重复进行试验,如果随着试验次数的增加,事件 A 发生的频率稳定在某个常数 p 附近,那么这个常数 p 就叫做事件 A 的概率,记作 P(A) = p。

概率是对随机事件发生可能性大小的度量。

例如,抛一枚均匀的硬币,正面朝上和反面朝上的概率都是 05。

二、概率的基本性质1、0 ≤ P(A) ≤ 1:任何事件的概率都在 0 到 1 之间,0 表示不可能发生,1 表示必然发生。

2、P(Ω) = 1:必然事件的概率为 1,其中Ω 表示样本空间,即所有可能结果的集合。

3、 P(∅)= 0:不可能事件的概率为 0,∅表示空集。

4、如果事件 A 与事件 B 互斥(即 A 和 B 不能同时发生),那么P(A∪B) = P(A) + P(B)。

三、古典概型古典概型是一种最简单的概率模型,具有以下两个特点:1、试验中所有可能出现的基本事件只有有限个。

2、每个基本事件出现的可能性相等。

古典概型的概率计算公式为:P(A) = A 包含的基本事件个数/基本事件的总数。

例如,一个盒子里有 3 个红球和 2 个白球,从中随机取出一个球,求取出红球的概率。

基本事件的总数为 5(3 个红球+ 2 个白球),取出红球包含的基本事件个数为 3,所以取出红球的概率为 3/5。

四、例题解析例 1:掷一枚质地均匀的骰子,求点数为奇数的概率。

解:掷一枚骰子,出现的点数有 1、2、3、4、5、6 共 6 种可能,其中奇数有 1、3、5 共 3 种。

所以点数为奇数的概率为 3/6 = 1/2。

例 2:从 1、2、3、4 这 4 个数字中,任意取出两个数字,求取出的两个数字都是奇数的概率。

解:从4 个数字中任意取出两个数字,共有6 种可能的结果:(1,2)、(1,3)、(1,4)、(2,3)、(2,4)、(3,4)。

其中两个数字都是奇数的结果有(1,3),共 1 种。

所以取出的两个数字都是奇数的概率为 1/6。

第25章+++概率初步(知识点及考点精讲)课件+2024—2025学年人教版数学九年级上册

第25章+++概率初步(知识点及考点精讲)课件+2024—2025学年人教版数学九年级上册

箱1
箱2
小结
一般地,随机事件发生的可能性是有大小的, 不同的随机事件发生的可能性大小可能不同
2
概率
情景引入 小白将一枚硬币抛向空中,落地后出现正面的可能性 有多大,出现背面的可能性多大?
概率 一般地,对于一个随机事件A,刻画其发生可能性大 小的数值,称之为随机事件A发生的概率,记为P(A)。 【注意】 ①每一次试验中,可能出现的结果只有有限个。 ②每一次试验中,各种结果出现的可能性相等。
频率
概率
试验值或统计值
理论值
区别
与试验次数变化有关
与试验人、时间、地点 有关
与试验次数变化无关
与试验人、时间、地点 无关
联系
试验的次数越多,频率越趋向于概率
一般地,如果在一次试验中,有n种可能的结果,且它们
发生的可能性相等,事件A包含其中的m种结果,那么事件A
发生的概率为:
P(A) m n

可 能
0


事件发生的可能性越来越小
事件发生的可能性越来越大 (概率的值率
列表法
当问题涉及两步试验(如一个骰(tou)子掷两次)或 一次试验要涉及两个因素(如同时掷两个骰子),且可能 出现的结果数目较多时,为不重不漏地列出所有可能的 结果,通常采用列表法。
思考 抽奖箱中有5个黄球,3个红球,摸出一个球是红球, 这一事件是随机事件吗?
不是。 原因:若红球比黄球大的条件下摸红球是必然事件
思考:增加什么限定条件,这一事件是随机事件? 这些球的形状、大小、质地等完全相同,即除颜色 外无差别。
思考 小白、小黄分别从箱1、箱2各抽取一球,两人摸出黄球 和红球的可能性一样大吗(除颜色外无差别)?
例:同时掷两个质地均匀的骰子,观察向上一面的点数, 求下列事件的概率: ①两个骰子点数的和是9.

概率初步的知识点总结

概率初步的知识点总结

概率初步的知识点总结一、基本概念1. 随机试验和样本空间随机试验是指在一定条件下,试验的结果是随机的,无法预测的现象。

样本空间是指随机试验的所有可能结果的集合。

2. 事件事件是样本空间的一个子集,表示一种可能发生的结果。

事件的概率表示该事件发生的可能性大小。

3. 概率的定义概率是事件发生的可能性大小的度量,通常用P(A)来表示事件A发生的概率。

概率的取值范围是0到1,即0≤P(A)≤1。

4. 频率与概率频率是指事件发生的次数与总次数的比值,当试验次数足够大时,频率趋近于概率。

二、基本概率1. 古典概率古典概率是指在有限个等可能结果的随机试验中,事件发生的概率等于事件的发生方式数与总的可能方式数的比值。

2. 几何概率几何概率是指在连续型随机试验中,利用几何形状和相似性来求事件的概率。

3. 条件概率条件概率是指在事件B已经发生的条件下,事件A发生的概率。

其计算公式为P(A|B)=P(AB)/P(B)。

4. 乘法公式乘法公式是指用条件概率来计算复合事件的概率,其计算公式为P(AB)=P(A)P(B|A)=P(B)P(A|B)。

5. 全概率公式和贝叶斯定理全概率公式用于求解复杂事件的概率,贝叶斯定理则是在已知条件概率的情况下,用来求解逆向概率问题。

三、随机变量与概率分布1. 随机变量随机变量是指取值不确定,但在一定范围内有规律可循的变量。

随机变量可以是离散型的,也可以是连续型的。

2. 离散型随机变量离散型随机变量的取值是可数的,通常用概率分布列来表示其各个取值对应的概率。

3. 连续型随机变量连续型随机变量的取值是连续的,通常用概率密度函数来表示其取值的概率分布情况。

4. 期望和方差期望是随机变量的平均值,方差是随机变量取值偏离期望的平均程度。

四、常见概率分布1. 二项分布二项分布是指在n次独立试验中,事件发生的次数符合二项分布的概率分布。

2. 泊松分布泊松分布是指在单位时间或单位空间内,发生次数符合泊松分布的概率分布。

数学九年级上册第二十五章《概率初步》小结与复习(共27张PPT)

数学九年级上册第二十五章《概率初步》小结与复习(共27张PPT)

B)
A.布袋中有2个红球和5个其他颜色的球
B.如果摸球次数很多,那么平均每摸7次,就有2次
摸中红球
C.摸7次,就有2次摸中红球
D.摸7次,就有5次摸不中红球
2.下列事件中是必然事件的是( D ) A.从一个装有蓝、白两色球的缸里摸出一个球,摸 出的球是白球 B.小丹的自行车轮胎被钉子扎坏 C.小红期末考试数学成绩一定得满分 D.将油滴入水中,油会浮在水面上
第二十五章 概率初步
小结与复习
复习目标
1.梳理本章的知识要点,回顾与复习本章知识. 2.巩固并能熟练运用列举法、列表法和树状图法求 概率.(重、难点) 3.能应用频率估计概率解决生活中的实际问题.
要点梳理
一、事件的分类及其概念
事件
不可能事件:必然不会发生的事件
随机事件:在一定条件下可能发生也可能不发生 的事件
考点二 概率的计算 例2 (1)一个口袋中装有3个红球,2个绿球,1 个黄球,每个球除颜色外其他都相同,搅匀后
1
随机地从中摸出一个球是绿球的概率是___3___.
(2)三张分别画有平行四边形、等边三角形、圆的 卡片,它们的背面都相同,现将它们背面朝上,
从中任取一张,卡片上所画图形恰好是中心对称 2
(2) 如果只考虑中奖因素,你将会选择去哪个超市购 物?说明理由.
(2) 选甲超市.理由如下: ∵P(甲)>P(乙), ∴选甲超市.
成活 数
47
235 369 662 1335 3203 6335 8073 12628
成活 频率
0.94
0.87 0.923 0.883 0.89 0.915 0.905 0.897 0.902
由此可以估计该种幼树移植成活的概率约为( C ) (结果保留小数点后两位)

概率初步例题和知识点总结

概率初步例题和知识点总结

概率初步例题和知识点总结在我们的日常生活中,概率无处不在。

比如抽奖时中奖的可能性、明天是否会下雨的预测、体育比赛中获胜的概率等等。

概率是研究随机现象规律的数学分支,它能帮助我们更好地理解和应对不确定性。

接下来,让我们通过一些例题来深入了解概率的初步知识。

一、知识点回顾1、随机事件随机事件是指在一定条件下,可能出现也可能不出现,而在大量重复试验中具有某种规律性的事件。

比如掷一枚骰子,出现的点数就是一个随机事件。

2、概率的定义概率是指某个事件发生的可能性大小的数值度量。

通常用 0 到 1 之间的数来表示,0 表示不可能发生,1 表示必然发生。

3、古典概型如果一个随机试验具有以下两个特征:(1)试验的样本空间中样本点的总数是有限的;(2)每个样本点出现的可能性相等。

那么这样的随机试验称为古典概型。

在古典概型中,事件 A 的概率可以通过计算 A 包含的样本点个数与样本空间中样本点的总数之比得到。

4、概率的基本性质(1)对于任意事件 A,0 ≤ P(A) ≤ 1。

(2)必然事件的概率为 1,不可能事件的概率为 0。

(3)如果事件 A 与事件 B 互斥(即 A 和 B 不可能同时发生),则P(A∪B) = P(A) + P(B)。

二、例题解析例 1:从装有 3 个红球和 2 个白球的口袋中随机取出 2 个球,求取出的 2 个球都是红球的概率。

解:从 5 个球中取出 2 个球的组合数为 C(5, 2) = 10。

取出 2 个红球的组合数为 C(3, 2) = 3。

所以取出的 2 个球都是红球的概率为 3/10。

例 2:掷一枚均匀的骰子,求点数大于 4 的概率。

解:骰子的点数有 1、2、3、4、5、6,点数大于 4 的有 5、6 两种情况,所以点数大于 4 的概率为 2/6 = 1/3。

例 3:同时掷两枚均匀的骰子,求点数之和为 7 的概率。

解:同时掷两枚骰子,所有可能的结果有 6×6 = 36 种。

九年级概率初步知识点及题

九年级概率初步知识点及题

九年级概率初步知识点包括:1. 概率的基本性质:概率是非负数,并且所有概率的和必须等于1。

2. 必然事件和不可能事件:必然事件发生的概率为1,不可能事件发生的概率为0。

3. 独立事件:一个事件的发生不受另一个事件是否发生的影响,这样的两个事件称为独立事件。

独立事件同时发生的概率是各自概率的乘积。

4. 条件概率:在某个事件B已经发生的情况下,另一个事件A发生的概率叫做条件概率,记作P(A|B)。

5. 事件的概率:一般地,如果一个试验有n个等可能的结果,事件A包含其中的k个结果,那么事件A发生的概率为P(A)=k/n。

6. 概率的加法公式:如果两个事件A和B是互斥的(即两个事件不能同时发生),那么P(A∪B)=P(A)+P(B)。

7. 概率的乘法公式:对于任意两个事件A和B,如果它们是独立的,那么P(A∩B)=P(A)×P(B)。

8. 贝叶斯定理:在已知某个事件的概率和一些条件概率的情况下,可以使用贝叶斯定理计算其他条件概率。

以上是九年级概率初步知识点,可以通过做题来巩固这些知识点。

例如:1. 小明和小颖按如下规则作游戏:桌面上放有5支铅笔,每次取1支或2支,由小明先取,最后一次取完铅笔的人获胜。

如果小明获胜的概率为1,那么小明第一次应该取走几支铅笔?根据题意,我们知道小明获胜的概率为1,即他一定会赢。

所以我们需要找出小明第一次应该取走几支铅笔才能确保他获胜。

根据游戏规则,每次只能取1支或2支铅笔,如果小明第一次取走2支铅笔,那么无论小颖取走几支(1支或0支),小明都能在第二次取完剩下的所有铅笔,从而获胜。

因此,小明第一次应该取走2支铅笔。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概率初步知识点和题型【知识梳理】1.生活中的随机事件分为确定事件和不确定事件,确定事件又分为必然事件和不可能事件,其中,①必然事件发生的概率为1,即P(必然事件)=1;②不可能事件发生的概率为0,即P(不可能事件)=0;③如果A为不确定事件,那么0<P(A)<12.随机事件发生的可能性(概率)的计算方法:①理论计算又分为如下两种情况:第一种:只涉及一步实验的随机事件发生的概率,如:根据概率的大小与面积的关系,对一类概率模型进行的计算;第二种:通过列表法、列举法、树状图来计算涉及两步或两步以上实验的随机事件发生的概率,如:配紫色,对游戏是否公平的计算。

②实验估算又分为如下两种情况:第一种:利用实验的方法进行概率估算。

要知道当实验次数非常大时,实验频率可作为事件发生的概率的估计值,即大量实验频率稳定于理论概率。

第二种:利用模拟实验的方法进行概率估算。

如,利用计算器产生随机数来模拟实验。

综上所述,目前掌握的有关于概率模型大致分为三类;第一类问题没有理论概率,只能借助实验模拟获得其估计值;第二类问题虽然存在理论概率但目前尚不可求,只能借助实验模拟获得其估计值;第三类问题则是简单的古典概型,理论上容易求出其概率。

这里要引起注意的是,虽然我们可以利用公式计算概率,但在学习这部分知识时,更重要的是要体会概率的意义,而不只是强化练习套用公式进行计算。

3.概率应用:通过设计简单的概率模型,在不确定的情境中做出合理的决策;概率与实际生活联系密切,通过理解什么是游戏对双方公平,用概率的语言说明游戏的公平性,并能按要求设计游戏的概率模型,以及结合具体实际问题,体会概率与统计之间的关系,可以解决一些实际问题。

【练习】随机事件与概率:一. 选择题1. 下列事件必然发生的是()A. 一个普通正方体骰子掷三次和为19B. 一副洗好的扑克牌任抽一张为奇数。

C. 今天下雨。

D. 一个不透明的袋子里装有4个红球,2个白球,从中任取3个球,其中至少有2球同色。

2. 甲袋中装着1个红球9个白球,乙袋中装着9个红球1个白球,两个口袋中的球都已搅匀。

想从两个口袋中摸出一个红球,那么选哪一个口袋成功的机会较大?()A. 甲袋B. 乙袋C. 两个都一样D. 两个都不行3. 下列事件中,属于确定事件的是()A. 发射运载火箭成功B. 2008年,中国女足取得冠军C. 闪电、雷声出现时,先看到闪电,后听到雷声D. 掷骰子时,点数“6”朝上4. 下列事件中,属于不确定的事件的是()A. 英文字母共28个B. 某人连续两次购买两张彩票,均中头奖C. 掷两个正四面体骰子(每面分别标有数字1,2,3,4)接触地面的数字和为9D. 哈尔滨的冬天会下雪5. 下列事件中属于不可能的事件是()A. 军训时某同学打靶击中靶心B. 对于有理数x,∣x∣≤0C. 一年中有365天D. 你将来长到4米高6、一个袋子中放有红球、绿球若干个,黄球5个,如果袋子中任意摸出黄球的概率为0.25,那么袋子中共有球的个数为()A. 15B. 18C. 20D. 25用列举法求概率:填空题:1、小华与父母一同从重庆乘火车到广安邓小平故居参观.火车车厢里每排有左、中、右三个座位,小华一家三口随意坐某排的三个座位,则小华恰好坐在中间的概率是 。

2、初三(一)星期二下午安排了数学、英语、生物各一节课,则把数学课安排在最后一节的概率_________________。

3、甲乙两人去某风景区游玩,每天某一时段开往风景区有三辆汽车(票价相同)。

两人分别采取不同的乘车方案:甲无论如何总是上开来的第一辆车;乙是观察后上车,当第一辆车开来时都不上,如果第二辆车比第一辆车好就上第二辆,第二辆车没第一辆好就等着上第三辆车,则甲坐上好车的概率为___________,乙坐上好车的概率为_____________.4、有两把不同的锁和三把不同的钥匙,其中两把钥匙分别能打开其中一把锁,第三把钥匙不能打开这两把锁,则两把钥匙同时打开两把锁的概率___________。

5、三个茶杯只有花色不同,其中一个无盖,突然停电,小伟只好把茶盖与茶杯随机地搭配在一起,则花色完全搭配正确的概率________________.6、三张完全相同的贺卡分别送给三位同学,则三位同学都拿到的是送给自己那张贺卡的概率是_____________.7、在平面直角坐标系xOy 中,直线3+-=x y 与两坐标轴围成一个△AOB 。

现将背面完全相同,正面分别标有数1、2、3、21、31的5张卡片洗匀后,背面朝上,从中任取一张,将该卡片上的数作为点P 的横坐标,将该数的倒数作为点P 的纵坐标,则点P 落在△AOB 内的概率为 。

8、有四张正面分别标有数学-3,0,1,5的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数学记为a ,则使关于x 的分式方程11222ax x x-+=--有正整数解的概率为 。

9、将长度为8厘米的木棍截成三段,每段长度均为整数厘米.如果截成的三段木棍长度分别相同算作同一种截法(如:5,2,1和1,5,2),那么截成的三段木棍能构成三角形的概率是 _________ .10、从3,0,-1,-2,-3这五个数中,随机抽取一个数,作为函数y =(5-m 2)x 和关于x 的方程(m +1)x 2+mx +1=0中m 的值,恰好使所得函数的图像经过第一、三象限,且方程有实数根的概率为________。

11、有七张正面分别标有数字-3,-2,-1, 0, 1, 2, 3的卡片,它们除数字不同外其余全部相同,现将它们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为a ,则使关于x 的方程x 2-2(a-1)x+a(a-3)=0有两个不相等的实数根,且以x 为自变量的函数y=x 2-(a+1)x-a+2的图像不经过点(1,0)的概率是__________________.12、m 的值可以取0、1、2、3中的一个数,n 可以取0、1、3中的一个数,则使方程mx-2=n(x+1|n)的解是正整数的概率____________.13、已知a i不等于0(i=1、2、3…….2012)满足使直线y=a i+i(i=1、2、3……..2012)的图像经过一、二、四象限的a i概率________________.解答题:1、减负提质“1+5”行动计划是我市教育改革的一项重要举措。

某中学“阅读与演讲社团”为了了解本校学生的每周课外阅读时间,采用随机抽样的方式进行了问卷调查,调查结果分为“2小时内”、“2小时—3小时”、“3小时—4小时”、“4小时以上”四个等级,分别用A、B、C、D表示,根据调查结果绘制成了如图所示的两幅不完整的统计图,由图中所给出的信息解答下列问题:(1)求出x的值,并将不完整的条形统计图补充完整;(2)在此次调查活动中,初三(1)班的两个学习小组内各有2人每周课外阅读时间都是4小时以上,现从中任选2人参加学校的知识抢答赛,用列表法或画树状图的方法求选出的2人来自同不同小组的概率。

2.随着铁路客运量的不断增长,重庆火车北站越来越拥挤,为了满足铁路交通高中招生指标到校是我市中考招生制度改革的一项重要措施.某初级中学对该校近四年指标到校保送生人数进行了统计,制成了如下两幅不完整的统计图:(1)该校近四年保送生人数的极差是_________.请将折线统计图补充完整;(2)该校2009年指标到校保送生中只有1位女同学,学校打算从中随机选出2位同学了解他们进人高中阶段的学习情况.请用列表法或画树状图的方法,求出所选两位同学恰好是1位男同学和1位女同学的概率.3.为实施“农村留守儿童关爱计划”,某校结全校各班留守儿童的人数情况进行了统计,发现各班留守儿童人数只有1名、2名、3名、4名、5名、6名共六种情况,并制成如下两幅不完整的统计图:(1)求该校平均每班有多少名留守儿童?并将该条形统计图补充完整;(2)某爱心人士决定从只有2名留守儿童的这些班级中,任选两名进行生活资助,请用列表法或画树状图的方法,求出所选两名留守儿童来自同一个班级的概率。

4.在“传箴言”活动中,某班团支部对该班全体团员在一个月内所发箴言条数的情况进行了统计,并制成了如下两幅不完整的统计图:(1)求该班团员在这一个月内所发箴言的平均条数是多少?并将该条形统计图补充完整;(2)如果发了3条箴的同学中有两位同学,发了4条箴言的同学中有三位女同学. 现要从发了3条箴和4条箴言的同学中分别选出一位参加该校团委组织的“箴言”活动总结会,请你用列表法或树状图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.5、有一个可以自由转动的转盘,被分成了4个相同的扇形,分别标有数1、2、3、4(如图所示),另有一个不透明的口袋装有分别标有数0、1、3的三个小球(除数不同外,其余都相同)。

小亮转动一次转盘,停止后指针指向某一扇形,扇形内的数是小亮的幸运数,小红任意摸出一个小球,小球上的数是小红的吉祥数,然后计算这两个数的积。

(1)请你用画树状图或列表的方法,求这两个数的积为0的概率;(2)小亮与小红做游戏,规则是:若这两个数的积为奇数,小亮赢;否则,小红赢。

你认为该游戏公平吗?为什么?如果不公平,请你修改该游戏规则,使游戏公平。

4321概率的实际应用:1、集市上有一个人在设摊“摸彩”,只见他手拿一个黑色的袋子,内装大小、形状、质量完全相同的白球20只,且每一个球上都写有号码(1-20号),另外袋中还有1只红球,而且这21只球除颜色外其余完全相同。

规定:每次只摸一只球。

摸前交1元钱且在1—20内写一个号码,摸到红球奖5元,摸到号码数与你写的号码相同奖10元。

(1)你认为该游戏对“摸彩”者有利吗?说明你的理由。

(2)若一个“摸彩”者多次摸奖后,他平均每次将获利或损失多少元?2、调查员希望了解某水库中鱼的养殖情况;⑴怎样了解鱼的平均质量?⑵怎样了解鱼的总尾数?。

相关文档
最新文档