电机选型的基本知识

电机选型的基本知识
电机选型的基本知识

电机选型的基本知识

(本文采摘工控编辑https://www.360docs.net/doc/cf14560735.html,)

小型三相异步电动机,通常包括H80-315MM的电机,其产量大、用途广,在电网的总负荷中,它的用电量为40%左右。六十年代初流行的为JO2系列电动机,该系列电机的功率等级、安装尺寸与国际市场上的通用标准不同,另外该电机启动转矩较低和缺乏噪声控制指标,因此现在我国现在使用的电机为Y系列电机。该电机坚固耐用、安全可靠因此使用范围越来越广。然而有些用户使用的电机年损坏率高达5%,究其原因多半是选型不当、使用不妥、保护不善的缘故。因此本次讲课的主要目的是:发现电机使用中发生的质量问题,妥善的解决。

小型异步电动机的体系

小型异步电动机可分为:基本系列、派生系列和专用系列。

基本系列----使用范围广、生产量大,是一种通用电机,如Y系列(IP44)小型三相异步电动机。

派生系列----按照不同的使用要求,在基本系列的基础上做了部分改动,另部件与基本系列有较高的通用性和一定程度的统一性。派生系列有电气派生(如高效电机,YX系列)、结构派生(如绕线转子电动机YR系列)、特殊环境派生(隔爆型电动机,YB系列)等几种。

专用系列-----与一般用途不同,具有特殊使用要求和特殊防护条件系列,如YZ、YZR冶金及起重用异步电动机。

基本系列技术参数

1、标准号JB/T9616-1996

2、外壳防护结构型式Y系列小型三相异步电动机基本系列有IP2

3、IP44两种外壳防护等级。IP23和IP44的含义是:IP---表示防护等级的标志符号,后面的两位数字的要求如下表:级别要求IP23第一位数字能防止手指接触及机壳内带电或转动部分,能防止直径大于12MM的小固体异物进入第二位数字与沿垂直线成60度或小于60度的淋水对电机应无有害影响IP44第一位数字能防止厚度大于1MM的工具、金属线或类似的物体触及机壳内带电或转动部分,能防止直径大于1MM的小固体异物进入,但不包括由外风扇吸风或送风的通风口和封闭式电机的泄水孔,这些部分应具有2级防护性能第二位数字任何方向溅水于电机,应无有害影响。

3、安装结构及型式Y系列电动机的安装结构,分为地脚安装、用地脚附带凸缘端盖安装和用一个凸缘端盖安装等三种。根据三种基本安装结构,电动机的安装型式又分为卧式安装或立式安装及轴伸向上或向下,即B3、B35、B5、V1、V15等安装方式,具体型号查标准。

4、冷却方式Y系列电机基本是靠周围空气来循环冷却。IP23电机为利用转子端环上的风叶作为驱动元件,周围冷空气自端盖进入,经过风叶增压,携带部分转子热量,再冷却定子绕组端部和铁芯背部,受热的空气从机壳中间排出机外。IP44电机,电机在运行过程中内部损耗(铁损、铜损、机械损耗)产生的热量全部传递到电机表面,通过安装在非轴伸端的风扇驱动周围空气连续吹拂电机表面,带走上述热量,达到冷却电机的目的。

5、功率等级与安装尺寸查表。

6、主要性能指标部分电机与其他厂比较有可能铁芯短、漆包线细,但电机的功率等各项性能指标均符合标准要求。

7、绕组温升Y系列电机采用B级绝缘,允许绕组温升为80K。另F级绝缘允许绕组温升为115K。

8、运行条件(1)、海拔不允许超过1000

米,环境温度最高不超过40℃,最低温度—15℃。运行地点的最湿月月平均最高湿度为90%,同时该月月平均最低温度不高于25℃。(2)、电源电压为380V±5%,频率为50HZ变化不超过±1%,三相电流空载时不平衡不超过10%,中载时不超过5%。空载电流一般为负载电流的30—55%。

铭牌数据:普通电机铭牌内容型号(TYPE):电压(VOLT):380V 频率(HZ):50HZ 接法(CONN。)一般情况下3KW及以下电机为星形接法,3KW以上电机为角形接法。功率:编号(SER。NO。)

关于防护等级(ENCL)绝缘等级(INS。CLASS)适用标准:一般情况下为JB/T9616-1996 噪声【LW dB(A)】转数(R/MIN)额定电流(AMP):生产日期(DATE)工作制(DUTY)重量(WGT)专特电机另有以下标识三相异步电动机THREE PHASE INDUCTION MOTOR 服务系数(S。F。)服务系数下的电流(S.F.A.)100%负载下的效率EFF。(100%FL)75%负载下的效率EFF。(75%FL)环境温度限值MAX。AMB 轴伸端轴承型号BRGS。P。E 非轴伸端轴承型号O.P.E。用户的另部件编号(PART。NO)

电机的选型计算

3873滚珠丝杠电机选型计算 设计要求: 夹具加工件重量:W1=300kg 提升部位重量:W2=100kg 行走最大行程:S= 1200mm 最大速度:V=20000mm/min 使用寿命:Lt=20000h 滑动阻力:u=0。01 电机转数:N=1333RPM 运转条件: v(m/min) 加速下降时间:T1=0.75S 匀速下降时间T2=3S 减速下降时间T3=0.75S t(sec) 加速上升时间T4=0.75S 匀速上升时间T5=3S 减速上升时间T6=0.75S 匀速下降3s 1,螺杆轴径,导程,螺杆长度选定 a:导程(l) 由电机最高转数可得

L大于或等于V/N=20000/1333=15mm 即导程要大于15mm,根据THK样本得导程16mm 即L=16mm b:轴负荷计算 1,加速下降段 a1=V/T=20000/60X0.75=444(mm/s2)=0.444m/s2 f=u(W1+W2)xG=0.01(300+100)x9.8=40N F1=(W1+W2)xG-f-(W1+W2)xa1=(300+100)x9.8-40-(300+100)x0.444=3702N 2,匀速下降段 F2=(W1+W2)xG-f=(300+100)x9.8-40=3880N 3减速下降段 F3=(W1+W2)xG-f+(W1+W2)xa1=(300+100)x9.8-40+(300+100)x0.444=4058N 4 加速上升段 F4=(W1+W2)xG+f+(W1+W2)xa1=(300+100)x9.8+40+(300+100)x0.444=4137N 5,匀速上升段 F5=(W1+W2)xG+f=(300+100)x9.8+40=3960N

防爆基础知识介绍

防爆基础知识介绍 2012-09-14 防爆基础知识普及第一章之,爆炸性环境用电气分类;危险场所的分类;气体和蒸气的分级方法。 爆炸性环境用电气分类: I类:I类电气设备用于煤矿瓦斯气体环境。 II类:II类电气设备用于除煤矿甲烷气体之外的其它爆炸性气体环境。II类电气设备用按照其拟使用的爆炸性环境的种类可进一步分为IIA类、IIB类、IIC类。 III类:III类电气设备用于除煤矿以外的粉尘环境。III类电气设备按照其拟使用的爆炸性粉尘环境的特性可进一步分为IIIA类、IIIB类、IIIC类。 危险性场所分类: 一、爆炸性气体环境: 0区爆炸性气体环境连续出现或长时间存在的场所; 1区在正常运行时,可能出现爆炸性气体环境的场所; 2区在正常运行时,不可能出现爆炸性气体环境,如果出现也是偶尔发生并且仅是短时间存在的场所。二、可燃性粉尘环境: 20区在正常运行过程中可燃性粉尘连续出现或经常出现,其数量足以形成可燃性粉尘与空气混合物和/或可能形成无法控制和极厚的粉尘层的场所及容器内; 21区在正常运行过程中,可能出现粉尘数量足以形成可燃性粉尘与空气混合物但未划入20区的场所,该区域包括,与允入或排放粉尘点直接相邻的场所、出现粉尘层和正常操作情况下可能产生可燃浓度的可燃性粉尘与空气混合物的场所; 22区在异常情况下,可燃性粉尘层偶尔出现并且只是短时间存在、或可燃性粉尘偶尔出现堆积或可能存在粉尘层并且产生可燃性粉尘空气混合物的场所。如果不能保证排除可燃性粉尘堆积或粉尘层时,则应划分为21区。 气体和蒸气的分级方法: 根据国家标准GB 3836.1的规定,II类隔爆型“d”和本质安全型“i”电气设备分为IIA、IIB、IIC级。对于隔爆型电气而言,气体和蒸气的分级是以最大试验安全间隙(MESG)为基础确定的。其极限值为:A 级MESG大于0.9mm;B级MESG 0.5mm~0.9mm;C级:MESG小于0.5mm。 对于本质安全型电气设备,气体和蒸气的分级是以它们的最小点燃电流(MIC)与实验室用甲烷的最小点燃电流之比为基础确定的。其极限值为:A级 MIC比值大于0.8;B级 MIC比值0.45~0.8;C级 MIC比值小于0.45 注释:标志IIB的设备也可适用于IIA设备的使用条件,标志IIC的设备也可适用于IIA及IIB设备的使用条件。 爆炸性气体环境电气工程的安装和使用 2012-09-28 一电气设备的选型二防爆电气设备非带电金属部件的等电位连接三电源的接地类型及保护措施四电气保护五电气系统的布线 防爆电气工程的安装设备和使用遵守GB3836.15-2000和GB50058-1992的标准要求。 一电气设备的选型 1. 按危险环境的区域选用防爆电气设备类型 0区:ia、S; 1区:ia、ib、d、e(部分)、m、p、O、q; 2区:ia、ib、d、e、m、p、O、q、n. 以上符号代表:ia、ib-本质安全型;d-隔爆型;e-增安型;m-浇封型;p-正压型;O-充油型;q-充沙型;n-无火花型;S-特殊型。 S型防爆电气设备是指不符合上述防爆型式标准的电气设备,但经检验单位认可。一般由检验单位确认使用的危险区域。

步进电机——步进电机选型的计算方法

步进电机——步进电机选型的计算方法 步进电机选型表中有部分参数需要计算来得到。但是实际计算中许多情况我们都无法得到确切的机械参数,因此,这里只给出比较简单的计算方法。 ◎驱动模式的选择 驱动模式是指如何将传送装置的运动转换为步进电机的旋转。 下图所示的驱动模式包括了电机的加/减速时间,驱动和定位时间,电机的选型基于模式图。 ●必要脉冲数的计算 必要脉冲数是指传动装置将物体从起始位置传送到目标位置所需要提供给步进电机的脉冲数。必要脉冲数按下面公式计算: 必要脉冲数= 物体移动的距离 距离电机旋转一周移动的距离× 360 o 步进角 ●驱动脉冲速度的计算 驱动脉冲速度是指在设定的定位时间中电机旋转过一定角度所需要的脉冲数。 驱动脉冲数可以根据必要脉冲数、定位时间和加/减速时间计算得出。 (1)自启动运行方式 自启动运行方式是指在驱动电机旋转和停止时不经过加速、减速阶段,而直接以驱动脉冲速度启动和停止的运行方式。 自启动运行方式通常在转速较低的时候使用。同时,因为在启动/停止时存在一个突然的速度变化,所以这种方式需要较大的加/减速力矩。 自启动运行方式的驱动脉冲速度计算方法如下: 驱动脉冲速度[Hz]= 必要脉冲数[脉冲]

定位时间[秒] (2)加/减速运行方式 加//减速运行方式是指电机首先以一个较低的速度启动,经过一个加速过程后达到正常的驱动脉冲速度,运行一段时间之后再经过一个减速过程后电机停止的运行方式。其定位时间包括加速时间、减速时间和以驱动脉冲速度运行的时间。 加/减速时间需要根据传送距离、速度和定位时间来计算。在加/减速运行方式中,因为速度变化较小,所以需要的力矩要比自启动方式下的力矩小。加/减速运行方式下的驱动脉冲速度计算方法如下: 必要脉冲数-启动脉冲数[Hz]×加/减速时间[秒] 驱动脉冲速度[Hz]= 定位时间[秒]-加/减速时间[秒] ◎电机力矩的简单计算示例 必要的电机力矩=(负载力矩+加/减速力矩)×安全系数 ●负载力矩的计算(TL) 负载力矩是指传送装置上与负载接触部分所受到的摩擦力矩。步进电机驱动过程中始终需要此力矩。负载力矩根据传动装置和物体的重量的不同而不同。许多情况下我们无法得到精确的系统参数,所以下面只给出了简单的计算方法。 负载力矩可以根据下面的图表和公式来计算。 (1)滚轴丝杆驱动

电动机的选择及设计公式

一、电动机的选择 1、空气压缩机电动机的选择 1.1电动机的选择 (1)空压机选配电动机的容量可按下式计算 P=Q(Wi+Wa) ÷1000ηηi2 (kw) 式中P——空气压缩机电动机的轴功率,kw Q——空气压缩机排气量,m3/s η——空气压缩机效率,活塞式空压机一般取0.7~0.8(大型空压机取大值,小型空压机取小值),螺杆式空压机一般取0.5~0.6 ηi——传动效率,直接连接取ηi=1;三角带连接取ηi=0.92 Wi——等温压缩1m3空气所做的功,N·m/m3 Wa——等热压缩1m3空气所做的功,N·m/m3 Wi及Wa的数值见表 Wi及Wa的数值表(N·m/m3) 1.2空气压缩机年耗电量W可由下式计算 W= Q(Wi+Wa)T ÷1000ηηiηmηs2 (kw·h) 式中ηm——电动机效率,一般取0.9~0.92 ηs ——电网效率,一般取0.95 T ——空压机有效负荷年工作小时

2、通风设备电动机的选择 (1)通风设备拖动电动机的功率可按下式计算 P=KQH/1000ηηi (kw) 式中K——电动机功率备用系数,一般取1.1~1.2 Q——通风机工况点风量,m3/s H——通风机工况点风压轴流式通风机用静压,离心式通风机用全压,Pa η——通风机工况点效率,可由通风机性能曲线查得 ηi——传动效率,联轴器传动取0.98,三角带传动取0.92 (2)通风机年耗电量W可用下式计算 W=QHT/1000ηηiηmηs 式中ηm——电动机效率, ηs ——电网效率,一般取0.95 T ——通风机全年工作小时数 3、矿井主排水泵电动机的选择 (1)电动机的选择 排水设备拖动电动机的功率可按下式计算 P=KγQH/1000η (kw) 式中K——电动机功率备用系数,一般取1.1~1.5 γ——矿水相对密度,N/m3 Q ——水泵在工况点的流量,m3/s H ——水泵在工况点的扬程,m

防爆电机的基本参数和知识

防爆电机的基本参数和知识 一、防爆原理 1、为什么要用防爆电机? 在一些具有爆炸危险的场所,当气体或粉尘遇着点火源或高温,就会发生燃烧或爆炸。而电机在运行中,可能会发生电弧或电火花,这些都是强点火源,遇到爆炸性的粉尘或气体,就可能要发生爆炸。 2、隔爆电机的隔爆原理 隔爆型电机的防爆原理是:将电机的带电部件放在特制的外壳内,该外壳具有将壳内电气部件产生的火花和电弧与壳外爆炸性混合物隔离开的作用,并能承受进入壳内的爆炸性混合物被壳内电气设备的火花、电弧引爆时所产生的爆炸压力,而外壳不被破坏;同时能防止壳内爆炸生成物向壳外爆炸性混合物传爆,不会引起壳外爆炸性混合物燃烧和爆炸。这种特殊的外壳叫“隔爆外壳”。具有隔爆外壳的电机称为“隔爆型电机”。隔爆型电机的标志为“d”,为了实现隔爆外壳耐爆和隔爆性能,对隔爆外壳的形状、材质、容积、结构等均有特殊的要求。3、隔爆电机的分类 爆炸性气体环境用电气设备可分为两类: Ⅰ类:煤矿用电气设备; Ⅱ类:除煤矿外的其他爆炸性气体环境用电气设备。Ⅱ类电气设备可以按爆炸性气体的特性分为ⅡA、ⅡB和ⅡC类。其中标志ⅡB的设备可适用于ⅡA设备的使用条件,标志ⅡC的设备可适用于ⅡA及ⅡB设备的使用条件。 4、几个术语的解释 1)、爆炸性环境 可能发生爆炸的环境。 2)、爆炸性气体环境 大气条件下,气体、蒸气或雾状的可燃物质与空气构成的混合物,在该混合物中点燃后,燃烧将传遍整个未燃混合物的环境。 3)、最高表面温度 电气设备在允许的最不利条件下运行时,其表面或任一部分可能达到的并有可能引燃周围爆炸性气体环境的最高温度。

4)、引燃温度 能够引燃爆炸性气体与空气混合物的热表面最低温度。 5、表面最高温度 对于Ⅰ类电机: 当电气设备表面可能堆积煤尘时,最高表面温度不应超过150℃。 当电气设备表面不会堆积或采取措施可以防止堆积煤尘时,最高表面温度不应超过450℃。 爆炸性粉尘环境用电气设备 爆炸性粉尘环境安装的防爆电气设备的设计原理是用防尘外壳将电气部件密封的方法。 执行标准:GB12476.1-2000 爆炸性粉尘环境用电气设备第1部分:用外壳和限制表面温度保护的电气设备第1节:电气设备的技术要求;GB12476.2-2000 爆炸性粉尘环境用电气设备用外壳保护的电气设备第2部分电气设备的选择、安装和维护。 根据爆炸性粉尘出现的频率和持续时间及粉尘层厚将爆炸性粉尘环境分为20区、21区、22区三个级别。 防尘外壳(IP5X):适用于22区域; 尘密外壳(IP6X):适用于21、20区域; 为便于国际贸易和交流,在标志和试验方法上加A/B+区域代号,其中:A—IEC、欧州共同体的标志和试验方法; B—北美的标志和试验方法。 我国的粉尘防爆电气设备铭牌上出现的防爆标志应如:DIP A21 TAT3,DIP 21 TBT3。其中T3为粉尘分级表上规定的引燃温度组别。 在GB12476.1-2000 第13款中规定了使用在20区、21区的B型电气设备的外壳接合面的设计参数,包括平面接合面,衬垫接合面、操纵杆,芯轴或转轴的最小接合面长度及最大允许间隙,可作设计参考。 其它技术要求同爆炸性气体环境用电气设备的通用要求相同。 采用塑料材料作粉尘防爆电气设备外壳时,同样要考虑防静电措施。

电机基本知识

电机基本知识 电机是电动机和发电机的统称,通常分为直流电机和交流电机两大类,交流电机分为异步电机与同步电机两类。这里介绍一下同步电机、异步电动机、电机产品型号编制方法、工作制(S 类)、防护型式:IPXX 、电机安装结构型IMXX 、绝缘等级、异步电动机额定数据、异步电机主要技术指标、电机选型要点。1 、同步电机转子转速与旋转磁场的转速相同的一种交流电机,它具有可逆性。可作发电机运行,也可作电动机运行,还可作补偿机运行。2 、异步电动机异步电动机是一种基于电与磁相互依存又相互作用而达到能量转换目的的机械。它的定子、转子在电路上是彼此独立的,但又是通过电磁感应而相互联系的,其转子转速永远低于旋转磁场的转速,即存在有转差率,故称为异步电动机。工作原理:电机定子通入三相交流电时即可产生旋转磁场,假设旋转磁场为顺时针转动,静止的笼形转子切割磁力线产生感应电流,通电导体在磁场中受力,且此转矩与磁场旋转方向一致,所以转子便顺着旋转磁场方向转动起来。3 、电机产品型号编制方法产品型号由产品代号、规格代号、特殊环境代号和补充代号等四个部分组成,示例:我公司低压电机(1140V 及以下)主要产品代号有:Y 、YDDC 、Y A 、YB2 、YXn 、Y AXn 、YBXn 、YW 、YBF 、YBK2 、YBS 、YBJ 、YBI 、YBSP 、YZ 、YZR 等;高压电机(3000V 及以上)主要产品代号有:Y 、YKK 、YKS 、Y2 、Y A 、YB 、YB2 、YAKK 、Y AKS 、YBF 、YR 、YRKK 、YRKS 、TAW 、YFKS 、QFW 等。常用特殊环境代号有:W (户外型)、WF1 (户外防中等腐蚀型)、WF2 (户外防强腐蚀型)、F1 (户内防中等腐蚀型)、F2 (户内防强腐蚀型)、TH (湿热带型)、WTH (户外湿热带型)、TA (干热带型)、T (干、湿热合型)、H (船或海用)、G (高原用)。4 、工作制(S 类)S1— 连续工作制S2— 短时工作制S3-- 断续周期工作制S4— 包括起动的断续工作制S5— 包括电制动的断续工作制S6— 连续周期工作制S7— 包括电制动的连续周期工作制S8— 包括变速负载的连续周期工作制S9— 负载和转速非周期变化工作制5 、防护型式:IPXX 第一位数字表示:防止人体触及或接近壳内带电部分及壳内转动部件,以及防止固体防异物进入电机。第二位数字表示:防止由于电机进水而引起的有害影响。第一位数字、第二位数字含义见下表;第一位表征数字含义: 无防护电机 1 防止> φ50mm 固体进入壳内 2 防止> φ12mm 固体进入壳内 3 防止> φ 2.5mm 固体进入壳内 4 防止> φ1mm 固体进入壳内 5 防尘电机第二位数字表示:防止由于电机进水而引起的有害影响。含义见下表;第二位表征数字含义: 无防护电机 1 垂直滴水无有害影响

伺服电机如何进行选型知识讲解

伺服电机选型技术指南 1、机电领域中伺服电机的选择原则 现代机电行业中经常会碰到一些复杂的运动,这对电机的动力荷载有很大影响。伺服驱动装置是许多机电系统的核心,因此,伺服电机的选择就变得尤为重要。首先要选出满足给定负载要求的电动机,然后再从中按价格、重量、体积等技术经济指标选择最适合的电机。 各种电机的T-ω曲线 (1)传统的选择方法 这里只考虑电机的动力问题,对于直线运动用速度v(t),加速度a(t)和所需外力F(t)表示,对于旋转运动用角速度ω(t),角加速度α(t)和所需扭矩T(t)表示,它们均可以表示为时间的函数,与其他因素无关。很显然。电机的最大功率P电机,最大应大于工作负载所需的峰值功率P峰值,但仅仅如此是不够的,物理意义上的功率包含扭矩和速度两部分,但在实际的传动机构中它们是受限制的。用ω峰值,T峰值表示最大值或者峰值。电机的最大速度决定了减速器减速比的上限,n上限=ω峰值,最大/ω峰值,同样,电机的最大扭矩决定了减速比的下限,n下限=T峰值/T电机,最大,如果n下限大于n上限,选择的电机是不合适的。反之,则可以通过对每种电机的广泛类比来确定上下限之间可行的传动比范围。只用峰值功率作为选择电机的原则是不充分的,而且传动比的准确计算非常繁琐。 (2)新的选择方法 一种新的选择原则是将电机特性与负载特性分离开,并用图解的形式表示,这种表示方法使得驱动装置的可行性检查和不同系统间的比较更方便,另外,还提供了传动比的一个可能范围。这种方法的优点:适用于各种负载情况;将负载和电机的特性分离开;有关动力的各个参数均可用图解的形式表示并且适用于各种电机。因此,不再需要用大量的类比来检查电机是否能够驱动某个特定的负载。 在电机和负载之间的传动比会改变电机提供的动力荷载参数。比如,一个大的传动比会减小外部扭矩对电机运转的影响,而且,为输出同样的运动,电机就得以较高的速度旋转,产生较大的加速度,因此电机需要较大的惯量扭矩。选择一个合适的传动比就能平衡这相反的两个方面。通常,应用有如下两种方法可以找到这个传动比n,它会把电机与工作任务很好地协调起来。一是,从电机得到的最大速度小于电机自身的最大速度ω电机,最大;二是,电机任意时刻的标准扭矩小于电机额定扭矩M额定。

电机选型知识

旋转电机选型知识 一、电机的基本运行条件 GB755-2000《旋转电机定额和性能》中规定的电动机的基本运行条件包括:对海拔高度、环境温度、冷却介质和相对湿度的要求,电气条件,运行期间电压和频率的变化,电机的中点接地等规定。 1、海拔:一般不超过1000M。特殊要求,如微特电机的运行的海拔高度可达2500~31200m。 2、最高环境空气温度:电机运行地点的环境温度随季节而变化,一般不超过40℃。但一些专用电机可超过40℃,微特电机的最高环境温度为125℃。 3、最低环境温度:对已安装就位处于运行或断电停转电机,运行地点的最低环境温度为-15℃;对微特电机最低空气温度为-55℃。对于用水作为初级或次级冷却介质的电机的最低环境空气温度为5℃。 4、环境空气相对湿度:电机运行地点的最湿月份月平均最高相对湿度为90%,同时,该月月平均最低温度不高于25℃。 5、电压和电流的波形对称性:对于交流电动机,其电源电压波形的正弦性畸变率不超过5%;对于多相电动机,电源电压的负序分量不超过5%(长期运行)或1.5%(不超过几分钟的短式运行),且电压的零序分量不超过正序分量的1%。 6、运行期间电压的偏差:当电动机的电源电压(如为交流电源时,频率为额定)在额定值的95%~105%之间变化,输出功率仍能维持额定值。当电压发生上述变化时,电机的性能和温升允许偏离规定。 7、运行期间的频率偏差:但交流电机的频率(电压为额定)额定值的偏差不超过±1%时,输出功率仍能维持额定值。 8、电压和频率同时发生偏差:电压和频率同时发生偏差(两者偏差分别不超过±5%和±1%),若两者都是正值,且其和不超过6%;或两者均为负值,或分别为正值和负值,且其绝对值之和不超过5%时,电机输出功率仍能维持额定值。 9、电机的中性点接地:交流电机(Y连结)应能在中性点处于接地电位或接近接地电位的情况下连续运行。如果电机绕组的线端与中性点端的绝缘不同,应在电机的使用说明书中说明,未征得电机厂同意,不允许将电机的中性点接地或将多台电机的中性点相互连接。 二、电机的电压和频率的选取 1、我国的工频及电压:我国的工频电的频率是50Hz,电压等级分为:220V、380V、660V、1140V、3300V、6000V、10000V。

maxon电机选型手册

maxon EC motor160 maxon EC motor 2013年4月版/根据maxon标准规范的变化,我们为您提供了一个判断maxon motors最重要方面的方法。据我们所知,它涵盖了正常的应用。标准规格是我们“一般销售条件”的一部分。电气设备必须满足某些最低要求,这些要求是1996年1月1日之后引入欧洲市场的。小型电机将被视为部件,因此不代表指南意义上的单独电气设备。有关标准和指令的信息,请参阅第14页和第15页。maxon EC motor1第101号标准规范。本标准规定了在生产过程中对电动机进行的检验和试验。为了保证我们的高质量标准,我们在整个制造过程和整个电机过程中检查材料、零件和部件的特定测量和特性的符合性。记录获得的测量值,并在需要时提供给客户。随机抽样计划符合ISO 2859、MIL STD 105E和DIN/ISO 3951(属性检验、顺序抽样、变量检验)和内部制造控制。除非客户和maxon另有约定,否则本标准规范始终适用。数据2.1电气数据适用于22°至25°C,并使用带块换向的1象限控制器:数据控制在1分钟ute操作时间内执行。当电压≥3V时,测量电压为+/-0.5%,当电压≤3V时,测量电压为±0.015 V空载转速±10%空载电流≤最大规定值顺时针/逆时针旋转方向电机位置水平或垂直注:

测量电压可能与目录中列出的标称电压不同。目录中指定的空载电流是典型值,而不是最大值。按目录(或标签)连接电机时,轴从安装端顺时针旋转。通过随机抽样验证终端电阻。电感在产品认证期间确定。测试频率为1 kHz。终端电感取决于频率。这些测量完全保证了规定的机电参数。2.2外形图上的机械数据:标准测量仪器(用于电长度测量的DIN 32876、DIN 863千分尺、DIN 878千分表、DIN 862卡尺、DIN 2245孔径卡尺、DIN 2280螺纹卡尺等)2.3转子不平衡:电机转子采用空气磁通绕组,在制造过程中平衡根据我们的标准指南。对于带绕线定子齿的EC电机,转子安装在仪表上,但不作为标准平衡。在随机抽样过程中,只能对整个电机进行主观评价。2.4电气强度:每台电机完全组装好,然后根据直径在250或500 V直流电压下测试接地故障。2.5噪声:主观测试大量异常。根据速度的不同,电动机的运动会产生不同程度、频率和强度的噪声和振动。单个样品装置的噪声水平不应解释为未来交付的预测噪声或振动水平。2.6使用寿命:耐久性试验在统一的内部标准下进行,作为产品认证的一部分。EC电机的使用寿

防爆电机基础知识

防爆电机基础知识 一、防爆电机基础知识 我国防爆电气标准对电机来说,主要有: GB3836.1-2011《爆炸性环境第1部分:设备通用要求》 GB3836.2-2011《爆炸性环境第2部分:由隔爆外壳“d”保护的设备》GB3836.3-2011《爆炸性环境第3部分:由增安型“e”保护的设备》 还有其它一些标准,例如:本质安全型“i”;正压型“p”;充油型“o”;充砂型“q”;无火花型“n”;浇封型“m”;粉尘防爆型等等。 我公司正在开发的电机有高压隔爆型YB2和增安型YAKK。 主要开发的品种有:高压YB、YB2、YAKK、YAKS、YZKK和YZKS。 低压隔爆型YB电机。 隔爆型的防爆级别:ExdⅡBT4 Gb,代表的意义: Ex:防爆标志; d:隔爆型; ⅡB:电动机类别级别(Ⅱ类B 级); T4:温度组别。 增安型的防爆级别:ExeⅡT3 Ex:防爆标志; e:增安型; Ⅱ:Ⅱ类 T3:温度组别。 Gb级:EPL Gb 爆炸性气体环境用设备,具有“高”的保护级别,在正常运行或预期故障条件下不是点燃源。 EPL:设备保护级别:根据设备成为点燃源的可能性和爆炸性气体环境、爆炸性粉尘环境及煤矿甲烷爆炸性环境所具有的不同特征而对设备规定的保护级别。有EPL Ma,EPL Mb。EPL Ga;EPL Gb; EPL Gc;EPL Da;EPL Db;EPL Dc。ⅡB的设备可使用于ⅡA设备的使用条件。

二、防爆电机基础概念 1.1 爆炸性环境用电气设备的类别:按照电气设备使用的爆炸性环境而划分的类别:Ⅰ类:用于煤矿瓦斯气体环境;Ⅱ类:除煤矿瓦斯气体之外的其他爆炸性气体环境;Ⅲ类:除煤矿以外的爆炸性粉尘环境。 Ⅱ类:标志为ExdIIAT4、ExdIIBT4、ExdIICT4;在II类产品中,IIB的电动机可代替IIA电动机,IIC的电动机可代替IIB及IIA电动机。 1.2 最高表面温度:在最不利运行条件下(但在规定的容许范围内)工作时,电气设备的任何部件或任何表面所达到的最高温度。 注1:对于爆炸性气体环境用电气设备来说,该温度可出现在设备内部零部件上或外壳表面,视防爆型式而定。 1.3 温度组别:爆炸性环境用电气设备按其最高表面温度划分的组别。 1.4 爆炸性环境:在大气条件下,可燃性物质以气体、蒸气、粉尘、纤维或飞絮的形式与空气形成的混合物,被点燃后,能够保持燃烧自行传播的环境。 1.5 爆炸性气体环境:在大气条件下,可燃性物质以气体或蒸气的形式与空气形成的混合物,被点燃后,能够保持燃烧自行传播的环境。 1.6 危险区域划分中的0区:连续或长期出现爆炸性气体环境的区域。 1.7 危险区域划分中的1区:正常运行时可能出现爆炸性气体环境的区域。 1.8 危险区域划分中的2区:正常运行时不大可能出现爆炸性气体环境的区域,如果出现,只是存在很短时间。 1.8 隔爆外壳“d”:电气设备的一种防爆型式,其外壳能够承受通过外壳任何接合面或结构间隙进入外壳内部的爆炸性混合物在内部爆炸而不损坏,并且不会引起外部由一种、多种气体或蒸气形成的爆炸性气体环境的点燃。 1.9 增安型电气设备“e”: 电气设备的一种防爆型式,即对电气设备采取一些附加措施,以提高其安全程度,防止在正常运行或规定的异常条件下产生危险温度、电弧和火花的可能性。 注1:这种保护型式用“e”表示。附加的措施是那些符合本部分要求的措施。 注2:增安型“e”的定义不包括在正常运行情况下产生火花或电弧的设备。 1.10 增安型电气设备的极限温度:电气设备或其部件的最高允许温度。它等于按下列条件确定的两个温度中的较低温度: a)爆炸性气体环境点燃的危险温度;

电机选型计算-个人总结版

电机选型-总结版 电机选型需要计算工作扭矩、启动扭矩、负载转动惯量,其中工作扭矩和启动扭矩最为重要。 1工作扭矩T b计算: 首先核算负载重量W,对于一般线形导轨摩擦系数μ=0.01,计算得到工作力F b。 水平行走:F b=μW 垂直升降:F b=W 1.1齿轮齿条机构 一般齿轮齿条机构整体构造为电机+减速机+齿轮齿条,电机工作扭矩T b的计算公式为: T b=F b?D 2 其中D为齿轮直径。 1.2丝杠螺母机构 一般丝杠螺母机构整体构造为电机+丝杠螺母,电机工作扭矩T b 的计算公式为: T b=F b?BP 2πη 其中BP为丝杠导程;η为丝杠机械效率(一般取0.9~0.95,参考下式计算)。 η=1?μ′?tanα1+μ′ tanα

其中α为丝杠导程角;μ’为丝杠摩擦系数(一般取0.003~0.01,参考下式计算)。 μ=tanβ 其中β丝杠摩擦角(一般取0.17°~0.57°)。 2启动扭矩T计算: 启动扭矩T为惯性扭矩T a和工作扭矩T b之和。其中工作扭矩T b 通过上一部分求得,惯性扭矩T a由惯性力F a大小决定: F a=W?a 其中a为启动加速度(一般取0.1g~g,依设备要求而定,参考下式计算)。 a=v t 其中v为负载工作速度;t为启动加速时间。 T a计算方法与T b计算方法相同。 3 负载转动惯量J计算: 系统转动惯量J总等于电机转动惯量J M、齿轮转动惯量J G、丝杠转动惯量J S和负载转动惯量J之和。其中电机转动惯量J M、齿轮转动惯量J G和丝杠转动惯量J S数值较小,可根据具体情况忽略不计,如需计算请参考HIWIN丝杠选型样本。下面详述负载转动惯量J的计算过程。 将负载重量换算到电机输出轴上转动惯量,常见传动机构与公式如下:

防爆电机按防爆原理分

防爆电机按防爆原理分 可分为隔爆型电机、增安型电机、正压型电机、无火花型电机及粉尘防爆电机等。1.隔爆型电机 它采用隔爆外壳把可能产生火花、电弧和危险温度的电气部分与周围的爆炸性气体混合物隔开。但是,这种外壳并非是密封的,周围的爆炸性气体混合物可以通过外壳的各部分接合面间隙进入电机内部。当与外壳内的火花、电弧、危险高温等引燃源接触时就可能发生爆炸,这时电机的隔爆外壳不仅不会损坏或变形,而且爆炸火焰或炽热气体通过接合面间隙传出时,也不能引燃周围的爆炸性气体混合物。其主要特点是: (1) 功率等级、安装尺寸及转速的对应关系与DIN42673一致,同时考虑到与YB系列的继承性和Y2系列的互换性,作了必要调整,更加有效和适用。 (2) 全系列采用F级绝缘,温升按B级考核。 (3) 噪声限值比YB系列低,接近YB系列的I级噪声,振动限值与YB系列相当。 (4) 外壳防护等级提高到IP55。 (5) 全系列选用低噪声深沟球轴承,机座中心高在180mm以上电机设注排油装置。 (6) 电机散热片有平行水平分布和辐射分布两种,以平行水平分布为主。 (7) 主要性能指标达到20世纪90年代初国际先进水平。 2.增安型电机它是在正常运行条件下不会产生电弧、火花或危险高温的电机结构上,再采取一些机械、电气和热的保护措施,使之进一步避免在正常或认可的过载条件下出现电弧、火花或高温的危险,从而确保 其防爆安全性。 其主要特点是: (1)满足增安型防爆电机的要求,采取一系列可靠的防止火花、电弧和危险高温的措施,可以安全运行于2区爆炸危险场所。 (2)采用无刷励磁,设置旋转整流盘和静态励磁柜,励磁控制系统可靠;顺极性转差投励准确,无冲击;励磁系统失步保护可靠,再整步能力强;线路设计合理,放电电阻在工作中不发热;励磁电流调节范围宽。 (3)同步机、交流励磁机及旋转整流盘同轴。整流盘位于主电机和励磁机之间,或置于轴承座之外。 (4)外壳防护等级为IP54。 (5)采用F级绝缘,温升按B级考核。 (6)改变传统的下水冷为上水冷,即水冷却器置于电机上部。 (7)设增安型防潮加热器,固定在电机底部的罩内,用于停机时加热防潮用。 (8) 选优质原材料,电气及机械计算留有较大裕度,能满足运行可靠性和增安型电机的温度要求。 (9)设置有完善的监控措施;主接线盒内设置用于差动保护的增安型自平衡电流互感器;定子绕组埋设工作和备用的铂热电阻,分度号为Pt100;设漏水监控仪,监控水冷却器的泄漏;两端座式滑动轴承分别设现场温度显示仪表和远传信号端子

减速电机选型指南

选型指南 为了选到最合适的减速电机,有必要了解该减速电机所驱动机器的详尽技术特性,就必须确定一个使用系数fB。 使用系数fB。 减速电机的选用首先应确定以下技术参数:每天工作小时数;每小时起停次数;每小时运转周期;可靠度要求;工作机转矩T工作机;输出转速n出;载荷类型;环境温度;现场散热条件;减速机通常是根据恒转矩、起停不频繁及常温的情况设计的。其许用输出转矩T由下式确定:T=T出 X fB 使用系数 T 出————减速电机输出转矩 fB————减速电机使用系数 传动比i i=n入 / n出电机功率P(kw) P=T出 * n出 / 9550 * η输出转矩T出(N.m) T出=9550* P*η/n出式中:n入——输入转速η——减速机的传动效率 在选用减速电机时,根据不同的工况,必须同时满足以下条件: 1、T出≥T 工作机 2、T=fB总 *T工作机式中:fB总——总的使用系数,fB总 =fB*fB1*KR*KW fB——载荷特性系数,KR——可靠度系数 fB1——环境温度系数; KW——运转周期系数 首先确定要进口减速机还是国产减速机,, 现在不管进口还是国产的大部分厂家都有自己的命名标准, 所以最好找个减速机样本,根据样本来选型。 但是,一定要提供以下数据 1.减速机用在什么设备上,以便确定安全系数SF(SF=减速机额定功率处以电机功率),安装形式(直交轴,平行轴,输出空心轴键,输出空心轴锁紧盘等)等 2.提供电机功率,级数(是4P、6P还是8P电机) 3.减速机周围的环境温度(决定减速机的热功率的校核) 4.减速机输出轴的径向力和轴向力的校核。需提供轴向力和径向力 减速机扭矩计算公式: 速比=电机输出转数÷减速机输出转数("速比"也称"传动比") 1.知道电机功率和速比及使用系数,求减速机扭矩如下公式: 减速机扭矩=9550×电机功率÷电机功率输入转数×速比×使用系数

电机的选型计算资料

电机选型计算书 PZY 电机(按特大型车设计即重量为2500吨) 一、提升电机 根据设计统计提升框架重量为:2200kg,则总提升重量为G=2500+2200=4700kg 。设计提升速度为5-5.5米/分钟,减速机效率为0.95。 则提升电机所需要的最小理论功率: P=386.444495 .0605.58.94700=??? 瓦。 设计钢丝绳绕法示意图: 如图所示F=1/2*G ,V2=2*V1 即力减半,速度增加一 倍,所以F=2350 kg 。 根据设计要求选择电机功率应P >4444.386瓦,因为所有车库专用电机厂家现有功率P >4444.386瓦电机最小型号 5.5KW ,所以就暂定电机功率P=5.5KW ,i=60。 钢丝绳卷筒直径已确定为260mm ,若使设备提升速度到 5.5m/min 即0.09167m/s ;

由公式: D πων= 可求知卷筒转速: r D 474.1326 .014.311=?==πνω 查电机厂家资料知:电机功率:P=5.5KW 速比: i=60电机输出轴转速为ω=25r ,扭矩为M=199.21/kg ·m ,输出轴径d=φ60mm 。 则选择主动链轮为16A 双排 z=17,机械传动比为: 25474.13i 1' ==z z 54.31474 .131725z 1=?= 取从动轮16A 双排z=33; 1).速度校核: 所选电机出力轴转速为ω=25r ,机械减速比为33/17,得提升卷筒转速: r 88.1233 17251=?=ω 综上可知:提升钢索自由端线速度: min)/(52.1026.088.1214.3m D =??==πων 则提升设备速度为:v=10.52/2=5.26m/min 。 2).转矩校核: 设备作用到钢索卷筒上的力为:G/2=2350kg 。

防爆电机知识介绍

防爆电机知识培训 一、防爆面保护的重要性 首先明确一下什么是防爆面和防爆面的几个重要结构参数。 防爆面的准确定义为隔爆接合面,是指隔爆外壳不同部件相对应的表面配合在一起(或外壳连接处)且火焰或燃烧生成物可能会由此从外壳内部传到外壳外部的部位。 举例:机座与端盖止口配合处,轴承盖与转轴配合处等。 隔爆接合面的结构参数: 1. 隔爆接合面的宽度(火焰通路长度)即从隔爆外壳内部通过接合面到隔爆外壳外部的最短通路长度; 2. 隔爆接合面相对应表面之间的距离(间隙或直径差); 3. 隔爆接合面表面粗糙度的要求(粗糙度Ra不超过6.3μm)。 这三个参数在国家防爆标准中都有严格的规定,对于隔爆面的损伤,包括划痕、磕碰、撞击及锈蚀,都会造成隔爆面结构参数的破坏而失去防爆的作用。 隔爆型电机大量使用在化工、化纤、炼油、煤炭等工业企业中具有爆炸性危险的环境中,城市里的汽车加油站注油泵也在使用隔爆型电机,如果用户使用的隔爆型电机由于隔爆面损伤而不防爆,那将会大大增加可燃性气体爆炸的可能性,国家和人民的生命财产将会受到严重的威胁,一旦出现爆炸其后果是可想而知的。 隔爆接合面严重损伤的零部件必须作报废处理,轻微损伤的零部件可以采用修补的办法进行修复,恢复其隔爆结构参数的要求。但是,这些都会造成原材料、工时的损失和浪费,同时也延长了生产周期也降低了生产效率,给企业带来不必要的损失。 综上,隔爆型电机的防爆零部件在加工、储存、工序传递过程中,必须严格要求注意保护隔爆接合面,其重要意义是:保障隔爆型电机的防爆性能,保证隔爆型电机的产品质量,保护用户的安全生产秩序及国家和人民生命财产的安全,同时稳定电机制造的生产效率,企业减少损失浪费。 二、防爆电机的基本原理 (一)隔爆型电机 1. 外壳的隔爆作用 把能够产生火花、电弧和危险温度的零部件都放在隔爆机壳内,使机壳内腔与外部隔开。当隔爆机壳内腔产生爆炸时,不能够引起机壳外部爆炸性气体混合物的爆炸。

伺服电机选型技术的指南

米购人员必看-- 伺服电机选型 伺服电机在工控领域是最常见的产品之一,采购人员在采购伺服电机时需要对伺服电机有个 全面的了解,找到真正的适合产品,不仅可以使机器快速兼容的运转,同时对于企业提高效率、节能减排也功不可没,下面简单给大家介绍下伺服电机的选型 1、机电领域中伺服电机的选择原则 现代机电行业中经常会碰到一些复杂的运动,这对电机的动力荷载有很大影响。伺服驱动装置是许多机电系统的核心,因此,伺服电机的选择就变得尤为重要。首先要选岀满足给定负载 要求的电动机,然后再从中按价格、重量、体积等技术经济指标选择最适合的电机。 各种电机的T- 曲线 (1 )传统的选择方法 这里只考虑电机的动力问题,对于直线运动用速度v(t),加速度a(t)和所需外力F(t)表示, 对于旋转运动用角速度(t),角加速度(t)和所需扭矩T(t)表示,它们均可以表示为时间的 函数,与其他因素无关。很显然。电机的最大功率P电机,最大应大于工作负载所需的峰值功率P峰值,但仅仅如此是不够的,物理意义上的功率包含扭矩和速度两部分,但在实际的传动机构中它们是 受限制的。用峰值,T峰值表示最大值或者峰值。电机的最大速度决定了减速器减速比的上限,n 上限=峰值,最大/峰值,同样,电机的最大扭矩决定了减速比的下限,n下限=T峰值/T电机,最大,如果n下限 大于n上限,选择的电机是不合适的。反之,则可以通过对每种电机的广泛类比来确定上下限之间 可行的传动比范围。只用峰值功率作为选择电机的原则是不充分的,而且传动比的准确计算非常 繁琐。 (2)新的选择方法 一种新的选择原则是将电机特性与负载特性分离开,并用图解的形式表示,这种表示方法使得驱动装置的可行 性检查和不同系统间的比较更方便,另外,还提供了传动比的一个可能范围。 这种方法的优点:适用于各种负载情况;将负载和电机的特性分离开;有关动力的各个参数均可 用图解的形式表示并且适用于各种电机。因此,不再需要用大量的类比来检查电机是否能够驱动 某个特定的负载。 在电机和负载之间的传动比会改变电机提供的动力荷载参数。比如,一个大的传动比会减小外部扭矩对电机运 转的影响,而且,为输岀同样的运动,电机就得以较高的速度旋转,产生较 大的加速度,因此电机需要较大的惯量扭矩。选择一个合适的传动比就能平衡这相反的两个方面。通常,应用有如下 两种方法可以找到这个传动比n,它会把电机与工作任务很好地协调起来。一 是,从电机得到的最大速度小于电机自身的最大速度电机,最大;二是,电机任意时刻的标准扭矩 小于电机额定扭矩M额定。

电机基本知识及故障诊断

电机基本知识及故障诊断 南阳防爆集团有限公司 赵泰忠 二00四年五月

电机基本知识及故障诊断 一、电机基本知识 电机是电动机和发电机的统称,通常分为直流电机和交流电机两大类,交流电机分为异步电机与同步电机两类。 1、同步电机 转子转速与旋转磁场的转速相同的一种交流电机,它具有可逆性。可作发电机运行,也可作电动机运行,还可作补偿机运行。 2、异步电动机 异步电动机是一种基于电与磁相互依存又相互作用而达到能量转换目的的机械。它的定子、转子在电路上是彼此独立的,但又是通过电磁感应而相互联系的,其转子转速永远低于旋转磁场的转速,即存在有转差率,故称为异步电动机。 工作原理:电机定子通入三相交流电时即可产生旋转磁场,假设旋转磁场为顺时针转动,静止的笼形转子切割磁力线产生感应电流,通电导体在磁场中受力,且此转矩与磁场旋转方向一致,所以转子便顺着旋转磁场方向转动起来。 3、电机产品型号编制方法 产品型号由产品代号、规格代号、特殊环境代号和补充代号等四个部分组成,示例: YB2 - 200L-2 WF1 特殊环境代号(户外防中等腐蚀) 规格代号(中心高-铁心长度-极数/大 型电机用功率-极数/铁心外径表示) 产品代号(隔爆型三相异步电动机)

我公司低压电机(1140V及以下)主要产品代号有:Y、YDDC、YA、YB2、YXn、YAXn、YBXn、YW、YBF、 YBK2、YBS、YBJ、YBI、YBSP、YZ、YZR等;高压电机(3000V及以上)主要产品代号有:Y、YKK、YKS、Y2、YA、YB、YB2、YAKK、YAKS、YBF、YR、YRKK、YRKS、TAW、YFKS、QFW等。 常用特殊环境代号有:W(户外型)、WF1(户外防中等腐蚀型)、WF2(户外防强腐蚀型)、F1(户内防中等腐蚀型)、F2(户内防强腐蚀型)、TH(湿热带型)、WTH(户外湿热带型)、TA(干热带型)、T(干、湿热合型)、H(船或海用)、G(高原用)。 4、工作制(S类) S1—连续工作制 S2—短时工作制 S3--断续周期工作制 S4—包括起动的断续工作制 S5—包括电制动的断续工作制 S6—连续周期工作制 S7—包括电制动的连续周期工作制 S8—包括变速负载的连续周期工作制 S9—负载和转速非周期变化工作制 5、防护型式:IPXX 第一位数字表示:防止人体触及或接近壳内带电部分及壳内转动部件,以及防止固体防异物进入电机。第二位数字表示:防止由于电机进水而引起的有害影响。第一位数字、第二位数字含义见下表;

防爆电机基本知识完整详细版..

防爆电动机基本知识认知

目录 一、旋转电机的定义是什么? (3) 二、旋转电机是如何分类的? (4) 三、旋转电机的基本原理是什么? (5) 四、旋转电机设计时的模拟电路? (8) 五、旋转电机有哪些性能参数指标? (9) 六、电机制造常用标准有哪些? (11) 七、电动机型号编制方法(GB4831-1984电机产品型号编制方法) (13) 八、电动机电压等级的选择 (16) 九、电机轴中心高 (16) 十、电机绝缘等级 (17) 十一、电机工作制(GB 755-2000旋转电机定额和性能) (17) 十二、防护型式IPXX (GB/T 4208-1993 外壳防护分级(IP代码)) (18) 十三、电机安装结构型式(GB/T 997-2003旋转电机结构及安装型式(IM代码)) (19) 十四、电机冷却方法(GB/T 1993-1993旋转电机冷却方法) (20) 十五、湿热带、干热带环境用电动机采取的措施 (21) 十六、防腐电机应采取的措施 (22) 十七、电动机振动限值 (22) 十八、电机选型要点 (23) 十九、电动机基本特征 (23)

一、旋转电机的定义是什么? 旋转电机(以下简称电机)是依靠电磁感应原理而运行的旋转电磁机械,用于实现机械能和电能的相互转换。发电机从机械系统吸收机械功率,向电系统输出电功率;电动机从电系统吸收电功率,向机械系统输出机械功率。 电机运行原理基于电磁感应定律和电磁力定律。电机进行能量转换时,应具备能作相对运动的两大部件:建立励磁磁场的部件,感生电动势并流过工作电流的被感应部件。这两个部件中,静止的称为定子,作旋转运动的称为转子。定、转子之间有空气隙,以便转子旋转。 电磁转矩由气隙中励磁磁场与被感应部件中电流所建立的磁场相互作用产生。通过电磁转矩的作用,发电机从机械系统吸收机械功率,电动机向机械系统输出机械功率。建立上述两个磁场的方式不同,形成不同种类的电机。例如两个磁场均由直流电流产生,则形成直流电机;两个磁场分别由不同频率的交流电流产生,则形成异步电机;一个磁场由直流电流产生,另一磁场由交流电流产生,则形成同步电机。 电机的磁场能量基本上储存于气隙中,它使电机把机械系统和电系统联系起来,并实现能量转换,因此,气隙磁场又称为耦合磁场。 当电机绕组流过电流时,将产生一定的磁链,并在其耦合磁场内存储一定的电磁能量。磁链及磁场储能的多少随定、转子电流以及转子位置不同而变化,由此产生电动势和电磁转矩,实现机电能量转换。这种能量转换理论上是可逆的,即同一台电机既可作为发电机也可作为电动机运行。但实际上,一台电机制成后,由于两种运行状态下电机的参数和特性方面的原因,很准满足两种运行状态下的客观要求,因此,同一台电机不经改装和重新设计,不可任意改变其运行状态。 电机内部能量转换过程中,存在电能、机械能、磁场能和热能。热能是由电机内部能量损耗产生的。 对电动机而言: 从电源输入的电能=耦合电磁场内储能增量+电机内部的能量损耗+输出的机械能对发电机而言: 从机械系统输入的机械能=辐合电磁场内储能增量+电机内部的能量损耗+输出的电能

相关文档
最新文档