10知识讲解_正弦函数、余弦函数的图象_提高

10知识讲解_正弦函数、余弦函数的图象_提高
10知识讲解_正弦函数、余弦函数的图象_提高

正弦函数、余弦函数的图象

【学习目标】

1.了解作正弦函数、余弦函数图象的三种方法;

2.掌握三角函数图象的作用,会用“五点法”作出正弦函数和余弦函数的图象. 【要点梳理】

要点一:正弦函数、余弦函数图象的画法 1.描点法:

按照列表、描点、连线三步法作出正弦函数、余弦函数图象的方法. 2.几何法

利用三角函数线作出正弦函数和余弦函数在]2,0[π内的图象,再通过平移得到x y sin =和cos y x =的图象.

3.五点法

先描出正弦曲线和余弦曲线的波峰、波谷和三个平衡位置这五个点,再利用光滑曲线把这五点连接起来,就得到正弦曲线和余弦曲线在一个周期内的图象.

在确定正弦函数x y sin =在]2,0[π上的图象形状时,起关键作用的五个点是

)0,2(),1,2

3

(),0,(),1,2(),0,0(ππππ-

要点诠释:

(1)熟记正弦函数、余弦函数图象起关键作用的五点.

(2)若x R ∈,可先作出正弦函数、余弦函数在]2,0[π上的图象,然后通过左、右平移可得到x y sin =和cos y x =的图象.

(3)由诱导公式cos sin()2

y x x π

==+,故cos y x =的图象也可以将x y sin =的图象上所有点向左

平移

2

π

个单位长度得到. 要点二:正弦曲线、余弦曲线

(1)定义:正弦函数sin ()y x x R =∈和余弦函数cos ()y x x R =∈的图象分别叫做正弦曲线和余弦曲线.

(2)图象

要点诠释:

(1)由正弦曲线和余弦曲线可以研究正弦函数、余弦函数的性质.

(2)运用数形结合的思想研究与正弦函数、余弦函数有关的问题,如[]0,2x π∈,方程lg sin x x =根的个数.

要点三:函数图象的变换

图象变换就是以正弦函数、余弦函数的图象为基础通过对称、平移而得到.

sin sin()sin()y x y x y A x ?ω?=→=+→=+

【典型例题】 类型一:“五点法”作正、余弦函数的图象 例1.作出下列函数在[-2π,2π]上的图象. (1)1

1cos 3

y x =-;(2)3sin 2y x π??=+

??

?

. 【思路点拨】(1)先利用五点法作出函数11cos 3

y x =-在[0,2π]上的图象,然后作出它关于y 轴对称的图象即可.(2)由于3sin |cos |2y x x π?

?

=+= ??

?

,因此只需作出函数y=|cos x|,x ∈[-2π,2π]的图象即可. x

2

π π

32

π 2π

1

1cos 3

y x =-

23

1

43

1

23

(2)函数y=|cos x|,x ∈[-2π,2π]的图象可采用将函数y=cos x ,x ∈[-2π,2π]的图象在x 轴下方的部分翻折到x 轴上方的方法得到,所得图象如下图所示.

【总结升华】作图是一项很重要的能力,而“五点法”是作三角函数图象的一种非常简便的方法.在利用“五点法”作图时,一定要弄清楚是哪五点,为什么要取这五点等.此外第(2)小题中我们使用了对称变换,并且我们还可以发现,加了绝对值后,其周期变为原来的一半了.

举一反三:

【变式1】用五点法作出下列函数的图象.

(1)2sin y x =-,[0,2]x π∈;

(2)cos 6y x π??

=+

??

?

,11,66x ππ??

∈-

????

. 【思路点拨】(1)取[0,2]π上五个关键的点(0,2)、(2

π

,1)、(,2)π、3(,3)2π、

(2π,2).(2)取11,66ππ??

-

????

上五个关键的点. 【解析】(1)找出五点,列表如下:

x

0 2

π

π

32

π 2π

sin u x =

0 1 0 -1 0 y=2-u

2

1

2

3

2

描点作图(如下图).

(2)找出五点,列表如下:

6

u x π

=+

2π π

32π 2π

x

6

π-

3

π 56

π 43

π 116

π

y=cos u 1

-1

1

描点作图(如下图).

【总结升华】 在精确度要求不太高时,我们常常先找出这五个关键点,再用光滑的曲线将它们连接起来,即可得到函数的简图,这种近似的“五点法”是非常实用的.

类型二:利用图象变换作出函数的图象 例2.(1)作函数21cos y x =- (2)作函数cot sin y x x =的图象.

【思路点拨】(1)要善于利用函数()y f x =的图象来作|()|y f x =及(||)y f x =的图象.

(2)函数cot sin y x x =的定义域为{}|,≠∈x x k k z π,因此作出函数cos y x =的图象后,要把

=x k π(k ∈Z )对应的点去掉.

【解析】 (1)将21cos y x =-化为|sin |y x =,其图象如下图.

(2)当sin 0≠x ,即≠x k π(k ∈Z )时,有cos sin cos sin =?=x

y x x x

,即cos y x =(≠x k π,k ∈Z ).其图象如下图.

【总结升华】 函数的图象变换除了平移变换外,还有对称变换,一般地,函数()f x -的图象与()f x 的图象关于y 轴对称,()f x -与()f x 的图象关于x 轴对称,()f x --和图象与()f x 的图象关于原点对称,

(||)f x 的图象关于y 轴对称.

举一反三:

【变式1】利用图象变换作出下列函数的简图:1cos y x =-.

【解析】先作出cos y x =的图象,然后利用对称作出cos y x =-的图象,最后向上平移1个单位即可,如下图.

类型三:利用函数图象解简单的三角不等式 例3.根据正弦曲线求满足3

sin 2

x ≥-

的x 的范围. 【思路点拨】先在一个周期内求出x 的范围,然后加上周期的整数倍. 【解析】在同一坐标系内作出函数y=sin x 与3

2

y =-

的图象,如下图.

观察在一个周期的闭区间

3

,

22

π

π

??

-??

??

内的情形,满足

3

sin

2

x≥-的

4

,

33

x

π

π

??

∈-??

??

因为正弦函数的周期是2π,所以满足

3

sin x≥-的x的范围是

4

2,2()

33

k k k Z

π

πππ

??

-+∈

??

??

【总结升华】(1)一般地,对于y=sin x,观察其一个周期常常是[0,2π]或

3

,

22

ππ

??

-??

??

;对于y=cos x,

观察其一个周期常常是[0,2π]或[-π,π].

(2)数形结合是重要的数学思想,它能把抽象的问题形象化、直观化,平时解题时要注意运用.(3)正、余弦函数的图象有很多重要的应用,其中利用正弦函数的图象求角的范围(即解三角不等式)是基本的应用之一,要注意结合函数的图象特点和正、余弦函数的周期性等进行求解.举一反三:

【变式1】(2016 河南南阳月考)(1)已知函数y=3cos x,

4

(,)

33

x

ππ

∈-,求单调区间、最值及取得

最值条件.

(2)已知

31

2

θ

-<<,求θ的范围.

【思路点拨】(1)画出y=3cos x,

4

(,)

33

x

ππ

∈-的图象,由图象直接写出答案.

(2)直接根据正弦函数的图象和性质,得到θ的范围.

【解析】(1)画出y=3cos x,

4

(,)

33

x

ππ

∈-的图象,如图所示,

由图象可知单调增区间为

4

(,0),(,)

33

ππ

π

-,单调减区间为(0,π)时,当x=0时,有最大值,最大

值为3,当x=π时,有最小值,最小值为-3;

(2)∵31

sin

2

θ

≤<,

∴2236k k π

π

πθπ-

+<<

+,或

542263

k k πππθπ+<<+,k ∈Z ,

∴θ的范围为54{|22,22,}3663

k k k k k Z ππππ

θπθππθπ-+<<++<<+∈或.

类型四:三角函数图象的应用

例4.(1)方程lg sin x x =的解的个数为( ) A .0 B .1 C .2 D .3

(2)(2015 四川广安模拟)已知函数()sin 2|sin |f x x x =-,x ∈[0,2π],作出函数()f x 的图象;讨论直线y =k 与函数()f x 的交点个数,并求此时的k 的取值范围.

【解析】(1)作出lg y x =与sin y x =的图象,当5

2

x π=

时,5lg 12y π=<,5sin 12y π==,

当92x π=时,9

lg 12

y π=>,lg y x =与sin y x =再无交点.如图所示,由图知有三个交点,∴方程有三个解.

(2)sin [0,]

()3sin [,2]

x x f x x x πππ-∈?=?

∈?的图象如图,

由图象可知:

当k >0或k <―3时,直线y =k 与函数()f x 有0个交点; 当k =―3时,直线y =k 与函数()f x 有1个交点; 当―3<k <―1时,直线y =k 与函数()f x 有2个交点; 当k =0或k =―1时,直线y =k 与函数()f x 有3个交点; 当―1<k <0时,直线y =k 与函数()f x 有4个交点.

【总结升华】利用函数图象讨论不等式的解集和方程的实数根的个数,既直观又简捷,这就是我们常说的“数形结合”思想在解题中的应用,请认真体会.

举一反三:

【变式1】画出图象,判断在[0,2π]内使sin x >cos x 成立的x 的取值范围. 【解析】用“五点法”作出y=sin x ,y=cos x (0≤x ≤2π)的简图如图.

由图象可知(1)当4

x π

=或54

x π

=

时,sin x=cos x . (2)当

544

x π

π

<<

时,sin x >cos x .

(3)当04x π≤<或524

x π

π<≤时,sin x <cos x .

故x ∈[0,2π]时要使sin x >cos x ,则x 的取值范围为5,44ππ??

??

?

专题13幂函数知识点归纳

3 幂函数知识点归纳 一、 幂函数定义:对于形如:() x f x α=,其中α为常数.叫做幂函数 定义说明: 1、 定义具有严格性,x α 系数必须是1,底数必须是x 2、 α取值是R . 3、 《考试标准》要求掌握α=1、2、3、?、-1五种情况 二、 幂函数的图像 幂函数的图像是由α决定的,可分为五类: 1)1α>时图像是竖立的抛物线.例如:()2x f x = 2)=1α时图像是一条直线.即() x f x = 3)01α<< 时图像是横卧的抛物线.例如()1 2 x f x = 4)=0α时图像是除去(0,1)的一条直线.即() 0x f x =(0x ≠) 5)0α<时图像是双曲线(可能一支).例如 ()-1 x f x = 具备规律: ①在第一象限内x=1的右侧:指数越大,图像相对位置越高(指大图高) ②幂指数互为倒数时,图像关于y=x 对称 ③结合以上规律,要求会做出任意一种幂函数图像 练习:做出下列函数的图像: 1、1α> ①3 y x =或53y x = ②2y x =或43y x = ③32y x =或74 y x = 2、01α<< ①13y x = ②23y x = ③12 y x = 3、0α< ①2 y x -= ②1 y x -= ③32 y x - = ④43 y x =— 三、 幂函数的性质 y=x

3 幂函数的性质要结合图像观察,随着α取值范围的变化,性质有所不同。 1、 定义域、值域与α有关,通常化分数指数幂为根式求解 2、 奇偶性要结合定义域来讨论 3、 单调性:α>0时,在(0,+∞)单调递增:α=0无单调性;α<0时,在(0,+∞)单调递减 4、 过定点:α>0时,过(0,0)、(1,1)两点;α≤0时,过(1,1) 5、 由 ()0 x f x α=>可知,图像不过第四象限 四、 幂函数类型题归纳 (一) 定义应用: 1、下列函数是幂函数的是 ______ ①21()y x -= ②22y x = ③21 (1)y x -=+ ④0 y x = ⑤1y = 2、若幂函数()y f x = 的图像过点2????? ,则函数()y f x =的解析式为______. 3、已知函数()() 22 1 44m m f x m m x --=--是幂函数,且经过原点,则实数m 的值为__________. 4、已知函数()()2 2 k k f x x k Z -++=∈满足()()23f f <,则k 的值为________ ,函数()f x 的 解析式为__________ 5、设1112,1,,,,1,2,3232a ? ? ∈--- ???? ,已知幂函数()f x x α=是偶函数,且在区间()0,+∞上是减函数,则满足要求的α值的个数是__________. 6、设()y f x =和()y g x =是两个不同的幂函数,集合()(){} |M x f x g x ==,则集合M 中 元素的个数是( ) (A)1或2或0 (B) 1或2或3(C)1或2或3或4 (D)0或1或2或3 (二) 图像及性质应用 1、 右图为幂函数y x α =在第一象限的图像,则 ,,,a b c d 的大小关系是 ( ) ()A a b c d >>> ()B b a d c >>> d y=x ()C a b d c >>> ()D a d c b >>> 2、如图:幂函数n m y x =(m 、n N ∈,且m 、n 互质)的图象在第一,二象限,且不经过原点,则有 ( ) ()A m 、n 为奇数且 1m n < ()B m 为偶数,n 为奇数,且1m n > ()C m 为偶数,n 为奇数,且1m n < b c

知识讲解 三角函数的性质及其应用 提高

三角函数的性质及其编稿:李霞审稿:孙永钊 【考纲要求】 1、了解函数sin()yAx????的物理意义;能画出sin()yAx????的图象,了解参数 A,?,?对函数图象变化的影响. 2、了解三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单实际问题. 【知识络】 【考点梳理】 考点一、函数sin()yAx????(0A?,0??)的图象的作法 1.五点作图法: 作sin()yAx????的简图时,常常用五点法,五点的取法是设tx????,由t取0、 2?、?、32?、2?来求相应的x值及对应的y值,再描点作图。 2.图象变换法: (1)振幅变换:把sinyx?的图象上各点的纵坐标伸长(A>1)或缩短(00)或向右(?<0)平行移动|?|个单位,得到sin()yAx???的图象; (3)周期变换:把sin()yAx???的图象上各点的横坐标缩短(ω>1)或伸长(0<ω<1)到原来的?1倍(纵坐标不变),可得到sin()yAx????的图象. (4)若要作sin()yAxb????,可将sin()yAx???的图象向上(0)b?或向下(0)b? 平移b个单位,可得到sin()yAxb????的图象.记忆方法仍为“左加右减,上正下负,纵伸(A>1)横缩(ω>1)”。 要点诠释: 由sinyx?的图象利用图象变换作函数sin()yAx????的图象时要特别注意:当周期

变换和相位 sin()yAx???? sin 图象的作法三角函的质其 图象的性 变换的先后顺序不同时,原图象沿x轴的伸缩量有区别. 考点二、sin()yAx????的解析式 1.sin()yAx????的解析式 sin()yAx????(0A?, 0??),[0,)x???表示一个振动量时,A叫做振幅,2T??? 叫做周期,12fT????叫做频率,x???叫做相位,0x?时的相位?称为初相. 2.根据图象求sin()yAx????的解析式 求法为待定系数法,突破口是找准五点法中的第一零点(,0)???. 求解步骤是先由图象求出A与T,再由2T???算出?,然后将第一零点代入0x????求出?. 要点诠释:若图象未标明第一零点,就只能找特殊点用待定系数法计算. 考点三、函数 sin()yAx????(0A?,0??)的性质 1. 定义域: xR?,值域:y∈[-A,A]. 2.周期性: 2T??? 3. 奇偶性:2k?????时为偶函数;k???时为奇函数,kZ?. 4.单调性:单调增区间 :[????????????22,22kk] , kZ? 单调减区间:[????????????232,22kk] , kZ? 5. 对称性:对称中心(????k,0),kZ?;对称轴

正弦函数余弦函数的图像(附答案)

正弦函数、余弦函数的图象 [学习目标] 1.了解利用单位圆中的正弦线画正弦曲线的方法.2.掌握“五点法”画正弦曲线和余弦曲线的步骤和方法,能用“五点法”作出简单的正弦、余弦曲线.3.理解正弦曲线与余弦曲线之间的联系. 知识点一 正弦曲线 正弦函数y =sin x (x ∈R )的图象叫正弦曲线. 利用几何法作正弦函数y =sin x ,x ∈[0,2π]的图象的过程如下: ①作直角坐标系,并在直角坐标系y 轴的左侧画单位圆,如图所示. ②把单位圆分成12等份(等份越多,画出的图象越精确).过单位圆上的各分点作x 轴的垂线,可以得到对应于0,π6,π3,π 2,…,2π等角的正弦线. ③找横坐标:把x 轴上从0到2π(2π≈6.28)这一段分成12等份. ④平移:把角x 的正弦线向右平移,使它的起点与x 轴上的点x 重合. ⑤连线:用光滑的曲线将这些正弦线的终点依次从左到右连接起来,即得y =sin x ,x ∈[0,2π]的图象. 在精度要求不太高时,y =sin x ,x ∈[0,2π]可以通过找出(0,0),(π2,1),(π,0),(3π 2,-1), (2π,0)五个关键点,再用光滑曲线将它们连接起来,就可得正弦函数的简图. 思考 在所给的坐标系中如何画出y =sin x ,x ∈[0,2π]的图象?如何得到y =sin x ,x ∈R 的图象? 答案 y =sin x ,x ∈[0,2π]的图象(借助五点法得)如下: 只要将函数y =sin x ,x ∈[0,2π)的图象向左、向右平行移动(每次2π个单位长度),就可以得到正弦函数y =sin x ,x ∈R 的图象. 知识点二 余弦曲线 余弦函数y =cos x (x ∈R )的图象叫余弦曲线.

指数函数对数函数和幂函数知识点归纳

一、幂函数 1、幂的有关概念 正整数指数幂: ...() n n a a a a n N =∈ 零指数幂: 01(0) a a =≠ 负整数指数幂: 1 (0,) p p a a p N a -=≠∈ 分数指数幂:正分数指数幂的意义是: (0,,,1) m n m n a a a m n N n =>∈> 且 负分数指数幂的意义是: 1 (0,,,1) m n m n m n a a m n N n a a - ==>∈> 且 2、幂函数的定义 一般地,函数 a y x =叫做幂函数,其中x是自变量,a是常数(我们只讨论a是有理数的情况). 3、幂函数的图象 幂函数a y x = 当 11 ,,1,2,3 32 a= 时的图象见左图;当 1 2,1, 2 a=--- 时的图象见上图: 由图象可知,对于幂函数而言,它们都具有下列性质:

a y x =有下列性质: (1)0a >时: ①图象都通过点(0,0),(1,1); ②在第一象限内,函数值随x 的增大而增大,即在(0,)+∞上是增函数. (2)0a <时: ①图象都通过点(1,1); ②在第一象限内,函数值随x 的增大而减小,即在(0,)+∞上是减函数; ③在第一象限内,图象向上与y 轴无限地接近,向右与x 轴无限地接近. (3)任何幂函数的图象与坐标轴至多只有一个交点; (4)任何幂函数图象都不经过第四象限; (5)任何两个幂函数的图象最多有三个交点. 二、指数函数 ①定义:函数)1,0(≠>=a a a y x 且称指数函数, 1)函数的定义域为R ; 2)函数的值域为),0(+∞; 3)当10<a 时函数为增函数. 4)有两个特殊点:零点(0,1),不变点(1,)a . 5)抽象性质: ()()(),()()/()f x y f x f y f x y f x f y +=?-= 三、对数函数 如果b a N =(0a >,1a ≠),那么b 叫做以a 为底N 的对数,记作log a N b = log b a a N N b =?=(0a >,1a ≠,0N >). 1.对数的性质 ()log log log a a a MN M N =+. log log log a a a M M N N =-.

三角函数知识点及例题讲解

三角函数知识点 1.特殊角的三角函数值: (1)平方关系:222222sin cos 1,1tan sec ,1cot csc αααααα+=+=+= (2)倒数关系:sin αcsc α=1,cos αsec α=1,tan αcot α=1, (3)商数关系:sin cos tan ,cot cos sin αα αααα == ) 3、两角和与差的正弦、余弦、正切公式及倍角公式: ()sin sin cos cos sin sin 22sin cos 令αβ αβαβαβααα=±=±???→= ()()2222222cos cos cos sin sin cos 2cos sin 2cos 112sin tan tan 1+cos2tan cos 1tan tan 2 1cos2sin 2 2tan tan 21tan 令 = = αβ αβαβαβααα αα αβα αβααβα αα αα =±=???→=-↓=-=-±±= ?-↓= - (1)巧变角(已知角与特殊角的变换、已知角与目标角的变换、角与其倍角的变换、 两角与其和差角的变换. 如()()ααββαββ=+-=-+,2()()ααβαβ=++-, 2()()αβαβα=+--,22 αβαβ++=?,()( ) 222αββ ααβ+=---等), (2)三角函数次数的降升(降幂公式:21cos 2cos 2αα+=,21cos 2sin 2 α α-=与升幂公 式:21cos 22cos αα+=,21cos 22sin αα-=)。如

(; (3)常值变换主要指“1”的变换(221sin cos x x =+22sec tan tan cot x x x x =-=? tan sin 42 ππ=== 等),. 。 (4)周期性:①sin y x =、cos y x =的最小正周期都是2π;②()sin()f x A x ω?=+和 ()cos()f x A x ω?=+的最小正周期都是2||T π ω=。如 (5)单调性:()sin 2,222y x k k k Z ππππ? ?=-+∈??? ?在上单调递增,在 ()32,222k k k Z ππππ??++∈??? ?单调递减;cos y x =在[]()2,2k k k Z πππ+∈上单调递减,在[]()2,22k k k Z ππππ++∈上单调递增。特别提醒,别忘了k Z ∈! (6)、形如sin()y A x ω?=+的函数: 1几个物理量:A ―振幅;1 f T =―频率(周期的倒数); x ω?+― 相位;?―初相; 2函数sin()y A x ω?=+表达式的确定:A 由周 期确定;?由图象上的特殊点确()sin()(0,0f x A x A ω?ω=+>>,||)2 π?<()f x =_____(答:15()2sin()23 f x x π =+); 3函数sin()y A x ω?=+图象的画法:①“五点法”――设X x ω?=+,令X =0,3,,,222 ππ ππ求出相应的x 值,计算得出五点的坐标,描点后得出图象;②图象变换法:这是作函数简图常用方法。 4函数sin()y A x k ω?=++的图象与sin y x =图象间的关系:①函数sin y x =的图象纵坐标不变,横坐标向左(?>0)或向右(?<0)平移||?个单位得()sin y x ?=+的图象;②函数()si n y x ?=+图象的纵坐标不变,横坐标变为原来的 1 ω ,得到函数 ()sin y x ω?=+的图象;③函数()sin y x ω?=+图象的横坐标不变,纵坐标变为原来的A 倍,得到函数sin()y A x ω?=+的图象;④函数sin()y A x ω?=+图象的横坐标不变,纵坐标向上(0k >)或向下(0k <),得到()sin y A x k ω?=++的图象。要特别注意,若由 ()sin y x ω=得到()sin y x ω?=+的图象,则向左或向右平移应平移| |? ω 个单位,如 (1)函数2sin(2)14 y x π =--的图象经过怎样的变换才能得到sin y x =的图象?

正弦函数、余弦函数的图像

正弦函数、余弦函数的图像 撰稿:游斌 修订:高一备课组 学生姓名:__________第___小组 一、学习目标,心中有数: 1、了解用正弦线作正弦函数的图像的方法;能通过适当的图形变换由正弦函数的图像得到余 弦函数的图像; 2、掌握用“五点法”作正弦函数、余弦函数的简图; 3、能用“五点法。”作正弦型和余弦型函数的简图。 二.自主学习,体验成功: (一)、知识梳理 形成体系 1、多媒体演示利用正弦线作正弦函数在[]π2,0上的图像 2、怎样可以得到R x x y ∈=,sin 的图像? 因为终边相同的角有相同的三角函数值,所以函数 []0,)1(2,2,sin ≠∈+∈=k Z k k k x x y 且ππ的图像与函数[]π2,0,sin ∈=x x y 的图像的形状完全一致,于是我们只要将函数[]π2,0,sin ∈=x x y 的图像向左、向右平行移动(每次π2单位长度),就可以得到R x x y ∈=,sin 的图像,正弦函数的图像叫做正弦曲线。 3、因为)2 sin( cos x x +=π ,而)2 sin( x y +=π 的图像可以由x y sin =的图像向左平移 2 π 得到,

所以x y cos =的图像也可以由x y sin =的图像向左平移 2 π 得到。 余弦函数的图像叫做余弦曲线。 4、观察正弦函数在[]π2,0上的图像,其中起关键作用的点有哪些?利用这些关键点作出正弦函数x y sin =在[]π2,0上的简图。 (1)列表: (2)在直角坐标系中描点、并用平滑曲线连接起来。 这种作图方法叫做“五点法”。 (二)、课前热身 自我检测 画出下列函数的简图: (1)x y sin 1+=,[]π2,0∈x (2)x y cos -=,[]π2,0∈x x y o

幂函数知识点总结与练习题

幂函数 (1)幂函数的定义: 一般地,函数y x α =叫做幂函数,其中x 为自变量,α是常数. ①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于y 轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限. ②过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1). ③单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限,图象无限接近x 轴与y 轴. ④奇偶性:当α为奇数时,幂函数为奇函数,当α为偶数时,幂函数为偶函数.当q p α= (其中,p q 互质,p 和q Z ∈),若p 为奇数q 为奇数时,则q p y x =是奇函数,若p 为奇数q 为偶数时,则q p y x =是偶函数,若p 为偶数q 为奇数时,则q p y x =是非奇非偶函数. ⑤图象特征:幂函数,(0,)y x x α =∈+∞,当1α>时,若01x <<,其图象在直线y x =下 方,若1x >,其图象在直线y x =上方,当1α<时,若01x <<,其图象在直线y x =上

方,若1x >,其图象在直线y x =下方. 幂函数练习题 一、选择题: 1.下列函数中既是偶函数又是(,)-∞0上是增函数的是 ( ) A .y x =43 B .y x =32 C .y x =-2 D .y x =-14 2.函数2 -=x y 在区间]2,2 1[上的最大值是 ( ) A . 4 1 B .1- C .4 D .4- 3.下列所给出的函数中,是幂函数的是 ( ) A .3 x y -= B .3 -=x y C .3 2x y = D .13 -=x y 4.函数3 4x y =的图象是 ( ) A . B . C . D . 5.下列命题中正确的是 ( ) A .当0=α时函数α x y =的图象是一条直线 B .幂函数的图象都经过(0,0)和(1,1)点 C .若幂函数αx y =是奇函数,则α x y =是定义域上的增函数 D .幂函数的图象不可能出现在第四象限 6.函数3 x y =和3 1 x y =图象满足 ( ) A .关于原点对称 B .关于x 轴对称 C .关于y 轴对称 D .关于直线x y =对称 7. 函数R x x x y ∈=|,|,满足 ( ) A .是奇函数又是减函数 B .是偶函数又是增函数 C .是奇函数又是增函数 D .是偶函数又是减函数 8.如图1—9所示,幂函数α x y =在第一象限的图象,比较1,,,,,04321αααα的大小( ) A .102431<<<<<αααα B .104321<<<<<αααα 1α 4α 2α

知识讲解_已知三角函数值求角

已知三角函数值求角 【学习目标】 1、掌握已知三角函数值求角的解题步骤; 2、要求学生初步(了解)理解反正弦,反余弦,反正切函数的意义,会由已知角的正弦值、余弦值、正切值求出[]π2,0范围内的角,并能用反正弦,反余弦,反正切的符号表示角或角的集合 【要点梳理】 要点一:反正弦,反余弦,反正切函数的定义 (1)一般地,对于正弦函数sin y x =,如果已知函数值[](1,1)y y ∈-,那么在,22ππ?? -???? 上有唯一的x 值 和它对应,记为arcsin x y =(其中11,22y x ππ-≤≤-≤≤).即arcsin y (||1y ≤)表示,22ππ?? -???? 上正弦等于y 的那个角. (2)在区间[]0,π上符合条件cos (11)x y y =-≤≤的角x ,记为arccos x y =. (3)一般地,如果tan ()x y y R =∈,且,22x ππ??∈- ???,那么对每一个正切值y ,在开区间,22ππ?? - ??? 内, 有且只有一个角x ,使tan x y =.符合上述条件的角x ,记为arctan ,(,)22 x y x ππ =∈-. 要点二:已知正弦值、余弦值和正切值,求角 已知角x 的一个三角函数值求角x ,所得的角不一定只有一个,角的个数要根据角的取值范围来确定,这个范围应该在题目中给定,如果在这个范围内有已知三角函数值的角不止一个,解法可以分为以下几步: 第一步,决定角可能是第几象限角. 第二步,如果函数值为正数,则先求出对应的锐角1x ;如果函数值为负数,则先求出与其绝对值对应的锐角1x . 第三步,如果函数值为负数,则可根据x 可能是第几象限角,得出(0,2π)内对应的角;如果它是第二象限角,那么可表示为-1x +π;如果它是第三或第四象限角,那么可表示为1x +π或-1x +2π. 第四步,如果要求(0,2π)以外对应的角,则可利用终边相同的角有相同的三角函数值这一规律写出结果. 【典型例题】 类型一:已知正弦值、余弦值,求角 例1.已知sin 2 x =- ,(1)x ∈[]0,2π,(2)x R ∈,求角x . 【思路点拨】因为所给的正弦值是负数,所以先求出其绝对值对应的锐角,然后在求出其他象限的角. 【解析】 (1)由sin 2 x =- 知x 的正弦值是个负值,所以x 是第三象限或第四象限的角.因为sin 42π=,所 以第三象限的那个角是544π ππ+ = ,第四象限的角是7244 ππ π-=.

必修4正弦函数和余弦函数的图像与性质

必修4正弦函数和余弦函数的图像与性质 例1 用五点法做出下列函数的图像 11(1)2sin ,[0,2];(2)cos(),[,]666 y x x y x x ππππ=-∈=+∈- 例2 求下列函数的定义域和值域 (1)lgsin ;(2)y x y == 练:求函数sin ()log (12cos )x f x x =+的定义域。 例3 已知函数()y f x =的定义域是1 [0,]4 ,求下列函数的定义域 221(1)(cos );(2)(sin )2 f x f x - 例4 求下列函数的最大值与最小值 22(1)2sin();(2)2cos 5sin 4;42(3)3cos 4cos 1,[,]33 y x y x x y x x π ππ=--=+-=-+∈

例5 设1 sin sin 3x y +=,求2sin cos M x y =-的最小值和最大值 例6 求下列函数的值域 2cos 2sin cos (1);(2)2cos 11sin x x x y y x x ==++ 例7已知a 是实数,则函数f (x )=1+asinax 的图象不可能是( ) A . B . C . D . 例8 求下列函数的周期。 (1)|sin ||cos |;(2)cos |2|(3)cos()6y x x y x y x π =+==-- 例9 判断函数7())2f x x π =+的奇偶性 例10 判断函数()lg(sin f x x =+的奇偶性

例11求函数1sin 2 x y π-=的单调区间 提升训练题 1.下列四个函数的图像中关于y 轴对称的是( ) .sin ;.cos ;.1sin ;.cos()2 A y x B y x C y x D y x π ==-=-=- 2.函数sin 2x y =的单调增区间是( ) 3.[2,2]();.[2,2]()2222 .[2,2]();.[2,2]()A k k k Z B k k k Z C k k k Z D k k k Z π πππππππππππππ- +∈++∈-∈+∈ 3.下列函数中是奇函数的是( ) .|sin |;.sin(||);.sin ||;.sin ||A y x B y x C y x D y x x =-=-== 4.sin()3y x π =-的单调减区间是( ) 55.[,]();[2,2]()666677.[,]();.[2,2]();6666A k k k Z B k k k Z C k k k Z D k k k Z ππππππππππππππππ-+ ∈-+∈--∈--∈ 5.函数2cos 3cos 2y x =-+的最小值为______________________ 6.函数|sin |2x y =的最小正周期____________________ 7.cos1,cos2,cos3的大小关系____________________ 8.函数3cos 1cos 2 x y x += +的值域是____________________

幂函数知识点及典型题

幂函数 知识点 一、幂函数的定义 一般地,形如y x α =(R x ∈)的函数称为幂孙函数,其中x 是自变量,α是常数.如1 12 3 4 ,,y x y x y x -===等 都是幂函数 二、幂函数的图像 幂函数n y x =随着n 的不同,定义域、值域都会发生变化,可以采取按性质和图像分类记忆的方法.熟练掌握n y x =,当11 2,1,,,323 n =±±± 的图像和性质,列表如下. ① 它们都过点()1,1,除原点外,任何幂函数图像与坐标轴都不相交,任何幂函数图像都不过第四象限. ② 11 ,,1,2,332a =时,幂函数图像过原点且在[)0,+∞上是增函数. ③ 1 ,1,22 a =---时,幂函数图像不过原点且在()0,+∞上是减函数. ④ 任何两个幂函数最多有三个公共点. 三、幂函数基本性质 (1)所有的幂函数在(0,+∞)都有定义,并且图象都过点(1,1); (2)α>0时,幂函数的图象都通过原点,并且在[0,+∞]上,是增函数 (3)α<0时,幂函数的图象在区间(0,+∞)上是减函数. 四、解题方法总结 1.在研究幂函数的性质时,通常将分式指数幂化为根式形式,负整指数幂化为分式形式再去进行讨论; 2.对于幂函数y =α x ,我们首先应该分析函数的定义域、值域和奇偶性,由此确定图象的位置,即所在象 限,其次确定曲线的类型,即α<0,0<α<1和α>1三种情况下曲线的基本形状,还要注意α=0,±1三个曲线的形状;对于幂函数在第一象限的图象的大致情况可以用口诀来记忆:“正抛负双,大竖小横”,即α>0(α≠1)时图象是抛物线型;α<0时图象是双曲线型;α>1时图象是竖直抛物线型;0<α<1时图象是横卧抛物线型. 典型题 类型一、求函数解析式 例1.已知幂函数2 223 (1)m m y m m x --=--,当(0)x ∈+, ∞时为减函数,则幂函数y =__________. 类型二、比较幂函数值大小 例2.比较下列各组数的大小. (1)4 3 3.14 -与43 π - (2)35 (- 与35 (- (3)比较0.5 0.8 ,0.5 0.9,0.5 0.9 -的大小 类型三、求参数的范围

指数、对数及幂函数知识点小结及习题

指数函数、对数函数及幂函数 Ⅰ.指数与指数函数 1.指数运算法则:(1)r s r s a a a +=; (2)() s r rs a a =; (3)()r r r ab a b =; (4)m n m n a a =; (5)m n n m a a - = (6),||,n n a n a a n ?=? ?奇偶 2. 指数函数: 【基础过关】 类型一:指数运算的计算题 此类习题应牢记指数函数的基本运算法则,注意分数指数幂与根式的互化,在根式运算或根 指数函数 01 图 象 表达式 x y a = 定义域 R 值 域 (0,)+∞ 过定点 (0,1) 单调性 单调递减 单调递增

式与指数式混合运算时,将根式化为指数运算较为方便 1 、5+的平方根是______________________ 2、 已知2=n a ,16=mn a ,则m 的值为………………………………………………( ) A .3 B .4 C .3 a D .6 a 3、 化简 (b a b +-的结果是………………………………( ) A 、a - 、a a D 、2b a + 4、已知0.001a = ,求:413 3 223 3 8(14a a b a b -÷-+=_________________ 5、已知1 3x x -+=,求(1)1 12 2 x x - +=________________(2)332 2 x x -+=_________________ 6 、若y y x x -+=,其中1,0x y ><,则y y x x --=______________ 类型二:指数函数的定义域、表达式 指数函数的定义域主要涉及根式的定义域,注意到负数没有偶次方根;此外应牢记指数函数的图像及性质 函数) (x f a y =的定义域与)(x f 的定义域相同 1、若集合A={ 113x x y -= },B={ x s A B =?= 则____________________ 2、如果函数()y f x =的定义域是[1,2],那么函数 1(2)x y f -=的定义域是________ 3、下列函数式中,满足f(x+1)=1 2f(x)的是……………………………………………( ) A 、()1 12x + B 、 1 4x + C 、2x D 、

1.4.1正弦函数、余弦函数的图象知识点归纳与练习(含详细答案)

第一章 三角函数 §1.4 三角函数的图象与性质 1.4.1 正弦函数、余弦函数的图象 课时目标 1.了解正弦函数、余弦函数的图象.2.会用“五点法”画出正弦函数、余弦函数 的图象. 1.正弦曲线、余弦曲线 2.“五点法”画图 画正弦函数y =sin x ,x ∈[0,2π]的图象,五个关键点是_________________________; 画余弦函数y =cos x ,x ∈[0,2π]的图象,五个关键点是__________________________. 3.正、余弦曲线的联系 依据诱导公式cos x =sin ????x +π2,要得到y =cos x 的图象, 只需把y =sin x 的图象向________平移π 2个单位长度即可. 知识点归纳: 1.正、余弦曲线在研究正、余弦函数的性质中有着非常重要的应用,是运用数形结合思想解决三角函数问题的基础. 2.五点法是画三角函数图象的基本方法,要熟练掌握,与五点法作图有关的问题是高考常考知识点之一. 一、选择题 1.函数y =sin x (x ∈R )图象的一条对称轴是( ) A .x 轴 B .y 轴 C .直线y =x D .直线x =π 2 2.函数y =cos x (x ∈R )的图象向右平移π 2 个单位后,得到函数y =g (x )的图象,则g (x )的解析 式为( ) A .-sin x B .sin x C .-cos x D .cos x

3.函数y =-sin x ,x ∈[-π2,3π 2 ]的简图是( ) 4.在(0,2π)内使sin x >|cos x |的x 的取值范围是( ) A.????π4,3π4 B.????π4,π2∪????5π4,3π2 C.????π4,π2 D.??? ?5π4,7π4 5.若函数y =2cos x (0≤x ≤2π)的图象和直线y =2围成一个封闭的平面图形,则这个封闭图形的面积是( ) A .4 B .8 C .2π D .4π 6.方程sin x =lg x 的解的个数是( ) 7.函数y =sin x ,x ∈R 的图象向右平移π 2个单位后所得图象对应的函数解析式是__________. 8.函数y =2cos x +1的定义域是________________. 9.方程x 2-cos x =0的实数解的个数是________. 10.设0≤x ≤2π,且|cos x -sin x |=sin x -cos x ,则x 的取值范围为________. 三、解答题 11.利用“五点法”作出下列函数的简图: (1)y =1-sin x (0≤x ≤2π); (2)y =-1-cos x (0≤x ≤2π).

正弦函数余弦函数的图像(附)

正弦函数、余弦函数的图象 [学习目标] 1.了解利用单位圆中的正弦线画正弦曲线的方法.2.掌握“五点法”画正弦曲线和余弦曲线的步骤和方法,能用“五点法”作出简单的正弦、余弦曲线.3.理解正弦曲线与余弦曲线之间的联系. 知识点一 正弦曲线 正弦函数y =sin x (x ∈R )的图象叫正弦曲线. 利用几何法作正弦函数y =sin x ,x ∈[0,2π]的图象的过程如下: ①作直角坐标系,并在直角坐标系y 轴的左侧画单位圆,如图所示. ②把单位圆分成12等份(等份越多,画出的图象越精确).过单位圆上的各分点作x 轴的垂线,可以得到对应于0,π6,π3,π 2,…,2π等角的正弦线. ③找横坐标:把x 轴上从0到2π(2π≈6.28)这一段分成12等份. ④平移:把角x 的正弦线向右平移,使它的起点与x 轴上的点x 重合. ⑤连线:用光滑的曲线将这些正弦线的终点依次从左到右连接起来,即得y =sin x ,x ∈[0,2π]的图象. 在精度要求不太高时,y =sin x ,x ∈[0,2π]可以通过找出(0,0),(π2,1),(π,0),(3π 2,-1), (2π,0)五个关键点,再用光滑曲线将它们连接起来,就可得正弦函数的简图. 思考 在所给的坐标系中如何画出y =sin x ,x ∈[0,2π]的图象?如何得到y =sin x ,x ∈R 的图象?

答案 y =sin x ,x ∈[0,2π]的图象(借助五点法得)如下: 只要将函数y =sin x ,x ∈[0,2π)的图象向左、向右平行移动(每次2π个单位长度),就可以得到正弦函数y =sin x ,x ∈R 的图象. 知识点二 余弦曲线 余弦函数y =cos x (x ∈R )的图象叫余弦曲线. 根据诱导公式sin ????x +π2=cos x ,x ∈R .只需把正弦函数y =sin x ,x ∈R 的图象向左平移π2个单位长度即可得到余弦函数图象(如图). 要画出y =cos x ,x ∈[0,2π]的图象,可以通过描出(0,1),????π2,0,(π,-1),????3 2π,0,(2π,1)五个关键点,再用光滑曲线将它们连接起来,就可以得到余弦函数y =cos x ,x ∈[0,2π]的图象. 思考 在下面所给的坐标系中如何画出y =cos x ,x ∈[0,2π]的图象? 答案

高一数学幂函数知识点总结

高一数学幂函数知识点总结 函数是高中数学中比较重要的一项知识,学好函数可以提高自己的数学知识水平。下面就让小编给大家分享一些高一数学幂函数知识点总结吧,希望能对你有帮助! 高一数学幂函数知识点总结篇一一、一次函数定义与定义式:自变量x和因变量y有如下关系: y=kx+b 则此时称y是x的一次函数。 特别地,当b=0时,y是x的正比例函数。 即:y=kx(k为常数,k0) 二、一次函数的性质: 1.y的变化值与对应的x的变化值成正比例,比值为k 即:y=kx+b(k为任意不为零的实数b取任何实数) 2.当x=0时,b为函数在y轴上的截距。 三、一次函数的图像及性质: 1.作法与图形:通过如下3个步骤 (1)列表; (2)描点; (3)连线,可以作出一次函数的图像一条直线。因此,作一次函数的图像只需知道2点,并连成直线即可。(通常找函数图像与x轴

和y轴的交点) 2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。 3.k,b与函数图像所在象限: 当k0时,直线必通过一、三象限,y随x的增大而增大; 当k0时,直线必通过二、四象限,y随x的增大而减小。 当b0时,直线必通过一、二象限; 当b=0时,直线通过原点 当b0时,直线必通过三、四象限。 特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。 这时,当k0时,直线只通过一、三象限;当k0时,直线只通过二、四象限。 四、确定一次函数的表达式: 已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。 (1)设一次函数的表达式(也叫解析式)为y=kx+b。 (2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。所以可以列出2个方程:y1=kx1+b①和y2=kx2+b② (3)解这个二元一次方程,得到k,b的值。 (4)最后得到一次函数的表达式。

同角三角函数的基本关系式知识讲解(学校教学)

同角三角函数基本关系 【学习目标】 1.借助单位圆,理解同角三角函数的基本关系式: αα α ααtan cos sin ,1cos sin 2 2==+,掌握已知一个角的三角函数值求其他三角函数值的方法; 2.会运用同角三角函数之间的关系求三角函数值、化简三角式或证明三角恒等式。 【要点梳理】 要点一:同角三角函数的基本关系式 (1)平方关系:2 2sin cos 1αα+= (2)商数关系: sin tan cos α αα = (3)倒数关系:tan cot 1?=αα,sin csc 1αα?=,cos sec 1αα?= 要点诠释: (1)这里“同角”有两层含义,一是“角相同”,二是对“任意”一个角(使得函数有意义的前提下)关系式都成立; (2)2 sin α是2 (sin )α的简写; (3)在应用平方关系时,常用到平方根,算术平方根和绝对值的概念,应注意“±”的选取。 要点二:同角三角函数基本关系式的变形 1.平方关系式的变形: 2222sin 1cos cos 1sin αααα=-=-,,212sin cos (sin cos )αααα±?=± 2.商数关系式的变形 sin sin cos tan cos tan α ααααα =?= ,。 【典型例题】 类型一:已知某个三角函数值求其余的三角函数值 例1.已知tan α=-2,求sin α,cos α的值。 【思路点拨】先利用sin "tan 2"cos α αα = =-,求出sin α=-2cos α,然后结合sin 2α+cos 2α=1,求出sin α,cos α。 【解析】 解法一:∵tan α=-2,∴sin α=-2cos α。 ① 又sin 2α+cos 2α=1, ② 由①②消去sin α得(-2cos α)2+cos 2α=1,即2 1cos 5 α= 。 当α为第二象限角时,5 cos α=,代入①得25sin α=。

2017幂函数知识总结

幂 函 数 复 习 一、幂函数定义:形如 )(R x y ∈=αα的函数称为幂函数,其中x 是自变量,α是常数。 注意:幂函数与指数函数有何不同? 【思考·提示】 本质区别在于自变量的位置不同,幂函数的自变量在底数位置,而指数函数的自变量在指数位置. 观察图:

归纳:幂函数图像在第一象限的分布情况如下: 二、幂函数的性质 归纳:幂函数在第一象限的性质: 0>α,图像过定点(0,0)(1,1),在区间(+∞,0)上单调递增。 0<α,图像过定点(1,1),在区间(+∞,0)上单调递减。 探究:整数m,n 的奇偶与幂函数n m x y =),,,(互质且n m Z n m ∈的定义域以及奇偶性有什么关系?

结果:形如n m x y =),,,(互质且n m Z n m ∈的幂函数的奇偶性 (1)当m ,n 都为奇数时,f (x )为奇函数,图象关于原点对称; (2)当m 为奇数n 为偶数时,f (x )为偶函数,图象关于y 轴对称; (3)当m 为偶数n 为奇数时,f (x )是非奇非偶函数,图象只在第一象限内. 三、幂函数的图像画法: 关键先画第一象限,然后根据奇偶性和定义域画其它象限。 指数大于1,在第一象限为抛物线型(凹); 指数等于1,在第一象限为上升的射线; 指数大于0小于1,在第一象限为抛物线型(凸); 指数等于0,在第一象限为水平的射线; 指数小于0,在第一象限为双曲线型; 2、幂函数),,,,(互质q p Z q p p q x y ∈==αα的图像: 3、比较幂形式的两个数的大小,一般的思路是: (1)若能化为同指数,则用幂函数的单调性; (2)若能化为同底数,则用指数函数的单调性; (3)若既不能化为同指数,也不能化为同底数,则需寻找一个恰当的数作为桥梁来比较大小. .经典例题:

三角函数知识点归纳自组

三角函数 一、任意角、弧度制及任意角的三角函数 1.任意角 (1)角的概念的推广 ①按旋转方向不同分为正角、负角、零角. ?? ??? 正角:按逆时针方向旋转形成的角任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角 ②按终边位置不同分为象限角和轴线角. 角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角. 第一象限角的集合为{} 36036090,k k k αα?<

相关文档
最新文档