山西晋城市2017-2018学年高三下学期第二次模拟考试数学(理)试题(二模) Word版含答案
2017届高三第二次模拟考试(数学理)(含答案)word版

绝密★启用前鹰潭市2017届高三第二次模拟考试数学试题(理科)(满分:150分 时间:120分钟)参考公式:几何体体积公式:Sh V =柱;Sh V 31=锥;121()3V S S h =⋅台;球的表面积、体积公式:24S R =π,343V R =π,其中R 为球的半径。
一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. i 是虚数单位。
已知复数413(1)3iZ i i+=++-,则复数Z 对应点落在( ) A .第四象限 B .第三象限 C .第二象限 D .第一象限 2. 已知集合1|24xP x ⎧⎫=≥⎨⎬⎩⎭,{}22|4,,Q y x y x R y R =+=∈∈,则P Q = ( ) A. ∅ B. Q C. {}1,2- D. ()(){}3,1,0,2-3. 设函数()sin()1(0)()6f x x f x πωω'=+->的导数的最大值为3,则)(x f 的图象的一条对称轴的方程是( ) A .9π=x B .6π=x C .3π=x D .2π=x4. 已知正三棱锥S —ABC 的高为3,底面边长为4,在正棱锥内任取一点P ,使得21<-ABC P V ABC S V -的概率是( ) A .43 B .87 C .18D .41 5. 设函数[]x x x f -=)(,其中[]x 为取整记号,如[]22.1-=-,[]12.1=,[]11=.又函数3)(xx g -=,)(x f 在区间)2,0(上零点的个数记为m ,)(x f 与)(x g 图像交点的个数记为n ,则⎰nmdx x g )(的值是( ) A.25-B.34- C.45- D.67- 6. 图1中的阴影部分由底为1,高为1的等腰三角形及高为2和3的两矩形所构成.设函数()(0)S S a a =≥是图1中阴影部分介于平行线0y =及y a =之间的那一部分的面积,则函数()S a 的图象大致为( )7. 已知一个棱长为2的正方体,被一个平面截后所得几何体的三视图如图所示,则该几何体的体积是( )A .7B .203C .143D . 1738.下列说法:①命题“存在R x ∈0,使020x ≤”的否定是“对任意的02,>∈xR x ”;y =58.5;②若回归直线方程为ˆy =1.5x+45, x∈{1,5,7,13,19},则③设函数)1ln()(2x x x x f +++=,则对于任意实数a 和b , b a +<0是)()(b f a f +)<0的充要条件;④“若111||<<-⇒<∈x x R x ,则”类比推出“若111||<<-⇒<∈z z C z ,则”其中正确的个数是( )A .1B .2C .3D .49. 已知点P 是双曲线)0,0(12222>>=-b a by a x 右支上一点,12F F 、分别为双曲线的左、 右焦点,I 为△12PF F 的内心,若2121F IF IPF IPF S S S ∆∆∆+=λ成立,则λ的值为( )C.a bD.b a10. 若1)(+=x xx f ,)()(1x f x f =,()[]()*1,2)(N n n x f f x f n n ∈≥=-,则()()++21f f …()()()()1112011201121f f f f +++++=( ) A .1 B .2009 C .2010 D .2011第II 卷(非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共25分。
山西省2018届高三第二次模拟考试数学(文)试题(解析版)

文科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,全集,则()A. B. C. D.【答案】A【解析】因为集合,,则,故选A.2. 已知平面向量,,则向量的模是()A. B. C. D.【答案】C【解析】因为向量,,,,故选C.3. “”是“”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】B【解析】当时,满足,但不成立,当时,一定成立,所以是的必要不充分条件,故选B.4. 问题“今有女子不善织布,逐日所织的布以同数递减,初日织五尺,末一日织一尺,计织三十日,问共织几何?”源自南北朝张邱建所著的《张邱建算经》,该问题的答案是()A. 尺B. 尺C. 尺D. 尺【答案】A【解析】由已知可得该女子三十日每日织布数组成一个等差数列,设为,且,则,故选A.5. 若函数为奇函数,则()A. B. C. D.【答案】D【解析】分析:利用奇偶性,先求出,再求出的值即可.详解:设x>0,则﹣x<0,故f(﹣x)=2x﹣2=﹣f(x),故x>0时,f(x)=2﹣2x,由g(2)=f(2)=2﹣4=﹣2,故f(g(2))=f(﹣2)=﹣f(2)=2,故选:D.点睛:(1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f(f(a))的形式时,应从内到外依次求值.(2)当给出函数值求自变量的值时,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.6. 从装有大小材质完全相同的个红球和个黑球的不透明口袋中,随机摸出两个小球,则两个小球同色的概率是()A. B. C. D.【答案】C【解析】记个红球分别为,个黑球分别为,则随机取出两个小球共有种可能:,其中两个小球同色共有种可能,,根据古典概型概率公式可得所求概率为,故选C.【方法点睛】本题主要考查古典概型概率公式的应用,属于难题,利用古典概型概率公式求概率时,找准基本事件个数是解题的关键,基本亊件的探求方法有(1)枚举法:适合给定的基本事件个数较少且易一一列举出的;(2)树状图法:适合于较为复杂的问题中的基本亊件的探求.在找基本事件个数时,一定要按顺序逐个写出:先,…. ,再,…..依次….… 这样才能避免多写、漏写现象的发生.7. 已知为直线上的点,过点作圆的切线,切点为,,若,则这样的点有()A. 个B. 个C. 个D. 无数个【答案】B【解析】连接,则四边形为正方形,因为圆的半径为,,原点(圆心)到直线距离为符合条件的只有一个,故选B.8. 某几何体的三视图如图所示,若图中小正方形的边长均为,则该几何体的体积是()A. B. C. D.【答案】A【解析】由三视图可知,该几何体是由半个圆柱与半个圆锥组合而成,其中圆柱的底面半径为,高为,圆锥的底面半径和高均为,其体积为,故选A.【方法点睛】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题. 三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响,对简单组合体三视图问题,先看俯视图确定底面的形状,根据正视图和侧视图,确定组合体的形状.9. 已知函数的周期为,当时,方程恰有两个不同的实数解,,则()A. B. C. D.【答案】B【解析】函数,由周期,可得,,,且的对称轴为,方程恰有两个不同的实数解,,则,故选B.10. 中国古代数学著作《算学启蒙》中有关于“松竹并生”的问题“松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等?”意思是现有松树高尺,竹子高尺,松树每天长自己高度的一半,竹子每天长自己高度的一倍,问在第几天会出现松树和竹子一般高?如图是根据这一问题所编制的一个程序框图,若输入,,输出,则程序框图中的中应填入()A. ?B. ?C. ?D. ?【答案】C【解析】当时,;当时,;当时,;当时,,不满足运行条件,输出程序框图中,应填,故选C.11. 已知函数,若曲线上存在点使得,则实数的取值范围是()A. B.C. D.【答案】B【解析】因为曲线在上递增,所以曲线上存在点,可知,由,可得,而在上单调递减,,故选B.12. 在四面体中,,,底面,的面积是,若该四面体的顶点均在球的表面上,则球的表面积是()A. B. C. D.【答案】D【解析】四面体与球的位置关系如图所示,设为的中点,为外接球的圆心,因为,,由余弦定理可得,由正弦定理可得由勾股定理可得,又,,在四边形中,,,计算可得,则球的表面积是,故选D.【方法点晴】本题主要考查球的性质及圆内接三角形的性质、正弦定理与余弦定理法应用及球的表面积公式,属于难题.球内接多面体问题是将多面体和旋转体相结合的题型,既能考查旋转体的对称形又能考查多面体的各种位置关系,做题过程中主要注意以下两点:①多面体每个面都分别在一个圆面上,圆心是多边形外接圆圆心;②注意运用性质.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 复数满足,则复数的共轭复数__________.【答案】【解析】由得,,故答案为.14. 已知实数,满足约束条件则的最大值是__________.【答案】8【解析】试题分析:要求目标函数的最大值,即求的最小值.首先画出可行域,由图知在直线和直线的交点处取得最小值,即,所以的最大值为.考点:线性规划;15. 是为双曲线上的点,,分别为的左、右焦点,且,与轴交于点,为坐标原点,若四边形有内切圆,则的离心率为__________.【答案】2【解析】设,可得,则四边形的内切圆的圆心为,半径为的方程为,圆心到直线的距离等于,即,化简得,,故答案为.【方法点睛】本题主要考查双曲线的方程与性质以及离心率,属于难题. 离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,从而求出;②构造的齐次式,求出;③采用离心率的定义以及圆锥曲线的定义来求解;④根据圆锥曲线的统一定义求解.16. 数列满足若,则数列的前项的和是__________.【答案】450【解析】分析:根据递推关系求出数列的前几项,不难发现项的变化具有周期性,从而得到数列的前项的和.详解:∵数列{a n}满足,∵a1=34,∴a2==17,a3=3a2+1=3×17+1=52,a4==26,a5==13,a6=3a5+1=40,a7==20,a8==10,a9==5,a10=3a9+1=16,a11==8,a12==4,a13==2,a14==1,同理可得:a15=4,a16=2,a17=1,…….可得此数列从第12项开始为周期数列,周期为3.则数列{a n}的前100项的和=(a1+a2+……+a11)+a12+a13+29(a14+a15+a16)=(34+17+52+26+13+40+20+10+5+16+8)+4+2+29×(1+4+2)=450.故答案为:450.点睛:本题考查了分段形式的递推关系,数列的周期性.数列作为特殊的函数,从函数角度思考问题,也是解题的一个角度,比如利用数列的单调性、周期性、对称性、最值等等.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 在中,内角,,的对边分别为,,,且.(1)求;(2)若,且的面积为,求的周长.【答案】(1);(2)6.【解析】试题分析:(1)由根据正弦定理可得,利用两角和的正弦公式及诱导公式可得,∴;(2)由的面积为,可得,再利用余弦定理可得,从而可得的周长.试题解析:(1)∵,∴.∴,∴.∵,∴,∴,∴.(2)∵的面积为,∴,∴.由,及,得,∴.又,∴.故其周长为.18. 如图,三棱柱中,,平面.(1)证明:平面平面;(2)若,,求点到平面的距离.【答案】(1)见解析;(2).【解析】试题分析:(1)由平面,可得.由,可得,由线面平行的判定定理可得平面,从而可得平面平面;(2)设点到平面的距离为.则,又,从而可得点到平面的距离为.试题解析:(1)证明:∵平面,∴.∵,∴,∴平面.又平面,∴平面平面.(2)解法一:取的中点,连接.∵,∴.又平面平面,且交线为,则平面.∵平面,∴,∴四边形为菱形,∴.又,∴是边长为正三角形,∴.∴.设点到平面的距离为.则.又,∴.所以点到平面的距离为.解法二:利用平面转化为求点到平面的距离,即.19. 某大型商场去年国庆期间累计生成万张购物单,从中随机抽出张,对每单消费金额进行统计得到下表:由于工作人员失误,后两栏数据已无法辨识,但当时记录表明,根据由以上数据绘制成的频率分布直方图所估计出的每单消费额的中位数与平均数恰好相等.用频率估计概率,完成下列问题:(1)估计去年国庆期间该商场累计生成的购物单中,单笔消费额超过元的概率;(2)为鼓励顾客消费,该商场打算在今年国庆期间进行促销活动,凡单笔消费超过元者,可抽奖一次,中一等奖、二等奖、三等奖的顾客可以分别获得价值元、元、元的奖品.已知中奖率为,且一等奖、二等奖、三等奖的中奖率依次构成等比数列,其中一等奖的中奖率为.若今年国庆期间该商场的购物单数量比去年同期增长,式预测商场今年国庆期间采办奖品的开销.【答案】(1) ;(2)580000.【解析】试题分析:(1)由消费在区间的频率为,可知中位数估计值为,设所求概率为,利用每个矩形的中点横坐标与该矩形的纵坐标相乘后求和等于求解即可;(2)根据,解得,可得一等奖、二等奖、三等奖的中奖率分别为,,,从而可得一等奖、二等奖、三等奖中奖单数可估计为,,,进而可得结果.试题解析:(1)因消费在区间的频率为,故中位数估计值即为.设所求概率为,而消费在的概率为.故消费在区间内的概率为.因此消费额的平均值可估计为.令其与中位数相等,解得.(2)设等比数列公比为,根据题意,即,解得.故一等奖、二等奖、三等奖的中奖率分别为,,.今年的购物单总数约为.其中具有抽奖资格的单数为,故一等奖、二等奖、三等奖中奖单数可估计为,,.于是,采购奖品的开销可估计为(元).20. 已知抛物线的焦点为,为轴上的点.(1)过点作直线与相切,求切线的方程;(2)如果存在过点的直线与抛物线交于,两点,且直线与的倾斜角互补,求实数的取值范围. 【答案】(1) 切线的方程为或;(2) .【解析】试题分析:(1)设切点为,利用导数求出切线斜率,由点斜式求得切线方程,将代入切线方程,求出或,进而可得切线方程;(2)设直线的方程为,代入得,根据斜率公式可得,韦达定理得,利用判别式大于零可得结果. 试题解析:(1)设切点为,则.∴点处的切线方程为.∵过点,∴,解得或.当时,切线的方程为,当时,切线的方程为或.(2)设直线的方程为,代入得.设,,则,.由已知得,即,∴.把①代入②得,③当时,显然成立,当时,方程③有解,∴,解得,且.综上,.21. 已知函数.(1)讨论函数的单调性;(2)当时,曲线总在曲线的下方,求实数的取值范围.【答案】(1) 当时,函数在上单调递增;当时,在上单调递增,在上单调递减;(2) .【解析】试题分析:(1)求出,分两种情况讨论的范围,在定义域内,分别令求得的范围,可得函数增区间,求得的范围,可得函数的减区间;;(2)原命题等价于不等式在上恒成立,即,不等式恒成立,可化为恒成立,只需大于的最大值即可.试题解析:(1)由可得的定义域为,且,若,则,函数在上单调递增;若,则当时,,在上单调递增,当时,,在上单调递减.综上,当时,函数在上单调递增;当时,在上单调递增,在上单调递减.(2)原命题等价于不等式在上恒成立,即,不等式恒成立.∵当时,,∴,即证当时,大于的最大值.又∵当时,,∴,综上所述,.【方法点晴】本题主要考查利用导数研究函数的单调性以及不等式恒成立问题,属于难题.不等式恒成立问题常见方法:① 分离参数恒成立(即可)或恒成立(即可);② 数形结合(图象在上方即可);③ 讨论最值或恒成立;④ 讨论参数.本题是利用方法① 求得的范围.22. 在平面直角坐标系中,以原点为极点,轴的非负半轴为极轴建立极坐标系.已知曲线的极坐标方程为,为曲线上的动点,与轴、轴的正半轴分别交于,两点.(1)求线段中点的轨迹的参数方程;(2)若是(1)中点的轨迹上的动点,求面积的最大值.【答案】(1) 点的轨迹的参数方程为(为参数);(2) 面积的最大值为.【解析】试题分析:(1)将极坐标方程利用,化为直角坐标方程,利用其参数方程设,则,从而可得线段中点的轨迹的参数方程;(2)由(1)知点的轨迹的普通方程为,直线的方程为.设,利用点到直线距离公式、三角形面积公式以及辅助角公式,结合三角函数的有界性可得面积的最大值.试题解析:(1)由的方程可得,又,,∴的直角坐标方程为,即.设,则,∴点的轨迹的参数方程为(为参数).(2)由(1)知点的轨迹的普通方程为,,,,所以直线的方程为. 设,则点到的距离为,∴面积的最大值为.【名师点睛】本题考查圆的参数方程和普通方程的转化、直线极坐标方程和直角坐标方程的转化以及点到直线距离公式,消去参数方程中的参数,就可把参数方程化为普通方程,消去参数的常用方法有:①代入消元法;②加减消元法;③乘除消元法;④三角恒等式消元法,极坐标方程化为直角坐标方程,只要将和换成和即可.23. 已知函数.(1)解不等式;(2)若关于的不等式只有一个正整数解,求实数的取值范围.【答案】(1) 不等式的解集为;(2).【解析】试题分析:(1)对分三种情况讨论,分别去掉绝对值符号,然后求解不等式组,再求并集即可得结果;(2)作出函数与的图象,由图象可知当时,不等式只有一个正整数解.试题解析:(1)当时,,解得,∴;当时,,解得,∴;当时,,解得,∴.综上,不等式的解集为或.(2)作出函数与的图象,由图象可知当时,不等式只有一个正整数解,∴.。
2017届高三第二次模拟考试 数学理科试题(含答案)word版

绝密★启用并使用完毕前 2017年威海市高考模拟考试理科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分,共5页.满分150分.考试时间120分钟.考试结束后,将本试卷和答题卡一并交回. 注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、准考证号、县区和科类填写在答题卡和试卷规定的位置上.2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案,答案不能答在试卷上.3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤.第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合1{1,10,}10A =,{|lg ,}B y y x x A ==∈,则A B = A.1{}10 B. {10} C. {1} D. ∅ 2.复数11i -的共轭复数为A.11+22iB. 1122i -C. 11+22i -D. 1122i -- 3.如图,三棱锥V ABC -底面为正三角形,侧面VAC 与底面垂直且VA VC =,已知其主视图的面积为23,则其左视图的面积为4.若函数()sin()f x x ϕ=+是偶函数,则tan2ϕ=A.0B.1C.1-D. 1或1- 5.等差数列{}n a 中,10590,8S a ==,则4a =A.16B.12C.8D.66.已知命题p :函数12x y a +=-恒过(1,2)点;命题q :若函数(1)f x -为偶函数,则()f x 的图像关于VAB C第3题图直线1x =对称,则下列命题为真命题的是A.p q ∧B.p q ⌝∧⌝C.p q ⌝∧D.p q ∧⌝7.R 上的奇函数()f x 满足(3)()f x f x +=,当01x <≤时,()2x f x =,则(2012)f = A. 2- B. 2 C. 12-D. 128.函数2lg ()=xf x x的大致图像为9.椭圆2222+1(0)x y a b a b =>>的离心率为3,若直线kx y =与其一个交点的横坐标为b ,则k 的值为A.1±B.3±D. 10.设6(x 的展开式中3x 的系数为A ,二项式系数为B ,则:A B = A.4 B. 4- C.62 D.62-11.如图,菱形ABCD 的边长为2,60A ∠=,M 为DC 的中点,若N 为菱形内任意一点(含边界),则AM AN ⋅ 的最大值为 A.3 B. 6 D.912.函数()f x 的定义域为A ,若存在非零实数t ,使得对于任意()x C C A ∈⊆有,x t A +∈ 且()()f x t f x +≤,则称()f x 为C 上的t 度低调函数.已知定义域为[)0+∞,的函数()=3f x mx --,且()f x 为[)0+∞,上的6度低调函数,那么实数m 的取值范围是 A.[]0,1 B. [)+∞1, C.(],0-∞ D.(][),01,-∞+∞第Ⅱ卷( 共90分)二、填空题:本大题共4小题,每小题4分,共16分. 13.某商场调查旅游鞋的销售情况,随机抽取了部分顾客C 第11题图A的购鞋尺寸,整理得如下频率分布直方图,其中直方图从左至右的前3个小矩形的面积之比为1:2:3,则购鞋尺寸在[)39.5,43.5内的顾客所占百分比为______. 14.阅读右侧程序框图,则输出的数据S 为______.15.将,,a b c 三个字母填写到3×3方格中,要求每行每列都不能出现重复字母,不同的填写方法有________种.(用数值作答)16.若集合12,n A A A 满足12n A A A A = ,则称12,n A A A 为集合A 的一种拆分.已知: ①当12123{,,}A A a a a = 时,有33种拆分; ②当1231234{,,,}A A A a a a a = 时,有47种拆分; ③当123412345{,,,}A A A A a a a a a = ,时,有515种拆分;……由以上结论,推测出一般结论:当112123{,,,}n n A A A a a a a += 有_________种拆分.三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知函数2()sin cos 2f x x x x ωωω=⋅-(0>ω),直线1x x =,2x x =是)(x f y =图象的任意两条对称轴,且||21x x -的最小值为4π. (I )求()f x 的表达式; (Ⅱ)将函数()f x 的图象向右平移8π个单位后,再将得到的图象上各点的横坐标伸长为原来的2倍,纵坐标不变,得到函数()y g x =的图象,若关于x 的方程()0g x k +=,在区间0,2π⎡⎤⎢⎥⎣⎦上有且只有一个实数解,求实数k 的取值范围. 18.(本小题满分12分)某市职教中心组织厨师技能大赛,大赛依次设基本功(初赛)、面点制作(复赛)、热菜烹制(决赛)第14题图三个轮次的比赛,已知某选手通过初赛、复赛、决赛的概率分别是34,23,14且各轮次通过与否相互独立. (I )设该选手参赛的轮次为ξ,求ξ的分布列和数学期望; (Ⅱ)对于(I )中的ξ,设“函数()3sin()2x f x x R ξπ+=∈是偶函数”为事件D ,求事件D 发生的概率.19.(本小题满分12分)在等比数列}{n a 中,412=a ,512163=⋅a a .设22122log 2log 2n n n a a b +=⋅,n T 为数列{}n b 的前n 项和.(Ⅰ)求n a 和n T ;(Ⅱ)若对任意的*∈N n ,不等式n n n T )1(2--<λ恒成立,求实数λ的取值范围.20.(本小题满分12分)如图所示多面体中,AD ⊥平面PDC ,ABCD 为平行四边形,E 为AD 的中点,F 为线段BP 上一点,∠CDP =120 ,AD =3,AP =5,PC=(Ⅰ)若F 为BP 的中点,求证:EF ∥平面PDC ; (Ⅱ)若13BF BP =,求直线AF 与平面PBC 所成角的正弦值.21.(本小题满分12分)已知函数21()ln 12a f x a x x +=++. (Ⅰ)当21-=a 时,求)(x f 在区间],1[e e上的最值;(Ⅱ)讨论函数)(x f 的单调性; (Ⅲ)当10a -<<时,有()1ln()2af x a >+-恒成立,求a 的取值范围. 22.(本小题满分14分)如图,在平面直角坐标系xoy 中,设点()0,F p (0p >), 直线l :y p =-,点P 在直线l 上移动,R 是线段PF 与x 过R 、P 分别作直线1l 、2l ,使1l PF ⊥,2l l ⊥ 12l l Q = . (Ⅰ)求动点Q 的轨迹C 的方程;F DCB APE(Ⅱ)在直线l 上任取一点M 做曲线C 的两条切线,设切点为A 、B ,求证:直线AB 恒过一定点; (Ⅲ)对(Ⅱ)求证:当直线,,MA MF MB 的斜率存在时,直线,,MA MF MB 的斜率的倒数成等差数列.理科数学参考答案一、选择题C B BD D, B A D C A, D D二、填空题13. 55% 14. 0 15. 12 16. 1(21)n n +- 三、解答题17.(本小题满分12分)解:(Ⅰ)11()sin 2sin 22sin(2)223f x x x x x πωωωω=+==+,-------------------------------------------3分由题意知,最小正周期242T ππ=⨯=,222T πππωω===,所以2ω=, ∴()sin(4)3f x x π=+-----------------------------------------6分(Ⅱ)将()f x 的图象向右平移个8π个单位后,得到sin(4)6y x π=-的图象,再将所得图象所有点的横坐标伸长到原来的2倍,纵坐标不变,得到sin(2)6y x π=-的图象.()sin(2).6g x x π=-所以 -------------------------9分令26x t π-=,∵02x π≤≤,∴566t ππ-≤≤()0g x k +=,在区间0,2π⎡⎤⎢⎥⎣⎦上有且只有一个实数解,即函数()y g x =与y k =-在区间0,2π⎡⎤⎢⎥⎣⎦上有且只有一个交点,由正弦函数的图像可知1122k -≤-<或1k -= ∴1122k -<≤或1k =-. -------------------12分18.(本小题满分12分)解:(I )ξ可能取值为1,2,3. -------------------------------2分 记“该选手通过初赛”为事件A ,“该选手通过复赛”为事件B ,31(1)()1,44321(2)()()()(1),434P P A P P AB P A P B ξξ===-=====⨯-=321(3)()()().432P P AB P A P B ξ====⨯= --------------------------5分ξ的分布列为:ξ的数学期望123.4424E ξ=⨯+⨯+⨯= -------------------------- 7分(Ⅱ)当1ξ=时,1()3sin =3sin()222x f x x πππ+=+()f x 为偶函数; 当2ξ=时,2()3sin 3sin()22x f x x πππ+==+()f x 为奇函数; 当3ξ=时,33()3sin 3sin()222x f x x πππ+==+()f x 为偶函数; ∴事件D 发生的概率是34. -----------------------------------12分19.(本小题满分12分)解:(Ⅰ)设}{n a 的公比为q ,由5121161552263==⋅=q q a a a 得21=q , ∴n n n qa a )21(22=⋅=-. ---------------------------------- 2分 22211211()2122()2log 2log 2=log 2log 21111()(21)(21)22121n n nn n a a b n n n n -++=⋅⋅==--+-+∴)1211215131311(21+--++-+-=n n T n 111)22n 121n n =-=++(. -------------------------------------5分(Ⅱ)①当n 为偶数时,由2-<n T n λ恒成立得,322)12)(2(--=+-<nn n n n λ恒成立,即min )322(--<n n λ, ----------------------------------6分 而322--n n 随n 的增大而增大,∴2=n 时0)322(min =--nn ,∴0<λ; ----------------------------------8分 ②当n 为奇数时,由2+<n T n λ恒成立得,522)12)(2(++=++<nn n n n λ恒成立,即min )522(++<nn λ, -----------------------------------9分 而95222522=+⋅≥++nn n n ,当且仅当122=⇒=n n n 等号成立,∴9<λ. ---------------------------------------11分综上,实数λ的取值范围0∞(-,). ----------------------------------------12分 20.(本小题满分12分)解(Ⅰ)取PC 的中点为O ,连FO ,DO , ∵F ,O 分别为BP ,PC 的中点, ∴FO ∥BC ,且12FO BC =, 又ABCD 为平行四边形,ED ∥BC ,且12ED BC =, ∴FO ∥ED ,且FO ED =∴四边形EFOD 是平行四边形 ---------------------------------------------2分即EF ∥DO 又EF ⊄平面PDC∴EF ∥平面PDC . --------------------------------------------- 4分 (Ⅱ)以DC 为x 轴,过D 点做DC 的垂线为y 轴,DA 为z 轴建立空间直角坐标系, 则有D (0 ,0 , 0),C (2,0,0),B (2,0,3),P(-,A (0,0,3) ------------------------------6分设(,,)F x y z,14(2,,3)(1)33BF x y z BP =--==--∴2(2),3F则2(1)3AF =- -----------------------------8分 设平面PBC 的法向量为1(,,)n x y z =P则1100n CB n PC ⎧⋅=⎪⎨⋅=⎪⎩即3040z x =⎧⎪⎨-=⎪⎩ 取1y =得1(2n = -----------------10分2cos ,AF n AF n AF n+⋅<>====⋅ ∴AF 与平面PBC. -------------------------12分21. (本小题满分12分)解:(Ⅰ)当21-=a 时,14ln 21)(2++-=x x x f , ∴xx x x x f 21221)(2-=+-='. ∵)(x f 的定义域为),0(+∞,∴由0)(='x f 得1=x . ---------------------------2分 ∴)(x f 在区间],1[e e 上的最值只可能在)(),1(),1(e f ef f 取到,而421)(,4123)1(,45)1(22e e f e e f f +=+==,∴45)1()(,421)()(min 2max==+==f x f e e f x f . ---------------------------4分(Ⅱ)2(1)()(0,)a x af x x x++'=∈+∞,. ①当01≤+a ,即1-≤a 时,)(,0)(x f x f ∴<'在),0(+∞单调递减;-------------5分 ②当0≥a 时,)(,0)(x f x f ∴>'在),0(+∞单调递增; ----------------6分③当01<<-a 时,由0)(>'x f 得1,12+->∴+->a a x a ax 或1+--<a ax (舍去) ∴)(x f 在),1(+∞+-a a 单调递增,在)1,0(+-a a上单调递减; --------------------8分 综上,当0≥a 时,)(x f 在),0(+∞单调递增;当01<<-a 时,)(x f 在),1(+∞+-a a 单调递增,在)1,0(+-a a上单调递减. 当1-≤a 时,)(x f 在),0(+∞单调递减; -----------------------9分(Ⅲ)由(Ⅱ)知,当01<<-a 时,min ()f x f =即原不等式等价于1ln()2af a >+- ---------------------------10分即111ln()212a a aa a a +-⋅+>+-+ 整理得ln(1)1a +>- ∴11a e>-, ----------------------------11分 又∵01<<-a ,所以a 的取值范围为11,0e ⎛⎫- ⎪⎝⎭. ---------------------------12分 22. (本小题满分14分)解:(Ⅰ)依题意知,点R 是线段FP 的中点,且RQ ⊥FP ,∴RQ 是线段FP 的垂直平分线. ---------------------------------------2分 ∴PQ QF =.故动点Q 的轨迹C 是以F 为焦点,l 为准线的抛物线,其方程为:24(0)x py p =>. -----------------------------------4分 (Ⅱ)设(,)M m p -,两切点为11(,)A x y ,22(,)B x y 由24x py =得214y x p =,求导得12y x p'=. ∴两条切线方程为1111()2y y x x x p-=- ① 2221()2y y x x x p-=-② -------------------6分对于方程①,代入点(,)M m p -得,1111()2p y x m x p --=-,又21114y x p= ∴211111()42p x x m x p p--=-整理得:2211240x mx p --= 同理对方程②有2222240x mx p --=即12,x x 为方程22240x mx p --=的两根.∴212122,4x x m x x p +==- ③ -----------------------8分设直线AB 的斜率为k ,2221211221211()4()4y y x x k x x x x p x x p--===+--所以直线AB 的方程为211211()()44x y x x x x p p-=+-,展开得:12121()44x x y x x x p p =+-,代入③得:2my x p p=+ ∴直线恒过定点(0,)p . -------------------------------------10分 (Ⅲ) 证明:由(Ⅱ)的结论,设(,)M m p -, 11(,)A x y ,22(,)B x y且有212122,4x x m x x p +==-, ∴1212,MA MB y p y pk k x m x m++==-- ----------------------------11分 ∴11MA MBk k +=1212122222221212124()4()4444x m x m x m x m p x m p x m x x y p y p x p x p p p p p------=+=+=+++++++ =1212212221122121212124()4()4()4()44()4p x m p x m p x m x p x m x pm pm mx x x x x x x x x x x x p p-----+====-------------------------------13分 又∵12MFm mk p p p==---,所以112MA MB MF k k k +=即直线,,NA NM NB 的斜率倒数成等差数列. ----------------------------14分。
山西晋城市2017-2018学年高三下学期第二次模拟考试物理试题(二模) Word版含答案

山西晋城市2017-2018学年高三下学期第二次模拟考试物理试题(二模)第Ⅰ卷18.如图所示,A 、B 两球在地面O 点上方的统一竖直线上的不同位置,,A 、B 间的距离为h=5m ,分别给两球水平向右的初速度,使两球做平抛运动,结果两球的运动轨迹相交于C 点,OC 与竖直方向的夹角为053=θ,A 、B 两球的初速度分别为s m s m /5,/321==υυ 不计空气阻力,A 、B 两球从拋出点到C 点的运动时间分别为21t t 和, A 、B 两球抛出时离地面的高度分别为时离地曲的分別为21h h 和,则 A. m h s t 845,25.121== B. m h s t 885,75.021== C. m h s t 885,25.112== D. m h s t 845,75.012== 19. 如图所示,两条足够长的光滑平行金属导轨与水平面的夹角为θ,下端接有定值电阻R ,匀强磁场垂直于导轨平面向上,磁感应强度为B .将质量为m 的导体棒由静止释放,当速度达到v 时开始匀速运动,现给导体棒MN 一平行于导轨的初速度υ,使导体棒保持与导轨垂直并沿导轨向上运动,经过一段时间导体棒又回到原位置。
不计导轨和导体棒的电阻,在这一过程中,下列说法正确的是( )A .导体棒上滑时棒中的电流方向由N 到MB .导体棒上滑阶段和下滑阶段受到的安培力方向相同C .导体棒回到原位置时速度大小必小于υD .导体棒上滑阶段和下滑阶段受到的最大加速度大小相同20. 如图所示,A 、B 为一匀强电场中同一电场线上的两点,现在A 、B 连线上某一点固定一电荷Q ,然后在A 点由静止释放一点电荷q 运动到点B 时的速度为零,若点电荷q 只受电场力作用,则下列结论正确的是()A.电荷Q 与点电荷q 一定是同种电荷B.电荷Q 一定在A 点的左侧C.点电荷q 的电势能,一定是先减小后增大D.A 、B 电点电荷一定相等21.2018年左右我国将进行笫一次火星探测,美国已发射了“凤凰号”着陆器降落在火星北极勘察水的存在。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017-2018学年普通高中高三教学质量监测
理科数学
注意事项;
1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。答卷前,考生务必将自己
的姓名、准考证号填写在答题卡上
2. 回答第I卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号,写在本试卷上无效。
3. 回答第Ⅱ卷时,将答案写在答题卡上写在本试卷上无效。
4.考试结束后,将本试卷和答題卡一并交回。
第Ⅰ卷
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合
题目要求的。
(1)已知集合 A=Rxyyx,12| ,B=0>|2xxx ,则A∩B=
(A)(-1,+∞) (B)(-1,1) (C)(-1,0) (D)(O,l)
(2)若复数z的共轭复数为z,且满足iiz211,其中i为虚数单位,则复数z的模为
(A)1 (B)3 (C) 10 (D)4
(3)下列满足“0)('0)()(,xfxfxfRx且”的函数是
(A) ||)(xxexf (B)xxxfsin)(
(C) 0<),1lg(0),1lg()(xxxxxf (D)||)(2xxxf
(4)已知Sn是等差数列{an}的前n项和,S3+S5=18,S5=
(A)14 (B)10 (C) 9 (D)5
(5)从1.2.3.4.5.6这六个数字中任取3个数,组成无重复数字的三位数,则十位数字比个
位数字和百位数字都大的概率为
(A)61 (B)41 (C) 31 (D)21
(6)已知O为原点坐标,F为抛物线xy42的焦点,直线L:y=m(x-1)与抛物线交于A、B
两点,点A 在第一象限,若|FA|=3|FB|,则 m 的值为
(A)3 (B)3 (C) 33 (D)31
(7)如果执行如图所示的程序框图,那么输出的a =
(A)2 (B)21 (C) -1 (D)以上都不正确
(8)在正方体ABCD-A1B1C1D1中,E为线段B、C的中点,若三棱锥
E-ADD1的外接球的体积为36,则正方体的棱长为
(A)2 (B)22 (C) 33 (D)4
(9)已知212cos21sincossin32)(2xxxxxf,则下列结论错误..的是
(A))(xf在区间(0,6)上单调递增
(B))(xf的一个对称中心为[1,0,12]
(C) 当]3,0(x时,)(xf的值域为[1,3]
(D)先将函数)(xf的图像的纵坐标不变,横坐标缩短为原来的2)1倍,再向左平移8个单位
后得到函数)64cos(2xy的图像。
(10)如图所示为某几何体的三视图,其体积为48,则该几何体的
表面积为
(A)24 (B)36 (C) 60 (D)78
(11)已知双曲线>b>0)(1:2222abyaxC的左右焦点分别为F1、F2,
O为坐标原点,P是双曲线在第一象限上的点,OPMO,直线PF2交双曲线C于另一点N,
若|PF1|=2|PF2|,且∠MF2N =1200,则双曲线C的离心率为
(A)332 (B)7 (C) 3 (D)2
(12)已知不等式2)2()1ln(bxax恒成立,则23ab的最小值为
(A)21e (B)1-2e (C) 1-e (D)e12
第Ⅱ卷(非选择题,共90分)
本卷包括必考题和选考题两部分。第13题-第21题为必考题,每个试题考生都必须做答。
第22题-第24题为选考题,每考生根据要求做答。
二、填空题: 本大题共4小题,每小题5分。
(13)向量|a|=1,|b|=2 ,(a+b)•(2a-b)=1, 则向量a与b的夹角为 。
(14)已知5))((yxyx的展开式中42yx的系数为m,则21)1(dxxx= 。
(15)若点Q(2a+b,a-2b) 在不等式组01205401yxyxyx表示的平面区域内,则22baz 的
最大值为 。
(16)已知在三角形ABC中,4,62BCACAB, D为BC的中点,当 AD最小时,三
角形 ABC的面积为 。
三、解答题:解答应写出文字说明、证明过程或演算步骤。
(17)(本题满分12分)
已知等比数列{an}的前n项和为Sn,311a,公比q>0,223211,72,aSaSaS成等差数
列。
(I)求an
(Ⅱ)设2121(,log1nnnnnnbbbcab,求数列{cn}的前n项和Tn;
(18)(本题满分12分)
随着手机的发展,“微信”越来越成为人们交流的一种方式,某机构对“使用微信交流”
的态度进行调查,随机抽取了50人,他们年龄的频数分布及对“使用微信交流”赞成人数如
下表:
(Ⅰ)若以“年龄45岁为分界点”,由以上统计数据完成下面22列联表,判断是否有99%
的把握认为“使用微信交流”的态度与人的年龄有关:
(Ⅱ)若从年龄在55,65的被调查人中各随机选取2人进行追踪调查,求2人中至少有1人
不赞成“使用微信交流”的概率.
参考数据如下:
(19)(本题满分12分)
如图所示的几何体中,ABCD为菱形,ACEF为平行四边形,△BDF为等边三角形,
(Ⅰ)求证:BD⊥平面ACEF;
(Ⅱ)若∠DAB=600,AF=FC,求二面角B-EC-D的正弦值.
20.(本小题满分12分)
已知椭圆>b>0)(1:2222abyaxC的离心率22e,椭圆的右焦点F(c,0),椭圆的右顶
点为A,上顶点为B,原点到直线AB的距离为36
(Ⅰ)求椭圆C的方程;
(Ⅱ)判断在x轴上是否存在异于F的一点G,满足过点G且斜率为k(k≠0)的直线L与椭
圆C交于M、N两点,P是点M关于x轴的对称点,N、F、P三点共线,若存在,求出点G坐
标;若不存在,说明理由.
21.(本小题满分12分)
已知函数.ln)(xbxf
(Ⅰ)当b=1时,求)()(2.xfxxxG在区间[21,e]上的最值;
(Ⅱ)若存在一点x0∈[1,e] ,使得.xb1<)(000xfx成立,求实数b的取值范围.
请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分。
22.(本小题满分10分)选修4-1:几何证明选讲
如图,等边三角形ABC内接于圆,以B、C为切点的圆O的两
条切线交于点D,AD交圆O于点E.
(Ⅰ)求证:四边形ABDC为菱形;
(Ⅱ)若DE=2,求等边三角形ABC的面积.
23. (本小题满分10分)选修4-4:坐标系与参数方程
已知直线L的参数方程为tytx23214(t为参数),以坐标原点为极点,x轴的正半轴为极
轴建立极坐标系,曲线 C的极坐标方程为cos2.
(Ⅰ)求曲线C的直角坐标方程与直线l的极坐标方程;
(Ⅱ)若直线6与曲线C交于点A(不同于原点),与直线L交于点B,求AB的值.
24. (本小题满分10分)选修4-5:不等式选讲
设函数Rxxxxf|,2||2|)(.
(Ⅰ)求不等式的6)(xf解集;
(Ⅱ)若方程|1|)(xaxf恰有两个不同的实数解,求实数a的取值范围。