高考数学考点归纳之古典概型与几何概型
高考一轮总复习-082.古典概型与几何概型(基础)-知识讲解

高考总复习:古典概型与几何概型【考点梳理】知识点一、古典概型1. 定义具有如下两个特点的概率模型称为古典概型:(1)试验中所有可能出现的基本事件只有有限个;(2)每个基本事件出现的可能性相等。
2. 古典概型的基本特征(1)有限性:即在一次试验中,可能出现的结果,只有有限个,也就是说,只有有限个不同的基本事件。
(2)等可能性:每个基本事件发生的可能性是均等的。
3.古典概型的概率计算公式由于古典概型中基本事件发生是等可能的,如果一次试验中共有n 种等可能的结果,那么每一个基本事件的概率都是1n。
如果某个事件A 包含m 个基本事件,由于基本事件是互斥的,则事件A 发生的概率为其所含m 个基本事件的概率之和,即n m A P =)(。
所以古典概型计算事件A 的概率计算公式为:试验的基本事件总数包含的基本事件数事件A A P =)( 4.求古典概型的概率的一般步骤:(1)算出基本事件的总个数n ;(2)计算事件A 包含的基本事件的个数m ;(3)应用公式()m P A n=求值。
5.古典概型中求基本事件数的方法:(1)穷举法;(2)树形图;(3)排列组合法。
利用排列组合知识中的分类计数原理和分步计数原理,必须做到不重复不遗漏。
知识点二、几何概型1. 定义:事件A 理解为区域Ω的某一子区域A ,A 的概率只与子区域A 的几何度量(长度、面积或体积)成正比,而与A 的位置和形状无关。
满足以上条件的试验称为几何概型。
2.几何概型的两个特点:(1)无限性,即在一次试验中基本事件的个数是无限的;(2)等可能性,即每一个基本事件发生的可能性是均等的。
3.几何概型的概率计算公式:随机事件A 的概率可以用“事件A 包含的基本事件所占的图形面积(体积、长度)”与“试验的基本事件所占总面积(体积、长度)”之比来表示。
所以几何概型计算事件A 的概率计算公式为:Ω=μμA A P )( 其中μΩ表示试验的全部结果构成的区域Ω的几何度量,A μ表示构成事件A 的区域的几何度量。
古典概型与几何概型

古典概型与几何概型一)古典概型(1)特点:1)试验中所有可能出现的基本事件只有有限个;2)每个基本事件出现的可能性相等; (2)概率计算公式:P (A )=总的基本事件个数包含的基本事件个数A ;P (A )=nm 。
二)几何概型1.随机数的概念随机数是在一定范围内随机产生的数,并且得到这个范围内任何一个数的机会是均等的。
2.随机数的产生方法 3.几何概型的概念如果事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称模型为几何概率模型; 4.几何概型的概率公式: P (A )=积)的区域长度(面积或体试验的全部结果所构成积)的区域长度(面积或体构成事件A 。
5.几种常见的几何概型(1)设线段l 是线段L 的一部分,向线段L 上任投一点.若落在线段l 上的点数与线段L 的长度成正比,而与 线段l 在线段l 上的相对位置无关,则点落在线段l 上的概率为:P=l 的长度/L 的长度(2)设平面区域g 是平面区域G 的一部分,向区域G 上任投一点,若落在区域g 上的点数与区域g 的面积成 正比,而与区域g 在区域G 上的相对位置无关,则点落在区域g 上概率为:P=g 的面积/G 的面积 (3)设空间区域上v 是空间区域V 的一部分,向区域V 上任投一点.若落在区域v 上的点数与区域v 的体积 成正比,而与区域v 在区域v 上的相对位置无关,则点落在区域V 上的概率为:P=v 的体积/V 的体积题型一 古典概型类型1 骰子硬币型1.先后抛掷两颗骰子,设出现的点数之和是12,11,10的概率依次是P1,P2,P3 ,则( ) A . P1=P2<P3 B . P1<P2<P3 C . P1<P2=P3 D .P3=P2<P12.将一颗骰子连续抛掷两次,至少出现一次6点向上的概率是( )A . 118 B .1136 C . 2536 D .1363.同时掷两颗骰子,下列命题正确的个数是( ) ①“两颗点数都是6”比“两颗点数都是4”的可能性小;②“两颗点数相同的概率”都是16; ③“两颗点数都是6”的概率最大;④“两颗点数之和为奇数”的概率与“两颗点数之和为偶数”的概率相等。
高考数学讲义概率_古典概型与几何概型.板块二.几何概型.教师版

版块一:古典概型1.古典概型:如果一个试验有以下两个特征:⑴有限性:一次试验出现的结果只有有限个,即只有有限个不同的基本事件; ⑵等可能性:每个基本事件发生的可能性是均等的. 称这样的试验为古典概型. 2.概率的古典定义:随机事件A 的概率定义为()P A =A 事件包含的基本事件数试验的基本事件总数.版块二:几何概型几何概型事件A 理解为区域Ω的某一子区域A ,A 的概率只与子区域A 的几何度量(长度、面积或体积)成正比,而与A 的位置和形状无关,满足此条件的试验称为几何概型. 几何概型中,事件A 的概率定义为()AP A μμΩ=,其中μΩ表示区域Ω的几何度量, A μ表示区域A 的几何度量.题型一:一维情形【例1】 在区间[010],中任意取一个数,则它与4之和大于10的概率是______. 【考点】几何概型:一维情形 【难度】1星 【题型】填空 【关键字】无【解析】几何概型,只能在(610],取数,所求概率为10621005-=-. 【答案】25; 知识内容典例分析板块二.几何概型【例2】 在长为18cm 的线段AB 上任取一点M ,并以线段AM 为边作正方形,则这个正方形的面积介于36cm 2与81cm 2之间的概率为( )A .56B .12C .13D .16【考点】几何概型:一维情形 【难度】1星 【题型】选择 【关键字】无【解析】能在6~9cm 处取,几何概型,所求概率为961186-=. 【答案】D ;【例3】 两根相距3m 的木杆上系一根拉直的绳子,并在绳子上挂一彩珠,则彩珠与两端距离都大于1m 的概率为( )A .12B .13C .14D .23【考点】几何概型:一维情形 【难度】1星 【题型】选择 【关键字】无【解析】只能在绳子的中间那1m 处,因此概率为13.【答案】B ;题型二:二维情形【例4】 某人向一个半径为6的圆形标靶射击,假设他每次射击必定会中靶,且射中靶内各点是随机的,则此人射击中靶点与靶心的距离小于2的概率为( )A .113B .19C .14D .12【考点】几何概型:二维情形 【难度】1星【题型】选择【关键字】2010年,北京东城1模【解析】满足几何概型,概率为面积比22π21π69⋅=⋅.【答案】B ;【例5】 在边长为1的正方形ABCD 内任取一点P ,则点P 到点A 的距离小于1的概率为 . 【考点】几何概型:二维情形 【难度】1星 【题型】填空【关键字】2010年,北京西城1模【解析】当P 点在阴影内部时,满足到点A 的距离小于1,概率满足几何概型,故所求的概率为面积比21ππ144⋅=.【答案】π4;【例6】 一个正三角形的外接圆的半径为1,向该圆内随机投一点P ,点P 恰好落在正三角形外的概率是_________. 【考点】几何概型:二维情形 【难度】2星 【题型】填空【关键字】2010年,北京丰台2模2=,外接圆的面积为2π1π⋅=,于是点P恰好落在正三角形外的概率是1【答案】1【例7】 在直角坐标系xOy 中,设集合{}(,)01,01x y x y Ω=≤≤≤≤,在区域Ω内任取一点(,)P x y ,则满足1x y +≤的概率等于 .【考点】几何概型:二维情形 【难度】2星 【题型】填空【关键字】2010年,北京东城2模【解析】Ω是如图所示的正方形,当P 在图中的阴影部分时满足要求,故所求概率为12OAB OACB S S =△.【答案】12;【例8】 已知(){},|6,0,0x y x y x y Ω=+≤≥≥,{}(,)4,0,20A x y x y x y =-≤≥≥.若向区域Ω上随机投一点P ,则点P 落入区域A 的概率是_________.【考点】几何概型:二维情形 【难度】2星 【题型】填空【关键字】2010年,北京丰台2模【解析】如图,区域Ω的面积为166182⨯⨯=,区域A 的面积为14242⨯⨯=,因此点P 落入区域A 的概率是42189=.【答案】29;【例9】 在平面直角坐标系xOy 中,平面区域W 中的点的坐标(,)x y 满足225x y +≤,从区域W 中随机取点(,)M x y .⑴若x ∈Z ,y ∈Z ,求点M 位于第四象限的概率;⑵已知直线:(0)l y x b b =-+>与圆22:5O x y +=,求y x b -+≥的概率.【考点】几何概型:二维情形 【难度】4星 【题型】解答【关键字】2010年,北京崇文2模 【解析】略【答案】⑴若x ∈Z ,y ∈Z ,则点M 的个数共有21个,列举如下:(2,1),(2,0),(2,1)----;(1,2),(1,1),(1,0),(1,1),(1,2)-------; (0,2),(0,1),(0,0),(0,1),(0,2)--;(1,2),(1,1),(1,0),(1,1),(1,2)--; (2,1),(2,0),(2,1)-.当点M 的坐标为(1,1),(1,2),(2,1)---时,点M 位于第四象限.故点M 位于第四象限的概率为17.⑵由已知可知区域W 的面积是5π.因为直线:l y x b =-+与圆22:5O x y +=15如图,可求得扇形的圆心角为2π3,所以扇形的面积为125π55π233S =⨯=,则满足y x b -+≥的点M 构成的区域的面积为 51220π153π55sin π32S -=-=, 所以y x b -+≥的概率为20π1534π33125π--=.【例10】 设集合{}1,2,3P =和{}1,1,2,3,4Q =-,分别从集合P 和Q 中随机取一个数作为a 和b 组成数对(),a b ,并构成函数()241f x ax bx =-+. ⑴ 写出所有可能的数对(),a b ,并计算2a ≥,且3b ≤的概率; ⑵ 求函数()f x 在区间[)1,+∞上是增函数的概率.【考点】几何概型:二维情形 【难度】4星 【题型】解答【关键字】2010年,丰台2模 【解析】略【答案】⑴ 所有基本事件如下:()1,1-,()1,1,()1,2,()1,3,()1,4,()2,1-,()2,1,()2,2,()2,3,()2,4,()3,1-,()3,1,()3,2,()3,3,()3,4,共有15个.设事件“2a ≥,且3b ≤”为A , 则事件A 包含的基本事件有8个,所以()815P A =.⑵ 设事件“()241f x ax bx =-+在区间[)1,+∞上为增函数”为B , 因函数()241f x ax bx =-+的图象的对称轴为2bx a=且0a >, 所以要使事件B 发生,只需21ba≤,即2b a ≤. 由满足题意的数对有()1,1-、()2,1-、()2,1、()3,1-、()3,1,共5个,所以,()51153P B ==.【例11】 口袋中有质地、大小完全相同的5个球,编号分别为1,2,3,4,5.甲先摸出一个球,记下编号为a ,放回袋中后,乙再摸一个球,记下编号为b . ⑴ 求“6a b +=”的事件发生的概率;⑵ 若点(),a b 落在圆2221x y +=内,则甲赢,否则算乙赢,这个游戏规则公平吗?试说明理由.【考点】几何概型:二维情形 【难度】3星 【题型】解答【关键字】2010年,北京宣武2模 【解析】略【答案】⑴ 设“6a b +=”为事件A ,其包含的基本事件为:()1,5,()2,4,()3,3,()4,2,()5,1共5个又基本事件空间有5525⨯=个∴()51255P A ==.⑵ 这个游戏规则不公平设甲胜为事件B ,则其所包含的基本事件为:()1,1,()1,2,()1,3,()1,4,()2,1,()2,2,()2,3,()2,4,()3,1,()3,2,()3,3,()4,1,()4,2共13种.∴()131252P B =>,故而对乙不公平.【例12】 已知椭圆22221(0)x y a b a b+=>>及内部面积为πS ab =,12A A ,是长轴的两个顶点,12B B ,是短轴的两个顶点,点P 是椭圆及内部的点,则12PA A ∆为钝角三角形的概率为_____,12PB B ∆为钝角三角形的概率为______,12PB B ∆为锐角三角形的概率为________,12PB B ∆为直角三角形的概率为_____.【考点】几何概型:二维情形 【难度】2星 【题型】填空 【关键字】无 【解析】略 【答案】1;b a ;a ba-;0.【例13】 已知集合{}420135A =--,,,,,,在平面直角坐标系中,点()M x y ,的坐标x A ∈,y A ∈.计算:⑴ 点M 正好在第二象限的概率; ⑵ 点M 不在x 轴上的概率;⑶ 点M 正好落在区域8000x y x y +-<⎧⎪>⎨⎪>⎩上的概率.【考点】几何概型:二维情形 【难度】3星 【题型】解答 【关键字】无 【解析】略【答案】满足条件的M 点共有6636⨯=个⑴ 正好在第二象限的点有()4,1-,()43-,,()45-,,()21-,,()23-,,()25-, 故点M 正好在第二象限的概率161366P ==. ⑵ 在x 轴上的点有()40-,,()20-,,()00,,()10,,()30,,()50, 故点M 不在x 轴上的概率2651366P =-=. ⑶ 在所给区域内的点有()11,,()13,,()15,,()31,,()33,,()51, 故点M 在所给区域上的概率361366P ==【例14】 如右下图,在一个长为π,宽为2的矩形OABC 内,曲线()sin 0πy x x =≤≤与x轴围成如图所示的阴影部分,向矩形OABC内随机投一点(该点落在矩形OABC内任何一点是等可能的),则所投的点落在阴影部分的概率是()y=sin x2πCBAOyxA.1πB.2πC.3πD.π4【考点】几何概型:二维情形【难度】3星【题型】选择【关键字】无【解析】略【答案】A;【例15】如图,在边长为25的正方形中挖去边长为23的两个等腰直角三角形,现有均匀的粒子散落在正方形,问粒子落在中间带形区域的概率是多少?【考点】几何概型:二维情形【难度】2星【题型】解答【关键字】无【解析】略【答案】因为均匀的粒子落在正方形内任何一点是等可能的,所以符合几何概型的条件.设A=“粒子落在中间带形区域”,则依题意得正方形面积为2525625⨯=,两个等腰直角三角形的面积为1223235292⨯⨯⨯=,带形区域的面积为:62552996-=,∴96()625P A =.【例16】 在圆心角为150°的扇形AOB 中,过圆心O 作射线交弧AB ︵于P ,则同时满足:45AOP ∠≥°且75BOP ∠≥°的概率为 . 【考点】几何概型:二维情形 【难度】2星 【题型】填空 【关键字】无【解析】P 点只能在中间一段弧上运动,该弧所对的圆心角为1504575--°°°,即30°,概率为3011505=°°. 【答案】15.【例17】 点A 为周长等于3的圆周上的一个定点,若在该圆周上随机取一点B ,则劣弧︵AB 的长度小于1的概率为 .【考点】几何概型:二维情形 【难度】2星 【题型】填空【关键字】2009年,福建高考【解析】B如图11︵︵AB AB '==,根据几何概率可知,当点B 位于实线圆弧1︵B B '上时,1︵AB <,其整体事件是其周长为3,故其概率是23.【答案】23;【例18】 设A 为圆周上一定点,在圆周上等可能的任取一点P 与A 连结,求弦长超过半径【考点】几何概型:二维情形 【难度】2星 【题型】解答 【关键字】无 【解析】略【答案】几何概型.连结圆心O 与A 点,作弦AB 使120AOB ∠=°,2这样的点B 有两点,分别记为1B 与2B ,仅当P 在劣弧12BB ︵上取点时,AP >,此时12120B OB ∠=°,故所求的概率为12013603=°°.【例19】 在平面直角坐标系xOy 中,设D 是横坐标与纵坐标的绝对值均不大于2的点构成的区域,E 是到原点的距离不大于1的点构成的区域,向D 中随机投一点,则所投的点落入E 中的概率是 .【考点】几何概型:二维情形 【难度】2星 【题型】填空【关键字】2008年,江苏高考 【解析】如图,所求概率为π16圆正方形S S =.6 题【答案】π16;【例20】 取一个正方形及其它的外接圆,随机向圆内抛一粒豆子,则豆子落入正方形外的概率( )A .2π B .π2π- CD .π4【考点】几何概型:二维情形 【难度】2星 【题型】选择 【关键字】无【解析】设圆的半径为1,几何概型,概率为2ππ2ππ--=. 【答案】B ;【例21】 向面积为S 的ABC ∆内任投一点P ,则随机事件“PBC ∆的面积小于3S”的概率为多少?【考点】几何概型:二维情形 【难度】2星 【题型】解答 【关键字】无 【解析】略【答案】点P 在ABC ∆内任一点是等可能的,符合几何概型的条件.分别取AB AC ,上的点D E ,,使得22AD DB AE EC ==,,B则当点P 在四边形BCED 内时(不包括线段DE ),PBC ∆的面积小于3S,因此所求概率为519BCED ADE ABC ABC S S P S S ∆∆∆==-=.【例22】 如图,60AOB ∠=°,2OA =,5OB =,在线段OB 上任取一点C ,试求:CE DBO A⑴AOC ∆为钝角三角形的概率;⑵AOC ∆为锐角三角形的概率.【考点】几何概型:二维情形 【难度】3星 【题型】解答 【关键字】无 【解析】略【答案】如图,由平面几何知识:当AD OB ⊥时,1OD =;当OA AE ⊥时,4OE =,1BE =. ⑴当且仅当点C 在线段OD 或BE 上时,AOC ∆为钝角三角形记“AOC ∆为钝角三角形”为事件M ,则11()0.45OD EB P M OB ++=== 即AOC ∆为钝角三角形的概率为0.4.⑵当且仅当点C 在线段DE 上时,AOC ∆为锐角三角形,记“AOC ∆为锐角三角形”为事件N ,则3()0.65DE P N OB ===即AOC ∆为锐角三角形的概率为0.6.点评:AOC ∆为直角三角形的概率等于0,但直角三角形AOC ∆是存在的,因此概率为0的事件不一定是不可能事件.【例23】 把一根长度为6的铁丝截成3段.⑴若三段的长度均为整数,求能构成三角形的概率; ⑵若截成任意长度的三段,求能构成三角形的概率. 【考点】几何概型:二维情形 【难度】5星 【题型】解答 【关键字】无 【解析】略【答案】⑴设构成三角形的事件为A ,基本事件数有3种情况:“114,,”;“ 123,,”;“222,,”,其中能构成三角形的情况只有1种:“222,,”,因此所求的概率是1()3P A =.⑵设把铁丝分成任意的三段,其中一段为x ,第二段为y ,则第三段为6x y -- 则006x y x y >⎧⎪>⎨⎪+<⎩如果要构成三角形,则必须满足:0000636363x x y y x y x y x y x x y y y y x y x x >>⎧⎧⎪⎪>>⎪⎪⎪⎪+>--⇒+>⎨⎨⎪⎪+--><⎪⎪+--><⎪⎪⎩⎩ 则所求的概率为1()4MNP OEF S P A S ∆∆==.【例24】 小明的爸爸下班驾车经过小明学校门口,时间是下午6:00到6:30,小明放学后到学校门口的候车点候车,能乘上公交车的时间为5:50到6:10,如果小明的爸爸到学校门口时,小明还没乘上车,就正好坐他爸爸的车回家,问小明能乘到他爸的车的概率. 【考点】几何概型:二维情形 【难度】4星【题型】解答【关键字】无【解析】略【答案】在平面直角坐标系中,以x轴表示小明等到车的时间,以y轴表示小明的爸爸到达学校门口的时间,因为等到车的时间和小明的父亲到达的时间都是随机的,所以随机试验的所有结果()x y,是如图的矩形中的等可能的任一点.“小明能乘到他爸的车”包括的点为满足x y≥的点,即小明乘到车的时间晚于他父亲到达的时间,对应矩形框中直线y x=右下方的点.这是一个几何概型的问题,其概率为两部分面积之比:1101012203012P⨯⨯==⨯.(x y,以分钟为单位即可)【例25】甲、乙两人约定在6时到7时之间在某处会面,并约定先到者应等候另一个人一刻钟,过时即离去,求两人能会面的概率.【考点】几何概型:二维情形【难度】4星【题型】解答【关键字】无【解析】略【答案】以x轴、y轴分别表示甲、乙两人到达约会地点的时间,则两人能够会面需要满足||15x y-≤,如图,在平面直角坐标系下,()x y,的所有可能结果是边长为60的正方形,而事件A“两人能会面”的可能结果是图中的阴影部分.2260451575A μ=-=,2603600μΩ==,15757()360016A P A μμΩ===.【例26】 在区间[11]-,上任取两实数a b ,,求二次方程2220x ax b ++=的两根都为实数的概率.【考点】几何概型:二维情形 【难度】3星 【题型】解答 【关键字】无 【解析】略【答案】方程有实根的条件为22440a b ∆=-≥,即||||a b ≥.在平面直角坐标系中,点()a b ,的取值范围为如图所示的正方形的区域,随机事件A “方程有实根”的所围成的区域如图所示的阴影部分.易求得1()2P A =.【例27】 某商场为吸引顾客消费推出一项优惠活动.活动规则如下:消费额每满100元可转动如图所示的转盘一次,并获得相应金额的返券,假定指针等可能地停在任一位置. 若指针停在A 区域返券60元;停在B 区域返券30元;停在C 区域不返券. 例如:消费218元,可转动转盘2次,所获得的返券金额是两次金额之和.⑴若某位顾客消费128元,求返券金额不低于30元的概率;⑵若某位顾客恰好消费280元,并按规则参与了活动,他获得返券的金额记为X (元).求随机变量X 的分布列和数学期望.【考点】几何概型:二维情形 【难度】3星 【题型】解答【关键字】2010年,北京海淀1模 【解析】略【答案】设指针落在A 、B 、C 区域分别记为事件A 、B 、C .则1()6P A =,1()3P B =,1()2P C =.⑴ 若返券金额不低于30元,则指针落在A 或B 区域.∵111()()632P P A P B =+=+=即消费128元的顾客,返券金额不低于30元的概率是12.⑵ 由题意得,该顾客可转动转盘2次.随机变量X 的可能值为0,30,60,90,120.111(0)224P X ==⨯=;111(30)2233P X ==⨯⨯=;11115(60)2263318P X ==⨯⨯+⨯=;111(90)2369P X ==⨯⨯=;111(120)6636P X ==⨯=; P0 30 60 90 120 X14 13 518 19 136其数学期望0306090120404318936EX =⨯+⨯+⨯+⨯+⨯=.【例28】如图,两个圆形转盘,A B,每个转盘阴影部分各占转盘面积的12和14.某“幸运转盘积分活动”规定,当指针指到,A B转盘阴影部分时,分别赢得积分1000分和2000分.先转哪个转盘由参与者选择,若第一次赢得积分,可继续转另一个转盘,此时活动结束;若第一次未赢得积分,则终止活动.⑴记先转A转盘最终所得积分为随机变量X,则X的取值分别是多少?⑵如果你参加此活动,为了赢得更多的积分,你将选择先转哪个转盘?请说明理由.【考点】几何概型:二维情形【难度】3星【题型】解答【关键字】2010年,北京石景山1模【解析】略【答案】⑴X的取值分别是:0分,1000分,3000分.⑵由已知得,转动A盘得到积分的概率为12,转动B盘得到积分的概率为14.设先转A盘所得的积分为X分,先转B盘所得的积分为Y分.则有11(0)122P X==-=,113(1000)(1)248P X==⨯-=,111(3000)248P X==⨯=.∴13160000100030002888EX=⨯+⨯+⨯=.同理:3(0)4P Y==,1(2000)8P Y==,1(3000)8P Y==.∴31150000200030004888EY=⨯+⨯+⨯=.故先转A盘时,赢得积分平均水平较高.0.03(8070)6018⨯-⨯=.题型三:三维情形【例29】 一只小蜜蜂在一个棱长为30的正方体玻璃容器内随机飞行. 若蜜蜂在飞行过程中与正方体玻璃容器6个表面中至少有一个的距离不大于10,则就有可能撞到玻璃上而不安全;若始终保持与正方体玻璃容器6个表面的距离均大于10,则飞行是安全的,假设蜜蜂在正方体玻璃容器内飞行到每一位置可能性相同,那么蜜蜂飞行是安全的概率是( )A .18B .116C .127D .38【考点】几何概型:三维情形 【难度】1星 【题型】选择【关键字】2010年,北京朝阳1模【解析】容易知道,当蜜蜂在边长为10,各棱平行于玻璃容器的棱的正方体内飞行时是安全的.于是安全飞行的概率为331013027=.【答案】C ;【例30】 设正四面体ABCD 的体积为V ,P 是正四面体ABCD 的内部的点.①设“14P ABC V V -≥”的事件为X ,求概率()P X ;②设“14P ABC V V -≥且14P BCD V V -≥”的事件为Y ,求概率()P Y .【考点】几何概型:三维情形 【难度】4星 【题型】解答 【关键字】无 【解析】略【答案】①分别取DA DB DC ,,上的点E F G ,,,并使333DE EA DF FB DG GC ===,,,BA连结EF FG GE ,,,则平面EFG ∥平面ABC .当P 在正四面体DEFG 内部运动时(如图),满足14P ABC V V -≥,故33327()464D EFG D ABC V DE P X V DA --⎛⎫⎛⎫==== ⎪ ⎪⎝⎭⎝⎭. ②在AB 上取点H ,使3AH HB =,在AC 上取点I ,使3AI IC =,在AD 上取点J ,使3AJ JD =,P 在正四面体AHIJ 内部运动时,满足14P BCD V V -≥.BA结合①,当P 在正四面体DEFG 的内部及正四面体AHIJ 的内部运动时,亦即P 在正四面体EMNJ 内部运动时(M 是EG 与IJ 的交点,N 是EF 与HJ 的交点),同时满足14P ABC V V -≥且14P BCD V V -≥,于是338)11(2J EMN D ABC JE DA V P Y V --⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝=⎭.。
高考数学复习 第十章 第四节 古典概型与几何概型 理

2. 随 机 数 与 件发生的概率.
际 问 题 、 数 学 较高,一般以中等难度题目
Байду номын сангаас
几何概型. (2)随机数与几何概型 学 科 内 材 料 为 为主.从命题趋势来看,试题
①了解随机数的意义, 背 景 , 考 查 两 更加注重理解、分析、逻辑
能运用模拟方法估计概 种 概 率 的 计 算 推理及创新性,更加注重学
解 (1)①设“在 1 次游戏中摸出 i 个白球”为事件 Ai(i=0,1,2, 3),则 P(A3)=CC2523·CC1223=51. ②设“在 1 次游戏中获奖”为事件 B,则 B=A2∪A3, P(A2)=CC2523·CC2223+CC13C52 12·CC1223=12,且 A2,A3 互斥, 所以 P(B)=P(A2)+P(A3)=21+51=170.
3.几何概型的概率计算公式 在几何概型中,事件 A 的概率的计算公式如下: P(A)=试验的构全成部事结件果A所的构区成域的长区度域(长面度积(或面体积积或)体积).
4.几何概型与古典概型的区别与联系 (1)共同点:基本事件都是等可能的. (2)不同点:几何概型基本事件的个数是无限的,古典概型基本 事件的个数是有限的.基本事件可以抽象为点,对于几何概型, 这些点尽管是无限的,但它们所占据的区域都是有限的,根据 等可能性,这些点落在区域的概率与该区域的度量成正比,而 与该区域的位置和形状无关.
[点评] 求解概率问题的关键是弄清题中所研究的对象,准 确求解出试验与所求事件分别包含的基本事件的个数,这是 准确求解古典概型的基础.
方法2 几何概型的概率 解答几何概型问题的关键在于弄清题中的考察对象和对象的活动 范围,当考察对象为点,点的活动范围在线段上时,用线段长度 比计算;当考察对象为线时,一般用角度比计算.事实上,当半径 一定时,由于弧长之比等于其所对应的圆心角的度数之比,所以 角度之比实际上是所对的弧长(曲线长)之比.
高考数学考点分析指导第2节 古典概型和几何概型

第2节 古典概型与几何概型
4.随机模拟 (1)使用计算机或者其他方法进行模拟试验,以便通过这个试验求出随机事件的 概率近似值的方法就是随机模拟. (2)随机模拟的基本步骤: 第一步:用计算机产生某个范围内的随机数,并赋予每个随机数一定的意义; 第二步:统计代表某意义的随机数的个数M以及总的随机数的个数N; 第三步:计算 作为所求概率的近似值.
共有m个,则用随机模拟的方法得到的圆周率π的近似值为( )
【答案】C
第2节 古典概型与几何概型
考点3 随机模拟的应用
10.关于圆周率,数学发展史上出现过许多很有创意的求法,如著名的浦丰实验和查理斯实验.受其
启发,我们也可以通过设计下面的实验来估计π的值:先请120名同学每人随机写下一个都小于1的正
第2节 古典概型与几何概型
真题自测 考向速览
考点1 古典概型概率的求法
【答案】A
第2节 古典概型与几何概型
2.[课标全国Ⅱ2018·8]我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先 的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7 +23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是( )
【答案】B
第2节 古典概型与几何概型
【答案】
第2节 古典概型与几何概型
考点3 随机模拟的应用 9.[课标全国Ⅱ2016·10]从区间[0,1]随机抽取2n个数x1,x2,…,xn,y1,y2,…, yn,构成n个数对(x1,y1),(x2,y2),…,(xn,yn),其中两数的平方和小于1的数对
实数对(x,y);再统计两数能与1构成钝角三角形三边的数对(x,y)的个数m,最后再根据统计数m估计
π的值,假如统计结果是m=34,那么可以估计π的值约为( )
1.3古典概型与几何概型

所含的总取法为 aPbi1[(a b i)!] 故
P(B)
a
Pbi
1[(a b (a b)!
i)!]
a Pbi 1 Pai b
例115 一个袋子中装有ab个球 其中a个黑球 b个白球 随意地每次从中取出一球(不放回) 求下列各事件的概率
(1)第i次取到的是黑球 (2)第i次才取到黑球 (3)前i次中能取到黑球
及两个球全是黑球的概率
解 (2) 已知 在 10 个球中任取两球的取法有C120 种 在 10 个球中取到一个白球和一个黑球的取法有C13C17 种 在 10 个球中取两个球均是黑球的取法有C32种 记B为事件“刚好取到一个白球一个黑球” C为事件
“两个球均为黑球” 则
P(B)
C13 C17 C120
P(D)
Ckn
(N 1)nk Nn
例115 一个袋子中装有ab个球 其中a个黑球 b个白球 随意地每次从中取出一球(不放回) 求下列各事件的概率
(1)第i次取到的是黑球 (2)第i次才取到黑球 (3)前i次中能取到黑球
解 (ab)次取球的总取法为(ab)! 记(1) (2) (3)中的事件 分别为A B C
总数为24 记(1) (2) (3) (4)的事件分别为A B C D
(1) A有两种排法 故有
P(A)
2 24
1 12
(2) B有2(3!)12种排法 故有
P(B)
12 24
1 12
例113 将标号为1 2 3 4的四个球随意地排成一行 求下 列各事件的概率
(1)各球自左至右或自右至左恰好排成1 2 3 4的顺序 (2)第1号球排在最右边或最左边 (3)第1号球与第2号球相邻
等价于将n个球全部放到其余N1个箱子中 共有(N1)n种放
古典概型与几何概型
古典概型与几何概型知识归纳1.古典概型(1)定义:如果某类概率模型具有以下两个特点:①试验中所有可能出现的基本事件只有______;②每个基本事件出现的______均等。
我们将具有这两个特点的概率模型称为古典概率模型,简称为古典概型。
(2)古典概型的特点:①有限性:试验中所有可能出现的基本事件只有______;②等可能性:每个基本事件出现的______均等。
(3)古典概型的概率计算公式:mPn=,其中m表示_________________,n表示_________________2.几何概型(1)如果某个事件发生的概率只与构成该事件的区域A的几何度量(长度、面积或体积)成正比,而与A的位置和形状无关,则称这样的概率模型为几何概率模型。
(2)几何概型的特点:①无限性:在一次试验中,可能出现的结果是无限的;②等可能性:每个结果的发生的机会均等。
(3)几何概型的概率计算公式:_______________.p=3.几何概型与古典概型的区别:4.解答概率题的步骤:(1)弄清试验是什么,找出基本事件的构成。
(2)判断概率类型。
(3)找出所求事件,同时弄清所求事迹的构成,并用符号表示。
(4)求概率。
巩固基础1.下列试验是古典概型的是()。
A 任意抛掷两枚骰子,所得点数之和作为基本事件;B为求任意的一个正整数平方的个位数字是1的概率,将取出的正整数作为基本事件;C从甲地到乙地共条路线,求某人正好选中最短路线的概率;D抛掷一枚均匀的硬币到首次出现正面为止。
2.一部三册的小说,任意排放在书架的同一层上,则各册的排放次序共有的种数()。
A 3B 4C 6D 123.将一枚均匀硬币先后抛两次,恰好出现一次正面的概率是()。
A 12B14C34D134.在区间(1,3)内的所有实数中,随机取一个实数x,则这个实数是不等式250x-<的解的概率为()。
A 34B12C13D235.在半径为2的球O内任取上点P,则||1OP≤的概率为()。
古典概型与几何概型
古典概型与几何概型【知识要点】一、古典概型1、基本事件(1)基本事件的定义一次试验中所有可能的结果都是随机事件,这类随机事件我们称为基本事件. (2)基本事件的特点①任意两个基本事件都是互斥的.②任何事件都可以表示成基本事件的和.2、古典概型(1)古典概型的定义我们将具有上述这两个特点的概率模型称为古典概率模型,简称古典概型. (2)古典概型的特征古典概型是一种特殊的概率模型,其特征有以下两个:①有限性. 即在一次试验中,所有可能出现的结果只有有限个,或者说在一次试验中,只有有限个不同的基本事件.②等可能性. 即每个基本事件发生的可能性都是相等的,或者说所有结果出现的可能性都是相等的.【注】古典概型必须满足两个条件:①有限性;②等可能性,只有这两个条件都满足时才是古典概型.3、基本事件数的探求方法(1)列举法:此法适合于较简单的试验.(2)树状图法:此法是一种常用方法,适合于较复杂问题中基本事件的探求. 4、有放回的抽样与无放回的抽样在古典概型的概率计算中,将涉及两种不同的抽样方法,下面举例来说明. 设一个口袋内有n 个不同的球,现从袋内依次摸球,且每次只摸一只,则有如下两种摸球的方法: (1)有放回的抽样每次摸出一只后,放回袋中,然后再摸一只,这种摸球的方法称为有放回的抽样. 显然,对于有放回的抽样,每次摸出的球可以重复出现,且摸球可以无限次地进行下去. (2)无放回的抽样每次摸出一只后,不放回袋中,在剩下的球中再摸一只,这种摸球的方法称为无放回的抽样. 显然,对于无放回的抽样,每次摸出的球不会重复出现,且摸球只能进行有限次.5、古典概型的概率计算公式在古典概型中,事件A 的概率的计算公式如下:()A mP A n=事件所包含的基本事件的个数试验的基本事件的总数.【注1】()mP A n=既是概率的古典定义,又是求古典概型的概率的基本方法. 求()P A 时,要首先判断是否是古典概型,具体计算步骤如下: Step 1:仔细阅读题目,弄清题目的背景材料,加深理解题意; Step 2:判断本试验的结果是否为等可能事件,设出所求事件A ;Step 3:分别求出“试验的基本事件的总数n”与“事件A所包含的基本事件的个数m”;Step 4:利用公式()mP An=,求出事件A的概率.【注2】在公式()()()P A B P A P B⋃=+中,事件A与事件B是互斥事件;而在公式()()()()P A B P A P B P A B⋃=+-⋂中,事件A与事件B可以是互斥事件,也可以不是互斥事件. 因此,在使用这两个公式时,首先要根据题意判断事件A与事件B是否为互斥事件,然后选择正确的公式进行计算.二、几何概型1、几何概型的定义如果每个事件发生的概率只与构成该事件的区域的面积(体积或长度)成比例,则我们把这样的概率模型称为几何概率模型,简称几何概型.2、几何概型的特征几何概型是另一种特殊的概率模型,其特征有以下两个:①无限性. 即在一次试验中,所有可能出现的结果有无限多个,或者说在一次试验中,有无限多个不同的基本事件.②等可能性. 即每个基本事件发生的可能性都是相等的,或者说所有结果出现的可能性都是相等的.【注】由古典概型与几何概型的特征可见,用几何概型求解概率问题的思路与古典概型是相同的,同属于“比例解法”,即随机事件A的概率可以用“事件A所包含的基本事件所占的图形面积(体积或长度)”与“基本事件所占的总面积(体积或长度)”之比来表示.3、几何概型的概率计算公式在几何概型中,事件A 的概率的计算公式如下:()AA S P A =Ω构成事件的区域的面积(体积或长度)试验的全部结果所构成的区域的面积(体积或长度).4、古典概型与几何概型的异同 (1)相同点古典概型与几何概型中,每个基本事件发生的可能性都是相等的. (2)不同点古典概型要求:试验的基本事件只有有限个;而几何概型要求:试验的基本事件有无限多个.【例题选讲】题型一、求古典概型的概率例1、有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为( )A. 13B. 12C. 23D. 34【解析】甲、乙两位同学参加3个兴趣小组的所有可能有33=9⨯(种) 甲、乙两位同学参加同一个兴趣小组的情况有3(种)则甲、乙两位同学参加同一个兴趣小组的概率31=93P =故选A例2、在30瓶饮料中,有3瓶已过了保质期. 现从这30瓶饮料中任取2瓶,则至少取到1瓶已过保质期饮料的概率为__________.(结果用最简分数表示)【解析】设所取2瓶饮料都未过保质期为事件A则2272302726272611721()3029302914521CP AC⨯⨯⨯====⨯⨯⨯故至少取到1瓶已过保质期饮料的概率为11728 1()1145145 P A-=-=例3、考察正方体6个面的中心,甲从这6个点中任意选两个点连成直线,乙也从这6个点中任意选两个点连成直线,则所得的两条直线相互平行但不重合的概率等于__________.【解析】如图所示,设点A,B,C,D,E,F分别是正方体下底面、上底面、左侧面、右侧面、前侧面、后侧面的中心甲从这6个点中任选两个点连成直线,有2615C=种不同的取法乙从这6个点中任选两个点连成直线,也有2615C=种不同的取法于是甲、乙从这6个点中任选两个点连成直线,共有22661515225C C⋅=⨯=种不同的取法又∵所得的两条直线相互平行但不重合的有AC DB,AD CB,AE BF,AF BE,CE DF,CF DE∴甲、乙连得的两条直线相互平行但不重合的,有12种不同的取法故所得的两条直线相互平行但不重合的概率12422575 P==题型二、求几何概型的概率例4、如图所示,在矩形ABCD 中,点E 为边CD 的中点,若在矩形ABCD 内部随机取一个点Q ,则点Q 取自ABE ∆内部的概率等于( )A.14 B. 13 C. 12 D. 23【解析】设点Q 取自ABE ∆内部为事件A则点Q 取自ABE ∆内部的概率为112()2ABE ABCDAB ADS P A S AB AD ∆⋅===⋅矩形 故选C例5、在区间[1,1]-上随机取一个数x ,则cos 2x π的值介于0到12之间的概率为__________. 【解析】要使10cos22xπ≤≤,[1,1]x ∀∈- 由余弦函数的图像可知,223xπππ-≤≤-或322xπππ≤≤⇒ 213x -≤≤-或213x ≤≤于是满足题意的x 的区间长度为23而区间[1,1]-的总长度为2故对于区间[1,1]-上的数x ,使cos 2x π的值介于0到12之间的概率为21323P ==ABD例6、小波通过做游戏的方式来确定周末活动,他随机地往单位圆内投掷一点,若此点到圆心的距离大于12,则周末去看电影;若此点到圆心的距离小于14,则周末去打篮球;否则,在家看书. 则小波周末不在家看书的概率为__________.【解析】“周末不在家看书”包括“周末去看电影”和“周末去打篮球”两种情况,且这两种情况是互斥事件设小波周末去看电影为事件A,周末去打篮球为事件B则222131()324()14P Aπππππ⨯-⨯===⨯,2211()1164()116P Bππππ⨯===⨯故小波周末不在家看书的概率为3113 ()()41616 P P A P B=+=+=。
古典概型与几何概型
古典概型与几何概型【知识点梳理】一、古典概型1.基本事件:一次试验连同其中可能出现的每一个结果,称为一个基本事件。
基本事件是试验中不能再分的最简单的随机事件。
基本事件有以下两个特点:(1)任何两个基本事件是互斥的;(2)任何事件(除不可能事件)都可以表示成基本事件的和。
2.等可能性事件:如果一次试验中可能出现的结果有n 个,而且所有结果都是等可能的,这种事件叫等可能性事件3.古典概型:具有以下两个特征的随机试验的概率模型称为古典概型。
(1)试验中所有可能出现的基本事件只有有限个;(2)每个基本事件出现的可能性相等。
4.古典概型的概率计算公式: 对于古典概型,若试验的所有基本事件数为n ,随机事件A包含的基本事件数为m ,那么事件A 的概率定义为()m P A n=。
二、几何概型1. 几何概型的概念:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成正比,则称这样的概率模型为几何概型。
2. 几何概型试验的两个基本特征:(1)无限性:指在一次试验中,可能出现的结果有无限多个;(2)等可能性:每个结果的发生具有等可能性。
3. 几何概型事件的概率计算公式:积)的区域长度(面积或体实验的全部结果所构成积)的区域长度(面积或体构成事件A A P =)(【典型例题分析】题型一、古典概型的概率求法例1.单选题是标准化考试中常用的题型,一般是从A ,B ,C ,D 四个选项中选择一个正确答案。
如果考生掌握了考查的内容,他可以选择唯一正确的答案。
假设考生不会做,他随机地选择一个答案,问他答对的概率是_________.例2.在6瓶饮料中,有2瓶已过了保质期。
从中任取2瓶,取到已过保质期的饮料的概率是_______.例3. 将一枚质地均匀的硬币连掷三次,观察落地后的情形(1)写出这个试验的所有的基本事件;(2)“出现一枚正面朝上,两枚反面朝上”这一事件包含了哪几个基本事件?(3)求事件“出现一枚正面朝上,两枚反面朝上”的概率。
古典概型和几何概型
一、古典概型1)基本事件:一次试验中所有可能得结果都就是随机事件,这类随机事件称为基本事件.2)基本事件得特点:①任何两个基本事件就是互斥得;②任何事件(除不可能事件)都可以表示成基本事件得与.3)我们将具有这两个特点得概率模型称为古典概率模型,其特征就是:①有限性:即在一次试验中所有可能出现得基本事件只有有限个。
②等可能性:每个基本事件发生得可能性就是均等得;称这样得试验为古典概型.4)基本事件得探索方法:①列举法:此法适用于较简单得实验.②树状图法:这就是一种常用得方法,适用于较为复杂问题中得基本事件探索。
5)在古典概型中涉及两种不通得抽取放方法,下列举例来说明:设袋中有个不同得球,现从中一次模球,每次摸一只,则有两种摸球得方法:①有放回得抽样每次摸出一只后,任放回袋中,然后再摸一只,这种模球得方法称为有放回得抽样,显然对于有放回得抽样,依次抽得球可以重复,且摸球可以无限地进行下去.②无放回得抽样每次摸球后,不放回原袋中,在剩下得球中再摸一只,这种模球方法称为五放回抽样,每次摸得球不会重复出现,且摸球只能进行有限次.二、古典概型计算公式1)如果一次试验中可能出现得结果有个,而且所有结果出现得可能性都相等,那么每一个基本事件得概率都就是;2)如果某个事件包括得结果有个,那么事件得概率.3)事件与事件就是互斥事件4)事件与事件可以就是互斥事件,也可以不就是互斥事件。
古典概型注意:①列举法:适合于较简单得试验。
②树状图法:适合于较为复杂得问题中得基本事件得探求、另外在确定基本事件时,可以瞧成就是有序得,如与不同;有时也可以瞧成就是无序得,如与相同、三、几何概型事件理解为区域得某一子区域,得概率只与子区域得几何度量(长度、面积或体积)成正比,而与得位置与形状无关,满足此条件得试验称为几何概型.四、几何概型得计算1)几何概型中,事件得概率定义为,其中表示区域得几何度量,表示区域得几何度量。
2)两种类型线型几何概型:当基本事件只受一个连续得变量控制时。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学考点归纳之古典概型与几何概型一、基础知识1•古典概型(1) 古典概型的特征:①有限性:在一次试验中,可能出现的结果是有限的,即只有有限个不同的基本事件;②等可能性:每个基本事件出现的可能性是相等的一个试验是否为古典概型,在于这个试验是否具有古典概型的两个特征一一有限性和等可能性•(2) 古典概型的概率计算的基本步骤:①判断本次试验的结果是否是等可能的,设出所求的事件为A;②分别计算基本事件的总数n和所求的事件A所包含的基本事件个数m;③利用古典概型的概率公式P(A) = m,求出事件A的概率•(3) 频率的计算公式与古典概型的概率计算公式的异同(1)概念:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型(2 )几何概型的基本特点:①试验中所有可能出现的结果(基本事件)有无限多个;②每个基本事件出现的可能性相等•(3)计算公式:构成事件A的区域长度面积或体积_________P(A)=试验的全部结果所构成的区域长度面积或体积•几何概型应用中的关注点1关键是要构造出随机事件对应的几何图形,利用图形的几何度量来求随机事件的概率• 2确定基本事件时一定要选准度量,注意基本事件的等可能性A. 3_ 10 考点一古典概型[典例精析](1)(2018全国卷n )我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果•哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”, 如30 = 7 + 23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是()C.15(2)(2019武汉调研)将一枚质地均匀的骰子投掷两次, 得到的点数依次记为 a 和b ,贝U 方程ax 2 + bx + 1 = 0有实数解的概率是()7 1 A.36 B.2 19 5 C — D — C.36D.18[解析]⑴不超过30的所有素数为2,3,5,7,11,13,17,19,23,29,共10个,随机选取两个 不同的数,共有 C 1o = 45种情况,而和为30的有7+ 23,11+ 19,13 + 17这3种情况,所以所 求概率P =45=1_ *1 < a <6, a € N ,⑵投掷骰子两次,所得的点数a 和b 满足的关系为1 w b < 6, b € N *,组合有36种.若方程ax 2 + bx + 1 = 0有实数解, 贝U △= b 2— 4a > 0,所以 b 2> 4a.当b = 1时,没有a 符合条件;当 b = 2时,a 可取1;当b = 3时,a 可取1,2 ;当b = 4 时,a 可取 1,2,3,4 ;当 b = 5 时,a 可取 1,2,3,4,5,6 ;当 b = 6 时,a 可取 1,2,3,4,5,6.满足条件的组合有1919种,则方程ax 2 + bx + 1 = 0有实数解的概率 P =--.36[答案](1)C (2)C[题组训练]1. (2019 益阳、湘潭调研)已知 a € { — 2,0,1,2,3}, b € {3,5},则函数 f(x) = (a 2— 2)e x + b 为 减函数的概率是()所以a 和b 的3 21解析:选 C 若函数 f(x) = (a 2— 2)e x + b 为减函数,则 a 2— 2v 0,又 a € { — 2,0,1,2,3},故只有a = 0, a = 1满足题意,又b € {3,5},所以函数f(x)= (a 2 — 2)e x + b 为减函数的概率是2•从分别标有1,2,…,9的9张卡片中不放回地随机抽取 2次,每次抽取1张,则抽到的2张卡片上的数奇偶性不同的概率是( )5 4 A — B —A.18B .93•将A , B , C , D 这4名同学从左至右随机地排成一排,则“A 与B 相邻且A 与C 之间恰好有1名同学”的概率是 ( )1 A .2 1 B.4 C 1 C • 61解析:选B A , B , C ,D 4名同学排成一排有 A 4= 24种排法.当A , C 之间是B 时,4 + 2 1有2X 2=4种排法,当A , C 之间是D 时,有2种排法,所以所求概率P =-24-=4.考点二几何概型类型(一)与长度有关的几何概型[例1] (2019濮阳模拟)在[— 6,9]内任取一个实数 m ,设f(x) = — x 2 + mx + m ,则函数f(x) 的图象与x 轴有公共点的概率等于()27A B A.15 B .153 11C5 D.亦[解析]•/ f(x)=— x 2+ mx + m 的图象与 x 轴有公共点,二 △= m 2+ 4m > 0,. m < — 4 或m > 0,.••在 [—6,9]内取一个实 数m ,函数f(x)的图象 与x 轴有公共点的概 率P =[—4— — 6 ] + 9— 0 = 9——6 — [答案]D解析:选C 由题意得,所求概率5X 4X 2 9X 859. 11狗,故选D . 15类型(二)与面积有关的几何概型[例2](1)(2018潍坊模拟)如图,六边形ABCDEF 是一个正六边形,(2)由题意知圆O 的面积为n 3,正弦曲线y = sin x , x € [- n, n ] x 轴围成的区域记为 M ,根据图形的对称性得区域 M 的面积S = 2 / o sin xdx =- 2COS x|o = 4,由几何概型的概 率计算公式可得,随机往圆 O 内投一个点A ,则点A 落在区域M 内的概率P =刍.n[答案](1)C (2)B类型(三)与体积有关的几何概型[例3] 已知在四棱锥 P-ABCD 中,PA 丄底面 ABCD ,底面ABCD 是正方形,PA = AB = 22,现在该四棱锥内部或表面任取一点O ,则四棱锥 O -ABCD 的体积不小于3的概率为2[解析]当四棱锥O -ABCD 的体积为3时,设O 到平面ABCD 的距离为 12 1h ,则 3x 22x h = 3,解得 h = 1 如图所示,在四棱锥 P-ABCD 内作平面EFGH 平行于底面 ABCD ,且1平面EFGH 与底面ABCD 的距离为2.PH 3因为PA 丄底面ABCD ,且FA = 2,所以pA = 4,若在正六边形内任取一点,则该点恰好在图中阴影部分的概率是A.4B.12 C.3(2)(2019洛阳联考)如图,圆O : x 轴围成的区域记为 M (图中阴影部分 A 落在区域M 内的概率是()4 ArB. nD.[解析] ⑴设正六边形的中心为点 O,BD 与AC 交于点G,BC = 1,则BG = CG , Z BGC =120°在厶BCG 中,由余弦定理得1= BG 2+ BG 2- 2BG 2COS 120°得BG =彳,所以&BCG=2 x BG x BG x sin 120 °= 2 xf x 33 x 学=器,因为1S 六边形 ABCDEF = S A BOC x 6 = ~ x 1 x 1 x Sin 60°x 6= 乎,所以该点恰好在图中阴影部分的概率P = 1-6G BCG S 六边形ABCDEF23.又四棱锥P-ABCD与四棱锥P-EFGH相似,所以四棱锥 O -ABCD 的体积不小于2的概率P = V 四棱锥P -EFGH3 V 四棱锥P-ABCD “亠 27[答案1 64类型(四)与角度有关的几何概型[例4]如图,四边形 ABCD 为矩形,AB = 3,BC = 1,以A 为 圆心,1为半径作四分之一个圆弧 斥「,在/ DAB 内任作射线 AP ,则 射线AP 与线段BC 有公共点的概率为 _____________________ .[解析]连接AC ,如图, 因为tan / CAB =器二彳,所以/ CAB =才,满足条件的事件是直线AP 在/ CAB 内,且AP 与AC 相交时,即直线n/ CAB 61AP 与线段BC 有公共点,所以射线 AP 与线段BC 有公共点的概率 P =/DAB =n=勺2 (1)[答案1 3[题组训练]1.(2019豫东名校联考)一个多面体的直观图和三视图如图所示,点 M 是AB 的中点,一只蝴蝶在几何体 ADF -BCE 内自由飞翔,则它飞入几何体: F-AMCD 内的概率为()';A.|1所以它飞入几何体 F-AMCD 内的概率P = — = 2.I 3 2 2a2•在区间[0, n ]随机取一个数x ,则事件“ sin x + cos ”发生的概率为解析:1 1 1选 D 由题图可知 V F -AMCD = 3 X S 四边形 AMCD X DF = 4a 3, V ADF -BCE =尹3,C.3 PH 3 = 3 3= 27 PA 4 64.1sin x + cos x >解析:由题意可得20< x < n解得2. (2019漳州一模)甲、乙、丙、丁、戊 5名同学参加"《论语》知识大赛”,决出第 1 名到第5名的名次•甲、乙两名参赛者去询问成绩,回答者对甲说“虽然你的成绩比乙好,故所求的概率为 12_ 77 12答案:右3. (2018唐山模拟)向圆(x — 2)2+ (y — ,3)2= 4内随机投掷一点,则该点落在x 轴下方的概率为 _________ .解析:如图,连接CA , CB ,依题意,圆心 C 到x 轴的距离为 3,所1 2 1 以弦AB 的长为2.又圆的半径为2,所以弓形 ADB 的面积为2x 2 nX 2 —1 2X 2 X 3 = ^n — . 3,所以向圆(x — 2)2+ (y — . 3)2= 4内随机投掷一点,则该点落在x 轴下方的概率P =1-1 答案:16 [课时跟踪检测]1.(2019衡水联考)2017年8月1日是中国人民解放军建军 90周年, 中国人民银行为此发行了以此为主题的金银纪念币•如图所示是一枚 8克圆形金质纪念币,直径 22 mm ,面额100元•为了测算图中军旗部分的面 积,现用1粒芝麻向硬币内投掷 100次,其中恰有30次落在军旗内,据此可估计军旗的面积大约是 ()A. 363 n 10 2mm 2 363 n B.2 mm 2C.726 n 2 mm 2 D.3;20_n mm 2解析:选A向硬币内投掷100次,恰有30次落在军旗内,所以可估计军旗的面积大约是 S = 1°0X nx 112 =现采用分层抽样的方法从中抽取 7名同学去某敬老院参加献爱心活动但是你俩都没得到第一名”; 对乙说“你当然不会是最差的”, 从上述回答分析, 丙是第名的概率是( ) 1 A.51 B.31 C.4 1D.6 解析:选B 由于甲和乙都不可能是第一名,所以第一名只可能是丙、丁或戊 •又因为 所有的限制条件对丙、丁或戊都没有影响,所以这三个人获得第一名是等可能事件, 所以丙 1 是第一名的概率是I 3.(2019郑州模拟)现有5人参加抽奖活动,每人依次从装有 5张奖票(其中 3张中奖票都被抽出时活动结束,则活动恰好在 3张为中奖 票)的箱子中不放回地随机抽取一张,直到第4人抽完结束的概率为( ) 1 B.1 2D.5 解析:选C 将5张奖票不放回地依次取出共有A 5= 120(种)不同的取法,若活动恰好 在第四次抽奖结束,则前三次共抽到2张中奖票,第四次抽到最后一张中奖票, 共有C 2C 1A =36(种)取法,所以P =蛊=鲁. 4.(2019长沙模拟)如图是一个边长为 8的正方形苗圃图案,中间黑色 大圆与正方形的内切圆共圆心, 圆与圆之间是相切的,且中间黑色大圆的半径是黑色小圆半径的 2倍.若在正方形图案上随机取一点,则该点取自 黑色区域的概率为( ) n A.8nC.1—n解析:选C 正方形的面积为82,正方形的内切圆半径为4,中间黑色大圆的半径为2,黑 色小圆的半径为1,所以白色区域的面积为 nX 42—nX 22-4 XnX 12= 8 n,所以黑色区域的面积 82 — 8 n n 为82— 8 n 在正方形图案上随机取一点,则该点取自黑色区域的概率为 P == 1—刁 82 5.(2019郑州模拟)已知圆C : x 2+ y 2= 1,直线I : y = k (x + 2),在[—1,1]上随机选取一个数k ,则事件“直线I 与圆C 相离”发生的概率为( ) 2— ,2 B.2 A.1 C 3-V3 C. 32 — ,3 D. 2解析:选C 圆C : x 2+ y 2= 1的圆心C(0,0),半径r = 1,圆心到直线I : y = k(x + 2)的距离d = |0; 0+ 2F=-^L ,直线|与圆C 相离时d > r ,即丁鉴> 1,解得k v —申或 \jk + — 1 yj k + 1 yj k + 134 1(3,7), (4,6)中任选3组,有C 4= 4种选法,故这7个数的平均数是5的概率P = 36 = 了7•一个三位数的百位,十位,个位上的数字依次为 a , b , c ,当且仅当有两个数字的和等于第三个数字时称这个三位数为“好数”(如213,134),若a , b , c € {1,2,3,4},且a , b ,c 互不相同,则这个三位数为“好数”的概率是 ____________ .解析:从1,2,3,4中任选3个互不相同的数并进行全排列,共组成A 4= 24个三位数,而“好数”的三个位置上的数字为 1,2,3或1,3,4,所以共组成2A 3 = 12个“好数”,故所求概8•太极图是以黑白两个鱼形纹组成的圆形图案,展现了一种相互转化, 相对统一的形式美•按照太极图的构图方法,在如图所示的平面直角坐标n系中,圆0被函数y = 3s“6x 的图象分割为两个对称的鱼形图案,其中小 圆的半径均为1,现在大圆内随机取一点,则此点取自阴影部分的概率为解析:根据题意,大圆的直径为函数y = 3si^ 的最小正周期 T ,又T = 3= 12,所以6 n612大圆的面积 S = n •- 2= 36n, 一个小圆的面积 S ' = n*2= n,故在大圆内随机取一点,此点取自阴影部分的概率 P =%=令=补.S 36 n 181答案:18 9.(2018天津高k >f,故所求的概率 3P =2- f1——13 —3_6•从1〜9这9个自然数中任取 7个不同的数,则这7个数的平均数是 5的概率为解析:从1〜9这9个自然数中任取7个不同的数的取法共有C 7= 36 种,从(1,9), (2,8),24 12.考)已知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动(1) 应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?⑵设抽出的7名同学分别用 A ,B , C ,D ,E , F ,G 表示,现从中随机抽取 2名同学 承担敬老院的卫生工作•① 试用所给字母列举出所有可能的抽取结果;② 设M 为事件“抽取的2名同学来自同一年级”,求事件 M 发生的概率. 解:(1)因为甲、乙、丙三个年级的学生志愿者人数之比为3 : 2 : 2,由于采用分层抽样的方法从中抽取7名同学,所以应从甲、乙、丙三个年级的学生志愿者中分别抽取 3人,2人,2人.⑵①从抽取的7名同学中随机抽取 2名同学的所有可能结果为{A , B}, {A , C} , {A ,D} , {A , E} , {A , F}, {A , G} , {B , C} , {B , D} , {B , E} , {B , F} , {B , G} , {C , D}, {C , E}, {C , F}, {C , G}, {D , E}, {D , F} , {D , G} , {E , F} , {E , G} , {F , G},共 21种.②由①,不妨设抽出的7名同学中,来自甲年级的是 A , B , C ,来自乙年级的是 D , E , 来自丙年级的是 F , G ,则从抽出的7名同学中随机抽取的 2名同学来自同一年级的所有可 能结果为{A , B} , {A , C} , {B , C} , {D , E}, {F , G},共 5 种.5所以事件M 发生的概率P(M =—. 10.在某大型活动中,甲、乙等五名志愿者被随机地分到A ,B ,C ,D 四个不同的岗位服务,每个岗位至少有一名志愿者•(1)求甲、乙两人同时参加 A 岗位服务的概率; (2) 求甲、乙两人不在同一个岗位服务的概率; (3)求五名志愿者中仅有一人参加 A 岗位服务的概率A 41⑵记“甲、乙两人同时参加同一岗位服务 ”为事件E ,那么P(E) =10,所以甲、9乙两人不在同一岗位服务的概率是P( E ) = 1 — P(E) =后.1.(2019太原联考)甲、乙二人约定 7: 10在某处会面,甲在 7: 00〜7: 20内某一时刻4解:(1)记“甲、乙两人同时参加A 岗位服务为事件E A ,那么P(E A ) =A * * 3 __1 C 5A L 40 ,即甲、乙两人同时参加 A 岗位服务的概率是140.1=4所以仅有一人参加A 岗位服2B1答案:——> > ------ >P B + P C + 2 PA = 0,现将一粒黄豆随机撒在随机到达,乙在7: 05〜7:20内某一时刻随机到达,则甲至少需等待乙 5分钟的概率是() 1 A.81 B.4 3 C.8 5 D.8 解析:选C 建立平面直角坐标系如图, x , y 分别表示甲、乙二人 到达的时刻,则坐标系中每个点 (x , y )可对应甲、乙二人到达时刻的可能 y — x > 5, 性,则甲至少等待乙5分钟应满足的条件是 0W x w 20, 其构成的区域 5< y < 20, 为如图阴影部分,则所求的概率1X 15X 15-2 3 P = =— 20 X 15 8' 2.(2019开封模拟)如图,某建筑工地搭建的脚手架局部类似于一个 2X 2X 3的长方体框架,一个建筑工人欲从 A 处沿脚手架攀登至 B 处,则其 最近的行走路线中不连续向上攀登的概率为 ( ) 解析:选B 根据题意,最近路线就是不能走回头路,不能走重复的路,•••一共要走 3 次向上,2次向右,2次向前,共7次,.••最近的行走路线共有 A 7= 5 040(种).•••不能连续向 上,.••先把不向上的次数排列起来,也就是 2次向右和2次向前全排列为 A 4.接下来,就是 把3次向上插到4次不向上之间的空当中, 5个位置排3个元素,也就是 A 5,则最近的行 走路线中不连续向上攀登的路线共有 A 4A 5= 1 440(种),•其最近的行走路线中不连续向上 1 440 2 攀登的概率p =両r 7.故选B. 3•已知等腰直角厶 ABC 中,/ C = 90°在/ CAB 内作射线 AM ,则使/ CAM V 30°的概 率为 解析:如图,在/ CAB 内作射线AM 0, 使/ CAM 0= 30° 于是有 P(/ CAM / CAM 0 30 V 30 )=TCAB"— 245一3.△ ABC 内,则黄豆落在△ PBC 内的概率是(1A]4•已知 P 是厶ABC 所在平面内一点,且1根据几何概型的概率计算公式2 3解析:选C 以PB, PC为邻边作平行四边形PBDC,连接PD交BC于点0,则再B + R6 = _PD .--- B ---- B ------ B•/ PB + PC + 2 PA = 0,二-6+_P CT=- 2-,即可6= - 2"P A ,由此可得,P是BC边上的中线A0的中点,点P到BC的距离等于点A到BC的距离,,1 1 S^PBC 的2, •••S APBC=2S S BC,.・.将一粒黄豆随机撒在△ ABC内,黄豆落在△ PBC内的概率P =王;二12.5.点集Q = {(x, y)|0w x w e, 0< y w e}, A= {(x, y)|y>e x, (x, y) € Q},在点集Q 中任取一个元素a,则a€ A的概率为()1A.—eB.4e—1C.-ee2-1 D.—2 e解析:选B 如图,根据题意可知Q表示的平面区域为正方形BCDO , 面积为e2, A表示的区域为图中阴影部分,面积为/ 0 (e- e x)dx= (ex-1e x)|0= (e- e)-(—1) = 1,根据几何概型可知 a € A的概率P=二.故选B.e n a/ C1L 电*6.如图,来自古希腊数学家希波克拉底所研究的几何图形个半圆构成,三个半圆的直径分别为直角三角形边AB, AC A ABC的三边所围成的区域记为I,黑色部分记为H,其余.此图由三ABC的斜边BC,直角P1, P2, P3,则部分记为川.在整个图形中随机取一点,此点取自I ,n,川的概率分别记为C.p2= p3D.p1 = p2+ p3解析:选A不妨设△ ABC为等腰直角三角形,AB= AC = 2, 则BC = 2 2,A. p1 = p2B.p1= p3所以区域I的面积即△ ABC的面积,1为S1 = X 2X 2= 2,区域H的面积S2= T X 12—nX22- 2 = 2,区域川的面积S3=nX2"-2 =n- 2.得 P1=p2=dk ,P3=n 2,所以 P 1M p 3,卩2工P 3, P 1工P 2 + P 3, 故选 A.X 2 3 V 27.双曲线 C :孑一詁=1(a > 0, b > 0),其中 a € {1,2,3,4} , b € {1,2,3,4},且 a , b 取到其 中每个数都是等可能的, 则直线I: y =x 与双曲线C 的左、右支各有一个交点的概率为 ()1 A.1 5 D.5解析:选B 直线I : y = x 与双曲线C 的左、右支各有一个交点,贝U b > 1,总基本事件a 数为 4X 4= 16,满足条件的(a , b)的情况有(1,2), (1,3), (1,4), (2,3), (2,4), (3,4),共 6 个, 故概率为3.818.在区间[0,1]上随机取两个数 a , b ,则函数f(x)= x 2 + ax + 4b 有零点的概率是1解析:函数 f(x)= x 2 + ax + 4b 有零点,则 △= a 2— b > 0,二 b < a 2,「.函数 f(x)= x 2 + ax (3)因为有两人同时参加 A 岗位服务的概率3务的概率P 1= 1 — P 2=;.2 / o a 2da 1 + 4b 有零点的概率 P = 1 % 1 = 3.3 B.3C.2。