发电机零功率切机保护原理及逻辑优化方案

发电机零功率切机保护原理及逻辑优化方案
发电机零功率切机保护原理及逻辑优化方案

发电机零功率切机保护原理及逻辑优化方案

发表时间:2019-04-11T16:17:13.313Z 来源:《电力设备》2018年第30期作者:连侠

[导读] 摘要:大型火力发电机组由于输电线路故障导致机组无法输出有功功率,汽轮机甩负荷过程中,由于发电机未跳闸,汽轮机判断机组仍处于并网发电状态,此时电气量保护无法动作于发电机解列灭磁,发电机组的功率突降可能造成系统有功功率突然不足,引起电网系统频率的不稳定变化,大大增加了电网系统的运行风险。

(福建大唐国际宁德发电有限责任公司福建福安 352100)

摘要:大型火力发电机组由于输电线路故障导致机组无法输出有功功率,汽轮机甩负荷过程中,由于发电机未跳闸,汽轮机判断机组仍处于并网发电状态,此时电气量保护无法动作于发电机解列灭磁,发电机组的功率突降可能造成系统有功功率突然不足,引起电网系统频率的不稳定变化,大大增加了电网系统的运行风险。通过零功率切机保护判别系统功率缺失并快速动作于机组解列灭磁,可防止机组过电压并降低火力发电机组热力设备损坏风险。因此配置逻辑合理、动作可靠的零功率切机保护有着重要意义。

关键词:零功率;保护;逻辑优化

1 引言

火力发电厂由于输电线路故障使功率无法送出,发电机发生功率突降为零,此时汽轮机剩余的能量使发电机组转子加速,对发电机组热力系统及电气系统产生较大的危害和影响。此时,如果机组保护不能快速、可靠动作,会产生严重后果 [1]。配置零功率切机保护不仅能够解决输电线路故障,发电机组无法正常输出有功功率状态下的安全停机问题,更重要的是可以解决输电线路事故后过载的热稳定问题[2-3]。

2零功率切机保护原理及逻辑构架

2.1零功率切机保护原理

发电机正常运行过程中发生甩负荷故障时,发电机有功功率由某一高值突降到某一低值,发电机电压突增、电流突降。因此可以采用发电机的机端电压、电流及有功功率等电气元件作为故障特征元件,发电机零功率切机保护通过判别发电机电气量变化情况,快速判别发电机组处于有功功率无法正常送出的故障运行工况。

2.2零功率切机保护逻辑框架

2.2.1零功率切机保护逻辑原理图

图1零功率切机保护逻辑框图

2.2.2零功率切机保护逻辑起动元件

(1)起动元件:发电机功率突降为零时,发电机电压突增、机组频率突增。起动元件:发电机功率突降为零时,因发电机主汽门未关闭,发电机转速迅速上升。

2.2.3 零功率切机保护逻辑判据

(1)机组输出功率小于设定值,发电机功率突降为零时,主变高压侧一次功率突降为零,其中有功功率大于零判据可防止系统震荡时误动作,低功率定值应小于发电机的最低出力。

(2)高压侧电流至少两相小于判据。发电机功率突降至零时,高压侧A、B、C三相电流也突降至零,可通过任意两相电流值均小于判据来作为判据。

(3)发电机三相正序电压大于U1判别元件。发电机功率突降为零时,发电机正序电压升高。

2.2.4 零功率切机保护逻辑闭锁元件

发电机有功功率突降为零时,机端三相电压处于对称状态,故可采用发电机负序电压U2作为闭锁判别元件。

3 零功率切机保护逻辑优化

3.1 目前零功率切机保护逻辑存在的问题

现有逻辑存在无法区分功率突降事故与系统振荡衰减事故的问题,特别是发电机发生区外严重故障,保护切除故障时限较长将引起有功功率快速振荡时,零功率切机保护可能误动作。区外严重故障,保护长延时切除时零功率切机保护判据动作情况分析如下:(1)区外故障前,发电机正常运行,有功功率大于高有功功率辅助判据,保护处于投入准备状态;

(2)区外故障切除时,发电机和主变正序电压突增,启动元件动作条件满足,保护启动;

(3)区外故障发生后至故障切除前,发电机有功功率处于周期性摆动状态,若此时区外发生严重故障且切除时间长,发电机有功功率发生摆动范围较大且持续时间长,发电机低有功功率主判据可能动作;

(4)区外故障切除时,发电机和主变正序电压突增,正序电压主判据满足动作条件;

(5)区外故障切除时,发电机功率和电流短时稳定后迅速降低,满足正序电流主判据动作条件;

(6)区外故障切除后,发电机三相电压恢复正常运行,发电机负序电压为零,负序电压闭锁条件不动作,无法闭锁保护。

综合以上条件,在发电机区外严重故障长延时切除引起发电机各电气量快速振荡时,发电机电气特征量满足保护判据动作条件,即零功率切机保护存在误动的风险。

RCS-985UP-3、1号机零功率切机作业指导书 (2)

Q/CDT 2012-12-01发布2013-01-01实施

目录 1.适用范围 (2) 2.本指导书涉及的资料和图纸 (2) 3.安全措施 (2) 4.备品备件清单 (2) 5.现场准备及工具 (2) 6.检修工序及质量标准 (5) 7.设备检修不合格项目处理单 (12) 8.完工报告 (13) 9.质量签证单 (15) 附件A.试验仪器仪表清单 (16) 附件B.安全措施 (16) 附件C.定值单 (16)

1.适用范围 1.本指导书适用于福建大唐国际宁德发电有限责任公司1号机零功率切机保护装置校验工作。 2.本指导书涉及的资料和图纸 下列标准及技术资料所包含的条文,通过在本作业指导书中的引用,而构成为本作业指导书的条文。本作业指导书出版时,所有版本均为有效。所有标准及技术资料都会被修订,使用本作业指导书的各方应探讨使用下列标准及技术资料最新版本的可能性。 《国家电网公司电力安全工作规程》 GB-T-14285-2006《继电保护和安全自动装置技术规程》 DL 478-2001《静态继电保护及安全自动装置通用技术条件》 DL/T 624-1997《继电保护微机型试验装置技术条件》 3.安全措施 4.备品备件清单 5.现场准备及工具 5.1 工器具

5.2 材料 5.3 工作准备

5.5办理相关工作票 H2

6.检修工序及质量标准 6.1 零功率切机保护装置校验6.1.1铭牌参数 6.1.2外观及接线检查 6.1.3直流电源检验 6.1.4软件版本和程序校验码核查 6.1.5时钟核对及整定值失电保护功能核查

发电机逆功率保护和程跳逆功率保护的区别

发电机逆功率保护和程跳逆功率保护的区别 发电机逆功率保护和程跳逆功率保护的区别是什么? 程序逆功率:指主气门关闭后,逆功率才会起作用,前提有一个主气门关闭的条件(关闭的接点串入逆功率动作的回路)。这种多数用在正常停机或汽机先跳的时候。时间较短,我们定为3秒钟。 逆功率:没有前提条件,只要发生逆功率了,延时到了就跳闸。时间设定就是根据汽轮机允许逆功率的时间设定的。我们这里设定为20秒。 所谓逆功率是指汽轮机的进汽不能冲动汽轮发电机组达电网周波要求的转速时,发电机从系统吸收有功以维持转速。此时由于进汽量过低无法满足低压缸特别是末几级动叶的冷却要求,末几级叶片在鼓风摩擦的作用下温度升高同时低压缸排汽区温度升高。造成末级叶片损坏或者低压缸膨胀后中心抬高而振动增大。所以设有逆功率保护,当发生逆功率时解列发变组,以保护低压缸末几级动叶。 逆功率保护用于保护汽轮机,当主汽门误关闭或机组保护动作于关闭主汽门,而出口断路器未跳闸时,发电机将变为电动机运行,从系统中吸收有功功率。此时对发电机没什么,但由于鼓风损失,汽轮机尾部叶片有可能过热,造成汽轮机叶片损坏,因此一般不允许这种情况长期存在,逆功率保护可以很好地起到保护作用。程跳逆功率保护是用于发电机非短路性故障或正常停机时防止汽轮机超速损坏,先关闭主汽门,有意造成发电机逆功率,再解列发电机的保护。 首先逆功率保护是发电机继电保护的一种,作为汽轮发电机出现有功功率倒送,发电机变为电动机运行异常工况的保护逆功率保护的简单原理:是按照比较绝对值原理构成的功率方向继电器交流测量回路,其交流电压形成回路采用和差接线方式。,从而获得两个比较电量:和电压向量A1与差电压向量A 2。发电机正常运行时,A2A1,继电器动作,经过一定延时,切除发电机。逆功率保护也可用于程序跳闸的启动元件。而程序逆功率保护严格说不是一种保护,而是为实现程序跳闸而设置的动作过程。程跳逆功率主要就是用于程序跳闸,算是一种停机方式吧.最关键的是逆功率只要定值达到就动作,程跳逆功率除了要定值达到,而且还要汽机主汽门关闭,才能跳闸。在正常停机操作当负荷降为零时,先关汽轮机主汽门,然后来启动程序逆功率保护来跳发电机。这样做的目的是防止主汽门关闭不严,当断路器跳开后,由于没有电磁功率这个电磁力矩,有可能造成汽轮机飞车。汽轮机的保护是有很多种的,对于超速,低真空,振动大等严重事故,立刻跳汽轮机,同时给电气发来热工跳闸信号,0S发电机解列灭磁切厂用.对一些不是很严重的保护,例如气温高等等,这些保护不经ETS通道立刻跳汽轮机,而是自动减负荷,并且经过一定的延时,才去关闭主汽门,这种情况下发电机自然不会由热工发信号跳闸,那么只有一条路,就是程跳逆功率.

发电机保护现象、处理

发电机保护1对于发电机可能发生的故障和不正常工作状态,应根据发电机的容量有选择地装设以下保护。 (1)纵联差动保护:为定子绕组及其引出线的相间短路保护。 (2)横联差动保护:为定子绕组一相匝间短路保护。只有当一相定子绕组有两个及以上并联分支而构成两个或三个中性点引出端时,才装设该种保护。 (3)单相接地保护:为发电机定子绕组的单相接地保护。 (4)励磁回路接地保护:为励磁回路的接地故障保护。 (5)低励、失磁保护:为防止大型发电机低励(励磁电流低于静稳极限所对应的励磁电流)或失去励磁(励磁电流为零)后,从系统中吸收大量无功功率而对系统产生不利影响,100MW及以上容量的发电机都装设这种保护。 (6)过负荷保护:发电机长时间超过额定负荷运行时作用于信号的保护。中小型发电机只装设定子过负荷保护;大型发电机应分别装设定子过负荷和励磁绕组过负荷保护。 (7)定子绕组过电流保护:当发电机纵差保护范围外发生短路,而短路元件的保护或断路器拒绝动作,这种保护作为外部短路的后备,也兼作纵差保护的后备保护。 (8)定子绕组过电压保护:用于防止突然甩去全部负荷后引起定子绕组过电压,水轮发电机和大型汽轮发电机都装设过电压保护,中小型汽轮发电机通常不装设过电压保护。 (9)负序电流保护:电力系统发生不对称短路或者三相负荷不对称(如电气机车、电弧炉等单相负荷的比重太大)时,会使转子端部、护环内表面等电流密度很大的部位过热,造成转子的局部灼伤,因此应装设负序电流保护。 (10)失步保护:反应大型发电机与系统振荡过程的失步保护。 (11)逆功率保护:当汽轮机主汽门误关闭,或机炉保护动作关闭主汽门而发电机出口断路器未跳闸时,从电力系统吸收有功功率而造成汽轮机事故,故大型机组要装设用逆功率继电器构成的逆功率保护,用于保护汽轮机。 发电机保护简介 1、发电机失磁保护失磁保护作为发电机励磁电流异常下降或完全消失的失磁故障保护。由整定值自动随有功功率变化的励磁低电压Ufd(P)、系统低电压、静稳阻抗、TV断线等判据构成,分别动作于发信号和解列灭磁。励磁低电压Ufd(P)判据和静稳阻抗判据均与静稳边界有关,可检测发电机是否因失磁而失去静态稳定。静稳阻抗判据在失磁后静稳边界时动作。

发电机技术

风力发电机原理 风力发电机的原理,是利用风力带动风车叶片旋转,再透过增速机将旋转的速度提升,来促使发电机发电。把风能转变为电能是风能利用中最基本的一种方式。风力发电机一般有风轮、发电机(包括装置)、调向器(尾翼)、塔架、限速安全机构和储能装置等构件组成超低速风力发电机为一由转动盘、固定盘、风轮叶片、固定轮、立竿、集电环盘、舵杆、尾舵和逆变器组成的系统。转动盘和固定盘构成该系统的发电机,逆变器包括50赫正弦波振荡器、整形电路、低压输出电路和倒相推挽电路。本系统中的发电机的优点,一是具有超低速建压特点,能在叶片转速低于每分钟100转时正常发电,为弱风地区风力资源的开发利用提供了新途径;二是结构简易,铁芯无开槽,也无电枢绕组,易维修,使用寿命长. 风力发电机的原理,是利用风力带动风车叶片旋转,再透过增速机将旋转的速度提升,来促使发电机发电。依据目前的风车技术,大约是每秒三公尺的微风速度(微风的程度),便可以开始发电。 风力发电正在世界上形成一股热潮,为风力发电没有燃料问题,也不会产生辐射或空气污染。 风力发电在芬兰、丹麦等国家很流行;我国也在西部地区大力提倡。小型风力发电系统效率很高,但它不是只由一个发电机头组成的,而是一个有一定科技含量的小系统:风力发电机+充电器+数字逆变器。风力发电机由机头、转体、尾翼、叶片组成。每一部分都很重要,各部分功能为:叶片用来接受风力并通过机头转为电能;尾翼使叶片始终对着来风的方向从而获得最大的风能;转体能使机头灵活地转动以实现尾翼调整方向的功能;机头的转子是永磁体,定子绕组切割磁力线产生电能。 风力发电机因风量不稳定,故其输出的是13~25V变化的交流电,须经充电器整流,再对蓄电瓶充电,使风力发电机产生的电能变成化学能。然后用有保护电路的逆变电源,把电瓶里的化学能转变成交流220V市电,才能保证稳定使用。 通常人们认为,风力发电的功率完全由风力发电机的功率决定,总想选购大一点的风力发电机,而这是不正确的。目前的风力发电机只是给电瓶充电,而由电瓶把电能贮存起来,人们最终使用电功率的大小与电瓶大小有更密切的关系。功率的大小更主要取决于风量的大小,而不仅是机头功率的大小。在内地,小的风力发电机会比大的更合适。因为它更容易被小风量带动而发电,持续不断的小风,会比一时狂风更能供给较大的能量。当无风时人们还可以正常使用风力带来的电能,也就是说一台200W风力发电机也可以通过大电瓶与逆变器的配合使用,获得500W甚至1000W乃至更大的功率出。 使用风力发电机,就是源源不断地把风能变成我们家庭使用的标准市电,其节约的程度是明显的,一个家庭一年的用电只需20元电瓶液的代价。而现在的风力发电机比几年前的性能有很大改进,以前只是在少数边远地区使用,风力发电机接一个15W的灯泡直接用电,一明一暗并会经常损坏灯泡。而现在由于技术进步,采用先进的充电器、逆变器,风力发电成为有一定科技含量的小系统,并能在一定条件下代替正常的市电。山区可以借此系统做一个常年不花钱的路灯;高速公

发电机逆功率保护

发电机逆功率保护概述 发电机逆功率保护又称功率方向保护。一般而言,发电机的功率方向应该为由发电机流向母线,但是当发电机失磁或其他某种原因,发电机有可能变为电动机运行,即从系统中吸取有功功率。这就是逆功率。当逆功率达到一定值时,发电机的保护动作,或动作于发信号 或动作于跳闸。并网运行的汽轮发电机,在汽轮机的主汽门关闭之后,便作为同步电动机运行:吸收有功功率而拖着汽轮机转动,可向系统发出无功功率。由于汽轮机主汽门已关闭,汽机尾部叶片与残留蒸汽产生摩擦而形成鼓风损耗,长期运行过热而损坏。燃气轮机和水轮机也主要是对原动机的损害。发电机逆功率保护主要保护汽轮机不受损害。 对汽轮机逆功率保护的整定计算,就是要确定该保护的动作功率Pdz及动作延时t。1、动作功率Pdz的整定汽轮发电机逆功率保护的动作功率可按下式计算:Pdz=(Krel*P1)/η Pdz-逆功率保护的动作功率Krel-可靠系数,取0.8 P1-主汽门关闭后,汽轮机维持同步转速旋转所消耗的功率,该功率的大小除与汽轮机的结构及容量有关之外,还与汽轮发电机的主蒸汽系统的结构(管道结构及有无旁路管道等)有关,一般取额定功率的1.5~2% η-发电机拖动汽轮发电机旋转时的效率,取0.98~0.99 所以:Pdz≈(1.2~1.6%)PN PN-发电机的额定功率。实际中,Pdz=可取1~1.5%PN。2、动作延时发电机逆功率保护的动作延时,应按照汽轮发电机主汽门关闭后允许运行的时间来整定,该允许时间一般为 10~15min。计算及运行实践表明,当汽轮机蒸汽系统有旁路管道时,允许运行时间还要长一些。因此,若按照汽轮机主汽门关闭之后允许运行的时间来整定保护的动作延时,可取5~10min。动作后作用于解列灭磁。另外,最近投运的大型汽轮发电机,多采用逆功率保护去启动程序跳闸回路,此时,动作时间通常取1~2s。对于程控逆功率保护,由于动作时间短,在主汽门点闭后很短的时间内,由于汽轮机及发电机的惯性,实际逆功率可能很小,因此逆功率的定值不应大于1%PN。 发电机逆功率保护原理 当发电机出现逆功率(外部功率指向发电机,也就是发电机变成电动机工况),逆功率保护动作断路器跳闸。需要采集三相电压和二相电流信号。

1、柴油发电机组整体要求

1、柴油发电机组整体要求 1.1 机组所有配套设备(包括但不限于控制柜、散热器、风扇、消音器、蓄电池及充电器、供油系统、电缆等)必须由制造商统一配套。 1.2机组配置日用油箱、缸套水加热器、输出断路器、发电机去潮器、减震器、40℃散热器、阻尼式复合型低噪音住宅型消音器、蓄电池及充电器等。 1.3把所有外露可动部件(手动操作控制除外)都封闭包装起来并完全防护,以防人员意外触及。所有防护装置应可拆卸。 1.4用防锈底漆和面漆对发电机组、底架和辅助设备的所有外露金属表面进行处理。温度高的表面部分应涂上能耐温达650℃高温而不会损坏的耐热油漆。 1.5可使用国产燃油及机油。 1.6微机控制必须可靠性高,要求采用电气、光电隔离措施,以避免外部对控制系统的干扰。具有防震、防水、防电磁波干扰,具有故障储存、实时报警和系统自诊断功能。 1.7柴油发电机组尺寸大小必须满足本招标文件图纸所提供空间尺寸要求,即所提供的发电机组必须适合在现有的空间及环境条件的安装与运行;投标单位需详细填报机组实际外形尺寸。 2、柴油发电机组整体技术要求 ★2.1 发电机组规格:常用800KW/备用880KW 开放式柴油发电机组1台。 2.2 功率因素:0.8(滞后)。 2.3 额定电压:0.4KV。 2.3.1稳态电压偏差:≤±1.0% 2.3.2瞬态电压调整率: -15%~+20% 2.3.3电压恢复时间:≤4秒 2.3.4电压波动率:≤±0.5% 2.3.5线电压波形正弦性畸变率:≤5% 2.3.6空载电压稳定范围:±5% 2.3.7三相不对称负载下的线电压偏差:≤5% 2.4 输出方式:三相四线,星形接线。 2.5 额定频率:50Hz。 2.5.1稳态频率调整率:≤±0.5% 2.5.2瞬态频率调整率:≤-7~+10% 2.5.3频率稳定时间:≤3秒 2.5.4频率波动率:≤ 0.5% 2.6 机组结构:发电机组在出厂时已经将发动机、发电机、控制系统、机组输出开关箱装在钢性公共底座上,并已调试好整套机组。 2.7 开机指令发出后加至满载(感性)的时间:≤15秒。 ★2.8 50%负载单步加载的能力。

配置发电机相间短路的后备保护

配置发电机相间短路的后备保护 2010-02-14 21:18:36 作者:loveg来源:电机维修网浏览次数:35 网友评论 0 条(1)发电机内部故障,而纵联差动保护或其他主要保护拒动时。 (1)发电机内部故障,而纵联差动保护或其他主要保护拒动时。 (2)发电机、发电机-变压器组的母线故障,而该母线没有母线差动保护或保护拒动时。 (3)当连接在母线上的电气元件(如变压器、线路)故障而相应的保护或断路器拒动时。发电机的后备保护方式有:低电压启动的过电流保护、复合电压启动的过电流保护、负序电流以及单元件低压过电流保护和阻抗保护。 1)低电压启动的过电流保护。发电机低压启动的过流保护的电流继电器,接在发电机中性点侧三相星形连接的电流互感器上,电压继电器接在发电机出口端电压互感器的相间电压上,在发电机投入前发生故障时,保护也能动作。低电压元件的作用在于区别是过负荷还是由于故障引起的过电流。 2)复合电压启动的过电流保护。复合电压启动是指负序电压和单元件相间电压共同启动过电流保护。在变压器高压侧母线不对称短路时,电压元件的灵敏度与变压器绕组的接线方式无关,有较高的灵敏度。 3)负序电流和单元件低压过流保护。发电机负序电流保护采用两段式定时限负序电流保护,由于不能反应三相对称短路,故加设单元件低压过流保护作为三相短路的保护;对于发电机-变压器组,宜在变压器两侧均设低压元件。两段式定

时限负序保护的灵敏段作为发电机不对称过负荷保护,经延时作用于信号。定时限负序电流保护作为发电机不对称短路的后备保护,它和单元件电压过流共用时间元件。 4)阻抗保护。发电机-变压器组阻抗保护一般接在发电机端部,阻抗元件一般为全阻抗继电器。但阻抗元件易受系统振荡及发电机失磁等的影响。阻抗元件的阻抗值整定,应与线路距离保护的定值配合,动作时间与所配合的距离保护段时间相配合。阻抗保护应有可靠的失压闭锁装置。由于动作时间较长,不设振荡闭锁装置。

发电机微机复合压启动的过电流保护原理及整定方法

发电机微机复合压启动的过电流保护原理及整定方法 浙江旺能环保股份有限公司 作者:周玉彩 一、复合压启动的(记忆)过电流保护基本作用原理 发电机复压(记忆)过流保护电流元件取发电机中性点侧定子电流,低电压或复合电压取自机端。保护作发电机、发电机变压器组相间短路故障的后备保护。 1)复合电压元件 满足下列条件之一时,复合电压元件动作。 op l U U < op U 为低电压整定值,l U 为三个线电压中最小的一个; op U U .22> op U .2为负序电压整定值,2U 为负序电压(取相电压值)。 2)过流元件 过流元件接于电流互感器二次三相回路中,当任一相电流满足下列条件时,保护动作。 op I I > op I 为动作电流整定值。 3)TV 异常复压闭锁 机端TV 出现异常时,复合电压是否动作取决于“TV 异常复压闭锁元件”控制字的整定。“TV 异常复压闭锁元件”控制字的整定及含义: TV 异常复压闭锁元件为“1”—TV 异常后闭锁复压元件判据判别,闭锁保护动作; TV 异常复压闭锁元件为“0”—TV 异常后复压元件满足动作条件,保护为过流保护。 二、复压(记忆)过流保护逻辑框图见图1: 发电机复压(记忆)过流保护作为发电机的后备保护,当用于自并励发电机的后备保护时,电流带记忆功能。复压(记忆)过流保护由复合电压元件、三相过流元件“与”构成,过流的记忆功能可投退。复压(记忆)过流保护配有两段各一时限,若保护出口跳分段或母联时,应不投入记忆功能。

图1 复压(记忆)过流保护逻辑框图 三、发电机复压过流保护整定: 1、低电压元件整定: 低电压元件为最小线电压,按躲过最低运行电压整定。 1)对于汽轮发电机,动作电压可按下式整定: Uop=0.6Ugn 2)对于水轮发电机,动作电压可按下式整定: Uop=0.7Ugn 式中Ugn为发电机机端电压互感器变比。 灵敏系数按主变压器高压侧母线三相短路的条件校验。 Ksen=Uop/I(3)k.max×Xt 式中: I(3)k.max为主变高压侧母线金属性三相短路时的最大短路电流; t X为变压器电抗,取 t t Z X=。 要求灵敏系数 2.1 ≥ sen K。低电压元件的灵敏系数不满足要求时,可在主变压器高压侧增设低电压元件。 2、负序电压元件整定: 负序电压元件应按躲过正常运行时出现的不平衡电压整定,一般取: Uop. 2 =(0.6~0.8)Ugn 式中:Ugn为发电机机端电压互感器变比。 灵敏系数按主变压器高压侧母线两相短路的条件校验。 Ksen=Uop/I(3)k.max×Xt

发电机逆功率保护和程跳逆功率保护的区别是什么

发电机逆功率保护和程跳逆功率保护的区别是什么? 程序逆功率:指主气门关闭后,逆功率才会起作用,前提是主气门先关闭的条件下(关闭的接点串入逆功率动作的回路)。这种多数用在正常停机或汽机先跳的时候。时间较短,我们定为3秒钟。 逆功率:没有前提条件,只要发生逆功率了,延时到了就跳闸。时间设定就是根据汽轮机允许逆功率的时间设定的。我们这里设定为20秒。 逆功率:是指汽轮机的进汽不能冲动汽轮发电机组达电网周波要求的转速时,发电机从系统吸收有功以维持转速。此时由于进汽量过低无法满足低压缸特别是末几级动叶的冷却要求,末几级叶片在鼓风摩擦的作用下温度升高同时低压缸排汽区温度升高。造成末级叶片损坏或者低压缸膨胀后中心抬高而振动增大。所以设有逆功率保护,当发生逆功率时解列发变组,以保护低压缸末几级动叶。 逆功率保护用于保护汽轮机,当主汽门误关闭或机组保护动作于关闭主汽门而出口断路器未跳闸时,发电机将变为电动机运行,从系统中吸收有功功率。此时对发电机没什么,但由于鼓风损失,汽轮机尾部叶片有可能过热,造成汽轮机叶片损坏,因此一般不允许这种情况长期存在,逆功率保护动作解列发变组,以保护低压缸末几级动叶。程跳逆功率保护是用于发电机非短路性故障或正常停机时防止汽轮机超速损坏,先关闭主汽门,有意造成发电机逆功率,进而再解列发电机的保护。 首先逆功率保护是发电机继电保护的一种,作为汽轮发电机出现有功功率倒送,发电机变为电动机运行异常工况的保护。逆功率保护的简单原理:是按照比较绝对值原理构成的功率方向继电器交流测量回路,其交流电压形成回路采用和差接线方式。,从而获得两个比较电量:和电压向量A1与差电压向量A2。发电机正常运行时,A2A1,继电器动作,经过一定延时,切除发电机。逆功率保护也可用于程序跳闸的启动元件。而程序逆功率保护严格说不是一种保护,而是为实现程序跳闸而设置的动作过程。程跳逆功率主要就是用于程序跳闸,算是一种停机方式吧.最关键的是逆功率只要定值达到就动作,程跳逆功率除了要定值达到,而且还要汽机主汽门关闭,才能跳闸。在正常停机操作当负荷降为零时,先关汽轮机主汽门,然后来启动逆功率保护来跳发电机。这样做的目的是防止主汽门未关,当断路器跳开后,由于没有电磁功率这个电磁力矩,有可能造成汽轮机飞车。 汽轮机的保护是有很多种的,对于超速,低真空,振动大等严重事故,立刻跳汽轮机,同时给电气发来热工跳闸信号,0S发电机解列灭磁

发电机负序电流保护

发电机负序电流保护 大容量的发电机,额定电流比较大,低电压启动的过电流保护,往往不能满足远后备灵敏度的要求。此外当电力系统发生不对称短路、断线、或负载不平衡等情况,发电机定子绕组中将产生负序电流,并将在转子铁芯、励磁绕组及阻尼绕组等部件上感应出倍频电压、电流,引起转子附加发热,危害发电机的安全运行 假设负序电流使转子发热是个绝热过程,则不使转子过热所允许的负序电流与持续时间的关系为 式中——在时间t内负序电流的均方根值(以发电机额定电流为基准的负序电流标幺值); ——流经发电机的负序电流; t——负序电流持续时间; A——发电机允许过热常数,其值与发电机型式和冷却方式有关。 1.定时限负序电流保护 (1) 原理接线对表面冷却的汽轮发电机和水轮发电机,大都采用两段式定时限负序过电流保护,其原理接线如图8—12所示。 图8—12 发电机负序电流及单项式低电压启动的过电流保护的原理接线图 (2) 负序电流的整定计算

1)启动电流的整定计算 动作于信号的保护部分(继电器3)按躲开发电机长期允许的负序电流和最大负荷时负序滤过器的不平衡电流整定,一般情况下取 动作于跳闸的保护部分(继电器4),保护的启动电流按下面两个条件整定。按转子发热条件整定,启动电流值为 式中A——发电机允许过热的时间常数。对非强迫式冷却的发电机,1s负序电流热稳定常数 对绕组内冷却的汽轮发电机,容量为200MW时,;对水轮发电机. T——值班人员有可能采取措施消除负序电流的时间,一般取120s,如值班人员在此时间内来不及消除产生负序电流的运行方式,则保护动作于跳闸。 对于表面冷却的发电机组,,代入上式后可得发电机的负序动作电 流. 动作于跳闸的负序动作电流还需与相邻元件的负序电流后备保护在灵敏度上相配合 式中——配合系数,取1.1; ——在计算运行方式下,发生外部故障时流过相邻元件(一般只考虑升压变压器的情况)的负序短路电流刚好与其负序电流保护的启动电流相等时,流经被保护发电机的负序短路电流(考虑有否分支系数)。 敏度校验 式中——被校验保护范围末端发生金属性不对称短路时,流过保护的最小负序电流。

逆功率保护技术规范书

苏州工业园区蓝天燃气热电有限公司 燃机厂#2、#4发电机逆功率保护技术规范书 二ΟΟ九年五月

1 总则 1.1 本规范书适用于苏州工业园区蓝天燃气热电(2X180MW)有限公司#2、#4发电机的逆功率保护、高低频保护、热工保护设备,它提出设备的功能设计、结构、性能、安装和试验等方面的技术要求。 1.2 需方在本规范书中提出了最低限度的技术要求,并未规定所有的技术要求和适用的标准,供方应提供一套满足本规范书和所列标准要求的高质量产品及其相应服务。对国家有关安全、环保等强制性标准,必须满足其要求。 1.3 如未对本规范书提出偏差,将认为供方提供的设备符合规范书和标准的要求。偏差(无论多少)都必须以书面形式清楚地表示并作为投标文件的附件。 1.4 供方须执行本规范书所列标准。有矛盾时,按较高标准执行。 2.工程范围 本期工程改造#2、#4发电机组两套保护,由供方负责#2、#4发电机的逆功率保护、高低频保护、热工保护设备的设计、元器件材料、安装、调试。 3.技术条件 3.1 总的范围 3.1.1本技术规范书适用于苏州工业园区蓝天燃气热电(2X180MW)有限公司#2、#4发电机的逆功率保护、高低频保护、热工保护设备的技术要求、元器件的配置要求及相关的订货基本技术条件。 3.2标准规范 3.2.1 应执行“电安”在(1994)191号关于颁布《电力系统继电保护及安全自动装置反事故措施要点》的通知中的有关条款。 3.2.2 应执行中华人民共和国国家标准GB 14285-93《继电保护和安全自动装置技术规程》。 3.2.3 继电保护装置的抗电磁干扰的能力应符合国家标准GB6162-85《静态继电器及保护装置电气干扰试验》。 3.2.4 继电保护装置工频耐压试验符合国家标准GB/T15145-94《微机线路保护装置通用技术条件》的规定进行绝缘检查和工频耐压试验。 3.2.5 应满足DL/T671-1999《微机发电机-变压器组保护装置通用技术条件》的有关条款之规定。

发变组保护功能配置讲义

一、发变组保护功能 ?发电机变压器保护:是从发变组单元系统中获取信息,并进行 处理,能满足系统稳定和设备安全的需要,对发变组系统的故 障和异常作出快速、灵敏、可靠、有选择地正确反应的自动化 装置。 ?发电机变压器保护对象:发电机定子、转子、机端母线、主变、 厂变、励磁变、高压短引线、断路器,并作为高压母线及引出 线的后备保护等。 ?发电机变压器保护应能保护的故障和异常类型: 1)定子绕组相间、匝间和接地短路 2)定子绕组过电压 3)定子绕组过负荷 4)定子铁芯过励磁 5)转子表面过负荷 6)励磁绕组过负荷 7)励磁回路接地 8)励磁回路失压(发电机失励磁) 9)发电机逆功率 10)发电机频率异常 11)主变、厂变、励磁变各侧绕组的相间、匝间和接地短路 12)主变、厂变、励磁变过负荷 13)主变铁芯过励磁

14)各引出线的相间和接地短路 15)发变组系统失步 16)断路器闪络、误上电、非全相和失灵 17)发变组起停机短路故障 18)发变组系统低电压 19)其他故障和异常运行 发电机变压器保护可能的配置要求。 1)发电机定子短路主保护 发电机纵差动保护 发变组差动保护 发电机不完全纵差动保护 发电机裂相横差保护 发电机高灵敏横差保护 发电机纵向零序电压式匝间保护 2)发电机定子单相接地保护 发电机3U0定子接地保护 发电机3I0定子接地保护 发电机高灵敏三次谐波电压式定子接地保护 注入电源式定子接地保护 3)发电机励磁回路接地保护 注入直流电源切换式转子一点接地保护 注入交流电源导纳式转子一点接地保护

转子二点接地保护 4)发电机定子短路后备保护 发电机过流保护 发电机电压闭锁过流保护 发电机负序过流保护 发电机阻抗保护 5)发电机异常运行保护 发电机失磁保护 发电机失步保护 发电机逆功率保护 发电机程跳逆功率保护 发电机频率异常保护 发电机过激磁保护(定、反时限) 发电机过电压保护 发电机低电压保护 发电机对称过负荷保护(定、反时限) 发电机不对称过负荷保护(定、反时限) 发电机励磁回路过负荷保护(定、反时限) 发电机误上电保护 发电机启停机保护 发电机次同步过流保护 发电机轴电流保护

发电机保护现象、处理

发电机保护1 对于发电机可能发生的故障和不正常工作状态,应根据发电机的容量有选择地装设以下保护。 (1)纵联差动保护:为定子绕组及其引出线的相间短路保护。 (2)横联差动保护:为定子绕组一相匝间短路保护。只有当一相定子绕组有两个及以上并联分支而构成两个或三个中性点引出端时,才装设该种保护。 (3)单相接地保护:为发电机定子绕组的单相接地保护。 (4)励磁回路接地保护:为励磁回路的接地故障保护。 (5)低励、失磁保护:为防止大型发电机低励(励磁电流低于静稳极限所对应的励磁电流)或失去励磁(励磁电流为零)后,从系统中吸收大量无功功率而对系统产生不利影响,100MW及以上容量的发电机都装设这种保护。 (6)过负荷保护:发电机长时间超过额定负荷运行时作用于信号的保护。中小型发电机只装设定子过负荷保护;大型发电机应分别装设定子过负荷和励磁绕组过负荷保护。 (7)定子绕组过电流保护:当发电机纵差保护范围外发生短路,而短路元件的保护或断路器拒绝动作,这种保护作为外部短路的后备,也兼作纵差保护的后备保护。 (8)定子绕组过电压保护:用于防止突然甩去全部负荷后引起定子绕组过电压,水轮发电机和大型汽轮发电机都装设过电压保护,中小型汽轮发电机通常不装设过电压保护。 (9)负序电流保护:电力系统发生不对称短路或者三相负荷不对称(如电气机车、电弧炉等单相负荷的比重太大)时,会使转子端部、护环内表面等电流密度很大的部位过热,造成转子的局部灼伤,因此应装设负序电流保护。 (10)失步保护:反应大型发电机与系统振荡过程的失步保护。 (11)逆功率保护:当汽轮机主汽门误关闭,或机炉保护动作关闭主汽门而发电机出口断路器未跳闸时,从电力系统吸收有功功率而造成汽轮机事故,故大型机组要装设用逆功率继电器构成的逆功率保护,用于保护汽轮机。 发电机保护简介 1、发电机失磁保护 失磁保护作为发电机励磁电流异常下降或完全消失的失磁故障保护。由整定值自动随有功功率变化的励磁低电压Ufd(P)、系统低电压、静稳阻抗、TV断线等判据构成,分别动作于发信号和解列灭磁。励磁低电压Ufd(P)判据和静稳阻抗判据均与静稳边界有关,可检测发电机是否因失磁而失去静态稳定。静稳阻抗判据在失磁后静稳边界时动作。TV断线判据在满足以下两个条件中任一条件:│Ua+Ub+Uc-3U0│≥Uset(电压门坎)或三相电压均低于8V,且0.1A

发电机保护并车条件逆功率

发电机并车 准同期条件:(1) 电压(volage)相等。 (2) 电压相位(phase position)一致. (3) 频率(frequency)相等。 (4) 相序(phase sequence)相同。 电压不等:其后果是并列后,发电机和系统间有无功性质的环流出现。电压相位不一致:其后果是可能产生很大的冲击电流,使发电机 烧毁,或使端部受到巨大的电动力的作用而损坏。 频率不等:其后果是将产生拍振电压和拍振电流,这个拍振电流 的有功成分在发电机机轴上产生的力矩,将使发电机产生机械振 动。当频率相差较大时,甚至使发电机并入后不能同步。 船舶发电机保护功能:1.发电机组高/低电压预报警、停机 2.发电机组高/低频率预报警、停机 3.发动机高水温报警、停机 4.发动机低速/超速预报警、停机 5.发动机低油压报警、停机 6.电池电压高/低报警 7.过流报警、跳闸、停机 8.短路故障跳闸 9.机油压力传感器断线报警、停机 10、发动机转速感应信号丢失报警、停机 11.发电机相序错误报警停机 12.发机组按地故障报警停机 13.紧急停机/启动报警停机 14.燃油油面过低报警

发电机保护回路1.逆功:逆功现象是由发电机组转速(频率)及电压不同而造成的, 即一台发电机组带正功,而另一台机组带负功率。也就是说带负功率的机组,这时变成了一个负载(此机组频率低,转速不一致的现象)。电压不相同时,电压高的机组,向电压低的机组,提供一个无功电流与无功电压(此机组的电流表正向指示),相当于在本供电系统内,加了一个调相机组。电压低的机组,这时成为一个大的负载,接受一个很大的无功电流,来维持两台机组的电压平衡(此机组的电流表反向指示)。监测时把某一台机组的电压调高,或将另一台机组电压高低,造成一台机组有逆功电流,其动作电流为额定电流20%左右。逆动继电器动作、跳闸、报警,但不停机。逆功率保护运作值核对。(一般8%—15%延时3—10s) 2.过电流:现在的发电机组额定功率一定的,它的超载能力很低,基本上在额定功率的5%左右,允许带载时间15~30分钟,最多不超60分钟,超过这个时间,发电机组会发热,导线绝缘会降低,也就降低了使用寿命。所以在设定过电流保护时无特殊要求的,过电流保护设定在额定电流的110%即可。带载测试时,将电流带至额定流的110%,过流继电器动作。跳闸、报警、不停机。 3.过电压:在并列使用发电机组时最怕供电系统发生振荡,一但发 生振荡系统电压升高,易造成用电设备及供电设备的绝缘击穿,使供电设备与用电设备一起瘫痪。为此并列使用的发电机组均装有过电压保护,其设定值为额定电压的105%为最佳。短接过电压继电器,跳闸停机、报警动作。

试验一同步发电机励磁控制试验

实验一同步发电机励磁控制实验 一、实验目的 1.加深理解同步发电机励磁调节原理和励磁控制系统的基本任务。 2.了解微机励磁调节装置的基本控制方式。 3.了解几种常用励磁限制器的作用。 4.掌握励磁调节装置的基本使用方法。 二、原理与说明 同步发电机励磁系统由励磁功率单元和励磁调节装置两部分组成,它们和同步发电机结合在一起构成一个闭环反馈控制系统,称为发电机励磁控制系统。励磁控制系统的三大基本任务是:稳定电压、合理分配无功功率和提高电力系统稳定性。 实验用的励磁控制系统示意图1-1如下所示,交流励磁电源取自380V市电,构成他励励磁系统,励磁系统的可控整流模块由TQLC-III微机自动励磁装置控制。 图1-1 励磁控制系统示意图 TQLC-III型微机自动励磁装置的控制方式有四种:恒U g(恒机端电压方式,保持机端电压稳定)、恒I L(恒励磁电流方式,保持励磁电流稳定)、恒Q(恒无功方式,保持发电机输出的无功功率稳定)和恒α(恒控制角方式,保持控制角稳定),可以任选一种方式运行。恒Q和恒α方式一般在抢发无功的时候才投入。大多数情况下应选择恒电压方式运行,这样能满足发电机并网后调差要求,恒励流方式下并网的发电机不具备调差特性。 同步发电机并入电力系统之前,励磁调节装置能维持机端电压在给定水平。当操作励磁调节装置的增减磁按钮,可以升高或降低发电机电压;当发电机并网运行时,操作励磁调节装置的增减磁按钮,可以增加或减少发电机的无功输出。 无论是在“手动”还是“自动”方式下,都可以操作增减磁按钮,所不同的

是调节的参数不同。在“自动”方式下,调节是的机端电压,也就是上下平移特性曲线,在“手动”方式下,改变的是励磁电流的大小,此时即使在并网的情况下,也不具备调差特性。 三、实验项目与方法 3.1 不同α角对应的励磁电压测试 本实验机组不并网。 1) 参照“同步发电机准同期并列实验”完成实验接线。 2) 检查机组控制屏上各指示仪表的指针是否指在0位置,如不在则应调到0位置。 3) 合上机组控制屏上的“220V电源”开关,检查开关状态:控制屏一次系统图上1QF处信号灯应绿灯亮,红灯熄灭。 4) 合上“调速励磁电源”开关(380V)。注意,一定要先合“220V电源”开关,再合“调速励磁电源”开关,否则,励磁或调速输出的功率模块可能处于失控状态! 5) 根据液晶显示屏显示和面板指示灯状态检查调速、励磁、同期装置是否正常;通过菜单检查各项参数是否设置正确。 6) 将调速装置“方式选择”开关选择为“自动”或“手动”方式,“远方/就地”选择为“就地”(选择为“远方”时,就地控制失效)。“启动/停止”开关选择为“启动”,此时,调速装置开始输出控制信号。 通过“增速”按钮逐渐升高电动机转速,当按住“增速”按钮不动时,转速将快速升高。接近额定转速时,采用“点动”的方式操作按钮,使电动机达到需要的转速。 7) 将励磁装置“方式选择”开关拨到中间位置(“恒Q/恒α”),10秒后,将“恒Q/恒α”开关选择为“恒α”(此时的增磁、减磁按钮控制导通角α的减小和增大),“远方/就地”开关选择为“就地”。当机组转速升到额定附近时,“启动/停止”开关选择为“启动”,此时,调节器开始输出控制信号。 通过“增磁”按钮逐渐升高发电机电压,当按住“增磁”按钮不动时,电压将快速升高。接近额定电压时,采用“点动”的方式操作按钮,使发电机达到需要的电压。 实验时,调节励磁电流为表1-1规定的若干值,记下对应的α角,对应的励磁电压,观察其变化规律。(励磁电流、α角及励磁电压在励磁装置液晶显示屏上读取) 实验完毕后停机,应严格按照“同步发电机准同期并列实验”中的停机步骤

发电机逆功率保护的CT配置问题探讨

发电机逆功率保护的CT配置的探讨 陈景阳 (青海石油管理局) 摘要:汽轮发电机在运行过程中,可能会由于各种原因导致失去原动力, 发电机变为电动机运行,从而产生逆功率,逆功率对发电机本身无害,但会使汽轮机转子尾部叶片因鼓风损失而过热以至损坏,所以需要装设逆功率保护。 目前,我们的发电机保护配置一般都将逆功率保护使用的电流互感器归结为保护类,即和发电机的其它保护一起使用P类电流互感器,但是逆功率保护元件实际上是测量元件,更适合选用测量级次的电流互感器。 关键词:逆功率、P类电流互感器、测量电流互感器 THE PROBE OF CTS FOR GENERATOR REVERSE POWER PROTECTION CHEN JING YANG (DONGFANG ELECTRIC CORPORATION LIMITED R&D CENTRAL ELECTRIC DESIGN INSTITUTE) Abstract: during the operation of the turbine generator,variety of reasons may result in the loss of the driving force for the generator to run as electric motors, resulting in reverse power, reverse power on the generator itself harmless, but it will make the tail rotor blade turbine losses due to blast damage and overheating, so it is necessary to install reverse power protection. At present, the current transformer for reverse protection of generator is generally configured with protection current transformer, namely the reverse protection and other protections for generator are configured with P-type current transformer, but the reverse power protection component is actually measured components, more suitable for measuring levels of selected current transformer. Key words: reverse power、P type current transformer、measuring current transformer 汽轮发电机在运行过程中,可能会由于各种原因导致失去原动力, 发电机变为电动机运行,造成这种情况的主要的原因有以下两点: 1、当机炉保护动作关闭主汽门或由于调整控制回路故障而误关闭主汽门,在发 电机断路器跳开前发电机将转为电动机运行。 2、发电机在过负荷、失磁等各种异常运行保护动作后,需要程序跳闸时,保护 先关闭主汽门,由程序逆功率保护经主汽门位置接点闭锁,延时动作于发电机断路器跳闸,在跳闸前发电机将转为电动机运行。 上述情况下,逆功率对发电机本身无害,但会使汽轮机转子尾部叶片因鼓风损失而过热以至损坏,所以需要装设逆功率保护。

电机负序保护

电机负序保护 电动机负序电流的整定是按照额定状况下整定的, 在正常运行时,一次回路缺相负序电流为额定电流的0.9-1.1倍,CT二次回路断线时负序电流为额定电流的0.577倍,因此一般取负序电流 I2dz=0.8Ie 电动机负序电流的整定是按照额定状况下整定的, 在正常运行时,一次回路缺相负序电流为额定电流的0.9-1.1倍,CT二次回路断线时负序电流为额定电流的0.577倍,因此一般取负序电流 I2dz=0.8Ie 负序保护,主要通过测量电动机的负序电流来实现。电源电压的不平衡将会在电动机绕组中产生负序电流,该电流的值取决于电动机的负序阻抗对正序阻抗的比值,此比值大致是正常满负荷电流对启动电流之比,例如,一台启动电流为6倍额定电流的电动机,电源电压有5%的负序,将引起大约30%的负序电流。由于负序电流在转子中感应涡流,引起电动机过热,为了保护转子不受不平衡电流损害,过热(过负荷)保护在它的动作方程中加入了负序电流热效应系数K2,对于严重的不平衡,诸如断线或反相,必须提供快速保护--单独的不平衡保护。 电动机启动时由于CT饱和等因素容易造成波形失真,从而造成负序保护误动作,本装置的负序动作电流和时限的整定值在电动机启动前后可分别整定。为了保护电动机断相或反相,启动结束后的典型的负序动作电流整定值I2ZD=Is是合适的(Is为电动机额定工作电流),启动过程中的负序动作电流整定值可根据启动试验测量的最大负序电流来确定。 负序动作电流整定值I2ZD的整定范围启动时为0.50~40.0A,启动结束后为0.2~20.0A,级差均为0.01A ,当I2>I2ZD 时启动负序保护。 负序保护动作时间按电流/时间反时限动作特性,用负序保护时间常数T2(整定范围为0.80~4.00秒,级差0.04秒)来表示,启动时和运行时分别整定。负序保护动作时间t2和负序保护时间常数T2的关系可用下面的公式表示: t2 = T2×I2ZD/ I2 秒 在整定比较灵敏(典型为I2 =(0.2~0.4)Is)时,采用动作时间较长的整定值。 注意:当保护应用于FC回路时,保护功能选择中的‘FC方式’必须选择为‘ON’,此时负序保护的最小动作时间为0.3S。 当保护动作时装置跳闸出口动作,同时‘保护’指示灯点亮,液晶显示器背光点亮并闪烁显示‘负序保护动作’字样。 本保护在保护CT断线及‘自检故障’发生时被闭锁。 为了保护电动机断相或反相,典型的负序动作电流整定值I2ZD=Is是合适的(Is为电动机额定工作电流),希望作为灵敏的不平衡保护时,可取I2ZD=(0.2~0.4)Is。电动机启动时由于CT饱和等因素容易造成波形失真,从而造成负序保护误动作,可根据启动试验测量的最大负序电流整定启动时负序动作电流。 运行时负序保护时间常数T2的整定应躲过电动机外部两相短路时母线进线开关的切除时间,一般取T2=0.8S,在整定得比较灵敏(典型为I2ZD=(0.2~0.4) Is)时,采用时间常数较长的曲线如T2=1.6S。启动时负序保护时间参数T2按照启动时保护不误动原则整定。

相关文档
最新文档