高速铁路隧道简介

高速铁路隧道简介
高速铁路隧道简介

高速铁路隧道简介

一、高速铁路隧道概况

根据2014年1月1日起实施的《铁路安全管理条例》规定,高速铁路是指设计开行时速250公里以上(含预留),并且初期运营时速200公里以上的客运列车专线铁路。

1、高速铁路隧道的特点

与一般铁路隧道不同,高速铁路隧道的特点体现在空气动力学特性方面。当列车高速进入隧道时,由于隧道的边壁限制了隧道内空气的侧向流动和向上流动,使得列车前方的空气受压缩,气压升高。随着列车继续前进,在车后留下空间,致使空气向此空间补充,气压随之降低。因此列车通过隧道时,隧道内某一点的空气压力将会产生从上升到下降即从压缩到膨胀这样一个瞬变过程。另外,列车头部进入隧道时,强烈冲击隧道中的静止空气柱,形成压力脉冲,并以声速向隧道出口方向运动,在出口突然释放,一部分散布到隧道出口,产生微气压波,另一部分发生反射,由正压变为负压,同样以声速沿列车运行相反的方向运动,遇到列车后,空气阻力在大气压力附近发生波动,使旅客的耳朵发生明显不适。微气压波也可能产生空气动力学噪声,对隧道出口的建筑物产生影响。

2、我国高速铁路隧道分布

表1 我国典型高速铁路隧道分布情况

线别线路长度(km)隧道数量(座)隧道长度(km) 隧线比(%)武广客专874 232 164 18.77

郑西客专485 38 77 15.88

甬温线274 58 89 32.48

温福线298 72 163 54.8

福厦线265 35 41 15.3

武合线356 37 64 18

石太线189 32 75 39.4

合计2741 504 673 24.55

表2 部分客运专线特长隧道表

序号隧道名称隧道长度(km)所属线别

1 太行山隧道27848 石太线

2 大别山隧道1325

3 武合线

3 霞浦隧道13099 温福线

4 南梁隧道11536 石太线

5 金寨隧道10700 武合线

6 大瑶山一号隧道10080 武广客专

注:除太行山隧道外,均为双线隧道。

二、高速铁路隧道衬砌断面

1、直线隧道净空

高速铁路因其时速标准不同,隧道断面形式各异,衬砌内轮廓净空有效面积也不同,如表3所示。

表3 我国高铁隧道内净空面积

序号类别标准单线双线

1 200km/h客专近期客货共线53.06m283.7m2

2 200km/h客专近期双箱运输56.2m289.64m2

3 250km/h近期客货共线58m290.16m2

4 250km/h近期双箱运输58.08m293.76m2

5 350km/h客运专线70m2100m2

图1 200km/h客货共线铁路单线隧道内轮廓(单位:cm)

图2 200km/h客货共线铁路双线隧道内轮廓(单位:cm)

图3 200km/h客货共线铁路兼顾双箱运输的单线隧道内轮廓(单位:cm)

图4 200km/h客货共线铁路兼顾双箱运输的双线隧道内轮廓(单位:cm)

图5 250km/h客运专线铁路单线隧道建筑限界及内轮廓(单位:cm)

图5 250km/h客运专线铁路双线隧道建筑限界及内轮廓(单位:cm)

图6 350km/h客运专线铁路双线隧道建筑限界及内轮廓(单位:cm)

2、隧道衬砌断面

(仅以200km/h单线无砟轨道和350km/h双线复合式衬砌为例)

(1)时速200公里客货共线单线隧道(无砟轨道)衬砌断面

(a)Ⅱ级围岩复合式衬砌

(b)Ⅲ级围岩复合式衬砌

(c)Ⅳ级围岩复合式衬砌

(d)Ⅳ级围岩加强复合式衬砌

(e)Ⅴ级围岩复合式衬砌

(f)Ⅴ级围岩加强复合式衬砌

图7 时速200公里客货共线单线隧道(无砟轨道)衬砌断面(单位:cm)(2)时速350公里客运专线双线隧道衬砌断面

(a)Ⅱ级围岩复合式衬砌

(b)Ⅲ级围岩复合式衬砌

(c)Ⅳ级围岩复合式衬砌

(d)Ⅳ级围岩加强复合式衬砌

(e)Ⅴ级围岩复合式衬砌

(f)Ⅴ级围岩加强复合式衬砌

图7 时速350公里客运专双线隧道衬砌断面(单位:cm)

高速铁路的隧道特点

高速铁路的隧道的特点 高速铁路的隧道设计是由限界、构造尺寸、使用空间和缓解及消减高速列车进入隧道诱发的空气动力学效应两方面的要求确定的。 研究表明,以上两方面要求中,后者起控制作用。当列车进入隧道时,原来占据着空 间的空气被排开。空气的粘性以及气流对隧道壁面和列车表面的摩阻作用使得被排开的空气不能象在隧道外那样及时、顺畅地沿列车两侧和上部流动,列车前方的空气受压缩,随之产 生特定的压力变化过程,引起相应的空气动力学效应并随着行车速度的提高而加剧。 1由于瞬变压力造成乘员舒适度降低,并对车辆产生危害; 2、微压波引起爆破噪声并危及洞口建筑物; 3、行车阻力加大; 4、空气动力学噪声; 5、列车风加剧。 高速铁路进入隧道产生的空气动力学效应是由多种因素所确定的。行车速度,车头和 车尾形状,列车横断面,列车长度,列车外表面形状和粗糙度,车辆的密封性等。隧道净 空断面面积,双线单洞还是单线双洞,隧道壁面的粗糙度,洞口及辅助结构物形式,竖井、斜井和横洞,道床类型等。列车在隧道中的交会等。 列车进入隧道引起的压力变化是两部分的叠加: ①列车移动时从挤压、排开空气到留下真空整个过程引起的压力变化; ②列车车头进入隧道产生的压缩波以及车尾进入隧道产生的膨胀波在隧道两洞口之间来回反射产生的压力变化(Mach波)。 当双线隧道中同时有不同方向列车相向行驶时,叠加所产生的情况则更为复杂。列车 在隧道中运行时(无相向行驶列车)车上测得的最大压力波动发生在第一个反射波到达列车时。Mach波以声速传播,对于长隧道,来回反射的周期相应较长。同时,在反射的过程中能量有所衰减。而对于短隧道,Mach波反射的周期大为缩短。同时,在反射过程中能量损 失也较少,致使压力波动程度加剧。试验表明,压力波动绝对值,并不随隧道长度的减小而减小。因此,对高速铁路中的隧道,有的虽然不长(例如长度在1km左右),其可能引起 的行车时的压力波动仍然不能忽视。但是,当隧道长度短到使列车首尾不能同时在其中时。则Math波的叠加不可能发生,压力波动程度当然随之缓解。当隧道长度为1km时,压力 波动明显加剧,而当隧道长度进一步增大到3km时,压力波动则并无显著加剧,反而有缓 解趋向。列车交会的双线隧道,最不利情况发生在列车交会在隧道中点时。 研究表明:对于压力波动,诸因素中隧道横截面积的影响是最大的。隧道净空断面面积, 或者说,隧道阻塞比是最主要的因素。根据计算分析,提出压力波动与隧道阻塞比之间有下列关系。 3 N 3 kv P 2 max ??单一列车在隧道中运行时,N =1 .3 ?? 0.25。考虑列车交会时,N =2.16 ?? 0.06。式中:max P —3秒钟内压力变化的最大值;v —行车速度;??一阻塞比;面积隧道内轨顶面以上净空列车横截面积 =??。竖井(斜井、横洞)的存在会缓解压力波动的程度。竖井位置对减压效果的影响很大,并不是处于任何位置的竖井都能有较好的 效果。竖井断面积5?IOm 2即可,加大竖井的横断面积,并不能收到好的效果。根据Mach 波叠加情况可以理论地得到竖井的最佳位置:)1 ( 2 M M L X ?? ?? 式中X —竖井距隧道进口距离;L —隧道长度;M —Mach数。 双线隧道列车在隧道中交会引起压力波动的叠加,情况十分复杂。列车交会时,压力波动最大值是单一列车运行情况的2.8倍。实际上,列车交会时所产生的压力波动同列车长 度、隧道长度、会车位置、车速等多种因素有关。在车辆密封的情况下,假定车外压力a P 为常数,车内压力随时间的变化可以表为:

高速铁路隧道工程衬砌标准化施工

隧道衬砌标准化施工措施 1.仰拱施工 (1)仰拱开挖 洞身仰拱开挖时,采用控制周边眼外插角度的办法,确保开挖平顺,严禁仰拱欠挖;爆破之后要求基底清理干净,必须无虚渣、无积水。 (2)五线上墙 为有效控制水平施工缝位置、仰拱钢筋和盲管位置,在边墙初支表面上测量放样“五线”(即:仰拱混凝土顶面标高线、仰拱钢筋搭接上下线、纵向和环向盲管线),并用红线明显标记(包括接地钢筋位置),为仰拱及后续防排水及衬砌施工提供控制依据。仰拱钢筋安装时分别自施工缝截面环向延伸固定长度,且仰拱内外环向钢筋在隧道环向、纵向均长短相间布置。环向盲管线根据设计要求,一般地段每组台车设置一道;岩溶发育地段需加密设置。如图 1.1 所示。 图 1.1 仰拱五线上墙 (3)仰拱钢筋预弯及定位 采用自制仰拱钢筋预弯机对仰拱钢筋进行预弯,利用液压千斤顶调节弧度大小,保证成型质量。如图1.2 所示。 图 1.2 仰拱钢筋预弯平台

安装仰拱钢筋时由测量定位(共九条:中间 1条,两侧位置各 4 条),确保钢筋间间距、排距和弧的准确。 仰拱钢筋安装时必须使用钢筋卡,使钢筋间距均匀。钢筋卡距可用角钢刻槽或钢管焊接卡具,相邻槽中心间距为设计钢筋间距。钢筋卡长度一般取6m,可根据施工方便设置长度。如图1.3 所示。 图 1.3 仰拱钢筋定位 (4)仰拱弧模与端模安装 通过轻质曲面钢模板,与仰拱端头钢模连接,整体采用地锚加固的方式施工,实现仰拱与仰拱填充的分层浇筑。端模与腹模连接,确保仰拱尺寸准确;通过整体曲面腹模,确保仰拱设计弧面和曲率;通过分窗进料振捣,保证仰拱混凝土密实度和强度;通过使用上、下钢端模,实现了仰拱环向中埋式止水带的准确定位。如图 1.4 所示。 图 1.4 弧模与端模 (5)纵、环向排水管安装 纵向排水盲管采用土工布包裹;盲管中间不得有凹陷、扭曲等,以防泥砂淤积堵塞;纵向排水盲 管按设计规定的排水坡度安装,并用钢筋卡固定,严格按照设计尺寸控制埋设高度。 (6)混凝土浇筑 混凝土浇筑过程,必须保证仰拱与拱墙小边墙一次性整体浇筑,确保边墙混凝土完整性,保证混 凝土浇筑质量良好。仰拱填充必须在仰拱衬砌浇筑完成之后分次浇筑,确保两者厚度、强度符合设计要求。 2 防排水安装

08-高速铁路设计规范条文(8隧道)课案

8 隧道 8.1 一般规定 8.1.1 隧道设计必须考虑列车进入隧道诱发的空气动力学效应对行车、旅客舒适度、隧道结构和环境等方面的不利影响。 8.1.2 隧道衬砌内轮廓应符合建筑限界、设备安装、使用空间、结构受力和缓解空气动力学效应等要求。 8.1.3 隧道结构应满足耐久性要求,主体结构设计使用年限应为100年。 8.1.4 隧道主体工程完工后,应对其特殊岩土及不良地质地段基底的变形进行观测。 8.1.5 隧道辅助坑道的设置应综合考虑施工、防灾救援疏散和缓解空气动力学效应等功能的要求。 8.1.6 隧道结构防水等级应达到一级标准。 8.2 衬砌内轮廓 8.2.1 隧道衬砌内轮廓的确定应考虑下列因素: 1 隧道建筑限界; 2 股道数及线间距; 3 隧道设备空间; 4 空气动力学效应; 5 轨道结构形式及其运营维护方式。 8.2.2 隧道净空有效面积应符合下列规定: 1 设计行车速度目标值为300、350km/h时,双线隧道不应小于100 m2,单线隧道不应小于70 m2。 2 设计行车速度目标值为250km/h时,双线隧道不应小于90 m2,单线隧道不应小于58 m2。 8.2.3 曲线上的隧道衬砌内轮廓可不加宽。

8.2.4 隧道内应设置救援通道和安全空间,并符合下列规定: 1 救援通道 1)隧道内应设置贯通的救援通道。单线隧道单侧设置,双线隧道双侧设置,救援通道距线路中线不应小于2.3m。 2)救援通道的宽度不宜小于1.5m,在装设专业设施处可适当减少;高度不应小于2.2m。 3)救援通道走行面不应低于轨面,走行面应平整、铺设稳固; 2 安全空间 1)安全空间应设在距线路中线3.0m以外,单线隧道在救援通道一侧设置,多线隧道在双侧设置; 2)安全空间的宽度不应小于0.8m,高度不应小于2.2m。 8.2.5 双线、单线隧道衬砌内轮廓如图8.2.5-1~4所示。 图8.2.5-1 时速250km/h双线隧道内轮廓(单位:cm) 图8.2.5-2 时速300、350km/h双线隧道内轮廓(单位:cm)

隧道工程建设标准及施工技术

第四章隧道工程建设标准及施工技术 第一节隧道工程设计要求 客运专线铁路的隧道设计是由限界、构造尺寸、使用空间和缓解及消减高速列车进入隧道诱发的空气动力学效应两方面的要求确定的。研究表明,以上两方面要求中,后者起控制作用,但隧道工程设计及施工过程中以隧道横断面的限界、构造尺寸、使用空间为控制要点。 一、隧道横断面有效净空尺寸的选择 在确定隧道横断面有效净空尺寸之前,首先要正确地选择隧道设计参数。高速列车进入隧道时产生的空气动力学效应,与人的生理反应和乘客的舒适度相联系。这就要制定压力波动程度的评估办法及确定相应的阈值,目前较通用的评估参数是相应于某一指定短时间内的压力变化值,如3s或4s内最大压力变化值。我国拟采用压力波动的临界值(控制标准)为3.0Kpa/3s。 根据ORE提出的压力波动与隧道阻塞比关系可以推算出满足舒适度要求时,阻塞比β宜取为:当V=250km/h时,β=0.14;当V=350 km/h时,β=0.11。 隧道横断面形式一般为园形(部分或全部)、具有或没有仰拱的马蹄形断面。而影响隧道横断面尺寸的因素有: (1)建筑限界; (2)电气化铁路接触网的标准限界及接触网支承点和接触网链形悬挂的安装范围; (3)线路数量:是双线单洞还是单线双洞; (4)线间距; (5)线路轨道横断面; (6)需要保留的空间如安全空间,施工作业工作空间等; (7)空气动力学影响; (8)与线路设备的结构相适应。 二、客运专线隧道与普通铁路隧道的不同点 1.当高速列车在隧道中运行时要遇到空气动力学问题,为了降低及缓解空气动力学效应,除了采用密封车辆及减小车辆横断面积外,必须采取有力的结构工程措施,增大隧道有效净空面积及在洞口增设缓冲结构;另外还有其它辅助措施,如在复线上双孔单线隧道设置一系列横通道;以及在隧道内适当位置修建通风竖井、斜井或横洞。 2.客运专线隧道的横断面较大,受力比较复杂,且列车运行速度较高,隧道维修有一定的时间限制,复合衬砌和整体式衬砌比喷锚衬砌安全,且永久性好,故一般不采用喷锚衬

高速铁路隧道技术发展现状存在问题及其展望

读书报告 高速铁路隧道技术 发展现状存在问题及其展望

目录 一、我国遂道及地下工程的发展现状 (1) 1.1 交通隧道 (1) 1.2 水利水电隧洞 (2) 1.3 地下工程 (2) 二、我国隧道及地下工程的主要开挖方法及新技术 (2) 三、当前国内铁路隧道施工主要存在技术问题 (3) 3.1 爆破精细控制技术 (3) 3.2 改进开挖技术 (3) 3.3 机制砂喷混凝土湿喷工艺 (4) 3.4 仰拱与掌子面进度的协调性 (4) 3.5 隧道沟槽施工工艺 (4) 3.6 通风及空气净化技术 (5) 四、贵广铁路建设实例 (6) 五、我国隧道及地下工程的发展前景 (7) 5.1 隧道发展前景 (7) 六、高速铁路隧道的研究几个热点问题 (8) 6.1 高速铁路隧道的空气动力学效应 (8) 6.2 高速铁路隧道的瞬变压力 (9) 6.3 高速铁路隧道的微压波 (9)

高速铁路隧道技术发展现状,存在问题及其展望 自1978年我国改革开放以来,我国在交通、水利水电、市政等基础设施领域取得了令人瞩目的成就,特别是近十年来,更取得了突飞猛进的发展,同时在设计和施工技术水平上也有了很大提高。但是由于我国东西高差大、地势复杂,隧道工程是铁路工程中不可缺少的重要项目,例如最近刚开通的兰新高铁,隧道比例达到60%以上。我国大力发展高速铁路,列车运行速度的提高势必造成列车振动荷载进一步加大,从而对隧道结构的动力稳定性提了更高的要求。伴随着铁路的出现和发展,铁路隧道也逐渐发展起来,但受制于技术条件的限制,在很长的时间内,铁路隧道的规模都很有限,直到20 世纪,随着人类科技水平和技术装备的进步,才开始出现了一些大型隧道,世界铁路隧道的世界记录也不断被更新。我国高速铁路已进入实质性的建设阶段,全国各铁路干线列车提速正在进行之中。 一、我国遂道及地下工程的发展现状 1.1 交通隧道 交通隧道主要包括铁路隧道、公路隧道及城市地铁工程,铁路隧道目前在数量、长度、设计及施工技术上在我国处于领先地位,截至1997年,在我国的铁路线上已建成并正式交付运营的隧道大约5200座,总长度2457.89km,平均占铁路网总长度的4.7‰。目前我国已建成铁路中隧道占线路长度在30%以上的就有襄渝线34.3%,成昆线31.6%,在建铁路中隧道占线路长度比例最大的达到50.42%(西康线)。目前已建成的最长隧道是西康线的秦岭单线隧道,长18.4km,其它较长的还有衡广铁路复线上的大瑶山双线隧道,长14.295km,于1987年建成。南昆线上的米花岭隧道,长9.383km。地铁工程目前仅有京、津、沪、穗四市约80km正在运营,而在建工程则很多,目前除上述四城市仍在继续扩建地铁外,南京、重庆、青岛、沈阳、深圳、成都等约20个大中城市进行了地铁和轻轨交通系统规划,部分项目正在全面施工。我国公路隧道在80年代前,因公路等级较低,同时限于设计、施工及短期投资大等多种原因,很少设计长大隧道,且数量(总长度)上也不多,但改革开放以后,为了实现截弯、降坡、提速、提高运营安全及实现长期运营收益提高等,相继修建了一批长大公路隧道,如辽宁的八盘岭双线公路隧道(长1600m),吉林的小盘岭公路、,速公路建设的大规模展开和设计、施工总体水平的提高,公路隧道工程在总量、单体长度上有了突飞猛进的发展,隧道单体长度记录不断被刷新。目前已提高到4km长度以上的水平,如川藏公路上的二郎山隧道全长4160m,目前我国海拔最高,2000年4月18日峻工通车的重庆铁山坪路隧道双线全长5424m,是目前我国最长的大跨度公路隧道,北京至八达岭高速公路上的潭峪沟公路隧道主隧道全长3455m,单向三车道,是目前国内最宽的公路隧道。

高速铁路隧道帽檐斜切式洞门施工技术

高速铁路隧道帽檐斜切式洞门施工技术 祝俊甲中铁十二局第四工程有限公司陕西西安 摘要:随着人们环保意识的提高和隧道施工技术的进步,特别是高速铁路隧道的修建,隧道洞门型式有了较大的突破和创新,洞门既要满足结构安全稳定、环保美观的要求,又要满足减缓微气压波影响的要求;帽檐斜切式洞门能最大限度地减小列车高速运行时产生的微气压波对列车的损害和不良影响,所以帽檐斜切式洞门成为高速铁路隧道洞门的首选型式;但帽檐斜切式洞门的帽檐施工技术复杂,立模定位困难,施工难度大。 关键词:帽檐、斜切式、隧道、洞门 1、引言 洞门是隧道进出口的咽喉,以往传统的洞门型式对地表破换较大,不利于目前所倡导的环境保护的要求,高速铁路的发展不仅要求洞门的型式要考虑结构的稳定也要注意洞门的美观大方与周围环境相协调。帽檐斜切式洞门是一种新型的高速铁路隧道洞门构造,线条流畅、整洁美观,且能有效地缓解洞口处的空气动力效应,具有良好的整体稳定性;帽檐斜切式洞门洞口不需设置特殊的缓冲结构就能满足列车运营舒适度的要求,且不需为洞门进行额外刷方,洞口刷方量少,,适用性广,可在多种地形和地质情况下适用。所以帽檐斜切式洞门成为高速铁路洞门的首选型式,但帽檐斜切式洞门帽檐模板的定位、加固相当困难是隧道洞门技术最复杂施工难度最大的洞门之一。 2

帽檐斜切式洞门全长15米,主要由帽檐、12m斜切段及3m斜切延伸段组成,斜切面与仰坡坡度1:1.25,帽檐模板由内模、外模及端模组成,内、外模均由两条椭圆轮廓线组成,内模由轮廓线A、C组成,外模由轮廓线B、D组成。3、施工步骤 帽檐斜切式洞门的施工主要分两步进行,一是斜切延伸段及斜切段的施工;二是帽檐施工。 3.1、斜切延伸段及斜切段的施工 斜切段及斜切延伸段的施工内模采用衬砌台车,外模及端模均采用竹胶板,以10*10cm方木为肋通过环向钢筋及圆木、钢管以两侧边坡为支撑点进行加固,斜切延伸段及斜切段全长15m,若衬砌台车长度不足15m时,靠洞口斜切段内模也采用竹胶板弯制,但必须与衬砌台车同弧度弯制。 斜切段及延伸段施工时台车定位的准确性直接影响帽檐轮廓线C、D的形成,所以衬砌台车定位后必须复测其定位的准确性,经调整无误后将轮廓线C的各坐标点直接放样至衬砌台车模板上。然后以轮廓线C为参照计算出轮廓线D的相对位置,待轮廓线C、D位置确定后按设计要求绑扎钢筋,钢筋绑扎时必须注意斜切面及外模预留钢筋以便帽檐施工时与帽檐钢筋相连及帽檐外模的加固。钢筋绑扎完毕后对轮廓线C、D进行精确放样,根据放样确定的轮廓线C、D安装外模及端模,外模需设置与衬砌台车相垂直的加固钢筋及环向钢筋,并将垂直钢筋与衬砌主筋及外模环向钢筋焊接牢固。为了便于混凝土的浇筑及振捣在端模安装时每隔一定距离预留混凝土灌注口。 混凝土采用一次性整体浇筑,浇筑是必须注意从两侧预留口对称浇筑混凝土以防衬砌台车变形,并通过衬砌台车窗口及预留口进行振捣。 待混凝土达到设计强度后将外模及斜切面模板拆除,衬砌台车保持不动以便帽檐施工时帽檐模板的安装及加固。 3.2、帽檐施工 3.2.1、帽檐模板选择 由于帽檐的四条轮廓线全为坐标控制,若使用钢模存在较大困难,一是模板加工困难,轮廓线把握不准。二是钢模安装困难,很难与洞门的斜切面紧密相连。所以模板选择质量好,无膨胀的竹胶板以10*10cm方木为肋并采用圆木及钢支撑进行加固。

新验标TB10753—2018《高速铁路隧道工程施工质量验收标准》培训考试01期---答案

新验标TB10753—2018《高速铁路隧道工程施工质量 验收标准》培训考试 (2019年第1期) 姓名:职务:得分: 一、填空题(每题5分、共100分) 1.单位工程可按一个完整工程、一个施工标段或一种施工方式的施工 范围划分,其中明挖法、质构(TBM)p7 施工区段可按 单位工程进行验收。P7 2.检验批质量验收的主控项目的质量经抽样检验全部合 格,一般项目的质量经抽样检验应合格;当采用计数抽样 检验时,队本标准各章有专门规定外,其合格点率应达到 80% 及以上,且不得有严重缺陷,不合格点不得集中。P8 3.管棚、超前小导管和注浆管等所用钢管等所用钢管进场检验,应按 批抽取试件作力学性能和工艺性能试验,其质量应符合设计,《结构 用无颖钢管》GB/T 8162标准的规定。检验数量:以同牌号、同炉罐 号、同规格、同交货状态的管材,每60T为一批,不足60t应按一批 计。施工单位每批检验一次,监理单位按施工单位检验次数的10%平 行检验,且不少于一次。检查方法:检查质量证明文件、力学性能(屈 服强度和抗拉强度)试验检验。P12 4.排水板的进场检验应符合设计要求及《铁路隧道防排水板》 TB/T3354等相关标准的规定。检验数量:按同厂家、同品种、同规 格,且不大于5000m2为一批。施工单位每批验一次,监理单位按施 工单位检验次数的10%平行检验,且不少于一次。 P13 5.地表注浆加固应符合设计要求,检验数量:每不大于200m2检验取

样不少于2孔;正在注浆的区域,其附近30M以内不得进行爆破。预注浆加固应符合设计要求,检验数量:每循环检验不少于3个孔。检查数量为检查总数的20%。P19-20 6.隧道洞口段边、仰拱坡度和范围应符合设计要求。检验数量:每不大于10m检查一个断面,检验方法:测量。洞口、明洞(棚洞)开挖断面、中线和高程应符合设计要求。检查数量:每不大于5m检查一个断面。检验方法:测量。P22 7.隧道洞门结构、档(端)墙和明洞基础的基抗底面应无积水、虚渣、杂物。隧道洞门结构、档(端)墙,缓冲结构和明洞结构的位置应符合设计要求。检验数量:每不大于5m检查一个断面。明洞混凝土结构外形尺寸、预埋件和预留孔洞位置检验数量:每一浇筑段检查一次。P23-24 8.高速铁路隧道钻爆开挖应遵循减少围岩扰动,严格控制超欠挖的原则进行爆破设计,爆破设计参数应根据爆破效果动态调整。隧道开挖轮廓尺寸应符合设计要求,并应控制超欠挖,围岩完整石质坚硬岩石个别突出部位最大欠挖值不大于50mm,且每1M2不大于0.1m2。P29 9.超前支护管棚钢管接头应采用丝扣连接,同一断内的钢筋接头不大于钢管总数量的50%。超前小导管的种类、规格应符合设计要求。检验数量:每循环检验3根。检验方法:观察、尺量、留存影像资料。超前小导管的位置、搭接长度和数量应符合设计要求。检查数量:每循环位置、搭接长度检验3根。检验方法:观察、测量、留存影像资料。P31 10.初期支护喷射混凝土的24H强度应小于10MPa。检查数量:同强度等级、每级连续检验一次。检验方法:拔出法或无底试模法。喷射混凝土平均厚度应符合设计要求,检查点数90%及以上应不小于设计厚度。检验数量:全断面开挖时,每一作业循环检验一次;分部开挖

高速铁路隧道毕业设计

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

隧道设计中洞门选型及刷坡步骤要点

隧道设计中洞门选型及刷坡步骤要点 1.洞口环框 当洞口石质坚硬稳定(Ⅰ~Ⅱ级围墙),且地势陡峻无排水要求时,可仅修建洞口环框,以起到加固洞口和减少洞口雨后滴水的作用。 2.端墙式(一字式)洞门 端墙式洞门适用于地形开阔、石质较稳定(Ⅱ~Ⅲ级围岩)的地区,由端墙和洞门顶和排水沟组成。端墙的作用是抵抗山体纵向推力及支持洞口正面上的仰坡,保持其稳定。洞门顶排水沟用来将仰坡流下来的地表水汇集后排走。 3.翼墙式(八字墙)洞门 当洞门地质较差(Ⅳ级及以上围岩),山体纵向推力较大时,可以在端墙式洞门的单侧或双侧设置翼墙。翼墙在正面起到抵抗山体纵向推力,增加洞门的抗滑及抗倾覆能力的作用。两侧面保护路堑边坡,起挡土墙的作用。翼墙顶面与仰坡的延长面相一致,其上设置水沟,将洞门顶水沟汇集的地表水引至路堑测沟内排走。 4.柱式洞门 当地势陡峭(Ⅳ级围岩),仰坡有下滑的可能性,又受地质或地形条件的限制,不能设置翼墙时,可在端墙中设置2个(或4个)断面较大的柱墩,以增加端墙的稳定性。 5.台阶式洞门 当洞门位于傍山侧坡地区,洞门一侧边仰坡较高时,为了提高靠山侧仰坡起坡点,减少仰坡高度,将端墙顶部改为逐渐升高的台阶形式,以适应地形的特点,减少洞门圬工及仰坡开挖数量,也能起到美化洞门的作用。 6斜交式洞门 当隧道洞口线路与地面等高线斜交时,为了缩短隧道长度,减少挖方数量,可采用平行等高线与线性成斜交的洞口。 7.喇叭口式洞口 高速铁路隧道,为减缓高速列车的空气动力学效应,对单线隧道,一般设喇叭口洞口缓冲段,同时兼做隧道洞门。

刷坡要点 隧道洞门立面图一般有三道高程线: 1为洞口位置地面高程;2为洞口位置往后1m(挡墙位置);3为洞口位置往后2m(洞顶水沟底中心处地面高程)。

高速铁路隧道简介教材

高速铁路隧道简介 一、高速铁路隧道概况 根据2014年1月1日起实施的《铁路安全管理条例》规定,高速铁路是指设计开行时速250公里以上(含预留),并且初期运营时速200公里以上的客运列车专线铁路。 1、高速铁路隧道的特点 与一般铁路隧道不同,高速铁路隧道的特点体现在空气动力学特性方面。当列车高速进入隧道时,由于隧道的边壁限制了隧道内空气的侧向流动和向上流动,使得列车前方的空气受压缩,气压升高。随着列车继续前进,在车后留下空间,致使空气向此空间补充,气压随之降低。因此列车通过隧道时,隧道内某一点的空气压力将会产生从上升到下降即从压缩到膨胀这样一个瞬变过程。另外,列车头部进入隧道时,强烈冲击隧道中的静止空气柱,形成压力脉冲,并以声速向隧道出口方向运动,在出口突然释放,一部分散布到隧道出口,产生微气压波,另一部分发生反射,由正压变为负压,同样以声速沿列车运行相反的方向运动,遇到列车后,空气阻力在大气压力附近发生波动,使旅客的耳朵发生明显不适。微气压波也可能产生空气动力学噪声,对隧道出口的建筑物产生影响。 2、我国高速铁路隧道分布 表1 我国典型高速铁路隧道分布情况

表2 部分客运专线特长隧道表 二、高速铁路隧道衬砌断面 1、直线隧道净空 高速铁路因其时速标准不同,隧道断面形式各异,衬砌内轮廓净空有效面积也不同,如表3所示。

表3 我国高铁隧道内净空面积 序号类别标准单线双线 1 200km/h客专近期客货共线53.06m283.7m2 2 200km/h客专近期双箱运输56.2m289.64m2 3 250km/h近期客货共线58m290.16m2 4 250km/h近期双箱运输58.08m293.76m2 5 350km/h客运专线70m2100m2 图1 200km/h客货共线铁路单线隧道内轮廓(单位:cm) 图2 200km/h客货共线铁路双线隧道内轮廓(单位:cm)

浅谈高速铁路隧道喇叭口倒切式洞门施工技术

浅谈高速铁路隧道喇叭口倒切式洞门施工技术 摘要:高速铁路隧道的洞门形式多种多样,各种洞门适用于不同的隧道形式,本文主要介绍了10m喇叭口倒切开孔式缓冲结构隧道洞门的施工方法,该类洞门主要适用于洞口场地狭窄或桥隧相接以及边仰坡有落石掉块可能的地段,本文主要总结了10m喇叭口倒切式开孔缓冲结构隧道洞门的倒切段轮廓线的控制方法,以期为类似工程的施工提供借鉴。 关键词:铁路隧道喇叭口倒切空间轮廓 0 引言 我国大多数高铁线路中有大量的隧道、高架桥(丘陵地区)或高架结构(平原微丘地区),因此高速铁路中隧道比重显著增加。隧道采用的洞门形式也随着洞口地形、地质条件及空气动力学影响的不同而多样化,一般有帽檐斜切式、喇叭口倒切式、双侧挡墙式隧道门、挡翼墙式明洞门以及单压式明洞门等多种隧道门,徐墩隧道进口属于桥隧相接形式且洞口场地狭窄,因此洞门设计为10m喇叭口倒切式开孔缓冲结构。 1 概况 新建合福铁路客运专线闽赣段Ⅵ标徐墩隧道地处福建省东北部低山丘林区,自然坡度一般为20~25°,植被发育,多为松树林。进口位于山坡半坡,出口坡度较缓,进出口地面标高分别为134.3、133.1,隧道设计范围为DK636+050.8~DK636+431,全长380.2米。隧址区地下水为基岩裂隙水,进出口段地下水较发育,地下水无化学侵蚀性,碳化环境作用等级为T2。徐墩隧道位于低纬度带,气候温和、雨量充沛,属亚热带季风气候,年平均气温最高24.57℃,最低15.2℃。 2 隧道门设计与展示 徐墩隧道进口设计采用10m喇叭口倒切式开孔缓冲结构隧道门,该隧道门适用于洞口场地狭窄或桥隧相接、边仰坡有落石掉块可能的地段,该洞门结构由1节开孔段与喇叭口倒切段组成,开孔段在隧道顶部设置开孔,开孔大小为3m (纵向)×3.2m(横向)。洞门结构沿隧道中轴面(即图一所示Y-Z面)对称。10m喇叭口倒切式开孔缓冲结构洞门如图1所示。 图1 10m喇叭口倒切式开孔缓冲结构洞门展示图 3 喇叭口倒切式开孔缓冲结构的施工步骤

新高速铁路隧道工程施工技术指南—4.施工准备

4 施工准备 4.1 施工调查 4.1.1 施工调查前应查阅设计文件和相关资料,定制调查大纲。调查结束后根据调查情况编写书面的施工调查报告。 4.1.2 施工调查应包括下列内容: 1 地理环境、气象、水文水质情况。 2 辅助坑道、洞口位置及相邻工程情况。 3 施工运输道路、水源、供电、通信、施工场地、征地拆迁情况、弃渣场地基容纳能力等。 4 原材料及半成品的品种、质量、价格及供应能力等、爆破器材的供应情况、供货渠道及管理方式等。 5 交通运能、运价、装卸费率等。 6 可供利用的劳动力资源状况,包括工费、就业情况等。 7 生活供应、医疗、卫生、防疫、民俗及居民点的社会治安情况等。 8 生态、环境保护的一般规定和特殊要求。 9 对隧道施工有直接和间接影响的其他问题 4.1.3 施工调查报告除应包括施工调查的主要内容外,还应包括下列内容: 1 工程概况,包括工程环境、工程地质、水文地质、工程规模、数量、特点。 2 临时设施方案,包括临时房屋、材料厂、施工便道及码头、电力及通讯干线等的选择、规模和标准。 3 砂、石等当地材料的供应方案。 4 生产生活供水、供电方案,施工通讯方案。 5 施工建议方案。 6 当地风俗习惯及注意事项。 7 环保要求及注意事项,可能对环境造成的影响。 8 施工调查中发现的设计有关问题和优化设计建议。 9 尚待进一步调查落实的问题。 4.2 设计文件现场核对 4.2.1 隧道工程施工前,应重点对设计文件中的拆迁工程、工程设计方案、工程措施、大型临时工程等进行现场核对,并做好核对记录。 4.2.2 设计文件核对应包括下列内容: 1 设计文件相互间的一致性、系统性,是否存在差、错、漏、碰。重点是各设计专业接口工程的相互衔接。 2 隧道平面及纵断面参数计算是否正确。 3 设计工程数量计算是否正确,超前地质预报设计内容是否完整。

隧道设计中洞门选型及刷坡步骤

隧道洞门类型及适用条件 1.洞口环框 当洞口石质坚硬稳定(Ⅰ~Ⅱ级围墙),且地势陡峻无排水要求时,可仅修建洞口环框,以起到加固洞口和减少洞口雨后滴水的作用。 2.端墙式(一字式)洞门 端墙式洞门适用于地形开阔、石质较稳定(Ⅱ~Ⅲ级围岩)的地区,由端墙和洞门顶和排水沟组成。端墙的作用是抵抗山体纵向推力及支持洞口正面上的仰坡,保持其稳定。洞门顶排水沟用来将仰坡流下来的地表水汇集后排走。 3.翼墙式(八字墙)洞门 当洞门地质较差(Ⅳ级及以上围岩),山体纵向推力较大时,可以在端墙式洞门的单侧或双侧设置翼墙。翼墙在正面起到抵抗山体纵向推力,增加洞门的抗滑及抗倾覆能力的作用。两侧面保护路堑边坡,起挡土墙的作用。翼墙顶面与仰坡的延长面相一致,其上设置水沟,将洞门顶水沟汇集的地表水引至路堑测沟内排走。 4.柱式洞门 当地势陡峭(Ⅳ级围岩),仰坡有下滑的可能性,又受地质或地形条件的限制,不能设置翼墙时,可在端墙中设置2个(或4个)断面较大的柱墩,以增加端墙的稳定性。 5.台阶式洞门 当洞门位于傍山侧坡地区,洞门一侧边仰坡较高时,为了提高靠山侧仰坡起坡点,减少仰坡高度,将端墙顶部改为逐渐升高的台阶形式,以适应地形的特点,减少洞门圬工及仰坡开挖数量,也能起到美化洞门的作用。 6斜交式洞门 当隧道洞口线路与地面等高线斜交时,为了缩短隧道长度,减少挖方数量,可采用平行等高线与线性成斜交的洞口。 7.喇叭口式洞口 高速铁路隧道,为减缓高速列车的空气动力学效应,对单线隧道,一般设喇叭口洞口缓冲段,同时兼做隧道洞门。

刷坡要点 隧道洞门立面图一般有三道高程线: 1为洞口位置地面高程;2为洞口位置往后1m(挡墙位置);3为洞口位置往后2m(洞顶水沟底中心处地面高程)。

高速铁路隧道开挖专项施工方案

目录 第一章编制依据 (1) 第二章编制范围 (1) 第三章工程概况 (1) 第四章主要施工方案及施工方法 (1) 4.1施工方案 (1) 4.2施工方法 (1) 4.2.1明洞段开挖方法 (2) 4.2.2台阶法 (2) 4.2.3.隧道围岩分级、开挖方法及衬砌支护形式 (3) 第五章施工进度安排 (5) 第六章爆破设计 (6) 6.1爆破方案 (6)

6.2钻爆设计 (6) 6.2.1光爆基本参数 (6) 6.2.2掏槽方式 (7) 6.2.3周边眼 (7) 6.2.4掘进眼 (7) 6.2.5装药结构及堵塞方式 (8) 6.2.6炮眼布置 (8) 6.3爆破设计的优化及爆孔布置 (12) 第七章劳动力和机械设备配置 (12) 7.1劳动力配置 (12) 7.2机械配置 (13) 第八章质量保证措施 (14) 第九章安全、文明施工 (15)

第一章编制依据 1、新建贵阳枢纽小碧经清镇东至白云联络线《摆龙村一号隧道设计图》; 2、新建贵阳枢纽小碧经清镇东至白云联络线第三册《隧道附图洞门及洞口工程》; 3、《高速铁路隧道工程施工技术指南》铁建设(2010)241号; 4、《高速铁路隧道工程施工质量验收标准》(TB10753-2010); 5、《铁路混凝土工程施工质量验收标准》(TB10424-2010); 6、《铁路工程基本作业施工安全技术规程》TB10301-2009; 7、《铁路隧道工程施工安全技术规程》TB10304-2009; 8、《爆破安全规程》GB6722-2011; 9、新建贵阳枢纽小碧经清镇东至白云联络线站前4标《实施性施工组织设计》 第二章编制范围 新建贵阳枢纽小碧经镇东至白云联络线站前Ⅳ标(D1K64+770~D1K65+275)摆龙一号隧道。 第三章工程概况 摆龙村一号隧道位于贵阳市金华新区金华镇摆龙村境内,全长505米,隧道进出口里程分别为D1K64+770、D1K65+275。该隧道为时速200km Ⅰ级铁路双线隧道,隧道内线间距为4.6m。洞内采用重型轨道碎石道床,铺设Ⅲ型轨枕(2.6m)及60kg/m钢轨,轨道结构高度766mm。 隧区岩溶中等至强烈发育,隧道进出口右侧边坡顺层且洞身右侧围岩顺层偏压。洞身与梨木山断层平行,相距30~80m,洞身位于地下水垂直渗流带内,地下水对混凝土无侵蚀性。 第四章主要施工方案及施工方法 4.1施工方案 根据设计要求,隧道除明洞段为明挖之外,隧道暗挖段采用锚喷构筑法施工、光面爆破开挖。暗挖段根据围岩类别的不同分别采用IV级围岩采用台阶法,V级围岩采用台阶法+临时横撑。 4.2施工方法

高速铁路设计规范条文(8隧道)

8隧道 8.1 一般规定 8.1.1隧道设计必须考虑列车进入隧道诱发的空气动力学效应对行车、旅客舒适度、隧道结构和环境等方面的不利影响。 8.1.2隧道衬砌内轮廓应符合建筑限界、设备安装、使用空间、结构受力和缓解空气动力学效应等要求。 8.1.3隧道结构应满足耐久性要求,主体结构设计使用年限应为100年。 8.1.4隧道主体工程完工后,应对其特殊岩土及不良地质地段基底的变形进行观测。 8.1.5隧道辅助坑道的设置应综合考虑施工、防灾救援疏散和缓解空气动力学效应等功能的要求。 8.1.6隧道结构防水等级应达到一级标准。 8.2衬砌内轮廓 8.2.1隧道衬砌内轮廓的确定应考虑下列因素: 1隧道建筑限界; 2股道数及线间距; 3隧道设备空间; 4空气动力学效应; 5轨道结构形式及其运营维护方式。 8.2.2隧道净空有效面积应符合下列规定: 1设计行车速度目标值为300、350kEh时,双线隧道不应小于100成单线隧道不应小于70 m2。 2设计行车速度目标值为250km^h时,双线隧道不应小于90 m2,单线隧道不应小于58 m2。 8.2.3曲线上的隧道衬砌内轮廓可不加宽。

8.2.4隧道内应设置救援通道和安全空间,并符合下列规定: 1救援通道 1)隧道内应设置贯通的救援通道。单线隧道单侧设置,双线隧道双侧 设置,救援通道距线路中线不应小于 2.3m。 2)救援通道的宽度不宜小于1.5m,在装设专业设施处可适当减少;高度不应小于2.2m。 3)救援通道走行面不应低于轨面,走行面应平整、铺设稳固; 2 安全空间 1)安全空间应设在距线路中线 3.0m以外,单线隧道在救援通道一侧设置,多线隧道在双侧设置; 2)安全空间的宽度不应小于0.8m,高度不应小于2.2m。 8.2.5双线、单线隧道衬砌内轮廓如图8.2.5-1?4所示。 线| '隧|线 路|道路 中I ■中|中 线I线线 1内轨顶面三, UM

《高速铁路隧道工程施工质量验收标准》TB 10753-2018更改

3、基本规定 第 ,可调整进场检验频次、试验数量 ,属于同一工程项目同期施工的多个单位工程,对同一厂家生产的同批次原材构配件、半成品、设备等可进行统一验收。 不得有严重缺陷,不合格点不得集中。增加第4条 3.3.3 增加第3条涉及安全和主要使用功能的抽样检验结果应符合相应 规定。 ,委外进行实体检测或抽样检测。 4、原材料、构配件、半成品 新增第4章将原材料单独进行解释说明,原材料技术要求按照相关产品技术要求 进行规定,不在单独进行规定。 支护材料4.1.1 混凝土、钢筋所用原材符合10424 可扩大检验批一倍,出现不合格,不得在扩大。 4.1.3 实行工厂化生产,半成品、构配件等可采用出厂检验合格证作为质 量证明文件 进行分别标识、分区存放,工厂化生产的半成品宜采用信息码进行编码溯源。 706、11263 4.2.4 管棚、超前小导管、注浆管符合8162。 防水材料增加VA含量检验。 4.3.2 排水板检测符合3354。 18173.3。 2000m一批。 ,按进场批次和产品标准确定批次容量。 4.4构配件和半成品 4.4.1 管棚、超前小导管、锚杆(管)、钢架、钢筋网片等半成品检验符 合相应设计要求。,管棚50根检查3根,超前小导管、锚杆(管) 100根检查3根,钢筋网片100片检查3片。 ,数量符合10424. ,盖板尺寸、强度符合设计要求。不大于1000块为1批每批3块。 4.4.5 管片螺栓符合设计要求,按进场批次和产品标准确定批次容量。 4.4.6 排水管沟的规格和强度等符合设计要求,同规格同类型不大于100 节为1批,每批1节。 4.4.7 水泥基钢筋保护层垫块强度不小于混凝土强度,尺寸满足钢筋保护 层厚度要求,不大于5000块为1批每批5块。 ,不大于2000米为一批,每批3根。 5加固处理 ,检验方法表5.2.5 数量按照总数的2%,且不少于3根。 5.3.3 预注浆加固效果应符合设计要求每循环不少于3孔。

高速铁路隧道工程施工技术指南

1总则 1.0.1为指导高速铁路隧道工程施工,统一主要技术要求,加强施工管 理,保证工程质量,制定本技术指南。 1.0.2本指南适用于新建时速250~350km高速铁路隧道工程施工。时速 250km以下客运专线、城际铁路隧道工程施工应参照执行 1.0.3高速铁路隧道工程施工必须执行国家法律法规及相关技术标准, 严格按照设计文件施工,满足工程结构、耐久性能及系统使用功能要求,保证设计使用年限内正常运营。 1.0.4建设各方应从管理制度、人员配备、现场管理和过程控制四个方 面加强标准化管理,实现质量、安全、工期、投资效益、环境保护、技术创新等建设目标。 1.0.5高速铁路隧道工程施工应积极推行机械化、工厂化、专业化、信 息化。 1.0.6高速铁路隧道工程施工质量应重视地质核查、超前地质预报和监 控量测工作,做好超前支护、初期支护、基地处理、防排水及二次衬砌等关键工程的施工。 1.0.7高速铁路隧道工程施工应加强现场管理,规范现场布置,提高文 明施工水平。 1.0.8高速铁路隧道工程施工应重视对地质灾害的识别评估、规划预防、 检测应急、工程治理等工作,有效减少地质灾害及其影响。 1.0.9高速铁路隧道工程设计文物保护单位和其他文物古迹的,应根据 文物保护行政部门要求和批准的设计保护措施组织施工。 1.0.10高速铁路隧道工程施工应根据国家节约资源、节约能源、减少排 放等有关法规和技术标准,结合工程特点、施工环境编制并实施工程施工节能减排技术方案。 1.0.11高速铁路隧道工程施工应按《铁路隧道施工抢险救援指导意见》 有关规定组建施工抢险救援机构,配置救援设备。 1.0.12高速铁路隧道工程施工的各类人员应经过专门培训,考核合格后 方可上岗。 1.0.13高速铁路隧道工程施工资料的收集和整理工作应与工程进度同步 进行,做到系统、完整、真实、准确,保证其具有有效的查考利用价值和完备的质量责任追溯功能,并应按有关规定做好资料的归档管理工作。隧道竣工后应根据施工特点及时编写单项和全面的施工技术总结。 1.0.14高速铁路隧道工程临近营运铁路施工应符合铁路营运线施工有关 规定。 1.0.15高速铁路隧道工程施工应符合本技术指南外,尚应符合国家现行 有关标准的规定。

高速铁路隧道工程规范摘录

《高速铁路隧道工程施工技术指南》和《高速铁路隧道工程质量验收标准》 摘录 一、超前地质预报 ㈠施工技术指南要求 1、超前地质预报内容:地层岩性,地质构造,不良地质,地下水。 2、超前地质预报方法:地质调查法,钻探法,物探法。 ⑴地质调查法对地表、洞内底板、边墙、拱顶和掌子面进行地质调查,在洞内超前地质预报前进行,按超前地质预报设计文件要求及时进行。 ⑵钻探法:复杂地质地段采用,水平钻探深度不低于30m,前后两循环应重叠5~8m,含煤地层采用长短结合探测。 ⑶物探法包括地震波法、声波法、电磁波反射法、电法和红外线探测。TSP 地震波反射法预报距离100~150m,前后重叠10m以上;陆地声纳法预报距离50~100m,前后重叠10m以上;反射地震层析成像法预报距离100~150m,前后重叠10m以上;水平声波剖面法预报距离50~100m,前后重叠10m以上;声波层析成像法和地震CT成像法预报距离取决于探测孔的深度;电磁波反射法预报距离10~20m,前后重叠5m以上;红外探测法预报距离20~30m,前后重叠5m以上;电法预报距离20~50m,前后重叠5m以上。 ㈡验收标准要求 1、软弱围岩及不良地质隧道应进行专项超前地质预报设计,完善设计方案。 2、开挖前必须进行超前地质预报 3、隧道每一次开挖后及时观察、描述开挖面地层的层理、节理、裂隙结构

状况、岩体的软硬程度、出水量大小等,核对设计地质情况,判断围岩稳定性,应有文字和数码影像。 4、超前地质预报采用的方法、预报范围、频次应符合设计要求。 5、超前地质预报施作里程、位置、搭接长度应符合设计要求 6、超前地质预报施作后,及时收集相关数据,归纳总结预报成果,核对地质情况,判断围岩稳定性。 7、采用物探法时,炮孔、测线布置和数据采集等应符合设计要求 采用超前钻探法时,钻机钻深不宜小于25m,成孔倾角和方位角偏差应不大于1°,深度偏差不大于0.5m。 二、洞身开挖 ㈠施工技术指南要求 1、隧道Ⅳ、Ⅴ、Ⅵ级围岩地段、隧道浅埋、下穿建筑物及邻近既有线地段施工开挖应采用控制爆破,或非爆破方法 2、岩石隧道钻爆开挖应采用光面爆破技术,控制循环进尺及一次同时起爆药量。 3、开挖轮廓线应采用有效的测量手段进行控制,轮廓线和炮眼位置宜采用激光指向仪、隧道断面仪、全站仪等配合测定。 4、爆破后应及时清理危石,清理工作宜采用机械作业 5、隧道允许超挖值:Ⅳ级围岩拱部平均线性超挖15cm、边墙10cm、仰拱隧底10cm,拱部最大超挖25cm、仰拱隧底25cm;Ⅴ级围岩拱部平均线性超挖10cm、边墙10cm、仰拱隧底10cm,拱部最大超挖15cm、仰拱隧底25cm;(本数据适用于炮眼深度不大于3m,大于3m时可适当调整)

相关文档
最新文档