定积分的基本概念与可积函数类
定积分的概念、性质

三、定积分的性质
§5.1 定积分的概念与性质
一、定积分问题举例
演讲人姓名
二、定积分定义
一、定积分问题举例
曲边梯形 设函数yf(x)在区间[a, b]上非负、连续. 由直线xa、xb、y0及曲线yf (x)所围成的图形称为 曲边梯形, 其中曲线弧称为曲边.
曲边梯形的面积
*
观察与思考
定积分的定义
*
二、定积分定义
例1 用定积分表示极限 解 定积分的定义
*
二、定积分定义
定积分的定义
注: 设f (x)在[0, 1]上连续, 则有
*
定积分的几何意义
这是因为 曲边梯形面积 曲边梯形面积的负值
*
定积分的几何意义
各部分面积的代数和 曲边梯形面积 曲边梯形面积的负值
*
例2
在曲边梯形内摆满小的矩形, 当小矩形的宽度减少时, 小矩形面积之和与曲边梯形面积之间的误差将如何变化? 怎样求曲边梯形的面积?
*
(2)近似代替:
求曲边梯形的面积
(1)分割:
ax0< x1< x2< < xn1< xn b, Dxi=xi-xi1;
小曲边梯形的面积近似为f(xi)Dxi (xi1<xi<xi);
如果在区间[a b]上 f (x)g(x) 则
如果在区间[a b]上 f (x)0 则
性质5
推论2
性质6
设M及m分别是函数f(x)在区间[a b]上的最大值及最小值 则
例4 试证:
证明 设 则在 上, 有 即 故 即
*
性质7(定积分中值定理)
如果函数f(x)在闭区间[a b]上连 续 则在积分区间[a b]上至少存在一个点x 使下式成立 这是因为, 由性质6 ——积分中值公式 由介值定理, 至少存在一点x[a, b], 使 两端乘以ba即得积分中值公式.
§5.1 定积分的概念与性质

f (i )xi lim x 0
i 1
n
1 3
8
6
5.1.3 定积分的基本性质
( 线 性 性 质 性质1.
b
a b
kf ( x)dx k f ( x)dx
a
b
性质2.
a
[ f ( x) g ( x)]dx f ( x)dx g ( x)dx
a a
3
2
1
解(1)因为在[1, 2]上, x x ,
x dx
2 1
2
2
x dx
2
3
1
(2)因为在[1, 2]上, ln x (ln x) ,
ln xdx (ln x) dx
2 1 1
2
2
14
1i n
n
若极限 lim
x 0
f ( )x 存在,
i i i 1
n
则称函数 f (x) 在[a,b]上可积,
此极限值为函数f (x)在[a,b]上的定积分. 记作: 即
b
f ( x)dx
a
b
f ( x)dx lim
a
x 0
f ( )x
i i 1
n
i
5
1. 曲边梯形的面积
y
a f ( x)dx
c
b
c
a
f ( x)dx f ( x)dx
c
b
(2)若 a b c , 由(1)知
a b
f ( x)dx f ( x)dx f ( x)dx
a b
b
c
o a
定积分的知识点总结

定积分的知识点总结一、定积分的基本概念定积分是微积分学中的重要概念,可以用来计算曲线下的面积,曲线的弧长,质心等物理量。
定积分的基本思想是将曲线下的面积划分为无穷多个微小的矩形,然后求和得到整体的面积。
定积分的符号表示为∫。
对于一个函数f(x),在区间[a, b]上的定积分表示为:∫[a, b]f(x)dx其中,a和b为区间的端点,f(x)为函数在该区间上的取值。
定积分表示在区间[a, b]上的函数f(x)所确定的曲线下的面积。
二、定积分的计算方法1. 黎曼和定积分的计算基本思想是将曲线下的面积划分为很多个小矩形,然后对这些小矩形的面积求和。
这就是定积分的计算方法。
在实际计算中,根据黎曼和的定义,我们可以将区间[a, b]等分为n个小区间,每个小区间长度为Δx=(b-a)/n,然后在每个小区间上取一个样本点xi,计算f(xi)Δx的和:∑[i=1,n]f(xi)Δx当n趋近于无穷大时,这个和就可以逼近定积分的值。
这就是黎曼和的基本思想。
2. 定积分的几何意义定积分可以用来计算曲线下的面积,也可以用来计算曲线的弧长。
对于一个函数f(x),其在区间[a, b]上的定积分表示的是曲线y=f(x)和x轴之间的面积。
这个面积就是曲线下的面积。
如果函数f(x)在区间[a, b]上非负且连续,那么函数y=f(x)、直线x=a、x=b以及x轴所围成的区域的面积就是∫[a, b]f(x)dx。
3. 定积分的物理意义定积分还可以用来计算物理量,比如质量、质心等。
在物理学中,可以用定积分来计算物体的质量、质心等物理量。
对于一个连续的物体,将其质量密度函数表示为ρ(x),则物体的质量可以表示为定积分:M=∫[a, b]ρ(x)dx三、定积分的性质1. 线性性定积分具有线性性质,即∫[a, b](c1f1(x)+c2f2(x))dx=c1∫[a, b]f1(x)dx+c2∫[a, b]f2(x)dx。
其中c1、c2为常数,f1(x)、f2(x)为函数。
初中数学知识归纳定积分的基本概念和性质

初中数学知识归纳定积分的基本概念和性质定积分作为数学中的一个重要概念,是初中数学学习中必须掌握的内容之一。
本文将从定积分的基本概念和性质两个方面进行归纳,帮助初中生更好地理解和掌握这一知识点。
1. 定积分的基本概念定积分是对函数在一定区间上的积分,可以理解为曲线与x轴所夹的面积。
具体而言,定积分可以表示为∫ab f(x)dx,其中a和b分别表示积分的下限和上限,f(x)表示被积函数。
定积分的计算方法有多种,常见的有几何法和定积分的运算法则。
几何法是通过图形的面积进行计算,而定积分的运算法则则利用不定积分求解。
2. 定积分的性质定积分具有以下几个性质:(1)可加性:对于函数f(x)和g(x),定积分具有可加性,即∫ab[f(x) + g(x)] dx = ∫ab f(x) dx + ∫ab g(x) dx。
(2)线性性:对于任意实数k,定积分具有线性性质,即∫ab kf(x) dx = k∫ab f(x) dx。
(3)区间可加性:对于函数f(x)在区间[a, b]上的定积分,可以将该区间分割成若干小区间,然后进行分别计算再求和,即∫ab f(x) dx =∑(i=1 to n) ∫xi-1 xi f(x) dx,其中[xi-1, xi]表示分割后的小区间。
(4)定积分的性质与原函数相关:如果函数F(x)在区间[a, b]上是函数f(x)的原函数,则∫ab f(x) dx = F(b) - F(a)。
(5)无关紧要的加法常数:定积分无关紧要的加法常数,即∫abf(x) dx = ∫ab [f(x) + C] dx,其中C为任意常数。
3. 定积分的应用定积分不仅仅在数学理论中有重要应用,还广泛应用于物理、经济学等实际问题中。
以下是一些常见的应用场景:(1)面积计算:定积分可以用来计算曲线与x轴所夹的面积,从而解决几何学中的面积问题。
(2)求解平均值:对于某些变量随时间变化的过程,可以通过定积分计算平均值,如平均速度、平均密度等。
定积分的概念

f ( i ) xi ,
i 1
记 max{ x1 , x2 ,, xn },如果不论对[a, b]
怎样的分法, 也不论在小区间[ xi1 , xi ]上
点i 怎样的取法,只要当 0时,和式总趋于 确定的极限I ,我们称这个极限 I 为函数 f ( x)
在区间[a, b]上的定积分, 记为
积分上限
b a
f ( x)dx
I
lim 0
n i 1
f
(i )xi
积分和
积分下限
被 积 函 数
被
积
[a,b] 积分区间
积
分
表 达 式
变 量
定积分的本质是一种特殊结构的和式的极限
曲边梯形面积A:
n
A lim 0 i1
f (i )xi
记为 b f x dx a
隔[T1 ,T2 ]内,v 的变化不大,可近似看作是
匀速运动问题。按照求曲边梯形面积的思 想。
思路:把整段时间分割成若干个小段,每小段上 速度看作不变。求出各小段的路程再相加,便得到 路程的近似值。最后通过对时间的无限细分过程求 得路程的精确值。
(1)分割 T1 t0 t1 t2 tn1 tn T2 ti ti ti1
sin xdx
1
A2
4
sin
xdx
所以
5
A sin xdx 4 sin xdx
1
内容小结
1. 定积分的定义 — 乘积和式的极限
b
n
a
f ( x)dx lim 0 i1
f (i )xi
2. 定积分的几何意义
定积分的基本概念

方法与手段导入幻灯幻灯幻灯幻灯详讲详讲详讲幻灯下面就是根据这个思想用计算机对其划分过程进行了模拟,通过观察我们可以发现其面积在分割份数特别多的时候已经非常的接近我们的曲边梯形面积了。
事实上我们如果对其切割的份数取极限,让切割的份数趋于无穷,这个极限值就是我们要求的曲边梯形的面积值。
好,下面,我们把曲边梯形的求解过程用数学的方法描述一下。
解决步骤:大化小:在区间[a,b]中任意插入n −1个分点a =x 0<x 1<x 2<⋯<x n−1<x n−1=b ,用直线x =x i 将一个曲边梯形分成n 个小的曲边梯形;常带变:在第k 个窄边梯形上任取ξk ∈[x k−1,x k ]作以[x k−1,x k ]为底,f(ξk )为高的小矩形,并以此小矩形面积近似代替相应窄曲边梯形面积∆S k ,得∆S k ≈f (ξk )∆x k (∆x k =x k −x k−1,k =1,2,⋯n) 近似和:S =∑∆S k n k=1≈∑f(ξk )∆x k n k=1取极限:令λ=max {∆x 1,∆x 2⋯,∆x n } S =lim λ→0∑∆S k n k=1=lim λ→0∑f(ξk )∆x k n k=1这样我们就可以求出曲边梯形的面积,我们再看一个定积分问题例子。
(2)变速直线运动的路程:设某物体做直线运动,已知()v v t =在区间[1T ,2T ]上t 的连续函数,且()0v t ≥,求在这段时间内物体所经过的路程s 。
考虑:当()0y f x C ==≥,()0v v t C ==≥时(其中C 为常数),上面问题的求解。
在解决这个问题之前我们先分析一下这个问题与上个问题之间的关系,我们可以发现其实求路程和求面积本身是同一类问题,变化的无非是函数名,区间名称,本质上是一样的,我们其实只需做一个按照上面的思路做一个变量替换就可以了,具体的解决步骤是。
解决步骤: 详讲 总结λ→0是个障碍,我们能不能把λ→0替换掉?其实把[0,1]区间n 等分,λ=1n →0,其实就是n →+∞,lim n→+∞∑(k n )21n n k=1,要求这个极限我需要先求∑(k n )21n n k=1,化简一下可以得到1n 3∑k 2n k=1,∑k 2n k=1=?,∑k 2n k=1=16n(n +1)(2n +1),lim n→+∞∑(k n )21n n k=1=lim n→+∞n(n+1)(2n+1)6n 3=13。
定积分概念、性质ppt课件
上例曲边图形的面积用定积分表示
S1x2d x lin m (n 1 )2 (n 1 )1
0
n 6 n 3
3
注意:据定义有如下说明:
(1)定积分是特殊和式极限,它是一个定数;
(2)定积分的大小仅与区间[a,b]和被积函数f(x)有关;
(3)规定:
a
f(x)d x0,
b
a
f(x)d x f(x)dx
b f (x)dx
b
g ( x)dx
a
a
推2 论 :b
.
f(x)d
x
b
f( x) dx,(ab)
a
a
因f(x)f(x)f(x)
.
性质6(介值定理):设f(x)在[a,b]上可取得最大值M和最
小值m, 于是, 由性质5有
b
m (ba)af(x)d xM (ba)
几何意义也很明显
性质 7(积分中值若定函理 f(数 x)) 在[a: ,b]上连续,
S曲
lim n
n i 1
S i矩
lim
n
(n
1)( 2n 6n 2
1)
1 0.333 3
.
总结:求曲边梯形面积的步骤 v
引例1——曲边梯形的面积(演示) 引例2——变速直线运动的路程
设物体的运动速度 vvt
分割区间 作和
取近似值 取极限
T1
ti-1 i ti T2 t
(1)细分区间 [ T 1 ,T 2 ] [ T 1 ,t 1 ] U [ t 1 ,t2 ] U L U [ tn 1 ,T 2 ]
曲边梯形的面积,即:
n
S曲
.
lim
n i1
定积分的概念及性质
一、定积分的概念及性质定积分是研究分布在某区间上的非均匀量的求和问题,必须通过“分割、近似、求和、求极限”四个步骤完成,它表示了一个与积分变量无关的常量。
牛顿—莱布尼兹公式揭示了定积分与原函数的关系,提供了解决定积分的一般方法。
要求解定积分,首先要找到被积函数的原函数,而求原函数是不定积分的内容,由此,大家也可以进一步体会上一章内容的重要性。
被积函数在积分区间有界是可积的必要条件,在积分区间连续是可积的充分条件。
定积分具有线性性质、比较性质以及中值定理等,这些性质在定积分的计算和理论研究上具有重要意义,希望大家认真领会。
二、定积分的计算定积分的计算主要依靠牛顿—莱布尼兹公式进行。
在被积函数连续的前提下,要计算定积分一般需要先计算不定积分(因而不定积分的计算方法在定积分的计算中仍然适用),找出被积函数的原函数,但在具体计算时,定积分又有它自身的特点。
定积分计算的特点来自于定积分的性质,来自于被积函数在积分区间上的函数特性,因此有时定积分的计算比不定积分更简洁。
尽管定积分在求原函数的指导思想上与不定积分没有差别,但实际上它们又不完全一样。
例如用换元法来计算定积分⎰22cos sin πxdx x ,如果计算过程中出现了新的变元:x u sin =,则上下限应同时相应改变,微分同样如此,即⎰202cos sin πxdx x x u sin =313110312==⎰u du u 。
可以看出,在进行换元时的同时改变了积分的上下限,这样就无须象不定积分那样回代了。
但如果计算过程中不采用新变元,则无需换限,即=⎰202cos sin πxdx x 31sin 31sin sin 203202==⎰ππx x xd 。
在前一种方法(也称为定积分的第二换元法)中,一定要注意三个相应的变换:积分上、下限、微分,否则必然出现错误。
后一种方法(定积分的第一换元法)可以解决一些相对简单的积分,实际上是换元的过程可以利用凑微分来替代,由于没有出现新的变元,因而也就无须改变积分上下限及微分。
定积分知识点汇总
定积分知识点汇总在微积分学中,定积分是一个基本概念。
它是将一个区间上的函数的值乘以这个区间的长度进行求和的过程。
在这篇文章中,我们将详细介绍定积分的相关知识点,包括定义、性质、计算方法以及一些重要的定理。
一、定积分的定义定积分的定义是将一个连续函数$f(x)$在某个区间$[a, b]$上的面积或体积表示出来的过程。
这里我们主要探讨二维平面内的定积分。
在数学语言中,定积分的定义可以写作:$\int_a^bf(x)\,dx=\lim_{n\rightarrow\infty}\sum_{i=1}^nf(x_i)\Del ta x$其中$n$表示将区间$[a, b]$等分成$n$份,$\Delta x=\frac{b-a}{n}$表示每份长度。
$x_i$是第$i$份区间的中间点,即$a+(i-\frac{1}{2})\Delta x$。
$\sum_{i=1}^nf(x_i)\Delta x$表示的是矩形的面积之和,$\lim_{n\rightarrow\infty}$表示将矩形的数量趋近于无穷大。
最后的定积分即两个端点为$a$和$b$的函数$f(x)$的积分。
二、定积分的性质1. 线性性$\int_a^b[c_1f_1(x)+c_2f_2(x)]dx=c_1\int_a^bf_1(x)dx+c_2\int_a^ bf_2(x)dx$2. 区间可加性$\int_a^bf(x)dx+\int_b^cf(x)dx=\int_a^cf(x)dx$3. 积分中值定理如果$f(x)$在$[a, b]$上是连续的,则存在一个$c\in[a, b]$,使得$\int_a^bf(x)dx=f(c)(b-a)$。
其中$c$称为积分中值。
4. 牛顿-莱布尼茨公式$\int_a^bf(x)dx=F(b)-F(a)$,其中$F(x)$是$f(x)$的一个原函数(即$F'(x)=f(x)$)。
三、定积分的计算方法1. 分段函数对于分段函数$f(x)$,我们需要将其分段拆分并分别进行计算。
高数定积分知识点总结
高数定积分知识点总结一、定积分的定义定积分是微积分中的一个重要概念,它是对一个函数在一个区间上的积分结果进行计算的过程。
在数学上,定积分是用来计算曲线下面的面积或者函数在某一区间上的平均值的方法。
定积分可以写成以下形式:\[ \int_{a}^{b} f(x)dx \]其中,\( f(x) \)是被积函数,\( a \)和\( b \)是积分区间的端点。
定积分的计算过程就是求解被积函数在给定区间上的曲线下面的面积。
定积分在物理学、工程学和经济学等领域都有着广泛的应用,是微积分中不可或缺的重要工具。
二、定积分的性质1. 定积分的可加性如果函数\( f(x) \)在区间\([a, b]\)上是可积的,那么对于任意的\( c \)满足\( a \leq c \leq b \),都有:\[ \int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx \]这个性质表明了定积分的可加性,即在一个区间上进行积分的结果可以根据任意划分点\( c \)进行分割。
2. 定积分的线性性对于任意的实数\( \alpha, \beta \)和函数\( f(x), g(x) \),如果\( f(x), g(x) \)在区间\([a, b]\)上是可积的,那么有:\[ \int_{a}^{b} (\alpha f(x) + \beta g(x))dx = \alpha \int_{a}^{b} f(x)dx + \beta \int_{a}^{b} g(x)dx \]这个性质表明了定积分的线性性,即在一个区间上进行线性组合的函数的积分等于线性组合的函数的积分的线性组合。
3. 定积分的保号性如果在区间\([a, b]\)上有\( f(x) \geq 0 \),那么有:\[ \int_{a}^{b} f(x)dx \geq 0 \]这个性质表明了定积分的保号性,即当被积函数在一个区间上非负时,其积分结果也是非负的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
定积分的基本概念与可积函数类黎曼积分一,摘要:本文先是从微积分的发展史开始讨论,从开普特第二定律到牛顿的变化量累积量再到莱布尼茨的特征三角,研究微积分思想的形成过程包括牛顿和莱布尼茨的积分思想与方法进而引出完整的以柯西,威尔斯特拉斯的极限ε-δ语言定义的定积分基本概念。
再着重分析了在黎曼积分定义前提下的可积函数类。
在讨论可积函数类的过程中主要分析了原函数(不定积分)与可积的关系,两类间断点与可积函数的关系以及间断点的个数与可积的关系。
在讨论的过程中我主要是通过举例说明,比如前者是通过证明连续函数有原函数,再证明教材中的牛顿莱布尼茨公式,引出了原函数存在是个比连续还强的条件。
即原函数存在一定可积,但可积不一定有原函数,比如黎曼函数。
再通过单调函数的(第一类间断点)可积性与黎曼函数(第一类间断点)的可积性与的函数f(x)=sin(1/x)(第二类间断点)的比较得出可积性对间断点的类别提出的要求。
即第一类间断点和第二类有穷间断点可能可积,对于无限间断点,无界肯定不可积。
再通过狄利克函数说明间断点的个数与可积性的关系,有限个间断点可积无限个间断点不可积。
当然上面说的所有的前提是在有界这个必要条件下的最后再补述了勒贝克积分与黎曼积分的关系,扩充可积条件。
在此处键入公式。
二,关于牛顿和莱姆尼茨的积分思想讲到定积分的基本概念就不得不说到微积分的发展历程,淡到微积分大家一定会想到两位数学界的伟人--------他们是英国的牛顿和德国的莱姆尼茨。
他们两分别独立从不同的角度思考终于发明了微积分,牛顿是从力学的运动的角度(物理学方面的求变化过程中的积累量。
例如,变速运动在一段时间【α,b】内行进的路程,变力使物体运动一段路程【α,b】所作的功等等。
),而莱姆尼茨则是从几何图形的角度着入研究的(主要是利用“特征三角形”从作曲线上任一点的切线进而求面积)。
虽然他们的积分思想有所差别,但他们的最终问题的根源却殊途同归回到了同一个问题上来了即蕴含在定积分概念中的基本思想----------有限逼近无限,以致促进了以后的极限方法的发展。
所以极限方法就成为建立积分学严格理论的基本方法。
下面我们来分别介绍他们的积分思想1牛顿与他的微积分(艾萨克·牛顿(Isaac Newton)是英国伟大的数学家、物理学家、天文学家和自然哲学家,其研究领域包括了物理学、数学、天文学、神学、自然哲学和炼金术。
牛顿的主要贡献有发明了微积分,发现了万有引力定律和经典力学,设计并实际制造了第一架反射式望远镜等等,被誉为人类历史上最伟大,最有影响力的科学家。
为了纪念牛顿在经典力学方面的杰出成就,“牛顿”后来成为衡量力的大小的物理单位。
)说到牛顿人们可能会想到他的三大发明:微积分,万有引力,和光的分析。
他不仅是个伟大的数学家而且还是物理学家,这就是为什么他的微积分思想的起源于力学的原因,牛顿对物理学的深刻思考而导致了他在数学方面的成就,他都嫌思考的是开普勒第二定律:对于每一个行星而言,太阳和行星的连线在相等的时间内扫过相等的面积。
由于万有引力的作用,在离太阳不同距离的地方受力不一样,所以加速度也在在变化,也就是说速度V(t)是个变化的,求这个变化过程的积累量即面积。
牛顿让速度这个变化过程量为一个连续的函数,行驶的路程就是该函数下面的面积。
他是怎么求的面积的呢?把区段[a,b]划分成无穷个小区段,然后分别求每个小区段的面积累加起来求其极限值就是所求面积,.其中是上的任意一速度,把天体在该时间段看成是匀速运动即上面的极限值就是所求面积。
或者写成错误!未找到引用源。
的形式。
2莱布尼茨的积分思想戈特弗里德·威廉·莱布尼茨(Gottfried Wilhelm Leibniz,1646年-1716年),德国哲学家、数学家。
涉及的领域及法学、力学、光学、语言学等40多个范畴,被誉为十七世纪的亚里士多德。
和牛顿先后独立发明了微积分。
)上面已经说到莱布尼茨是从几何的角度着手,创立微积分的。
首先他在一个坐标轴上(第一象限)画一条连续的曲线,用函数f(x)表示,问题是怎么求该曲线与x=a;x=b和y=0所围成的曲面梯形的面积。
他接收了珀斯卡等先驱者的“特征三角形”,认为当dx,dy极小时,曲线上相邻两点之间的曲线同时也是切线即直线的一部分,而dx,dy分别是相邻亮点的横坐标之差和纵坐标之差,他把这种用dx,dy求切线的方法称为“纵坐标差分法”。
从而把区间【α,b】分划为n个子区间,在每个子区间【xi-1,xi】上任取一点ξi并作为新的小矩形的高,求这些小矩形面积的和式即得到了面积记:3牛顿与莱布尼茨积分思想的比较我们今天即不去讨论他们积分思想的优先权问题也不去解说他们的不同之处,我主要说的是他们的共同之处,他们那不约而同的从积分思想的启蒙最终有都回到分析学的基本问题----极限连续上来。
从而为后继者发展完整的积分理念打下了坚实的思想基础,下面作一下简要的概述。
(一)经过二人的工作,微积分已不再像古希腊时那样,所有数学都是几何学的一部分;也不像他们的先驱那样,使微积分束缚在几何的框架之中,而使微积分成为一门崭新的,独立的数学学科。
(分析数学)(二)两人的工作,都不想他们的先驱那样,仅仅局限于解决某些实际的具体的方法,而把微积分建立在一般问题和符号运算的基础上,使微积分成为解决某些实际问题的普遍方法。
(三)他们二人都不像先驱们那样,把微分问题和积分问题看成互不相干的问题,而是看到了这两个问题之间的互逆关系,从而建立起微积分基本定理,并得出所谓的“牛顿—莱布尼茨”。
(四)他们二人起初都把微积分学建立在对是无穷小运算的基础上。
在具体运算时,无穷小忽而为非零之数,忽而又是零。
从先划分至无穷再又求极限到有穷,进而求出变化量所行驶的路程和变化量所做的功以及变化曲线下的面积。
三,从微积分的思想的创立到完整的定积分基本概念进入19世纪以后,分析学的不严密到了非解决不可的地步,那是还没有变量,极限的严格定义。
不知道什么是连续,因为有解析式的函数天然地被认为是连续的。
级数的收敛性,定积分的存在性都含糊不清。
严密的分析是从波尔查诺。
阿贝尔和柯西等人开始的。
这和非欧几何的创立,群论的发现处于同一时期。
1821年,法国理工科大学教授柯西写了《分析教程》一书,其中将极限定义为“若代表某变量的一串值无限地趋向于某一数值,其差可以任意小,则该固定值称为这一串数值的极限”。
并由此出发建立起一个微积分体系。
柯西的功绩是将分析学奠定在极限概念之上,把纷乱的概念里出了一个头绪。
但是他的叙事仍然使用“无限趋向”,“要多小有多小”之类的语言,仍然是不严格的。
德国数学家威尔斯特拉斯将分析做到“算术化”。
他认为变量无非是一个字母,用来表示某区间内的数。
这一想法导致了变量X在(Xo-δ,Xo+δ)取值时,f(x)zai (f(Xo)- ε,f(Xo)-+ε)取值这样的方法。
在他手里,终于取得到了现在广泛采用的ε-δ定义。
有了这些完整的极限定义下面我们来讨论定积分的完整基本概念。
(一)不定积分与定积分的区别与联系不定积分计算的是原函数(得出的结果是一个式子)而定积分计算的是具体的数值(得出的借给是一个具体的数字)是某些特殊和式的极限。
不定积分是微分(求导)的逆运算而定积分是建立在不定积分的基础上把值代进去相减。
定积分只是把不定积分的上下限中的正负无穷换成了固定的上下限,所以基本在不定积分的定义和解决方法都是可以应用到定积分中来。
(二)定积分的完整定义定积分的定义设函数ƒ(x)定义在区间【α,b】上,在这区间上顺序插入任意若干分点:从而把区间【α,b】分划为n个子区间,在每个子区间【xi-1,xi】上任取一点ξi并作和式令λ表示分划的最大的子区间的长度。
如果当λ→0时,和式σ趋于某一个确定的极限I,则称这极限I为函数ƒ(x)在区间【α,b】上的定积分或黎曼积分,记为这时又说函数ƒ(x)在区间【α,b】上是黎曼可积的。
当【α,b】上的连续函数ƒ(x)≥0时,积分有着明显的几何意义,它表示由曲线y=ƒ(x)及直线x=α,x=b,y=0所围成的曲边梯形的面积(图1)。
至于一般的函数,如果规定x轴下面的曲边形的面积是负的,则积分给出了如图2中几部分“有向”面积的代数和。
(三)定积分的基本性质定积分作为有限和的极限,仍保持着一些有限和所具有的特点。
它对于积分区间是可加的,即而对于被积函数是线性的,即式中α,β为常数;并且当ƒ≤g 时,成立此外,还有分别关于被积函数与积分区间的中值定理:第一中值定理对于区间[α,b]上一个连续函数ƒ(x)与一个不变号的可积函数φ(x),一定存在该区间上一点ξ,使得第二中值定理 对于区间[α,b ]上一个单调函数ƒ(x)与一个可积函数g(x),一定存在该区间上一点ξ,使得小结:定积分的发展过程是一个严密的逻辑思考过程,和所有的科技发明一样。
首先是遇到急需解决的问题,进而对问题的分析寻求解决的办法建立初步的思想启蒙,再完善,成熟,最后形成一道完整的理论。
从求变化量累积量与及不规矩图形的面积,到微积分的创立,再到极限思想的完善都是这么一步一步走过来的。
四,可积函数类大讨论建立了完整定积分概念之后,就会想到到底什么函数是可积的?可积有需要什么样的条件呢?我从分析教材和参数的总结是这样的: 1,区间[a,b]有界的函数,2,只有有限个间断点。
符合这两个条件或者更加严密的条件都是黎曼可积的。
下面我们分类讨论。
(一)在区间[a,b]上连续的函数一定可积。
首先证明它满足我上面说的两个条件,因为是连续函数,显然只有有限间断点。
下面证明其有界性,这里我简要的文字述说一下:由于是在闭区间上,所以存在一一个有限开覆盖覆盖这个区间(有限覆盖定理),由于函数连续所以在每个覆盖区间局部有界,即在有限个数中选取那个最大的就是函数的一个上界,这里暂且不讨论它是否有上确界。
证明其可积有很多办法这里我只讨论两种,(1)根据原函数存在定理。
(2)一致连续性这里着重讨论第一种情况,下面先给出第一种证明:首先得证明连续函数必有原函数,剩下的就是证明牛顿莱布尼茨公式了。
根据原函数存在定理方法设置一个积分上限函数,在求导就行了。
下面给出详细的证明:()f x 在区间[],a b 上连续,则函数()()xa F x f t dt =⎰在[],ab 上可导,且其导数就是()f x ,即()()()xa d d F x f t dt f x dx dx ==⎰ 证: 取x ∆充分小,使[],x x ab +∆∈由定积分的性质3和定积分中值定理,得()()()()x x xa aF x x F x f t dt f t dt +∆+∆-=-⎰⎰ ()()x x x f t dt f x ξ+∆==∆⎰其中x x x ξ≤≤+∆或x x x ξ+∆≤≤,于是当0x ∆→时由导数定义和()f x 的连续性,得00()()()()lim lim x x d F x x F x f x F x dx x xξ∆→∆→+∆-∆==∆∆ 0lim ()()x f f x ξ∆→== ()()()xa d d F x f t dt f x dx dx ==⎰下面证明函数可积:设:F(x)在区间(a,b)上可导,将区间n 等分,分点依次是x1,x2,…xi…x(n -1),记a=x0,b=xn,每个小区间的长度为Δx=(b -a)/n,则F(x)在区间[x(i-1),xi]上的变化为F(xi)-F(x(i-1))(i=1,2,3…)当Δx 很小时,F(x1)-F(x0)=F’(x1)*ΔxF(x2)-F(x 1)=F’(x2)*Δx……F(xn)-F(x(n-1))=F’(xn)*Δx所以,F(b)-F(a)=F’(x1)*Δx+ F’(x2)*Δx+…+ F’(xn)*Δx当n→+∞时,∫(a,b)F’(x)dx=F(b)-F(a)以上就是简要的证明,我主要是想说明,原函数存在性与可积之间的关系。