七年级数学初一下(平行线的判定练习题)
初一数学相交线与平行线28道典型题(含 答案和解析)

初一数学相交线与平行线28道典型题(含答案和解析及考点)1、若直线AB,CD相交于O,∠AOC与∠BOD的和为200°,则∠AOD的度数为.答案:80°.解析:∵∠AOC=∠BOD,∠AOC与∠BOD的和为200°.∴∠AOC=100°.∵∠AOD与∠AOC互补.∴∠AOD=80°.考点:几何初步——相交线与平行线——对顶角、邻补角.2、已知OA⊥OB,∠AOC∶∠AOB=2∶3,则∠BOC= .答案:30°或150°.解析:当OC在∠AOB内部时,∠BOC=30°;当OC在∠AOB外部时,∠BOC=150°.考点:几何初步——相交线与平行线——对顶角、邻补角——垂线.3、若直线a与直线b相交于点A,则直线b上到直线a距离等于2cm的点的个数是().A.0B.1C.2D.3答案:C.解析: 直线b的交点两侧各有一点到直线a的距离等于2cm.考点:几何初步——相交线与平行线——点到直线的距离.4、如图所示,在平面内,两条直线l1、l2相交于点O,对于平面内任意一点M,若p、q分别是点M到直线l1、l2的距离,则称(p,q)为点M的“距离坐标”.根据上述规定,“距离坐标”是(2,1)的点共有个.答案:4.解析:因为两条直线相交有四个角,因此每一个角内就有一个到直线l1、l2的距离分别是2、1,的点,即距离坐标是(2,1)的点,因而共有4个.考点:几何初步——相交线与平行线——点到直线的距离.5、若∠1和∠2是同旁内角,若∠1=50°,则∠2的度数为( ). A.45° B.135° C.45°或135° D. 不能确定 答案:D.解析:若∠1和∠2是同旁内角,若∠1=50°,则∠2的度数为不能确定. 考点:几何初步——相交线与平行线——三线八角.6、平面上n 条直线最少能将平面分为__________部分,最多能将平面分为__________部分. A. 最少能将平面分成n+1部分;最多分为n2+n+22.B. 最少能将平面分成n+2部分;最多分为n2+n−22.C. 最少能将平面分成n+1部分;最多分为n2+n−22. D. 最少能将平面分成n+2部分;最多分为n2−n+22.答案:A.解析:1条直线将平面分成2部分.2条直线最少将平面分成3部分,最多将平面分成4部分,其中4=1+1+2. 3条直线最少将平面分成4部分,最多将平面分成7部分,其中7=1+1+2+3. 4条直线最少将平面分成5部分,最多将平面分成11部分,其中11=1+1+2+3+4. ……n 条直线最少将平面分成n+1部分,最多将平面分成n2+n+22部分,其中n2+n+22=1+1+2+3+…+n .综上,n 条直线最少能将平面分成n+1部分,对多能将平面分成n2+n+22部分.考点:几何初步——相交线与平行线——相交线.7、如图,已知∠1=∠2,要使∠3=∠4,则需( ).A. ∠1=∠2B. ∠2=∠4C. ∠1=∠4D. AB ∥CD答案:D.解析:假设∠3=∠4,即∠BEF=∠CFE.由内错角相等,两直线平行,可得AB∥CD.故已知∠1=∠2,要使∠3=∠4,只要AB∥CD.考点:几何初步——相交线与平行线——平行线公理及推论.8、如图①是长方形纸带,将纸带沿EF折叠成图②,再沿BF折叠成图③.(1)若图①中的∠DEF=20°,则图②中的∠CFE度数是.(2)若图①中的∠DEF=α,则图③中的∠CFE度数是.(用含有α的式子表示)答案:(1)160°.(2)180°-3α.解析:(1)在图①中:∵AD∥BC.∴∠BFE=∠DEF=20°.∴∠CFE=160°.在图②中,根据折叠性质,∠CFE大小不变.∴∠CFE=160°.(2)在图①中,∠CFE=180°-∠BFE=180°-α.在图②中,∠CFB=∠CFE-∠BFE=180°-α.根据折叠性质,图③中∠CFB与图②中∠CFB相等.在图③中,∠CFE=∠CFB-∠BFE=180°-3α.∴图③中的∠CFE度数是180°-3α.考点:几何初步——角——角的计算与证明.相交线与平行线——平行线的性质.几何变换——图形的对称——翻折变换(折叠问题)——轴对称基础——轴对称的性质.9、已知:如图,∠D=110°,∠EFD=70°,∠1=∠2.求证:∠3=∠B.证明:∵∠D=110°,∠EFD=70°,(已知).∴∠D+∠EFD=180°.∴_____∥ _____.().又∵∠1=∠2,(已知).∴_____∥ _____.().∴_____∥ _____.().∴∠3=∠B.().答案:答案见解析.解析:∵∠D=110°,∠EFD=70°,(已知).∴∠D+∠EFD=180°.∴AD∥EF.(同旁内角互补,两直线平行).又∵∠1=∠2,(已知).∴AD∥BC.(内错角相等,两直线平行).∴EF∥BC.(平行于同一直线的两直线平行).∴∠3=∠B.(两直线平行,同位角相等).考点:几何初步——相交线与平行线——平行线的判定——平行线的性质.10、车库的电动门栏杆如图所示,BA垂直于地面AE于A,CD平行于地面AE,则∠ABC+∠BCD的大小是().A.150°B.180°C.270°D.360°答案:C.解析:过B作CD的平行线BF,则CD∥BF∥AE.∴∠DCB+∠CBF=180°,∠ABF=90°.∴∠ABC+∠BCD=∠DCB+∠CBD+∠ABF=180°+90°=270°.考点:几何初步——角——角的计算与证明.相交线与平行线——平行线的性质.11、如图,一条公路修到湖边时,需拐弯绕湖而过;如果第一次拐角∠A是120°,第二次拐角∠B是150°,第三次拐角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,则∠C是.答案:150°.解析:如图,作BE∥AD.∴∠1=∠A=120°.∴∠2=∠ABC=∠1=150°-120°=30°.∵AD∥CF.∴BE∥CF.∴∠C+∠2=180°.∴∠C=180°-30°=150°.考点:几何初步——相交线与平行线——平行线公理及推论——平行线的性质.12、如图所示,若AB∥CD,则角α,β,γ的关系为().A.α+β+γ=360°B.α-β+γ=180°C.α+β+γ=180°D.α+β-γ=180°答案:D.解析:过β角的顶点为E,作EF∥AB,α+β-γ=180°.考点:几何初步——相交线与平行线平行线的判定——平行线的性质——平行有关的几何模型.13、如图AB∥CD∥EF,CG平分∠ACE,∠A=140°,∠E=110°,则∠DCG=().A.13°B.14°C.15°D.16°答案:C.解析:∵EF∥CD,∴∠ECD=180°-∠E=70°.同理∠ACD=40°.∴∠ACE=110°.∵CG平分∠ACE.∴∠ECG=55°.∴∠DCG=∠ECD-∠ECG=70°-55°=15°.考点:几何初步——相交线与平行线——平行线——平行线的性质——平行有关的几何模型.14、如图,AB∥EF∥CD,EG平分∠BEF,∠B+∠BED+∠D=192°,∠B-∠D=24°,求∠GEF的度数.A.15°B.20°C.25°D.30°答案:D.解析:由AB∥EF∥CD,可知∠BED=∠B+∠D.已知∠B+∠BED+∠D=192°.∴2∠B+2∠D=192°,∠B+∠D=96°.又∠B-∠D=24°,于是可得关于∠B、∠D的方程组:{∠B+∠D=96°∠B−∠D=24°.解得∠B=60°.由AB∥EF知∠BEF=∠B=60°.因为EG平分∠BEF,所以∠GEF=12∠BEF=30°.考点:几何初步——相交线与平行线——平行线——平行有关的几何模型.15、把命题“在同一平面内,垂直于同一直线的两直线互相平行”改写成“如果……,那么……”的形式:.答案:“在同一平面内,如果两条直线都垂直于同一直线,那么这两直线互相平行”.解析:略.考点:命题与证明——命题与定理.16、下列命题中,假命题是().A. 如果两条直线都与第三条直线平行,那么这两条直线也互相平行.B. 两条直线被第三条直线所截,同旁内角互补.C. 两直线平行,内错角相等.D. 在同一平面内,过一点有且只有一条直线与已知直线垂直.答案:B.解析:两条直线被第三条直线所截,同旁内角不一定互补,只有两直线平行时,同旁内角互补.考点:命题与证明——命题与定理.17、已知:如图,AE⊥BC,FG⊥BC,∠1=∠2,∠D=∠3+60°,∠CBD=70°.(1)求证:AB∥CD.(2)求∠C的度数.答案:(1)证明见解析.(2)∠C=25°.解析:(1)∵AE⊥BC,FG⊥BC.∴AE∥FG.∴∠2=∠A.∵∠1=∠2.∴∠1=∠A.∴AB∥CD.(2)∵AB∥CD.∴∠C=∠3.∵∠D=∠3+60°,∠CBD=70°,∠C+∠D+∠CBD=180°.∴∠C+∠C+60°+70°=180°.∴∠C=25°.考点:几何初步——相交线与平行线——平行线的判定——平行线的性质.18、已知:如图,在△ABC中,BD⊥AC于点D,E为BC上一点,过E点作EF⊥AC,垂足为F,过点D作DH∥BC交AB于点H.(1)请你补全图形.(2)求证:∠BDH=∠CEF.答案:(1)画图见解析.(2)证明见解析.解析:(1)补全图形.(2)∵BD⊥AC,EF⊥AC.∴BD∥EF.∴∠CEF=∠CBD.∵DH∥BC.∴∠BDH=∠CBD.∴∠BDH=∠CEF.考点:几何初步——相交线与平行线——平行线的判定——平行线的性质.尺规作图——过一点作已知直线的垂线——过一点作已知直线的平行线.19、已知,如图,AB∥CD,∠1=∠B,∠2=∠D.求证:BE⊥DE.答案:证明见解析.解析:过E点作EF∥AB,则∠B=∠3.又∵∠1=∠B.∴∠1=∠3.∵AB∥EF,AD∥CD.∴EF∥CD.∴∠A=∠D.又∵∠2=∠D.∴∠2=∠4.∵∠1+∠2+∠3+∠4=180°.∴∠3+∠4=90°,即∠BED=90°.∴BE⊥ED.考点:几何初步——角——角的计算与证明.相交线与平行线——平行线的判定——平行线的性质.20、如图,已知CD∥EF,∠1+∠2=∠ABC.求证:AB∥GF.答案:证明见解析.解析:延长CD、GF交于点H,∠1=∠H.故∠2+∠H=∠ABC.易得AB∥GF.考点:几何初步——相交线与平行线——平行线的判定——平行线的性质.21、如图,已知点A,E,B在同一条直线上,设∠CED=x,∠C+∠D=y.(1)若AB∥CD,试用含x的式子表示y,并写出x的取值范围.(2)若x=90°,且∠AEC与∠D互余,求证:AB∥CD.答案:(1)y=180°-x,其中x的取值范围是(0<x<180).(2)证明见解析.解析:(1)∵AB∥CD.∴∠AEC=∠C,∠BED=∠D.∵∠C+∠D=y.∴∠AEC+∠BED=y.∵∠CED=x,∠AEC+∠CED+∠BED=180°.∴x+y=180°.∴y=180°-x,其中x的取值范围是(0<x<180).(2)∵x=90°,即∠CED=90°.∴∠AEC+∠BED=90°.∵∠AEC与∠D互余.∴∠AEC+∠D=90°.∴∠BED=∠D.∴AB∥CD.考点:函数——函数基础知识——函数自变量的取值范围.几何初步——角——余角和补角——角的计算与证明.相交线与平行线——平行线的判定——平行线的性质.22、阅读材料:材料1:如图(a)所示,科学实验证明:平面镜反射光线的规律是:射到平面镜上的光线和反射出的光线与平面镜所夹的角相等.即∠1=∠2.材料2:如图(b)所示,已知△ABC,过点A作AD∥BC,则∠DAC=∠C,又∵AD∥BC,∴∠DAC+∠BAC+∠B=180°,∴∠BAC+∠B+∠C=180°.即三角形内角和为180°.根据上述结论,解决下列问题:(1)如图(c)所示,一束光线m射到平面镜a上,被a反射到平面镜b上,又被b镜反射,若b反射出的光线n平行于m,且∠1=50°,则∠2= ,∠3= .(2)在(1)中,若∠1=40°,则∠3= ,若∠1=55°,则∠3= .(3)由(1)(2)请你猜想:当∠3= 时,任何射到平面镜a上的光线m经过平面镜a和b的两次反射后,入射光线m与反射光线n总是平行,请说明理由.答案:(1)1.100°.2.90°.(2)1.90°.2.90°.(3)90°.解析:(1)∵∠1=50°.∴∠4=∠1=50°.∴∠6=180°-50°-50°=80°.∵m∥n.∴∠2+∠6=180°.∴∠2=100°.∴∠5=∠7=40°.∴∠3=180°-50°-40°=90°.故答案为:100°,90°.(2)∵∠1=40°.∴∠4=∠1=40°.∴∠6=180°-40°-40°=100°.∵m∥n.∴∠2+∠6=180°.∴∠2=80°.∴∠5=∠7=50°.∴∠3=180°-50°-40°=90°.∵∠1=55°.∴∠4=∠1=55°.∴∠6=180°-55°-55°=70°.∵m∥n.∴∠2+∠6=180°.∴∠2=110°.∴∠5=∠7=35°.∴∠3=180°-55°-35°=90°.(3)当∠3=90°时,m∥n.理由是:∵∠3=90°.∴∠4+∠5=180°-90°=90°.∵∠4=∠1,∠7=∠5.∴∠1+∠7+∠4+∠5=2×90°=180°.∴∠2+∠6=180°-(∠1+∠4)+180°-(∠5+∠7)=180°.∴m∥n.故答案为:90°.考点:几何初步——相交线与平行线——平行线的判定——平行线的性质.23、如图,直线AC∥BD,连接AB,直线AC,BD及线段AB把平面分成①、②、③、④四个部分,规定:线上各点不属于任何部分.当动点P落在某个部分时,连接PA,PB,构成∠PAC,∠APB,∠PBD三个角.(提示:有公共端点的两条重合的射线所组成的角是0°角)(1)如图1,当动点P落在第①部分时,求证:∠APB=∠PAC+∠PBD.,(2)如图2,当动点P落在第②部分时,∠APB=∠PAC+∠PBD是否成立?(请画出图形并直接回答成立或不成立)(3)如图3,当动点P落在第③部分时,探究∠PAC,∠APB,∠PBD之间的关系,请画出图形并直接写出相应的结论.答案:(1)证明见解析.(2)不成立.(3)证明见解析.解析:(1)过点P作直线AC的平行线,易知∠1=∠PAC,∠2=∠PBD.又∵∠APB=∠1+∠2,∴∠APB=∠PAC+∠PBD.(2)不成立.(3)①当动点P在射线BA的右侧时(如图4).结论是∠PBD =∠PAC+∠APB.②当动点P在射线BA上(如图5).结论是∠PBD =∠PAC+∠APB或∠PAC =∠PBD +∠APB或∠APB=0°,∠PAC=∠PBD.③当动点P在射线BA的左侧时(如图6).结论是∠PAC =∠PBD +∠APB.考点:几何初步——相交线与平行线——平行线的判定——平行线的性质——平行有关的几何模型.24、如图所示,在下列条件中:①∠1=∠2;②∠BAD=∠BCD;③∠3=∠4且∠ABC=∠ADC;④∠BAD+∠ABC=180°;⑤∠ABD=∠ACD;⑥∠ABC+∠BCD=180°.能判定AB∥CD的共有()个.A.2B.3C.4D.5答案:A.解析:由平行的判定知③⑥可以判定AB∥CD.考点:几何初步——相交线与平行线——平行线的判定.25、有下列四个命题:①如果两条直线都与第三条直线平行,那么这两条直线也互相平行.②两条直线被第三条直线所截,同旁内角互补.③在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线也互相垂直.④在同一平面内,过一点有且只有一条直线与已知直线垂直.其中所有正确的命题是().A. ①②B. ①④C. ②③D. ③④答案:B.解析:①④正确;②两条直线被第三条直线所截,同旁内角不一定互补,需要两条直线平行;③在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线互相平行. 考点:几何初步——相交线与平行线——平行线公理及推论——平行线的判定——平行线的性质.26、如图,DB ∥FG ∥EC ,∠ABD=60°,∠ACE=30°,AP 平分∠BAC ,求∠PAG 的度数.A.11°B.12°C.13°D.14°答案:B.解析:由DB ∥FG ∥EC.可得∠BAC=∠BAG+∠CAG=∠DBA+∠ACE=60°+36°=96°.由AP 平分∠BAC 得∠CAP=12∠BAC=12×96°=48°. 由FG ∥EC 得∠GAC=∠ACE=36°.∴∠PAG=48°-36°=12°.考点:几何初步——相交线与平行线——平行线——平行有关的几何模型.27、如图,AB ∥CD ,且∠BAP=60°-α,∠APC=45°+α,∠PCD=30°-α,则α=( ).A.10°B.15°C.20°D.30°答案:B.解析:得∠APC=∠BAP+∠DCP .∴45°+α=60°-α+30°-α.解得:α=15°.考点:几何初步——相交线与平行线——平行线的性质.28、已知,如图,AB∥CD,直线α交AB、CD分别于点E、F,点M在线段EF点上,P是直线CD 上的一个动点,(点P不与F重合).(1)当点P在射线FC上移动时,∠FMP、∠FPM和∠AEF之间的数量关系是:.(2)当点P在射线FD上移动时,∠FMP、∠FPM和∠AEF之间的数量关系是:. 答案:(1)∠FMP+∠FPM=∠AEF.(2)∠FMP+∠FPM+∠AEF=180°.解析:(1)当点P在射线FC上移动时.∵AB∥CD.∴∠AEF+∠CFE=180°.又∵∠FMP+∠FPM+∠CFE=180°.∴∠FMP+∠FPM=∠AEF.(2)当点P在射线FD上移动时.∵AB∥CD.∴∠AEF=∠MFD.又∵∠FMP+∠FPM+∠CFE=180°.∴∠FMP+∠FPM+∠AEF=180°.考点:几何初步——相交线与平行线——平行线的性质.。
人教版七年级下册数学平行线的判断课时练习题(含答案)

初中数学试卷2023年01月02日一、单选题1.将一块直角三角板ABC按如图方式放置,其中∠ABC=30°,A、B两点分别落在直线m、n上,∠1=20°,添加下列哪一个条件可使直线m∠n()A.∠2=20°B.∠2=30°C.∠2=45°D.∠2=50°2.如图,直线a,b被直线c所截,下列条件中,不能判定a∠b的是()A.∠2=∠4B.∠4=∠5C.∠1=∠3D.∠1+∠4=180°3.如图,下列条件能判定AB//CD的是()A.∠1=∠2B.∠BAD=∠BCDC.∠BAD+∠ABC=180∘D.∠ABC=∠ADC且∠3=∠44.如图,在下列给出的条件中,不能判定AB∠DF的是()A.∠1=∠A B.∠A=∠3C.∠1=∠4D.∠A+∠2=180°5.如图,BD平分∠ABC,若∠1=∠2,则()A.AB∠CD B.AD∠BC C.AD=BC D.AB=CD6.如图,给出下列条件:①∠CAD=∠ACB;②∠CAB=∠ACD;③AD//BE且∠D=∠B;其中能推出AB//DC的条件个数是()A.0个B.1个C.2个D.3个7.已知:如图,∠1=110°,∠2=70°,求证:a∠b.下面为嘉琪同学的证明过程:证明:∵∠1=110°,∠3=∠1(①),∴∠3=110°.又∵∠2=70°,∴∠2+∠3=180°∴a∠b(②).其中①②为解题依据,则下列描述正确的是()A.①代表内错角相等B.②代表同位角相等,两直线平行C.①代表对顶角相等D.②代表同旁内角相等,两直线平行8.如图,下列说法不正确的是()A.∵∠1=∠2,∴l3//l4B.∵∠2+∠5=180°,∴l3//l4C.∵∠1=∠3,∴l1//l2D.∵∠1=∠4,∴l1//l29.如图,能推断AB//CD的是()A.∠2=∠4B.∠1=∠5C.∠3=∠BAD D.∠B+∠BCD=180°10.如图,在四边形ABCD中,连接BD,下列判断正确的是()A.若∠1=∠2,则AB//CDB.若∠3=∠4,则AD//BCC.若∠A+∠ABC=180°,则AB//CDD.若∠A=∠C,∠ABC=∠ADC,则AB//CD11.如图,点E在BC的延长线上,下列条件不能判断AB//CD的是()A.∠1=∠2B.∠3=∠4C.∠5=∠B D.∠B+∠BCD=180°12.如图,直线DE分别交射线BA,BG于点D,F,则下列条件中能判定DE∠BC的个数是()①∠ADE=∠GBC;②∠DFB=∠GBC;③∠EDB+∠ABC=180°;④∠GFE=∠GBC.A.1个B.2个C.3个D.4个二、填空题13.如图,用直尺和三角尺作出直线AB、CD,得到AB∠CD的理由是.14.如图,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5,能判定AB∠CD的条件有.15.在数学课上,老师提出如下问题:小菲用两块形状、大小相同的三角尺完成了该题的作图,作法如下:老师说:“小菲的作法正确.”请回答:小菲的作图的依据是.16.如图,不添加辅助线,请添加一个能判定DE//BC的条件:.17.用两个相同的三角板如图所示摆放,直线a∠b,画图依据是:.18.如图,下列条件中:①∠1=∠2;②∠3=∠4;③∠D+∠BCD=180°;④∠B=∠5;⑤∠D=∠5.则一定能判定AD//BC的条件有(填写所有正确的序号).19.如图,已知直线c与a,b均相交,若直线a∠b需要添加条件20.如图,添加一个你认为合适的条件使AD//BC.21.如图,点E在AC的延长线上,对于给出的四个条件:(1)∠3=∠4;(2)∠1=∠2;(3)∠A=∠DCE;(4)∠D+∠ABD=180°.能判断AB∠CD的有个.22.如图,请你添加一个条件,使AB∠CD,这个条件是.三、作图题23.如图,已知∠AOB,点P是OA边上的一点.(1)在OA的右侧作∠APC=∠AOB(用尺规作图法,保留作图痕迹,不写作法);(2)在(1)的条件下,判断直线PC与直线OB的位置关系,并说明理由.四、解答题24.如图,BCE、AFE是直线,AB∠CD,∠1=∠2,∠3=∠4,问AD与BE平行吗?说说你的理由.25.如图所示,已知BE∥FG,∠1=∠2.求证DE∥BC.26.如图直角三角形ABC中,∠B=30∘,CE平分∠ACB,∠EAD=2∠CAF,求证:CE//FD.答案1.D 2.C 3.D 4.A 5.B 6.C 7.C 8.C 9.D 10.D 11.B 12.C13.同位角相等,两直线平行14.①③④ 15.内错角相等,两直线平行16.∠ADE=∠B 17.内错角相等,两直线平行18.①③⑤ 19.∠1=∠4(答案不唯一)20.∠ADF=∠C或∠A=∠ABE或∠A+∠ABC=180°或∠C+∠ADC=180°(答案不唯一,写一个正确的即可)21.3 22.∠CDA=∠DAB23.(1)解: 如图,∠APC就是所要求作的角(2)解: 直线PC与直线OB的位置关系为:PC//OB理由如下:由(1)作图可得:∠APC=∠AOB,∴PC//OB.24.解:AD∠BE,理由是:∵AB∠CD,∴∠1=∠ACD,∵∠3=∠E+∠CAF,∠4=∠ACD+∠CAF,∠3=∠4,∴∠1=∠E=∠ACD,∵∠1=∠2,∴∠2=∠E,∴AD∠BE.25.证明:∵BE∥FG∴∠2=∠CBE(两直线平行,同位角相等)又∵∠1=∠2∴∠1=∠CBE∴DE∥BC(内错角相等,两直线平行)-26.证明:∵△ABC为直角三角形且∠CAB=90°,∠B=30°,∴∠BCA=90°−∠B=90°−30°=60°,∵CE平分∠ACB,∴∠ECA=30°,∵∠EAD=2∠CAF且∠CAB=90∘,∴∠EAD+∠CAF=180°-∠CAB=90°∴2∠CAF+∠CAF=90°∴∠CAF=30°,∴∠ECA=∠CAF,∴∴CE∠FD.。
5.3.1 平行线的性质 人教版七年级数学下册重难点专项练习(含答案)

5.3.1《平行线的性质》重难点题型专项练习考查题型一两直线平行同位角相等的应用典例1.(2022秋·重庆铜梁·七年级校考阶段练习)如图,直线,被直线所截,若,,则的度数为()A.B.C.D.【答案】A【分析】由,根据两直线平行,同位角相等,即可求得的度数,又由邻补角的定义即可求得的度数.【详解】解:如图:∵,,∴,∵,∴.故选:A.【点睛】此题考查了平行线的性质与邻补角的定义.解题的关键是熟练掌握平行线的性质,正确运用数形结合思想.变式1-1.(2022·四川德阳·模拟预测)如图,直线,将三角尺的直角顶点放在直线上,如果,那么的度数为( )A.B.C.D.【答案】A【分析】根据平行线的性质求出,由平角性质可知即可得出结论.【详解】如图:,,,故选:.【点睛】本题考查了平行线的性质,熟练运用平行线的性质推理是解题的关键.变式1-2.(2022·宁夏固原·校考模拟预测)如图,把一个三角尺的直角顶点放在直尺的一边上,如果,那么的大小为()A.B.C.D.【答案】D【分析】根据余角的定义求出,再根据两直线平行,同位角相等可得.【详解】解:∵,∴,∵直尺的两边互相平行,∴.故选:D.【点睛】本题考查了平行线的性质,熟记性质并准确识图是解题的关键.变式1-3.(2022秋·陕西西安·七年级校考期中)如图,将直尺与角的三角尺叠放在一起,若,则的大小是()A.B.C.D.【答案】B【分析】由三角尺可知,由平角可求,再根据平行线的性质可知.【详解】解:如图:由三角尺可知,∵,∴,由平行线的性质可知.故选:B.【点睛】本题考查了平行线的性质及直角三角形的性质,充分运用三角板和直尺的几何特征是解题的关键.考查题型二两直线平行内错角相等的应用典例2.(2021·新疆乌鲁木齐·校考一模)如图,直线,直角三角板的直角顶点C在直线上,一锐角顶点B在直线上,若,则的度数是()A.B.C.D.【答案】B【分析】先根据角的和差求出的度数,然后根据平行线的性质求解即可.【详解】解:如图,,,,又,.故选:B.【点睛】本题考查了平行线的性质,掌握两直线平行,内错角相等是解题的关键.变式2-1.如图,,,则的度数为()A.160B.140C.50D.40【答案】B【分析】利用平行线的性质先求解,再利用邻补角的性质求解即可.【详解】解:∵,,∴,∴,故选B.【点睛】本题考查的是平行线的性质,邻补角的性质,熟知两直线平行,内错角相等是解题的关键.变式2-2.(2022·河南洛阳·统考一模)如图,是的外角,,,,则的度数为( )A.B.C.D.【答案】B【分析】由可得进而即可求;【详解】∵,∴∵∴.故选:B.【点睛】本题主要考查平行线的性质,掌握“两直线平行,内错角相等”定理是解题的关键.变式2-3.如图,直线,被直线所截,,,则的度数为()A.20°B.40°C.50°D.140°【答案】B【分析】根据两直线平行内错角相等可得出答案.【详解】解:∵,,∴,故选:B.【点睛】本题考查了平行线的性质,熟知两直线平行,内错角相等是解本题的关键.考查题型三两直线平行同旁内角互补的应用典例3.(2022春·黑龙江哈尔滨·七年级校考阶段练习)如图,已知直线,,,则的度数为()A.B.C.D.【答案】D【分析】由,可得,由得,进而可求出的度数.【详解】解:如下图所示,∵,∴,∵,∴,∴∵,∴,∴,故选:D.【点睛】本题考查了平行线的性质,解题的关键是根据平行线的性质找出图中角度之间的关系.变式3-1.如图,已知直线,把三角板的直角顶点放在直线b上.若,则的度数为()A.140°B.130°C.120°D.110°【答案】B【分析】根据互余计算出,再根据平行线的性质由得到.【详解】解:∵,∴,∵,∴.∴.故选:B.【点睛】本题考查了平行线的性质,熟记性质并准确识图是解题的关键.变式3-2.(2022秋·福建福州·七年级校考期中)如图,,,则( )A.B.C.D.【答案】C【分析】先利用对顶角相等,再利用两直线平行,同旁内角互补得出答案.【详解】解:,,,.故选:.【点睛】此题主要考查了平行线的性质,对顶角相等,熟练掌握性质是解答题的关键.变式3-3.如图,,平分交于点E,若,则( )A.B.C.D.【答案】A【分析】如图:根据平角的定义及角平分线的性质求得的度数,再根据平行线的性质求解即可.【详解】解:如图:∵,∴,∵平分∴,∵,∴,∴.故选:A.【点睛】本题主要考查了平行线的性质、角平分线的定义等知识点,灵活运用平行线的性质是解答本题的关键.考查题型四根据平行线的性质探究角的关系典例4.(2022秋·重庆铜梁·七年级校考期中)如图,已知,且∠C=110°,则∠1与∠2的数量关系为__________________ .【答案】【分析】过点C作,则,根据平行线的性质可得角之间的关系,从而∠1与∠2的数量关系即可求解.【详解】解:过点C作,如图:则,∴,,∵,∴,∴,∴.故答案为:.【点睛】本题考查了平行线的性质,解题的关键是作出平行线,利用平行线的性质得出角之间的关系.变式4-1.(2022·浙江杭州·杭州绿城育华学校校考模拟预测)如图,已知,,则______ .【答案】##180度【分析】根据两直线平行,同位角相等与两直线平行,同旁内角互补,得到,,等量代换即可求得的值.【详解】解:如图,设与交于点H,∵,,∴,,∴.故答案为:.【点睛】此题考查了平行线的性质.解题的关键是注意两直线平行,同位角相等与两直线平行,同旁内角互补定理的应用,注意数形结合思想的应用.变式4-2.(2022秋·内蒙古乌海·七年级校考期中)如图,AB∥EF,则∠A,∠C,∠E满足的数量关系是______.【答案】【分析】根据两直线平行,同旁内角互补可直接得到答案.【详解】如下图所示,过点C作,∵,∴(两直线平行,同旁内角互补),∵,,∴,∴(两直线平行,同旁内角互补),∴,∴,∴在原图中,故答案为:.【点睛】本题考查平行直线的性质,解题的关键是熟练掌握两直线平行,同旁内角互补.变式4-3.(2022秋·山东青岛·七年级统考期末)如图,直线AB//CD,∠AEM=2∠MEN,∠CFM=2∠MFN,则∠M和∠N的数量关系是________.【答案】∠EMF=∠ENF【分析】利用平行线的性质以及已知条件解决问题即可.【详解】解:过点M作MJ∥AB,过点N作NK∥AB.∵AB∥CD,∴MJ∥AB∥CD,NK∥AB∥CD,∴∠EMJ=∠AEM,∠FMJ=∠CFM,∠ENK=∠AEN,∠FNK=∠CFN,∴∠EMF=∠AEM+∠CFM,∠ENF=∠AEN+∠CFN,∵∠AEM=2∠MEN,∠CFM=2∠MFN,∴∠AEM+∠CFM=(∠AEN+∠CFN),即∠EMF=∠ENF.故答案为:∠EMF=∠ENF.【点睛】本题考查平行线的性质,解题的关键是学会探究规律的方法,属于中考常考题型.考查题型五利用平行线的性质求角的度数典例5.(2022秋·北京西城·七年级期中)如图,若,EF与AB,CD分别相交于点E,F,,平分线与EP相交于点P,,则__________°.【答案】【分析】由题可求出,然后根据两直线平行,同旁内角互补可知,根据角平分线的定义可得到结果.【详解】∵,∴,∵,∴,∵,∴,∵平分,∴.【点睛】本题考查了平行线的性质与角平分线的定义,以及三角形的内角和定理,注意数形结合思想是解题关键.变式5-1.(2022春·黑龙江哈尔滨·七年级哈尔滨市第四十九中学校校考阶段练习)如图,已知,,若,则________.【答案】【分析】先根据“两直线平行,内错角相等”得出,再根据“两直线平行,同旁内角互补”得出答案.【详解】如图所示.∵,∴.∵,∴,∴.故答案为:.【点睛】本题主要考查了平行线的性质,灵活选择平行线的性质是解题的关键.变式5-2.如图,,若,,则∠E=______.【答案】##66度【分析】如图所示,过点E作,则,根据两直线平行内错角相等分别求出,则.【详解】解:如图所示,过点E作,∵,∴,∴,∴,故答案为:.【点睛】本题主要考查了平行线的性质,正确作出辅助线求出是解题的关键.变式5-3.将一块长方形纸折成如图的形状,若已知,则____.【答案】【分析】根据平行线的性质以及折叠的性质,即可得到的度数.【详解】解:如图所示:∵,∴,∵由折叠可知,∴,故答案为:.【点睛】本题主要考查了平行线的性质和折叠的性质,根据题意正确作出辅助线是解答本题的关键.考查题型六平行线的判定与性质的综合应用典例6.(2022秋·陕西渭南·七年级统考期中)如图,已知点B、C在线段的异侧,连接,点E、F分别是线段上的点,连接,分别与交于点G,H,且,.(1)求证:;(2)若,求证:;(3)在(2)的条件下,若,求的度数.【答案】(1)证明见解析(2)证明见解析(3)【分析】(1)只需要证明即可证明;(2)先证明得到则,再由即可证明;(3)根据平行线的性质得到,,再结合已知条件求出的度数即可得到答案.【详解】(1)证明:∵,,,∴,∴;(2)证明:∵,∴,∴,∴,又∵,∴;(3)解:由(2)得,∴,,又∵,∴,∴,∴.【点睛】本题主要考查了平行线的性质与判定,对顶角相等,熟知平行线的性质与判定条件是解题的关键.变式6-1.(2022秋·广东东莞·七年级统考期中)如图,点,在线段的异侧,点,分别是线段,上的点,已知,.(1)求证:;(2)若,求证:;(3)在(2)的条件下,若,求的度数.【答案】(1)见解析(2)见解析(3)【分析】(1)已知,所以,又因为,可以得出即可判定;(2)已知,,可以得出,即可得出;(3)由(1)(2)可知,,可以得出,;可以得出,可以得出,又因为,即可求出的度数.【详解】(1)证明:,,,,;(2)证明:,,,,;(3),,,,,,,,.【点睛】本题考查了对顶角相等,平行线的性质与判定,掌握平行线的性质与判定是解题的关键.变式6-2.如图,已知.(1)求证:;(2)若平分,交于点,交于点,且,求的度数.【答案】(1)见解析(2)【分析】(1)根据平行线的性质及等量代换得出,即可判定;(2)过点作,根据平行公理得出,根据平行线的性质及角平分线定义得到,根据三角形外角性质求解即可.【详解】(1)证明:∵,∴,∵,∴,∴;(2)解:如图,过点作,∵,∴,∴,∴,∵平分,∴,∴.【点睛】此题考查了平行线的判定与性质,角平分线的定义,熟记平行线的判定与性质是解题的关键.变式6-3.(2022秋·福建福州·七年级校考期中)如图,在中,,.(1)求证:;(2)若,,求的度数.【答案】(1)见解析(2)【分析】(1)由于,可判断,则,由得出判断出;(2)由,得到,由得出,得出的度数.【详解】(1)解:,理由如下:,,,,,;(2)解:,,,,,,.【点睛】本题考查了平行线的判定与性质:内错角相等,两直线平行;两直线平行,同位角相等,同旁内角互补.。
七年级数学下册 5.2平行线及其判定(十大题型)(解析版 )

七级下册数学《第五章相交线与平行线》5.2平行线及其判定平行线及其表示方法★1、平行线定义:在同一个平面内,不相交的两条直线叫做平行线.记作:AB∥CD;记作:a∥b;读作:直线AB平行于直线CD.读作:直线a平行于直线b.【注意】1、在同一平面内,不重合的两条直线只有两种位置关系:相交和平行.(重合的直线视为一条直线)2、.线段或射线平行是指它们所在的直线平行.平行线的画法◆过直线外一点画已知直线的平行线的方法:一“落”把三角尺一边落在已知直线上;二“靠”把直尺紧靠三角尺的另一边;三“移”沿直尺移动三角尺,使三角尺与已知直线重合的边过已知点;四“画”沿三角尺过已知点的边画直线.【注意】1.经过直线上一点不能作已知直线的平行线.2.画线段或射线的平行线是指画它们所在直线的平行线.3.借助三角尺画平行线时,必须保持紧靠,否则画出的直线不平行.平行公理及其推论★1、平行公理:经过直线外一点,有且只有一条直线与这条直线平行.★2、平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.也就是说:如图,如果b∥a,c∥a,那么b∥c.几何语言:∵b∥a,c∥a,∴b∥c.【注意】1、平行公理的推论中,三条直线可以不在同一个平面内.2、平行公理中强调“直线外一点”,因为若点在直线上,不可能有平行线;“有且只有”强调这样的直线是存在的,也是唯一的.平行线的判定方法★1、平行线的判定:判定方法1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单说成:同位角相等,两直线平行.几何语言表示:∵∠2=∠3(已知),∴a∥b(同位角相等,两直线平行).判定方法2:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单说成:内错角相等,两直线平行.几何语言表示:∵∠2=∠4(已知),∴a∥b.(内错角相等,两直线平行).判定方法3:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简单说成:同旁内角互补,两直线平行.几何语言表示:∵∠1+∠2=180°(已知),∴a∥b(同旁内角互补,两直线平行).★2、在同一平面内,垂直于同一条直线的两直线垂直.几何语言表示:直线a,b,c在同一平面内,∵a⊥c,b⊥c,∴a∥b.【注意】三条直线在“同一平面内”是前提,没有这个条件结论不一定成立.★3、判定两直线平行的方法(1)平行线的定义;(2)平行公理的推论(如果两条直线都与第三条直线平行,那么这两条直线也互相平行);(3利用同位角相等说明两直线平行;(4)利用内错角相等说明两直线平行;(5)利用同旁内角互补说明两直线平行;(6)同一平面内,垂直于同一直线的两直线平行.【例题1】(2023秋•埇桥区期中)在同一平面内,两条直线的位置关系可能是()A.相交或垂直B.垂直或平行C.平行或相交D.相交或垂直或平行【分析】根据两条直线有一个交点的直线是相交线,没有交点的直线是平行线,可得答案.【解答】解:在同一平面内,两条直线有一个交点,两条直线相交;在同一平面内,两条直线没有交点,两条直线平行,故C正确;故选:C.【点评】本题考查了平行线,两条直线有一个交点的直线是相交线,没有交点的直线是平行线.解题技巧提炼解题的关键是准确把握平行线的概念,牢记平行线的三个条件:①在同一平面内;②不相交;③都是直线,通过与定义进行对比来进行判断.【变式1-1】如图所示,能相交的是,平行的是.(填序号)【分析】根据平行线、相交线的定义,逐项进行判断,即可正确得出结果.【解答】解:①中一条直线,一条射线,不可相交,也不会平行;②中一条直线,一条线段,不可相交,也不会平行;③中一条直线,一条线段,可相交;④中都是线段,不可延长,不可相交,也不平行,⑤中都是直线,延长后不相交,是平行.故答案为:③,⑤.【点评】本题考查平行线和相交线,解题的关键是掌握直线可以沿两个方向延伸,射线可以沿一个方向延伸,线段不能延伸.【变式1-2】下列说法正确的是()A.同一平面内,如果两条直线不平行,那么它们互相垂直B.同一平面内,如果两条直线不相交,那么它们互相垂直C.同一平面内,如果两条直线不相交,那么它们互相平行D.同一平面内,如果两条直线不垂直,那么它们互相平行【分析】根据平行线的判定及垂直、相交的定义判断求解即可.【解答】解:在同一平面内,如果两条直线不平行,那么这两条直线相交,故A不符合题意;在同一平面内,两条直线不相交,那么这两条直线平行,故B不符合题意;同一平面内,如果两条直线不相交,那么这两条直线平行,故C符合题意;同一平面内,如果两条直线不垂直,它们不一定平行,故D不符合题意;故选:C.【点评】此题考查了平行线的判定、垂直、相交等知识,熟练掌握有关定理、定义是解题的关键.【变式1-3】(2022春•莱芜区校级期末)下列说法中,正确的是()A.两条不相交的直线叫做平行线B.一条直线的平行线有且只有一条C.在同一平面内,若直线a∥b,a∥c,则b∥cD.若两条线段不相交,则它们互相平行【分析】根据平行线的定义、性质、判定方法判断,排除错误答案.【解答】解:A、平行线的定义:在同一平面内,两条不相交的直线叫做平行线.故错误;B、过直线外一点,有且只有一条直线与已知直线平行.一条直线的平行线有无数条,故错误;C、在同一平面内,平行于同一直线的两条直线平行.故正确;D、根据平行线的定义知是错误的.故选:C.【点评】本题考查平行线的定义、性质及平行公理,熟练掌握公理和概念是解决本题的关键.【变式1-4】(2022秋•乌鲁木齐期末)如图,在长方体AB CD-EFGH中,与棱EF异面且与平面EFGH 平行的棱是.【分析】与棱EF异面且与平面EFGH平行的棱是:棱AD和棱BC.【解答】解:与棱EF异面且与平面EFGH平行的棱是:棱AD和棱BC.故答案为:棱AD和棱BC.【点评】本题主要考查了平行线与立体图形,熟练掌握平行线与立体图形的特征进行求解是解决本题的关键.【变式1-5】(2022春•沙河市期末)观察如图所示的长方体,与棱AB平行的棱有几条()A.4B.3C.2D.1【分析】根据长方体即平行线的性质解答.【解答】解:图中与AB平行的棱有:EF、CD、GH.共有3条.故选:B.【点评】本题考查了平行线的定义、长方体的性质.一个长方形的两条对边平行.【变式1-6】在同一平面内,直线l1与l2满足下列关系,写出其对应的位置关系:(1)若l1与l2没有公共点,则l1和l2;(2)若l1与l2只有一个公共点,则l1和l2;(3)若l1与l2有两个公共点,则l1和l2.【分析】(1)结合平行线的定义进行解答即可;(2)结合相交的定义进行解答即可;(3)结合重合的定义进行解答即可.【解答】解:(1)由于l1和l2没有公共点,所以l1和l2平行;(2)由于l1和l2有且只有一个公共点,所以l1和l2相交;(3)由于l1和l2有两个公共点,所以l1和l2重合;故答案为:(1)平行;(2)相交;(3)重合.【点评】本题侧重考查两直线的位置关系,掌握平行定义是解题关键.【变式1-7】(2022春•赵县月考)在同一平面内,直线a,b相交于P,若a∥c,则b与c的位置关系是.【分析】根据同一平面内,一条直线与两条平行线中的一条相交,则必与另一条直线也相交.解答即可.【解答】解:因为a∥c,直线a,b相交,所以直线b与c也有交点;故答案为:相交.【点评】本题主要考查了平行线和相交线,同一平面内,一条直线与两条平行线中的一条相交,则必与另一条直线也相交.【例题2】(2022春•梁山县期中)若a、b、c是同一平面内三条不重合的直线,则它们的交点可以有()A.1个或2个或3个B.0个或1个或2个或3个C.1个或2个D.以上都不对【分析】根据平行线的定义,相交线的定义,可得答案.【解答】解:当三条直线互相平行,交点是个0;当两条直线平行,与第三条直线相交,交点是2个;当三条直线两两相交交于同一点,交点个数是1个;当三条直线两两相交且不交于同一点,交点个数是3个;故选:B.【点评】本题考查了平行线,分类讨论是解题关键.解题技巧提炼用分类讨论的思想根据平面内两条直线的位置关系去讨论求解.【变式2-1】在同一平面内,两条不重合直线的位置关系可能是()A.垂直或平行B.垂直或相交C.平行或相交D.平行、垂直或相交【分析】同一平面内,直线的位置关系通常有两种:平行或相交;垂直不属于直线的位置关系,它是特殊的相交.【解答】解:平面内的直线有平行或相交两种位置关系.故选:C.【点评】本题主要考查了在同一平面内的两条直线的位置关系.【变式2-2】在同一平面内有三条直线,如果使其中有且只有两条直线平行,那么这三条直线有且只有个交点.【分析】根据同一平面内直线的位置关系得到第三条直线与另两平行直线相交,再根据直线平行和直线相交的定义即可得到交点的个数.【解答】解:∵在同一平面内有三条直线,如果其中有两条且只有两条相互平行,∴第三条直线与另两平行直线相交,∴它们共有2个交点.故答案为2.【点评】本题考查了直线平行的定义:没有公共点的两条直线是平行直线.也考查了同一平面内两直线的位置关系有:平行,相交.【变式2-3】平面内四条直线共有三个交点,则这四条直线中最多有条平行线.【分析】根据同一平面内两条直线的位置关系有两种:相交或平行,及一条直线的平行线有无数条,由四条直线相互平行,其交点为0个开始分析,然后依次变为三条直线相互平行、两条直线相互平行即可求解.【解答】解:若四条直线相互平行,则没有交点;若四条直线中有三条直线相互平行,则此时恰好有三个交点;若四条直线中有两条直线相互平行,另两条不平行,则此时有三个交点或五个交点;若四条直线中有两条直线相互平行,另两条也平行,但它们之间相互不平行,则此时有四个交点;若四条直线中没有平行线,则此时的交点是一个或四个或六个.综上可知,平面内四条直线共有三个交点,则这四条直线中最多有三条平行线.故答案是:三.【点评】本题考查了平行线,题目没有明确平面上四条不重合直线的位置关系,需要运用分类讨论思想,从四条直线都是平行线,然后数量上依次递减,直至都不平行,这样可以做到不重不漏,准确找出答案.【变式2-4】平面上不重合的四条直线,可能产生交点的个数为个.【分析】从平行线的角度考虑,先考虑四条直线都平行,再考虑三条、两条直至都不平行,作出草图即可看出.【解答】解:(1)当四条直线平行时,无交点;(2)当三条平行,另一条与这三条不平行时,有三个交点;(3)当两两直线平行时,有4个交点;(4)当有两条直线平行,而另两条不平行时,有5个交点;(5)当四条直线同交于一点时,只有一个交点;(6)当四条直线两两相交,且不过同一点时,有6个交点;(7)当有两条直线平行,而另两条不平行并且交点在平行线上时,有3个交点.故答案为:0,1,3,4,5,6.【点评】本题没有明确平面上四条不重合直线的位置关系,需要运用分类讨论思想,从四条直线都平行线,然后数量上依次递减,直至都不平行,这样可以做到不重不漏,准确找出所有答案;本题对学生要求较高.【例题3】如图,直线a,点B,点C.(1)过点B画直线a的平行线,能画几条?(2)过点C画直线a的平行线,它与过点B的平行线平行吗?【分析】根据平行公理及推论进行解答.【解答】解:(1)如图,过直线a外的一点画直线a的平行线,有且只有一条直线与直线a平行;(2)过点C画直线a的平行线,它与过点B的平行线平行.理由如下:如图,∵b∥a,c∥a,∴c∥b.【点评】本题考查了平行公理及推论.平行公理:经过直线外一点,有且只有一条直线与这条直线平行(平行公理中要准确理解“有且只有”的含义.从作图的角度说,它是“能但只能画出一条”的意思);推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.【变式3-1】如图中完成下列各题.(1)用直尺在网格中完成:①画出直线AB的一条平行线;②经过C点画直线垂直于CD.(2)用符号表示上面①、②中的平行、垂直关系.【分析】(1)根据AB所在直线,利用AB所在直角三角形得出EF,以及MD⊥CD即可;(2)根据图形得出EF,MD⊥CD,标出字母即可.【解答】解:(1)如图所示:(2)EF∥AB,MC⊥CD.【点评】此题考查了基本作图以及直角三角形的性质,利用直角三角形的性质得出平行线以及垂线是解答此题的关键.【变式3-2】如图,已知直线a和直线a外一点A.(1)完成下列画图:过点A画AB⊥a,垂足为点B,画AC∥a;(2)过点A你能画几条直线和a垂直?为什么?过点A你能画几条直线和a平行?为什么?(3)说出直线AC与直线AB的位置关系.【分析】(1)根据要求画出图形即可;(2)过点A有一条直线和直线a垂直,过点A可以画一条直线和a平行.(3)结论:AC⊥AB.【解答】解:(1)直线AB、AC如图所示;(2)过点A有一条直线和直线a垂直,理由:过直线外一点有且只有一条直线和已知直线垂直.过点A可以画一条直线和a平行.理由:过直线外一点有且只有一条直线和已知直线平行.(3)结论:AC⊥AB.【点评】本题考查复杂作图、垂线、平行线的定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.【变式3-3】作图题:(只保留作图痕迹)如图,在方格纸中,有两条线段AB、BC.利用方格纸完成以下操作:(1)过点A作BC的平行线;(2)过点C作AB的平行线,与(1)中的平行线交于点D;(3)过点B作AB的垂线.【分析】(1)A所在的横线就是满足条件的直线;(2)在直线AD上到A得等于BC的点D,则直线CD即为所求;(3)取AE上D右边的点F,过B,F的直线即为所求.【解答】解:如图,(1)A所在的横线就是满足条件的直线,即AE就是所求;(2)在直线AE上,到A距离是5个格长的点就是D,则CD就是所求与AB平行的直线;(3)取AE上D右边的点F,过B,F作直线,就是所求.【点评】本题考查复杂作图、垂线、平行线的定义等知识,解题的关键是灵活运用所学知识解决问题,【变式3-4】(2022秋•内乡县期末)如图所示,在∠AOB内有一点P.(1)过P画l1∥OA;(2)过P画l2∥OB;(3)用量角器量一量l1与l2相交的角与∠O的大小有怎样关系?【分析】用两个三角板,根据同位角相等,两直线平行来画平行线,然后用量角器量一量l1与l2相交的角与∠O的关系为:相等或互补.【解答】解:(1)(2)如图所示,(3)l1与l2夹角有两个:∠1,∠2;∠1=∠O,∠2+∠O=180°,所以l1和l2的夹角与∠O相等或互补.【点评】注意∠2与∠O是互补关系,容易漏掉.【例题4】(2022•寻乌县模拟)下面推理正确的是()A.∵a∥b,b∥c,∴c∥d B.∵a∥c,b∥d,∴c∥dC.∵a∥b,a∥c,∴b∥c D.∵a∥b,c∥d,∴a∥c【分析】根据平行公理的推论“如果两条直线都和第三条直线平行,那么这两条直线平行“进行分析,得出正确答案.【解答】解:A、a、c都和b平行,应该推出的是a∥c,而非c∥d,故错误;B、没有两条直线都和第三条直线平行,推不出平行,故错误;C、b、c都和a平行,可推出是b∥c,故正确;D、a、c与不同的直线平行,无法推出两者也平行.故选:C.【点评】本题考查的重点是平行公理的推论:如果两条直线都和第三条直线平行,那么这两条直线平行.【变式4-1】(2022春•丛台区校级期中)如图,过点A画直线l的平行线,能画()A.两条以上B.2条C.1条D.0条【分析】经过直线外一点,有且只有一条直线与这条直线平行.【解答】解:因为经过直线外一点,有且只有一条直线与这条直线平行.所以如图,过点A画直线l的平行线,能画1条.故选:C.【点评】本题考查了平行公理及推论.平行公理中要准确理解“有且只有”的含义.从作图的角度说,它是“能但只能画出一条”的意思.【变式4-2】(2023春•萨尔图区期中)下面说法正确的个数为()(1)在同一平面内,过直线外一点有一条直线与已知直线平行;(2)过一点有且只有一条直线与已知直线垂直;(3)两角之和为180°,这两个角一定邻补角;(4)同一平面内不平行的两条直线一定相交.A.1个B.2个C.3个D.4个【分析】根据同一平面内,过直线外一点有一条直线和已知直线平行即可判断(1);在同一平面内,过一点有且只有一条直线和已知直线垂直即可判断(2);举出反例即可判断(3);根据在同一平面内,两直线的位置关系是平行或相交,即可判断(4).【解答】解:在同一平面内,过直线外一点有一条直线和已知直线平行,故(1)正确;只有在同一平面内,过一点有且只有一条直线和已知直线垂直,故(2)错误;如图:∠ABC=∠DEF=90°,且∠ABC+∠DEF=180°,但是两角不是邻补角,故(3)错误;同一平面内不平行的两条直线一定相交正确,因为不特别指出时,一般认为,两条直线重合就是同一条直线,所以所提出的命题是正确的,故(4)正确.即正确的个数是2个.故选:B.【点评】本题考查了平行公理和推论,邻补角,垂线,平行线等知识点,此题比较典型,但是一道比较容易出错的题目.【变式4-3】(2023春•泸县校级期中)下列说法正确的是()A.经过一点有一条直线与已知直线平行B.经过一点有无数条直线与已知直线平行C.经过一点有且只有一条直线与已知直线平行D.经过直线外一点有且只有一条直线与已知直线平行【分析】平行线公理:经过直线外一点有且只有一条直线与已知直线平行.【解答】解:根据平行线公理:经过直线外一点有且只有一条直线与已知直线平行,可判断只有D选项正确.【点评】本题考查了平行公理,要熟练掌握.【变式4-4】(2023春•新民市期中)已知a∥b,c∥d,若由此得出b∥d,则直线a和c应满足的位置关系是()A.在同一个平面内B.不相交C.平行或重合D.不在同一个平面内【分析】根据平行推论:平行于同一条直线的两条直线互相平行,可得答案.【解答】解:当a∥c时,a∥b,c∥d,得b∥d;当a、c重合时,a∥b,c∥d,得b∥d,故C正确;故选:C.【点评】本题考查了平行公理及推论,利用了平行推论:平行于同一条直线的两条直线互相平行.【变式4-5】(2022春•和平区校级月考)下列语句正确的有()个①任意两条直线的位置关系不是相交就是平行②过一点有且只有一条直线和已知直线平行③过两条直线a,b外一点P,画直线c,使c∥a,且c∥b④若直线a∥b,b∥c,则c∥a.A.4B.3C.2D.1【分析】根据同一平面内,任意两条直线的位置关系是相交、平行;过直线外一点有且只有一条直线和已知直线平行;如果两条直线都与第三条直线平行,那么这两条直线也互相平行进行分析即可.【解答】解:①任意两条直线的位置关系不是相交就是平行,说法错误,应为根据同一平面内,任意两条直线的位置关系不是相交就是平行;②过一点有且只有一条直线和已知直线平行,说法错误,应为过直线外一点有且只有一条直线和已知直线平行;③过两条直线a,b外一点P,画直线c,使c∥a,且c∥b,说法错误;④若直线a∥b,b∥c,则c∥a,说法正确;【点评】此题主要考查了平行线,关键是掌握平行公理:过直线外一点有且只有一条直线和已知直线平行;推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.【变式4-6】(2022春•大荔县期末)如图,已知OM∥a,ON∥a,所以点O、M、N三点共线的理由是.【分析】利用平行公理:经过直线外一点,有且只有一条直线与这条直线平行,进而得出答案.【解答】解:已知OM∥a,ON∥a,所以点O、M、N三点共线的理由:经过直线外一点,有且只有一条直线与这条直线平行.故答案为:经过直线外一点,有且只有一条直线与这条直线平行.【点评】此题主要考查了平行公理,正确掌握平行公理是解题关键.【变式4-7】(2022春•海阳市期末)若P,Q是直线AB外不重合的两点,则下列说法不正确的是()A.直线PQ可能与直线AB垂直B.直线PQ可能与直线AB平行C.过点P的直线一定与直线AB相交D.过点Q只能画出一条直线与直线AB平行【分析】根据过直线外一点有且只有一条直线与已知直线平行以及两直线的位置关系即可回答.【解答】解:PQ与直线AB可能平行,也可能垂直,过直线外一点有且只有一条直线与已知直线平行,故A、B、D均正确,故C错误;故选:C.【点评】本题考查了平行线、相交线、垂线的性质,掌握相关定义和性质是解题的关键.【变式4-8】如图所示,将一张长方形纸对折三次,则产生的折痕与折痕间的位置关系是()A.平行B.垂直C.平行或垂直D.无法确定【分析】根据平行公理和垂直的定义解答.【解答】解:∵长方形对边平行,∴根据平行公理,前两次折痕互相平行,∵第三次折叠,是把平角折成两个相等的角,∴是90°,与前两次折痕垂直.∴折痕与折痕之间平行或垂直.故选:C.【点评】本题利用平行公理和垂直定义求解,需要熟练掌握.【例题5】(2022春•昭阳区校级月考)如图,把三角尺的直角顶点放在直线b上.若∠1=50°,则当∠2=时,a∥b.【分析】由直角三角板的性质可知∠3=180°﹣∠1﹣90°=40°,当∠2=40°时,∠2=∠3,得出a∥b即可.【解答】解:当∠2=40°时,a∥b;理由如下:如图所示:∵∠1=50°,∴∠3=180°﹣90°﹣50°=40°,当∠2=40°时,∠2=∠3,∴a∥b.故答案为:40°.【点评】本题考查了平行线的判定方法、平角的定义;熟记同位角相等,两直线平行是解决问题的关键.【变式5-1】(2022春•洞头区期中)如图,在下列给出的条件中,能判定DF∥BC的是()A.∠B=∠3B.∠1=∠4C.∠1=∠B D.∠B+∠2=180°【分析】根据平行线的判定定理求解即可.【解答】解:∵∠B=∠3,∴AB∥EF,故A不符合题意;∵∠1=∠4,∴AB∥EF,故B不符合题意;∵∠1=∠B,∴DF∥BC,故C符合题意;∵∠B+∠2=180°,∴AB∥EF,故D不符合题意;故选:C.【点评】此题考查了平行线的判定,熟记平行线的判定定理是解题的关键.【变式5-2】(2023秋•淮阳区校级期末)如图,木条a,b,c在同一平面内,经测量∠1=115°,要使木条a∥b,则∠2的度数应为()A.65°B.75°C.115°D.165°【分析】根据邻补角互补和平行线的判定定理求解即可.【解答】解:∠2的度数应为65°.证明:如图,∵∠1=115°,∴∠3=180°﹣115°=65°,∵∠2=65°,∴∠2=∠3,∴a∥b.故选:A.【点评】本题考查邻补角互补,平行线的判定.熟练掌握平行线的判定定理是解题关键.【变式5-3】(2023秋•泾阳县期末)如图,直线AB、CD分别与EF相交于点G、H,已知∠1=70°,∠2=70°,试说明:AB∥CD.【分析】根据对顶角相等得出∠1=∠AGH,进而根据∠2=∠AGH,即可得证.【解答】解:∵∠1=∠AGH,∠1=∠2=70°,∴∠2=∠AGH,∴AB∥CD.【点评】本题考查了对顶角相等,同位角相等两直线平行,熟练掌握平行线的判定定理是解题的关键.【变式5-4】(2023秋•泰和县期末)如图,CE平分∠ACD,若∠1=30°,∠2=60°,求证:AB∥CD.【分析】根据平行线的判定,依据角平分线的定义即可解决问题.【解答】证明:∵CE平分∠ACD,∠1=30°,∴∠ACD=2∠1=60°(角平分线定义),∵∠2=60°,(已知),∴∠2=∠ACD(等量代换),∴AB∥CD(同位角相等两直线平行).【点评】本题主要考查平行线的判定,解题的关键是熟练掌握基本知识,属于中考常考题型.【变式5-5】(2023春•樟树市期中)将一副三角板拼成如图所示的图形,过点C作CF平分∠DCE交DE于点F.求证:CF∥AB.【分析】根据CF平分∠DCE以及∠DCE=90°即可得出∠FCE=45°,再根据三角形ABC为等腰直角三角形,即可得出∠ABC=∠FCE=45°,利用“同位角相等,两直线平行”即可证出结论.【解答】证明:∵CF平分∠DCE,∠DCE=90°,∴∠FCE=12∠DCE=45°.∵△ABC为等腰直角三角形,∴∠ABC=45°,∴∠ABC=∠FCE,∴CF∥AB.【点评】本题考查了平行线的判定,解题的关键是找出∠ABC=∠FCE=45°.本题属于基础题,难度不大,解决该题型题目时,找出相等(或互补)的角的关键.【变式5-6】(2023秋•靖边县期末)如图,AF与BD相交于点C,∠B=∠ACB,且CD平分∠ECF.试说明:AB∥CE.【分析】根据角平分线的定义结合对顶角得到∠ECD=∠ACB,则可证明∠B=∠ECD,根据平行线的判定即可证明AB∥CE.【解答】证明:因为CD平分∠ECF,所以∠ECD=∠FCD(角平分线的定义).因为∠ACB=∠FCD(对顶角相等),所以∠ECD=∠ACB(等量代换).因为∠B=∠ACB,。
浙教版七年级数学下册3平行线的判定同步练习

浙教版七年级下 1.3平行线的判定同步练习一.选择题1.(2021秋•文山市期末)下列图形中,由∠1=∠2能得到AB∥CD的是()A.B. C.D.2.(2020秋•盐田区期末)如图,点E在射线AB上,要AD∥BC,只需()A.∠A=∠CBE B.∠A=∠C C.∠C=∠CBE D.∠A+∠D=180°3.(2021秋•于洪区期末)如图,直线a,b被直线c所截,下列条件不能判定直线a与b平行的是()A.∠1=∠3 B.∠2+∠3=180°C.∠1=∠4 D.∠1+∠4=180°4.(2021秋•肇源县期末)如图,下列能判定AB∥CD的条件有()个.(1)∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5.A.1 B.2 C.3 D.45.(2020春•岳西县期末)有下列说法:①对顶角相等;②内错角相等;③平面内过一点有且只有一条直线垂直于已知直线;④平面内过一点有且只有一条直线平行于已知直线,其中正确的结论有()个.A.1 B.2 C.3 D.46.(2021春•柳南区校级期末)如图,下面哪个条件不能判断AC∥EF的是()A.∠1=∠2 B.∠4=∠C C.∠1+∠3=180°D.∠3+∠C=180°7.(2021春•孟村县期末)木工师傅用图中的角尺画平行线,他依据的数学道理是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.同旁内角互补,两直线平行D.以上结论都不正确8.(2021•香坊区校级开学)如图,下列条件中能判定AB∥CD的是()A.∠AEC=∠BFD B.∠CEF=∠BFE C.∠AEF+∠CFE=180°D.∠C=∠BFD 9.(2021春•高州市月考)如图所示,已知直线c与a,b分别交于点A、B且∠1=120°,当∠2=()时,直线a∥b.A.60°B.120°C.30°D.150°10.(2021春•瑶海区期末)下列说法中,错误的是()A.平面内,过一点有且只有一条直线垂直于已知直线B.在连接直线外一点与直线上各点的线段中,垂线最短C.经过直线外一点,有且只有一条直线平行于这条直线D.同位角相等,两直线平行二.填空题11.(2021•桂林)如图,直线a,b被直线c所截,当∠1 ∠2时,a∥b.(用“>”,“<”或“=”填空)12.(2021春•思明区校级月考)结合图(不能自己标角),用符号语言表达“同旁内角互补,两直线平行”的推理形式:∵,∴.13.(2021春•兴宾区期末)如图,将两个含30°角的直角三角板的最长边靠在一起滑动,可知直角边AB∥CD,依据是.14.(2021秋•杜尔伯特县期末)如图,不添加辅助线,请写出一个能判定AD∥BC的条件.15.(2021春•呼和浩特期末)如图,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5.能判定AB∥CD的条件为.16.(2020春•夏邑县期末)将一块三角板ABC(∠BAC=90°,∠ABC=30°)按如图方式放置,使A,B两点分别落在直线m,n上.对于给出的四个条件:①∠1=25.5°,∠2=55°30';②∠2=2∠1;③∠1+∠2=90°;④∠ACB=∠1+∠2;⑤∠ABC=∠2﹣∠1.能判断直线m∥n的有.(填序号)三.解答题17.(2021秋•杜尔伯特县期末)完成下面的证明:已知:如图,∠1=30°,∠B=60°,AB⊥AC.求证:AD∥BC.证明:∵AB⊥AC(已知),∴∠=90°(),∵∠1=30°,∠B=60°(已知),∴∠1+∠BAC+∠B=(),即∠+∠B=180°,∴AD∥BC().18.(2021春•普陀区校级月考)如图,点G在CD上,已知∠BAG+∠AGD=180°,EA平分∠BAG,FG 平分∠AGC,请说明AE∥GF的理由.解:因为∠BAG+∠AGD=180°(),∠AGC+∠AGD=180°(),所以∠BAG=∠AGC().因为EA平分∠BAG,所以∠1=().因为FG平分∠AGC,所以∠2=,得∠1=∠2(),所以AE∥GF().19.(2021春•平谷区校级期中)已知:如图,∠1=∠2,∠A=∠2.求证:DF∥AC.20.(2021春•东台市月考)如图,∠CDA=∠CBA,DE平分∠CDA,BF平分∠CBA,且∠1=∠2,试说明DE∥FB.21.(2021春•甘州区校级月考)已知:∠A=∠C=120°,∠AEF=∠CEF=60°,求证:AB∥CD.答案与解析一.选择题1.(2021秋•文山市期末)下列图形中,由∠1=∠2能得到AB∥CD的是()A.B. C.D.【解析】解:A、∠1=∠2,AB∥CD,符合题意;B、∠1+∠2=180°,AB∥CD,不符合题意;C、∠1=∠2,得不出AB∥CD,不符合题意;D、∠1=∠2,得不出AB∥CD,不符合题意;故选:A.2.(2020秋•盐田区期末)如图,点E在射线AB上,要AD∥BC,只需()A.∠A=∠CBE B.∠A=∠C C.∠C=∠CBE D.∠A+∠D=180°【解析】解:要AD∥BC,只需∠A=∠CBE,故选:A.3.(2021秋•于洪区期末)如图,直线a,b被直线c所截,下列条件不能判定直线a与b平行的是()A.∠1=∠3 B.∠2+∠3=180°C.∠1=∠4 D.∠1+∠4=180°【解析】解:A、当∠1=∠3时,有a∥b,故A不符合题意;B、当∠2+∠3=180°时,有a∥b,故B不符合题意;C、当∠1=∠4时,∵∠3=∠4,∴∠1=∠3,∴a∥b,故C不符合题意;D、当∠1+∠4=180°时,不能判定a∥b,故D符合题意.4.(2021秋•肇源县期末)如图,下列能判定AB∥CD的条件有()个.(1)∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5.A.1 B.2 C.3 D.4【解析】解:(1)利用同旁内角互补,判定两直线平行,故(1)正确;(2)利用内错角相等,判定两直线平行,∵∠1=∠2,∴AD∥BC,而不能判定AB∥CD,故(2)错误;(3)利用内错角相等,判定两直线平行,故(3)正确;(4)利用同位角相等,判定两直线平行,故(4)正确.故选:C.5.(2020春•岳西县期末)有下列说法:①对顶角相等;②内错角相等;③平面内过一点有且只有一条直线垂直于已知直线;④平面内过一点有且只有一条直线平行于已知直线,其中正确的结论有()个.A.1 B.2 C.3 D.4【解析】解:①对顶角相等是正确的;②内错角相等不一定相等,原来的说法错误;③平面内过一点有且只有一条直线垂直于已知直线是正确的;④平面内过直线外一点有且只有一条直线平行于已知直线,原来的说法错误.故选:B.6.(2021春•柳南区校级期末)如图,下面哪个条件不能判断AC∥EF的是()A.∠1=∠2 B.∠4=∠C C.∠1+∠3=180°D.∠3+∠C=180°【解析】解:当∠1=∠2时,AC∥EF,故选项A不符合题意;当∠4=∠C时,AC∥EF,故选项B不符合题意;当∠1+∠3=180°时,BC∥DE,不能判断AC∥EF,故选项C符合题意;当∠3+∠C=180°时,AC∥EF,故选项D不符合题意;7.(2021春•孟村县期末)木工师傅用图中的角尺画平行线,他依据的数学道理是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.同旁内角互补,两直线平行D.以上结论都不正确【解析】解:木工师傅用图中的角尺画平行线,他依据的数学道理是同位角相等,两直线平行, 故选:A.8.(2021•香坊区校级开学)如图,下列条件中能判定AB∥CD的是()A.∠AEC=∠BFD B.∠CEF=∠BFE C.∠AEF+∠CFE=180°D.∠C=∠BFD 【解析】解:A.由∠AEC=∠BFD,不能判定AB∥CD,故本选项不符合题意;B.由∠CEF=∠BFE,可判定CE∥BF,不能判定AB∥CD,故本选项不符合题意;C.由∠AEF+∠CFE=180°,根据“同旁内角互补,两直线平行”能判定AB∥CD,故本选项符合题意;D.由∠C=∠BFD,可判定CE∥BF,不能判定AB∥CD,故本选项不符合题意;故选:C.9.(2021春•高州市月考)如图所示,已知直线c与a,b分别交于点A、B且∠1=120°,当∠2=()时,直线a∥b.A.60°B.120°C.30°D.150°【解析】解:∵∠1=120°,∠1与∠3是对顶角,∴∠1=∠3=120°,∵∠2=∠3=120°,故选:B.10.(2021春•瑶海区期末)下列说法中,错误的是()A.平面内,过一点有且只有一条直线垂直于已知直线B.在连接直线外一点与直线上各点的线段中,垂线最短C.经过直线外一点,有且只有一条直线平行于这条直线D.同位角相等,两直线平行【解析】解:A.在同一平面内,过一点有且只有一条直线垂直于已知直线,该选项说法正确,故该选项不符合题意;B.在连接直线外一点与直线上各点的线段中,垂线段最短,该选项说法错误,故该选项符合题意;C.经过直线外一点,有且只有一条直线平行于这条直线,该选项说法正确,故该选项不符合题意;D.同位角相等,两直线平行,该选项说法正确,故该选项不符合题意;故选:B.二.填空题11.(2021•桂林)如图,直线a,b被直线c所截,当∠1 =∠2时,a∥b.(用“>”,“<”或“=”填空)【解析】解:要使a∥b,只需∠1=∠2.即当∠1=∠2时,a∥b(同位角相等,两直线平行).故答案为=.12.(2021春•思明区校级月考)结合图(不能自己标角),用符号语言表达“同旁内角互补,两直线平行”的推理形式:∵∠2+∠4=180°,∴a∥b.【解析】解:∵∠2+∠4=180°,∴a∥b(同旁内角互补,两直线平行).故答案为:∠2+∠4=180°;a∥b.13.(2021春•兴宾区期末)如图,将两个含30°角的直角三角板的最长边靠在一起滑动,可知直角边AB∥CD,依据是内错角相等,两直线平行.【解析】解:如图所示:∵∠1=∠2=30°,∴AB∥CD(内错角相等,两直线平行),故答案为:内错角相等,两直线平行.14.(2021秋•杜尔伯特县期末)如图,不添加辅助线,请写出一个能判定AD∥BC的条件∠EAD=∠B或∠DAC=∠C或∠DAB+∠B=180°.【解析】解:∵AD和BC被BE所截,∴当∠EAD=∠B时,AD∥BC,或当∠DAC=∠C时,AD∥BC,或当∠DAB+∠B=180°时,AD∥BC,故答案为:∠EAD=∠B或∠DAC=∠C或∠DAB+∠B=180°.15.(2021春•呼和浩特期末)如图,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5.能判定AB∥CD的条件为①③④.【解析】解:①∠B+∠BCD=180°,同旁内角互补,两直线平行,则能判定AB∥CD;②∠1=∠2,但∠1,∠2不是截AB、CD所得的内错角,所不能判定AB∥CD;③∠3=∠4,内错角相等,两直线平行,则能判定AB∥CD;④∠B=∠5,同位角相等,两直线平行,则能判定AB∥CD.故能判定AB∥CD的条件为①③④.故答案为:①③④.16.(2020春•夏邑县期末)将一块三角板ABC(∠BAC=90°,∠ABC=30°)按如图方式放置,使A,B两点分别落在直线m,n上.对于给出的四个条件:①∠1=25.5°,∠2=55°30';②∠2=2∠1;③∠1+∠2=90°;④∠ACB=∠1+∠2;⑤∠ABC=∠2﹣∠1.能判断直线m∥n的有①⑤.(填序号)【解析】解:①∵∠1=25.5°,∠ABC=30°,∴∠2=∠1+∠ABC=55.5°=55°30',所以,m∥n;②没有指明∠1的度数,当∠1≠30°,∠2≠∠1+30°,不能判断直线m∥n,故∠2=2∠1,不能判断直线m∥n;③∠1+∠2=90°,不能判断直线m∥n;④∠ACB=∠1+∠2,不能判断直线m∥n;⑤∠ABC=∠2﹣∠1,判断直线m∥n;故答案为:①⑤三.解答题17.(2021秋•杜尔伯特县期末)完成下面的证明:已知:如图,∠1=30°,∠B=60°,AB⊥AC.求证:AD∥BC.证明:∵AB⊥AC(已知),∴∠BAC=90°(垂直的定义),∵∠1=30°,∠B=60°(已知),∴∠1+∠BAC+∠B=180°(等量关系),即∠BAD+∠B=180°,∴AD∥BC(同旁内角互补,两直线平行).【解析】解:证明:∵AB⊥AC(已知),∴∠BAC=90°(垂直的定义),∵∠1=30°,∠B=60°(已知),∴∠1+∠BAC+∠B=180°(等量关系),即∠BAD+∠B=180°,∴AD∥BC(同旁内角互补,两直线平行),故答案为:BAC;垂直的定义;180°;等量关系;BAD;同旁内角互补,两直线平行.18.(2021春•普陀区校级月考)如图,点G在CD上,已知∠BAG+∠AGD=180°,EA平分∠BAG,FG 平分∠AGC,请说明AE∥GF的理由.解:因为∠BAG+∠AGD=180°(已知),∠AGC+∠AGD=180°(邻补角的定义),所以∠BAG=∠AGC(同角的补角相等).因为EA平分∠BAG,所以∠1=∠BAG(角平分线的定义).因为FG平分∠AGC,所以∠2=∠AGC,得∠1=∠2(等量代换),所以AE∥GF(内错角相等,两直线平行).【解析】解:因为∠BAG+∠AGD=180°(已知),∠AGC+∠AGD=180°(邻补角的定义),所以∠BAG=∠AGC(同角的补角相等),因为EA平分∠BAG,所以∠1=∠BAG(角平分线的定义),因为FG平分∠AGC,所以∠2=∠AGC,得∠1=∠2(等量代换),所以AE∥GF(内错角相等,两直线平行).故答案为:已知;邻补角的定义;同角的补角相等;∠BAG;角平分线的定义;∠AGC;等量代换;内错角相等,两直线平行.19.(2021春•平谷区校级期中)已知:如图,∠1=∠2,∠A=∠2.求证:DF∥AC.【解析】证明:∵∠1=∠2,∠A=∠2,∴∠1=∠A,∴DF∥AC.20.(2021春•东台市月考)如图,∠CDA=∠CBA,DE平分∠CDA,BF平分∠CBA,且∠1=∠2,试说明DE∥FB.【解析】解:DE∥BF,理由是:∵∠CDA=∠CBA,DE平分∠CDA,BF平分∠CBA,∴∠1=∠ABF,∵∠1=∠2,∴∠2=∠ABF,∴DE∥BF.21.(2021春•甘州区校级月考)已知:∠A=∠C=120°,∠AEF=∠CEF=60°,求证:AB∥CD.【解析】证明:∵∠A=∠C=120°,∠AEF=∠CEF=60°,∴∠A+∠AEF=180°,∠C+∠CEF=180°,∴AB∥EF,CD∥EF,∴AB∥CD.。
人教版七年级数学下册 5.2 平行线的判定 同步练习题精选 附答案

第五章相交线与平行线5.2平行线及其判定5.2.1平行线1.在同一平面内的两条不重合的直线的位置关系()A.有两种:垂直或相交B.有三种:平行,垂直或相交C.有两种:平行或相交D.有两种:平行或垂直2.在同一平面内,下列说法中,错误的是()A.过两点有且只有一条直线B.过一点有无数条直线与已知直线平行C.过直线外一点有且只有一条直线与已知直线平行D.过一点有且只有一条直线与已知直线垂直3.如图,PC∥AB,QC∥AB,则点P,C,Q在一条直线上.理由是.第3题图第4题图第6题图4.平面上不重合的四条直线,可能产生交点的个数最多为个,最少为个.5.如图所示,直线AB,CD是一条河的两岸,并且AB∥CD,点E为直线AB,CD外一点,现想过点E作河岸CD的平行线,只需过点E作的平行线即可,其理由是.6.观察如图所示的长方体,回答下列问题.(1)用符号表示两棱的位置关系:A1B1AB,AA1AB,A1D1C1D1,AD BC;(2)AB与B1C1所在的直线不相交,它们(填“是”或“不是”)平行线. 由此可知,在内,两条不相交的直线才是平行线.7.如图,P,Q分别是直线EF外两点.(1)过P画直线AB∥EF,过Q画直线CD∥EF;(2)AB与CD有怎样的位置关系?为什么?8.在同一平面内,任意三条直线有哪几种不同的位置关系?你能画图说明吗?下面是小明的解题过程:解:有两种位置关系,如图:你认为小明的解答正确吗?如果不正确,请你给出正确的解答.9.利用直尺画图:(1)利用图1中的网格,过P点画直线AB的平行线和垂线;(2)把图2网格中的三条线段通过平移使三条线段AB,CD,EF首尾顺次相接组成一个三角形;(3)在图3的网格中画一个四边形,满足:①两组对边互相平行;②任意两个顶点都不在一条网格线上;③顶点都在格点上.5.2.2平行线的判定1.如图,给出了过直线外一点作已知直线的平行线的方法,其依据是.第1题图第2题图2.如图,已知∠1=70°,要使AB∥CD,则需具备的另一个条件是()A.∠2=70°B.∠2=100°C.∠2=110°D.∠3=110°3.如图所示,要在一条公路的两侧铺设平行管道,已知一侧铺设的角度为120°,为使管道对接,另一侧铺设的角度大小应为()第3题图第4题图第5题图A.120°B.100°C.80°D.60°4.如图,对于图中标记的各角,下列条件能够推理得到a∥b的是()A.∠1=∠2B.∠2=∠4C.∠3=∠4D.∠1+∠4=180°5.如图,∠1=∠2,则小明判断AD∥BC,你认为他的结论正确吗?你的结论是:.6.已知a,b,c为平面内三条不同直线,若a⊥b,c⊥b,则a与c的位置关系是.7.看图填空.(1)∵∠1=(已知),∴AC∥ED(同位角相等,两直线平行).(2)∵∠2=(已知),∴AB∥FD(内错角相等,两直线平行).(3)∵∠2+=180°(已知),∴AC∥ED(同旁内角互补,两直线平行). 8.如图,已知∠ACD=70°,∠ACB=60°,∠ABC=50°.试说明:AB∥CD.9.如图,∠A+∠B+∠C+∠D=360°,且∠A=∠C,∠B=∠D,那么AB∥CD,AD∥BC.请说明理由.10.如图,直线EF分别与直线AB,CD相交于点P和点Q,PG平分∠APQ,QH 平分∠DQP,并且∠1=∠2,说出图中哪些直线平行,并说明理由.11.如图,∠BAF=46°,∠ACE=136°,CE⊥CD.问CD∥AB吗?为什么?12.如图所示,AB⊥BD于点B,CD⊥BD于点D,∠1+∠2=180°,试问CD与EF平行吗?为什么?参考答案1. C2. B3.经过直线外一点,有且只有一条直线与这条直线平行.4. AB,平行于同一条直线的两条直线平行.6.(1) A1B1∥AB,AA1⊥AB,A1D1⊥C1D1,AD∥BC;(2)不是,同一平面.7.解:(1)如图.(2)AB∥CD.理由:因为AB∥EF,CD∥EF,所以AB∥CD.8.解:不正确,如图所示,故在同一平面内,任意三条直线有四种不同的位置关系.9.解:如图(1),CD∥AB,PQ⊥AB;如图(2),△EFG或△EFH都是所求作的三角形;如图(3),四边形ABCD是所求的平行四边形.5.2.2平行线的判定1.同位角相等,两直线平行.2. C3. D4. D5. AB∥CD.6.平行.7.(1)∠C (2)∠BED (3)∠AFD8.解:∵∠ACD=70°,∠ACB=60°,∴∠BCD=130°.∵∠ABC=50°,∴∠BCD+∠ABC=180°.∴AB∥CD. 9.解:∵∠A=∠C,∠B=∠D,∴∠B+∠C=∠D+∠A=360°÷2=180°.∴AB∥CD.∵∠A=∠C,∠B=∠D,∴∠A+∠B=∠C+∠D=360°÷2=180°.∴AD∥BC.10.解:PG∥QH,AB∥CD.理由如下:∵PG平分∠APQ,QH平分∠DQP,∴∠1=∠GPQ=12∠APQ,∠PQH=∠2=12∠PQD.又∵∠1=∠2,∴∠GPQ=∠PQH,∠APQ=∠PQD.∴PG∥QH,AB∥CD.11.解:CD∥AB.理由如下:∵CE⊥CD,∴∠DCE=90°.∵∠ACE=136°,∴∠ACD=360°-136°-90°=134°.∵∠BAF=46°,∴∠BAC=180°-∠BAF=180°-46°=134°.∴∠ACD=∠BAC.∴CD∥AB.12.解:CD∥EF.理由如下:∵AB⊥BD,CD⊥BD,∴AB∥CD.∵∠1+∠2=180°,∴AB∥EF.∴CD∥EF.。
七年级数学《平行线的判定与性质》练习题
七年级数学《平行线的判定与性质》练习题 教学目的
1.掌握同位角,同旁内角,内错角的相关知识。 2.学会用三类角的特点去进行平行线的判定。 3.经历观察、操作、推理、交流等活动,进一步发展空间观念、推理能力和有条理表达的能力。 4.经历探索平行线性质的过程,掌握平行线的性质,并能解决一些实际问题。 重难点 利用平行线的判定定理和平行线的性质进行相关图形的证明或者计算。 【知识点整理】 1. 平行线的概念: 在同一平面内,不相交的两条直线叫做平行线,直线a与直线b互相平行,记住a∥b. 2. 平行公理——平行线的存在性与唯一性: 经过直线外一点,有且只有一条直线与这条直线平行。 3. 平行公理的推论: 如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
4. 同位角、内错角、同旁内角的判断(三线八角): 5. 平行线的判定: 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。(同位角相等,两直线平行。) 两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。(内错角相等,两直线平行。) 两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。(同旁内角互补,两直线平行。) 在同一平面内,垂直于同一条直线的两条直线互相平行。 6. 平行线的性质: 两条平行线被第三条直线所截,同位角相等。(两直线平行,同位角相等。) 两条平行线被第三条直线所截,内错角相等。(两直线平行,内错角相等。) 两条平行线被第三条直线所截,同旁内角互补。(两直线平行,同旁内角互补。) 7. 图形的平移 一个图形沿某个方向移动,在移动的过程中,原图形上所有的点都沿同一个方向移动相等的距离,这样的图形运动叫做图形的平移。 8. 图形平移的性质: 平移不改变图形的形状和大小。 一个图形和它经过平移所得的图形中,两组对应点的连线平行(或在同一条直线上)且相等。 例题解析 1. 正误判断 (1)不相交的两条直线必定平行。 (2)在同一平面内不相重合的两条直线,如果它们不平行,那么这两条直线一定相交。 (3)过一点可以且只可以画一条直线与已知直线平行。
鲁教五四版七年级数学下同步练习8.4平行线的判定定理(含答案)
鲁教版七年级数学下册第8章8.4平行线的判定定理测试题(含答案)一.选择题(共8小题)1.(2015•福州)下列图形中,由∠1=∠2能得到AB∥CD的是()A.B.C.D.2.(2015•黔南州)如图,下列说法错误的是()A.若a∥b,b∥c,则a∥c B.若∠1=∠2,则a∥cC.若∠3=∠2,则b∥c D.若∠3+∠5=180°,则a∥c(2题图)(3题图)(4题图)3.(2015春•港南区期末)如图,下列条件中不能判定AB∥CD的是()A.∠3=∠4 B.∠1=∠5 C.∠1+∠4=180°D.∠3=∠5 4.(2015•湖北模拟)如图,能判定EC∥AB的条件是()A.∠B=∠ACE B.∠A=∠ECD C.∠B=∠ACB D.∠A=∠ACE 5.(2015春•宁城县期末)如图,下列能判定AB∥CD的条件有()个.(1)∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5.A.1 B.2 C.3 D. 4(5题图)(6题图)(7题图)(8题图)6.(2015春•十堰期末)如图,下列条件:①∠1=∠3,②∠2=∠3,③∠4=∠5,④∠2+∠4=180°中,能判断直线l1∥l2的有()A.1个B.2个C.3个D. 4个7.(2015春•滦平县期末)如图,下列条件中能判断BD∥AC的是()A.∠1=∠2 B.∠D=∠A C.∠3=∠4D.∠ABD+∠D=180°8.(2015春•新泰市期中)下列条件中,能说明AD∥BC的条件有个()①∠1=∠4 ②∠2=∠3 ③∠1+∠2=∠3+∠4④∠A+∠C=180°⑤∠A+∠ABC=180°⑥∠A+∠ADC=180°.A.1 B.2 C.3 D. 4二.填空题(共7小题)9.(2015春•萧山区期中)如图,若∠3=∠4,则∥.10.(2015•焦作二模)如图,直线a与直线b交于点A,与直线c交于点B,∠1=120°,∠2=45°,若使直线b与直线c平行,则可将直线b绕点A逆时针旋转.11.(2015春•玉田县期末)已知:如图,∠EAD=∠DCF,要得到AB∥CD,则需要的条件.(填一个你认为正确的条件即可)(9题图)(10题图)(11题图)(12题图)12.(2015春•淮南期末)如图,不添加辅助线,请写出一个能判定AB∥CD的条件.13.(2015春•泰山区期末)如图,∠C=110°,请添加一个条件,使得AB∥CD,则符合要求的其中一个条件可以是.(13题图)(14题图)(15题图)14.(2015春•河北月考)如图,在平移三角尺画平行线的过程中,理由是.15.(2014春•毕节市校级期末)如图是一条街道的两个拐角,∠ABC与∠BCD均为140°,则街道AB与CD的关系是,这是因为.三.解答题(共5小题)16.(2015春•南平期末)已知:如图AB⊥BC,BC⊥CD且∠1=∠2,试说明:BE∥CF.解:∵AB⊥BC,BC⊥CD(已知)∴==90°()∵∠1=∠2(已知)∴=(等式性质)∴BE∥CF()(16题图)(17题图)(18题图)17.(2015春•淮南期末)已知:如图,四边形ABCD中,∠A=∠C,AB∥CD.求证:AD∥BC.18.(2015春•宜丰县期中)如图:已知BC平分∠ACD,且∠1=∠2,求证:AB∥CD.19.(2015春•岱岳区期中)如图,∠1=121°,∠2=120°,∠3=120°,试写出其中的平行线,并说明理由.20.(2015春•日照期末)如图,AB∥CD,AE平分∠BAD,CD与AE相交于F,∠CFE=∠E.求证:AD∥BC.鲁教版七年级数学下册第8章8.4平行线的判定定理测试题参考答案一.选择题(共8小题)1.B2.C.3.D.4.D.5.C.6.C7.C.8.B.二.填空题(共7小题)9.AB∥CD.10.15°.11.∠EAD=∠B.12.∠1=∠4或∠B=∠5或∠B+∠BCD=180°.13.∠BEC=70°14.同位角相等,两直线平行.15.平行,内错角相等,两直线平行三.解答题(共5小题)16.解:∵AB⊥BC,BC⊥CD(已知)∴∠ABC=∠BCD=90°(垂直的定义)∵∠1=∠2(已知)∴∠3=∠4(等式性质)∴BE∥CF(内错角相等,两直线平行)17.证明:∵AB∥CD∴∠A+∠D=180°,∵∠A=∠C∴∠C+∠D=180°,∴AD∥BC.18.证明:∵BC平分∠ACD,∴∠1=∠BCD,∵∠1=∠2,∴∠2=∠BCD,∴AB∥CD(内错角相等,两直线平行).19.解:AB∥CD.理由如下:∵∠2=120°,∠3=120°,∴∠2=∠3,∴AB∥CD.20.(2015春•日照期末)如图,AB∥CD,AE平分∠BAD,CD与AE相交于F,∠CFE=∠E.求证明:∵AE平分∠BAD,∴∠1=∠2,∵AB∥CD,∠CFE=∠E,∴∠1=∠CFE=∠E,∴∠2=∠E,∴AD∥BC.。
七年级数学下册平行线习题
七年级数学下册平行线习题(含答案解析)学校:___________姓名:___________班级:___________考号:___________一、单选题1.过一条线段外一点,作这条线段的垂线,垂足在()A.这条线段上B.这条线段的端点处C.这条线段的延长线上D.以上都可以2.下列真命题的个数是()(1)直线a、b、c、d,如果a∥b、c∥b、c∥d,则a∥d.(2)两条直线被第三条直线所截,同旁内角的平分线互相垂直.(3)两条直线被第三条直线所截,同位角相等.(4)在同一平面内,如果两直线都垂直于同一条直线,那么这两直线平行.A.1个B.2个C.3个D.4个3.下列推理正确的是()A.因为a∥d,b∥c,所以c∥d B.因为a∥c,b∥d,所以c∥dC.因为a∥b,a∥c,所以b∥c D.因为a∥b,d∥c,所以a∥c4.下列语句:其中错误的个数是()∥直线AB与直线BA是同一条直线;∥射线AB与射线BA是同一条射线;∥两点确定一条直线;∥经过一点有且只有一条直线与已知直线平行;∥经过一点有且只有一条直线与已知直线垂直;∥两点之间的线段叫做两点之间的距离.A.3B.4C.5D.65.下列语句中正确的是()A.不相交的两条直线叫做平行线B.过一点有且只有一条直线与已知直线平行C.平面内两条直线被第三条直线所截,如果内错角相等,则同位角也相等D.两条直线被第三条直线所截,同位角相等.6.如图,直线AB与CD相交于点O,∥BOD=40°,OE∥AB,则∥COE的度数为()A.140B.130C.120D.110二、填空题7.在同一平面内,两条不相重合的直线位置关系有两种:_____和_____.8.(1)平行公理是:____________________________________________.a b c,(2)平行公理的推论是如果两条直线都与______________,那么这两条直线也________.即三条直线,,a b b c,则_________.若//,//9.下列说法:∥对顶角相等;∥两点间线段是两点间距离;∥过一点有且只有一条直线与已知直线平行;∥,则点C是线段AB的中点;∥同角的余角相等正过一点有且只有一条直线与已知直线垂直;∥若AC BC确的有_________.(填序号)10.如图,已知直线AB∥CD,直线AB与EF相交于点P,那么直线EF也与直线CD相交,请在下面的推理过程中填空.∥AB∥CD,AB.EF交于点P;∥点P必在直线CD外.假设直线EF和CD不相交,那么过点P就有两条直线.AB和EF都与CD平行,这与____________公理矛盾.∥直线EF也与直线CD相交.11.四条直线相交,最多有____个交点.12.空间两条不重合的直线的位置关系有________、________、________三种.三、解答题13.如图,按要求画图并回答相关问题:(1)过点A 画线段BC 的垂线,垂足为D ;(2)过点D 画线段..DE∥AB ,交AC 的延长线于点E ;(3)指出∥E 的同位角和内错角.14.如图,根据要求填空.(1)过A 作AE ∥BC ,交______于点E ;(2)过B 作BF ∥AD ,交______于点F ;(3)过C 作CG ∥AD ,交__________于点G ;(4)过D 作DH ∥BC ,交BA 的__________于点H .15.若4条不同的直线相交于一点,则图中共有几对对顶角?若n 条不同的直线相交于一点呢?16.作图题:(只保留作图痕迹)如图,在方格纸中,有两条线段AB 、BC .利用方格纸完成以下操作: (1)过点A 作BC 的平行线;(2)过点C 作AB 的平行线,与(1)中的平行线交于点D ;(3)过点B 作AB 的垂线.17.如图所示,分别延长ABC ∆的中线,BD CE 到点,F G ,使,E DF BD G CE ==.G A F在一条直线上.求证:三点,,18.学习了平行线后,王玲同学想出了过一点画一条直线的平行线的新方法,她是通过折纸完成的,折纸步骤如图所示.b a,要求保留折纸痕迹,画(1)请你仿照以上步骤,在下图中画出一条直线b,使直线b经过点P﹐且//出所用到的直线,无须写画法;(2)在第(2)步中,折纸实际上是在寻找过点P的直线a的_______..参考答案:1.D【分析】画一条线段的垂线就是画线段所在直线的垂线,进而得出答案.【详解】由垂线的定义知,画一条线段的垂线,垂足可以在线段上,可以是线段的端点,也可以在线段的延长线上.故选D.【点睛】本题主要考查线段垂线的画法,正确把握垂线的定义是关键.2.B【分析】根据平行公理的推论,平行线的判定定理与性质定理,即可判断命题是真命题还是假命题.【详解】解:(1)直线a、b、c、d,如果a∥b、c∥b、c∥d,则a∥d,此说法正确,是真命题;(2)两条直线被第三条直线所截,同旁内角不一定互补,所以同旁内角的平分线不一定互相垂直,此说法错误,是假命题;(3)两条直线被第三条直线所截,同位角不一定相等,此说法错误,是假命题;(4)在同一平面内,如果两直线都垂直于同一条直线,那么这两直线平行,此说法正确,是真命题;所以真命题有2个.故选:B.【点睛】此题主要考查了命题与定理,正确把握平行线的判定与性质是解题关键.3.C【分析】根据平行公理的推论逐项判断即得答案.【详解】解:A、由a∥d,b∥c,不能推出c∥d,所以本选项推理错误,不符合题意;B、由a∥c,b∥d,不能推出c∥d,所以本选项推理错误,不符合题意;C、由a∥b,a∥c,能推出b∥c,所以本选项推理正确,符合题意;D、由a∥b,d∥c,不能推出a∥c,所以本选项推理错误,不符合题意.故选:C.【点睛】本题考查了平行公理的推论,属于基础题型,熟练掌握基本知识是关键.4.B【分析】∥根据直线的定义进行判断即可;∥根据射线的定义进行判断即可;∥根据两点确定一条直线进行判断即可;∥点是否在该直线上进行判断即可;∥根据是否在平面内这一条件进行判断即可;∥根据两点间距离的定义进行判断即可.【详解】∥直线AB与直线BA是同一条直线,故原题说法正确;∥射线AB与射线BA不是同一条射线,因为射线有方向,故原题说法错误;∥两点确定一条直线,故原题说法正确;∥经过直线外一点有且只有一条直线与已知直线平行,故原题说法错误;∥平面内,经过一点有且只有一条直线与已知直线垂直,故原题说法错误;∥两点之间的线段长度叫做两点之间的距离,故原题说法错误.错误的说法有4个,答案:B.【点睛】本题考查了直线、射线的定义,本题错点一是在平面内才有经过一点有且只有一条直线与已知直线垂直;二是经过直线外一点有且只有一条直线与已知直线平行;三是两点间的距离不是线段而是线段的长度.5.C【分析】根据平行线的定义、平行公理、平行线的性质和判定逐一进行判断即可【详解】解:A 错误,在同一平面内,不相交的两条直线叫做平行线;B 错误,必须是过直线外一点有且只有一条直线与已知直线平行;C 正确;平面内两条直线被第三条直线所截,如果内错角相等,则两条直线平行,则同位角也相等D 错误,两条平行直线被第三条直线所截,同位角才会相等;故选C .【点睛】本题考查了平行线的定义、平行公理、平行线的性质和判定,熟练掌握相关知识是解题的关键. 6.B【分析】根据垂直定义可得90AOE ∠=,根据对顶角相等可得40AOC =∠,然后可得答案.【详解】∥OE∥AB ,∥∥AOE=90°,∥∥BOD=40°,∥∥AOC=∥BOD=40°,∥∥EOC=∥AOE +∥AOC =130°.故选:B .【点评】本题主要考查了垂线的定义、对顶角和角的和差,掌握相关定义及性质是解题的关键. 7. 相交, 平行【分析】同一平面内,直线的位置关系通常有两种:平行或相交.【详解】解:平面内的直线有平行或相交两种位置关系.故答案为相交,平行.【点睛】本题主要考查了在同一平面内的两条直线的位置关系,属于基础题,应熟记这一知识点. 8. 过直线外一点有且只有一条直线与已知直线平行 第三条直线平行 平行 //a c【分析】根据平行公理以及平行公理的推论解答即可.【详解】(1)平行公理是:过直线外一点有且只有一条直线与已知直线平行;(2)平行公理的推论是如果两条直线都与第三条直线平行,那么这两条直线也平行,即三条直线,,a b c ,若//,//a b b c ,则//a c .故答案为:过直线外一点有且只有一条直线与已知直线平行;第三条直线平行,平行,//a c .【点睛】本题主要考查了平行公理以及平行公理的推论,属于基础题,掌握平行公理以及平行公理的推论是解题的关键.9.∥∥∥【分析】利用对顶角的性质判断∥,利用两点距离定义判定∥,利用平行公理判定∥,利用垂线公里判定∥,利用线段中点定义判定∥,利用余角的性质判定∥.【详解】∥对顶角相等正确;∥由两点间线段的长度是两点间距离,所以两点间线段是两点间距离不正确;∥由过直线外一点有且只有一条直线与已知直线平行,所以过一点有且只有一条直线与已知直线平行不正确; ∥过一点有且只有一条直线与已知直线垂直正确;∥由线段中点的性质,若AC BC =,点C 在AB 上,则点C 是线段AB 的中点,所以若AC BC =,则点C 是线段AB 的中点不正确;∥同角的余角相等正确;正确的有∥∥∥.故答案为:∥∥∥.【点睛】本题考查对顶角性质,两点间的距离,平行公理,垂线公里,线段的中点,余角的性质等问题,掌握对顶角性质,两点间的距离,平行公理,垂线公里,线段的中点,余角的性质是解题关键. 10.平行【详解】∥AB∥CD ,AB.EF 交于点P ;∥点P 必在直线CD 外.假设直线EF 和CD 不相交,那么过点P 就有两条直线AB 和EF 都与CD 平行,这与平行公理矛盾. ∥直线EF 也与直线CD 相交.点睛:本题考查了利用平行公里和反证法证明命题,反证法的证题步骤是:(1)假设命题结论的反面成立;(2)从这个假设出发,一步步推导出与某个定理、公式或已知条件相矛盾的结论;(3)肯定原命题结论正确. 11.6.【分析】先根据题意,画出图形,数出交点的个数即可.【详解】如图:4条直线相交,最多有6个交点.故答案为6.【点睛】此题考查垂直与平行的特征及性质,组合图形的计数,解题关键在于画出图形.12.相交平行异面【分析】在空间,直线与直线的位置关系有平行、相交、异面三种,在同一平面内两条不重合的直线的位置关系是平行或相交,根据两条直线所在的空间解答即可.【详解】在空间,直线与直线的位置关系有相交、平行、异面,故答案为:相交、平行、异面.【点睛】此题考查相交于平行的特征及性质,关键是要明确两条直线所在的平面是在空间或是在同一平面内.13.(1)见解析(2)见解析(3)∥E的同位角是∥ACD,∥E的内错角是∥BAE和∥BCE.【分析】(1)如图,过A点作AD∥BD与BC的延长线交于D点即可;(2)如图,过D点作DE∥AB与AC的延长线交于E点即可;(3)根据同位角与内错角的定义进行解答即可.【详解】(1)(2)如图所示.(3)∥E的同位角是∥ACD,∥E的内错角是∥BAE和∥BCE.【点睛】本题主要考查基础作图,同位角与内错角的定义,熟练掌握其知识点是解此题的关键. 14.(1)DC;(2)DC;(3)AB;(4)延长线.【分析】根据要求,直接进行作图就可以解决.【详解】(1)过A作AE∥BC,交DC于点E;(2)过B作BF∥AD,交DC于点F;(3)过C作CG∥AD,交AB的延长线于点G;(4)过D作DH∥BC,交BA的延长线于点H.【点睛】本题主要考查平行线的作法以及几何语言的准确性.15.12对,(n2-n)对【详解】试题分析:两条直线相交于一点形成2对对顶角,很明显,三、四、n 条不同的直线相交于一点可看成是三、六、(1)2n n -种两条直线相交于一点的情况,再乘以2,即可得对顶角的对数. 试题解析:两条直线相交于一点形成2对对顶角;三条直线相交于一点可看成是三种两条直线相交于一点的情况,所以形成6对对顶角;四条直线相交于一点可看成是六种两条直线相交于一点的情况,所以形成12对对顶角;n 条直线相交于一点可看成是(1)2n n -种两条直线相交于一点的情况,所以形成n(n−1)对对顶角. 16.(1)见解析(2)见解析(3)见解析【分析】(1)点A 所在的横线就是满足条件的直线;(2)在A 所在的横线上,在A 点的右边取AD=BC ,连结CD 即可.(3)在AE 上的点D 右边1个格点处取点F ,过B ,F 的直线即为所求.【详解】(1)点A 所在的横线就是满足条件的直线,即AE 就是所求;(2)在A 所在的横线中A 点的右边取AD=BC ,连结CD ,则直线CD 即为所求;(3)在AE 上的点D 右边1个格点处取点F ,过B ,F 作直线,即为所求.【点睛】本题主要考查了尺规作图,作图的依据是等腰直角三角形的判定,以及平行四边形的判定. 17.详见解析【分析】易证∥AEG∥∥BEC ,∥ADF∥∥CDB ,根据全等三角形对应角、对应边相等的性质,可得∥F=∥CBD ,∥G=∥BCE ,继而可得AF∥BC ,AG∥BC ,根据平行公理:经过直线外一点,有且只有一条直线与这条直线平行即可得出结论.【详解】证明:在∥AEG 和∥BEC 中,EG=EC AEG=BEC AE=BE ⎧⎪∠∠⎨⎪⎩,∥∥AEG∥∥BEC ,(SAS )∥∥BCE=∥G ,∥AG∥BC ,在∥ADF 和∥CDB 中,DF=DB ADF=CDB AD=CD ⎧⎪∠∠⎨⎪⎩, ∥∥ADF∥∥CDB ,(SAS )∥∥DBC=∥F ,∥AF∥BC ,∥AF ,AG 都经过点A ,∥G 、A 、F 在一条直线上【点睛】本题考查全等三角形的判定,考查了全等三角形对应角、对应边相等的性质,本题中求证∥AEG∥∥BEC 和∥AEG∥∥BEC 是解题的关键.也考查了平行公理:经过直线外一点,有且只有一条直线与这条直线平行.18.(1)详见解析;(2)垂线【分析】)(1)首先折直线a 的垂线,并且使a 的垂线经过点P ,再折出直线a 的垂线的垂线b ,并且过点P ; (2)根据作图可得折平行线的过程实际就是寻找过点P 的直线a 的垂线;【详解】(1)如图所示.(2)在(1)中的步骤(2)中,折纸实际上是在寻找过点P 的直线a 的垂线;【点睛】此题主要考查了应用与设计作图以及平行线的判定与性质等知识,利用数形结合得出是解题关键.。
(完整版)人教版数学七年级下册平行线的判定和性质练习题非常经典的题型值得给学生测试
A= 3,贝U12 .如图 10 , / 1 :/ 2 :/ 3 = 2 : 3 :说明理由.4, / AFE = 60 °,/ BDE =120 ,写出图中平行的直线,并3. 4. 一、填空 1.如图1,若若 + ////b 若 2= E ,则13 .如图11,直线AB CD 被EF 所截, 5. 6. 7.如图2,写出一个能判定直线在四边形 ABCD 中 , / A + / B = 180 如图 3,若/ 1 + / 2 = 180 ° ,贝U 如图 4, / 1、/ 2、/ 3、/ 4、/5 中, 内错角有___ 如图5,填空并在括号中填理由: (1) (2) (3)I 1 //I 2的条件: _____°,则 ________ // __ 。
同位角有 同旁内角有 // ).& 9. 由/ ABD =/ CDB 得 ______ // _ 由/ CAD =Z ACB 得 ________//由/ CBA +/ BAD = 180° 得图5(5「11b( —( //如图8,推理填空:(1 )T / A = /(已知),AC// ED ();(2 )T / 2 = /(已知),AC// ED ();(3 )••• / A + /=180 ° (已知),AB// FD ();(4 )••• / 2 + / =180 ° (已知),AC// ED ()I 1//I 2的条件:_ AB// CD 的条件来:二、解答下列各题 11 .如图9, / D =/A , 如图6,尽可能多地写出直线 如图7,尽可能地写出能判定 10. / B = / FCB 求证: ED//CF.); );)D图9(第 1 页,/ 1 = / 2,Z CNF =Z BME 求证:AB// CD MP NQ[二]、平行线的性质1 .如图 1,已知/ 1 = 100 ° , AB// CD2 .如图2,直线 AB CD 被 EF 所截,若/ 1 = / 2 ,则/ 2 =E图 13. 如图3所示 (1) 若 EF// AC(2) 若/ 2 = / . (3) 若/ A + /4. 如图 4, AB// CD / 2 = 25. 如图 5 , AB// CD EGLAB B6 .如图7 .如图 &如图共3页)6, 7, 8, B Do=180 ° , / F +BD___ , / 3 = ________ , / 4 = 则/ AEF +/ CFE =,贝U AE// BF.=180 ° ,贝U AE// BF./ 1,则/2 = _________ 于 G, / 1 = 50 ° ,则/图 6直线l 1 /1 2,AB// CD AC L BC 图中与/ AB// EF// CD EG/ BD 则图中与/I=180 ° (11b图7B D).图8/ 1 = 43 ° ,则/ 2 =BC 与I 2交于 CAB 互余的角有 ____________________相等的角(不包括/ 1)共有E ,个.、解答下列各题9.如图9,已知/ ABE +/ DEB = 180°,/ 1 = / 2,求证:/ F = / G.C . EF // BCD . AD // EF2.如图⑧,判定AB // CE的理由是( )A . / B= / ACEB . / A= / ECDC . / B= / ACBD . / A= / ACE3 .如图⑨,下列推理正确的是( ) ⑧图910.如图10, DE// BC / D:/ DBC = 2 :1,/ 1 = / 2,求/ DEB 的度数.A .•••/ 1 = / 3,.• a // b B .•••/1 = / 2,.■. a //bC .•••/ 1 = / 2,••• c // d D .•••/1 = / 2,.■- c //d1 .如图⑩•••/ B= /,• AB // CD (•••/ BGC= /,• CD // EF (12 .如图12,/ ABD和/BDC的平分线交于E, BE交CD于点F,/ 1 + / 2 = 90 ° .图10求证:(1) AB// CD (2)/ 2 + / 3 = =90二.填空题:1.如图③•••/1 = / 2, •//(•••/2= / 3, •//(2.如图④•••/ 1 = / 2, •//(•••/3= / 4, •//(•/ AB // CD , CD // EF,••• AB // _______ (2 .如图(11)填空:(1)v/ 2= / B (已知)• AB __________ ((2)v/ 1 = / A (已知)•- ___________ ((3)v/ 1 = / D (已知)•- ___________ ((4) _________ v =/ F (已知)AC // DF (3•已知,如图/ 1 + /2 = 180°,填空。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 1 页 共 4 页
两条直线平行的条件
条件1 同位角相等,两直线平行. 条件2 内错角相等,两直线平行.
∵ ∠1=∠2, ∴ a∥b. ∵ ∠1=∠2, ∴ a∥b.
条件3 同旁内角互补,两直线平行.
∵∠1+∠2=180° , ∴ a∥b.
例1 如图1
① ∵ ∠2 =_______(已知)
∴ _____∥_____( )
② ∵ ∠3 = ∠5(已知)
∴_____∥_____ ( )
③∵ ∠4 +______=180度(已知)
∴_____∥_____ ( ) 图1
例2 如图2
① ∵ ∠1 =_____(已知)
∴ AB∥CE( )
② ∵ ∠1 +_____=180度(已知)
∴ CD∥BF( )
③ ∵ ∠1 +∠5 =180度(已知)
∴ _____∥_____( ) 图2
④ ∵ ∠4 +_____=180度(已知)
∴ CE∥AB( )
a
b
2
1
a
b
1
2
a
b
1
2
第 2 页 共 4 页
例3 如图3,已知∠1=75度,∠2 =105度,问:AB与CD平行吗? 为什么?
例4 已知∠3=45 °,∠1与∠2互余,试求出AB//CD?
同步练习
一、选择题
1. 如图1所示,下列条件中,能判断AB∥CD的是( )
A.∠BAD=∠BCD B.∠1=∠2 C.∠3=∠4 D.∠BAC=∠ACD
3
4
D
C
B
A
2
1
F
E
D
CB
A
E
D
C
B
A
(1) (2) (3)
2. 如图2所示,如果∠D=∠EFC,那么( )
A.AD∥BC B.EF∥BC C.AB∥DC D.AD∥EF
3. 如图3所示,能判断AB∥CE的条件是( )
A.∠A=∠ACE B.∠A=∠ECD C.∠B=∠BCA D.∠B=∠ACE
4. 下列说法错误的是( )
A.同位角不一定相等 B.内错角都相等
C.同旁内角可能相等 D.同旁内角互补,两直线平行
5. 不相邻的两个直角,如果它们有一边在同一直线上,那么另一边相互( )
A.平行 B.垂直 C.平行或垂直 D.平行或垂直或相交
二、填空题
1. 在同一平面内,直线a,b相交于P,若a∥c,则b与c的位置关系是______.
1 2 3
A
B
C
D
第 3 页 共 4 页
EDCB
A
2. 在同一平面内,若直线a,b,c满足a⊥b,a⊥c,则b与c的位置关系是______.
3. 如图所示,BE是AB的延长线,量得∠CBE=∠A=∠C.
(1)由∠CBE=∠A可以判断______∥______,根据是__________________.
(2)由∠CBE=∠C可以判断______∥______,根据是__________________.
三、训练平台
1. 如图所示,已知∠1=∠2,AC平分∠DAB,试说明DC∥AB.
DC
B
A
2
1
2. 如图所示,已知直线EF和AB,CD分别相交于K,H,且EG⊥AB,∠CHF=600,∠E=30°,
试说明AB∥CD.
G
H
K
F
E
DC
B
A
四、提高训练
如图所示,已知直线a,b,c,d,e,且∠1=∠2,∠3+∠4=180°,则a与c平行吗? 为什么?
d
e
c
b
a
3
4
1
2
五、探索发现
第 4 页 共 4 页
8
7
6
5
c
b
a
3
4
1
2
8
7
6
5
3
4
D
C
B
A
1
2
如图所示,请写出能够得到直线AB∥CD的所有直接条件.
六、中考题与竞赛题
1、如图所示,直线a、b被直线c所截,现给出下列四个条件:
①∠1=∠5;②∠1=∠7;③∠2+∠3=180°;④∠4=∠7. 其中
能说明a∥b的条件序号为( )
A.①② B.①③ C.①④ D.③④
2.如右图所示,点E在AC的延长线上,下列条件中能判断...CDAB//( )
A. 43 B. 21
C. DCED D. 180ACDD
E
D
C
B
A
4
3
2
1