第三节 圆的方程
《圆的方程》 讲义

《圆的方程》讲义一、圆的定义在平面直角坐标系中,圆是到定点的距离等于定长的点的集合。
这个定点称为圆心,定长称为圆的半径。
我们可以想象一下,在一个平面上,有一个固定的点,然后有很多点到这个固定点的距离都相等,这些点连起来就形成了一个圆。
二、圆的标准方程圆的标准方程是:$(x a)^2 +(y b)^2 = r^2$ ,其中$(a, b)$是圆心的坐标,$r$是圆的半径。
这个方程是怎么来的呢?我们假设圆心的坐标是$(a, b)$,那么圆上任意一点$P(x, y)$到圆心的距离就可以用两点间的距离公式来表示:$\sqrt{(x a)^2 +(y b)^2} = r$两边平方,就得到了圆的标准方程$(x a)^2 +(y b)^2 = r^2$ 。
举个例子,如果圆心坐标是$(2, 3)$,半径是 5,那么这个圆的方程就是$(x 2)^2 +(y 3)^2 = 25$ 。
三、圆的一般方程圆的一般方程是:$x^2 + y^2 + Dx + Ey + F = 0$ (其中$D^2 + E^2 4F > 0$)那这个一般方程是怎么从标准方程变过来的呢?我们将圆的标准方程展开:$(x a)^2 +(y b)^2 = r^2$$x^2 2ax + a^2 + y^2 2by + b^2 = r^2$$x^2 + y^2 2ax 2by + a^2 + b^2 r^2 = 0$令$D =-2a$,$E =-2b$,$F = a^2 + b^2 r^2$ ,就得到了圆的一般方程。
通过一般方程,我们也可以求出圆心坐标和半径。
圆心坐标为$(\frac{D}{2},\frac{E}{2})$,半径$r =\frac{\sqrt{D^2 + E^2 4F}}{2}$。
四、圆的参数方程圆的参数方程为:$\begin{cases}x = a + r\cos\theta \\ y = b + r\sin\theta\end{cases}$(其中$\theta$为参数)参数方程在解决一些与圆相关的问题时非常有用。
2021版新高考数学人教B版一轮课件:9.3 圆的方程

D.(x-1)2+(y- 3 )2=4
5.已知圆C经过P(-2,4),Q(3,-1)两点,且在x轴上截得的弦长等于6,则圆C的方 程为________. 世纪金榜导学号
【解析】1.选D.由题意可得圆的半径为r= 2,则圆的标准方程为(x-1)2+ (y-1)2=2.
2.选B.圆心在直线BC的垂直平分线,即x=1上,设圆心D(1,b),由|DA|=|DB|得
【命题角度1】利用几何法求最值
【典例】1.(2020·南宁模拟)在平面直角坐标系xOy中,已知(x1-2)2+ y12 =5,x22y2+4=0,则(x1-x2)2+(y1-y2)2的最小值为 ( )
A. 5
B. 1
C. 121
D.11 5
5
5
5
5
【解析】选B.由已知得点(x1,y1)在圆(x-2)2+y2=5上,点(x2,y2)在直线x-2y+4=0
第三节 圆 的 方 程
内容索引
必备知识·自主学习 核心考点·精准研析 核心素养·微专题 核心素养测评
【教材·知识梳理】 1.圆的方程
2.点与圆的位置关系
点M(x0,y0)与圆(x-a)2+(y-b)2=r2的位置关系 (1)点M(x0,y0)在圆外,则(x0-a)2+(y0-b)2_>_r2. (2)点M(x0,y0)在圆上,则(x0-a)2+(y0-b)2_=_r2. (3)点M(x0,y0)在圆内,则(x0-a)2+(y0-b)2_<_r2.
答案:x2+y2-2x-4y-8=0或x2+y2-6x-8y=0
【规律方法】求圆的方程的两种方法 (1)几何法,通过研究圆的性质进而求出圆的基本量.确定圆的方程时,常用到的 圆的三个性质:①圆心在过切点且垂直切线的直线上;②圆心在任一弦的中垂线 上;③两圆内切或外切时,切点与两圆圆心三点共线; (2)代数法,即设出圆的方程,用待定系数法求解: ①若已知条件与圆心(a,b)和半径r有关,则设圆的标准方程,依据已知条件列出 关于a,b,r的方程组,从而求出a,b,r的值.
《圆的方程》课件

核心要点
理解圆的定义、性质、与直 线和圆的交点,以及各种应 用场景。
实践练习
通过练习题和实际问题,巩 固对圆的方程与应用的理解。
圆的方程
1 一般式
圆的一般式方程是(x - a)²+ (y - b)²= r²。
2 标准式
圆的标准式方程是(x - h)²+ (y - k)²= r²,其中(h, k)是圆心坐标。
3 参数方程
圆的参数方程是x = a + rcosθ,y = b + rsinθ,其中(a, b)是圆心坐标。
圆与直线的交点
应用举例
游乐园中的摩天轮
摩天轮是由一系列圆形构成的, 给游客带来乘风破浪的感觉。
地球的轨道
射箭运动中的心
地球绕太阳运行的轨道接近椭圆, 而不完全是一个完美的圆。
在射箭运动中,靶心通常是一个 圆,射手需要准确瞄准并打在靶 心上。
结论和要点
重要结论
圆的方程有多种形式,包括 一般式、标准式和参数方程。
《圆的方程》PPT课件
欢迎来到《圆的方程》PPT课件!在本课程中,我们将一起探索圆的定义、性 质以及各种方程和应用举例。让我们开始这个精彩的旅程吧!
圆的定义和性质
1 什么是圆?
圆是平面上所有离圆心距 离相等的点的集合。
2 关键性质
圆的重要性质包括半径、 直径、弧长、面积等。
3 有趣的事实
圆在自然界和建筑中广泛 应用,如太阳、月亮、车 轮等。
1
切线
当直线与圆相切时,直线只与圆相交于一个点。
2
相交两点
当直线穿过圆时,直线与圆相交于两个不同的点。
3
不相交
当直线不与圆相交时,直线与圆没有交点。
圆的方程 课件 高二 人教A版(精品)

[解析] 设圆心 的坐标为 ,圆的半径为 ,因为圆心 在直线 上,所以 。因为 ,所以 ,解得 , ,所以 。所以方程为 。
二、易错题
4.(错用点与圆的位置关系致误)若点 在圆 的内部,则实数 的取值范围是( )A. B. C. 或 D.
A
[解析] 设圆心为 ,半径为 ,圆 被 轴分成两部分的弧长之比为 ,则其中劣弧所对圆心角为 ,由圆的性质可得 ,又圆被 轴截得的弦长为4,所以 ,所以 。变形为 ,即 在双曲线 上,易知双曲线 上与直线 平行的切线的切点为 ,此点到直线 的距离最小。设切线方程为 ,由
类型二 与圆有关的轨迹问题
【例2】(1) 平面内到两定点 , 的距离之比等于常数 ( 且 )的动点 的轨迹叫做阿波罗尼斯圆。已知 , , ,则点 的轨迹围成的平面图形的面积为( )A. B. C. D.
B
[解析] 设 ,由 ,得 , , , ,则点 的轨迹是以 为圆心,2为半径的圆,所以所求面积 。
2.(微考向2)已知点 为圆 上一点, 为圆心,则 ( 为坐标原点)的取值范围是( )A. B. C. D.
C
[解析] 将圆 的方程 化为 ,所以圆心 的坐标为 。所以 。而 ,所以 。因为 ,所以 ,所以 。因为 ,所以 ,所以 ,即 。因此 ,从而 ( 为坐标原点)的取值范围为 。故选C。
2.点与圆的位置关系 平面上的一点 与圆 之间存在着下列关系:
(1) 在_______,即 在圆外;
(2) 在_______,即 在圆上;
(3) 在_______,即 在圆内。
圆外
圆上
圆内
小题·微演练
一、基础题
1.圆 的圆心坐标是( )A. B. C. D.
[解析] 由题意可设点 的坐标为 ,因为满足 ,由两点间的距离公式可得 ,即 ,所以 即为点 的轨迹方程。故选B。
第三节 圆的方程

第三节圆的方程1.圆的定义及方程如果没给出r>0,则圆的半径为|r|.当D2+E2-4F=0时,方程x2+y2+Dx+Ey+F=0表示一个点⎝⎛⎭⎫-D2,-E2;当D2+E2-4F<0时,方程x2+y2+Dx+Ey+F=0没有意义,不表示任何图形.2.点与圆的位置关系点M(x0,y0)与圆(x-a)2+(y-b)2=r2的位置关系:(1)若M(x0,y0)在圆外,则(x0-a)2+(y0-b)2>r2.(2)若M(x0,y0)在圆上,则(x0-a)2+(y0-b)2=r2.(3)若M(x0,y0)在圆内,则(x0-a)2+(y0-b)2<r2.[熟记常用结论](1)二元二次方程Ax2+Bxy+Cy2+Dx+Ey+F=0表示圆的充要条件是⎩⎪⎨⎪⎧A=C≠0,B=0,D2+E2-4AF>0.(2)以A(x1,y1),B(x2,y2)为直径端点的圆的方程为(x-x1)·(x-x2)+(y-y1)(y-y2)=0.[小题查验基础]一、判断题(对的打“√”,错的打“×”)(1)确定圆的几何要素是圆心与半径.()(2)方程(x-a)2+(y-b)2=t2(t∈R)表示圆心为(a,b),半径为t的一个圆.()(3)方程x2+y2+4mx-2y=0不一定表示圆.()(4)若点M(x0,y0)在圆x2+y2+Dx+Ey+F=0外,则x20+y20+Dx0+Ey0+F>0.()答案:(1)√ (2)× (3)× (4)√ 二、选填题1.圆心坐标为(1,1)且过原点的圆的方程是( ) A .(x -1)2+(y -1)2=1 B .(x +1)2+(y +1)2=1 C .(x +1)2+(y +1)2=2D .(x -1)2+(y -1)2=2解析:选D 由题意得圆的半径为2,故该圆的方程为(x -1)2+(y -1)2=2,故选D. 2.圆x 2+y 2-4x +6y =0的圆心坐标是( ) A .(2,3) B.(-2,3) C .(-2,-3)D .(2,-3)解析:选D 圆的方程可化为(x -2)2+(y +3)2=13,所以圆心坐标是(2,-3). 3.若点(2a ,a -1)在圆x 2+(y -1)2=5的内部,则a 的取值范围是( ) A .(-1,1) B.(0,1) C.⎝⎛⎭⎫-1,15 D.⎝⎛⎭⎫-15,1 解析:选D 由(2a )2+(a -2)2<5,得-15<a <1.4.若方程x 2+y 2+ax +2ay +2a 2+a -1=0表示圆,则a 的取值范围是________. 解析:若方程x 2+y 2+ax +2ay +2a 2+a -1=0表示圆,则a 2+4a 2-4(2a 2+a -1)>0,即3a 2+4a -4<0,解得-2<a <23.答案:⎝⎛⎭⎫-2,23 5.圆心在y 轴上,半径长为1,且过点A (1,2)的圆的方程是________.解析:根据题意可设圆的方程为x 2+(y -b )2=1,因为圆过点A (1,2),所以12+(2-b )2=1,解得b =2,所以所求圆的方程为x 2+(y -2)2=1.答案:x 2+(y -2)2=1考点一 求圆的方程[师生共研过关][典例精析][例1] 已知圆E 经过三点A (0,1),B (2,0),C (0,-1),且圆心在x 轴的正半轴上,则圆E 的标准方程为( )A.⎝⎛⎭⎫x -322+y 2=254B.⎝⎛⎭⎫x +342+y 2=2516C.⎝⎛⎭⎫x -342+y 2=2516D.⎝⎛⎭⎫x -342+y 2=254[解析] 法一:(待定系数法)设圆E 的一般方程为x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F>0),则由题意得⎩⎪⎨⎪⎧1+E +F =0,4+2D +F =0,1-E +F =0,解得⎩⎪⎨⎪⎧D =-32,E =0,F =-1,所以圆E 的一般方程为x 2+y 2-32x -1=0,即⎝⎛⎭⎫x -342+y 2=2516. 法二:(几何法)因为圆E 经过点A (0,1),B (2,0),所以圆E 的圆心在线段AB 的垂直平分线y -12=2(x -1)上.又圆E 的圆心在x 轴的正半轴上,所以圆E 的圆心坐标为⎝⎛⎭⎫34,0. 则圆E 的半径为|EB |= ⎝⎛⎭⎫2-342+(0-0)2=54,所以圆E 的标准方程为⎝⎛⎭⎫x -342+y 2=2516. [答案] C[例2] 圆心在直线x -2y -3=0上,且过点A (2,-3),B (-2,-5)的圆的方程为________________________.[解析] 法一:(几何法)设点C 为圆心,因为点C 在直线x -2y -3=0上,所以可设点C 的坐标为(2a +3,a ).又该圆经过A ,B 两点,所以|CA |=|CB |, 即(2a +3-2)2+(a +3)2=(2a +3+2)2+(a +5)2,解得a =-2,所以圆心C 的坐标为(-1,-2),半径r =10, 故所求圆的方程为(x +1)2+(y +2)2=10.法二:(待定系数法)设所求圆的标准方程为(x -a )2+(y -b )2=r 2,由题意得⎩⎪⎨⎪⎧(2-a )2+(-3-b )2=r 2,(-2-a )2+(-5-b )2=r 2,a -2b -3=0,解得a =-1,b =-2,r 2=10,故所求圆的方程为(x +1)2+(y +2)2=10. [答案] (x +1)2+(y +2)2=10[解题技法]1.求圆的方程的两种方法[提醒] 解答圆的有关问题时,应注意数形结合,充分运用圆的几何性质. 2.确定圆心位置的方法(1)圆心在过切点且与切线垂直的直线上. (2)圆心在圆的任意弦的垂直平分线上. (3)两圆相切时,切点与两圆圆心共线.[过关训练]1.若不同的四点A (5,0),B (-1,0),C (-3,3),D (a,3)共圆,则a 的值为________. 解析:设圆的方程为x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0), 分别代入A ,B ,C 三点坐标,得⎩⎪⎨⎪⎧25+5D +F =0,1-D +F =0,9+9-3D +3E +F =0,解得⎩⎪⎨⎪⎧D =-4,E =-253,F =-5.所以A ,B ,C 三点确定的圆的方程为x 2+y 2-4x -253y -5=0.因为D (a,3)也在此圆上,所以a 2+9-4a -25-5=0. 所以a =7或a =-3(舍去).即a 的值为7. 答案:72.已知圆心在直线y =-x +1上,且与直线x +y -2=0相切于点(1,1)的圆的方程为________________________.解析:设圆的方程为(x -a )2+(y -b )2=r 2(r >0),则⎩⎨⎧b =-a +1,(a -1)2+(b -1)2=|a +b -2|2,解得⎩⎨⎧a =12,b =12.所以r =⎝⎛⎭⎫1-122+⎝⎛⎭⎫1-122=22. 故所求圆的方程为⎝⎛⎭⎫x -122+⎝⎛⎭⎫y -122=12. 答案:⎝⎛⎭⎫x -122+⎝⎛⎭⎫y -122=12考点二 与圆有关的最值问题 [全析考法过关][考法全析]考法(一) 斜率型最值问题[例1] 已知实数x ,y 满足方程x 2+y 2-4x +1=0,求yx 的最大值和最小值.[解] 原方程可化为(x -2)2+y 2=3, 表示以(2,0)为圆心,3为半径的圆. yx 的几何意义是圆上一点与原点连线的斜率,所以设yx=k ,即y =kx .当直线y =kx 与圆相切时(如图),斜率k 取最大值或最小值, 此时|2k -0|k 2+1=3,解得k =±3.所以yx 的最大值为3,最小值为- 3.考法(二) 截距型最值问题[例2] 已知点P (x ,y )在圆C :x 2+y 2-6x -6y +14=0上,求x +y 的最大值与最小值.[解] (转化为截距的最值问题求解)设x +y =b ,则b 表示动直线y =-x +b 在y 轴上的截距,显然当动直线y =-x +b 与圆C 相切时,b 取得最大值或最小值,如图所示.由圆心C (3,3)到切线x +y =b 的距离等于圆C 的半径,可得|3+3-b |12+12=2,即|b -6|=22,解得b =6±22,所以x +y 的最大值为6+22,最小值为6-2 2.考法(三) 距离型最值问题[例3] 已知实数x ,y 满足方程x 2+y 2-4x +1=0,求x 2+y 2的最大值和最小值. [解] 如图所示,x 2+y 2表示圆上的一点与原点距离的平方,由平面几何知识知,在原点和圆心连线与圆的两个交点处取得最大值和最小值.又圆心到原点的距离为(2-0)2+(0-0)2=2,所以x 2+y 2的最大值是(2+3)2=7+43, x 2+y 2的最小值是(2-3)2=7-4 3. 考法(四) 利用对称性求最值[例4] 已知A (0,2),点P 在直线x +y +2=0上,点Q 在圆C :x 2+y 2-4x -2y =0上,则|PA |+|P Q |的最小值是________.[解析] 因为圆C :x 2+y 2-4x -2y =0, 故圆C 是以C (2,1)为圆心,半径r =5的圆.设点A (0,2)关于直线x +y +2=0的对称点为A ′(m ,n ), 故⎩⎪⎨⎪⎧m +02+n +22+2=0,n -2m -0=1,解得⎩⎪⎨⎪⎧m =-4,n =-2,故A ′(-4,-2).连接A ′C 交圆C 于Q (图略),由对称性可知|PA |+|P Q |=|A ′P |+|P Q |≥|A ′Q |=|A ′C |-r =2 5.[答案] 2 5[规律探求][过关训练]1.已知点A(-1,0),B(0,2),点P是圆C:(x-1)2+y2=1上任意一点,则△PAB面积的最大值与最小值分别是()A.2,2-52B.2+52,2-52C.5,4- 5D.52+1,52-1解析:选B由题意知|AB|=(-1)2+(-2)2=5,l AB:2x-y+2=0,由题意知圆C的圆心坐标为(1,0),∴圆心到直线l AB的距离d=|2-0+2|4+1=455.∴S △PAB 的最大值为12×5×⎝⎛⎭⎫455+1=2+52,S △PAB 的最小值为12×5×⎝⎛⎭⎫455-1=2-52.2.设P 为直线3x -4y +11=0上的动点,过点P 作圆C :x 2+y 2-2x -2y +1=0的两条切线,切点分别为A ,B ,则四边形PACB 的面积的最小值为________.解析:圆的标准方程为(x -1)2+(y -1)2=1,圆心为C (1,1),半径r =1,根据对称性可知,四边形PACB 的面积为2S △APC =2×12|PA |r =|PA |=|PC |2-r 2,要使四边形PACB 的面积最小,则只需|PC |最小,|PC |最小时为圆心到直线l :3x -4y +11=0的距离d =|3-4+11|32+(-4)2=105=2.所以四边形PACB 面积的最小值为(|PC |min )2-r 2=4-1= 3.答案: 3考点三 与圆有关的轨迹问题 [师生共研过关][典例精析]已知直角三角形ABC 的斜边为AB ,且A (-1,0),B (3,0). (1)求直角顶点C 的轨迹方程;(2)求直角边BC 的中点M 的轨迹方程.[解] (1)设C (x ,y ),因为A ,B ,C 三点不共线,所以y ≠0.因为AC ⊥BC ,所以k AC ·k BC =-1,又k AC =y x +1,k BC =y x -3,所以y x +1·yx -3=-1,化简得x 2+y 2-2x -3=0.因此,直角顶点C 的轨迹方程为x 2+y 2-2x -3=0(y ≠0).(2)设M (x ,y ),C (x 0,y 0),因为B (3,0),M 是线段BC 的中点,由中点坐标公式得x =x 0+32,y =y 0+02,所以x 0=2x -3,y 0=2y .由(1)知,点C 的轨迹方程为(x -1)2+y 2=4(y ≠0), 将x 0=2x -3,y 0=2y 代入得(2x -4)2+(2y )2=4(y ≠0), 即(x -2)2+y 2=1(y ≠0).因此动点M 的轨迹方程为(x -2)2+y 2=1(y ≠0).[解题技法]求与圆有关轨迹问题的3种方法(1)直接法:当题目条件中含有与该点有关的等式时,可设出该点的坐标,用坐标表示等式,直接求解轨迹方程.(2)定义法:当题目条件符合圆的定义时,可直接利用定义确定其圆心和半径,写出圆的方程.(3)代入法:当题目条件中已知某动点的轨迹方程,而要求的点与该动点有关时,常找出要求的点与已知点的关系,代入已知点满足的关系式求轨迹方程.[过关训练]1.自圆C :(x -3)2+(y +4)2=4外一点P (x ,y )引该圆的一条切线,切点为Q ,P Q 的长度等于点P 到原点O 的距离,则点P 的轨迹方程为( )A .8x -6y -21=0B .8x +6y -21=0C .6x +8y -21=0D .6x -8y -21=0解析:选D 由题意得,圆心C 的坐标为(3,-4),半径r =2,如图.因为|P Q |=|PO |,且P Q ⊥C Q ,所以|PO |2+r 2=|PC |2,所以x 2+y 2+4=(x -3)2+(y +4)2,即6x -8y -21=0,所以点P 的轨迹方程为6x -8y -21=0,故选D.2.设定点M (-3,4),动点N 在圆x 2+y 2=4上运动,以OM ,ON 为两边作平行四边形MONP ,求点P 的轨迹.解:如图,设P (x ,y ),N (x 0,y 0), 则线段OP 的中点坐标为⎝⎛⎭⎫x 2,y 2,线段MN 的中点坐标为⎝ ⎛⎭⎪⎫x 0-32,y 0+42.因为平行四边形的对角线互相平分,所以x 2=x 0-32,y 2=y 0+42,整理得⎩⎪⎨⎪⎧x 0=x +3,y 0=y -4.又点N (x +3,y -4)在圆x 2+y 2=4上, 所以(x +3)2+(y -4)2=4. 所以点P的轨迹是以(-3,4)为圆心,2为半径的圆⎝⎛⎭⎫因为O ,M ,P 三点不共线,所以应除去两点⎝⎛⎭⎫-95,125和⎝⎛⎭⎫-215,285.。
高考数学一轮复习例题解析 15.3 圆的标准方程和一般方程 试题

高中数学一轮(y ī l ún)复习资料第十五章 解析几何(ji ě x ī j ǐh é)第三节 圆的HY 方程(f āngch éng)和一般方程A 组1.假设圆x 2+y 2-2kx +2y +2=0(k >0)与两坐标轴无公一共点,那么实数k 的取值范围为________.解析:圆的方程为(x -k )2+(y +1)2=k 2-1,圆心坐标为(k ,-1),半径r =k 2-1,假设圆与两坐标无公一共点,即⎩⎪⎨⎪⎧ k 2-1<|k |k 2-1<1,解得1<k < 2. 2.假设圆C 的半径为1,圆心在第一象限,且与直线4x -3y =0和x 轴都相切,那么该圆的HY 方程是________.解析:由题意,设圆心(x 0,1),∴|4x 0-3|42+(-3)2=1,解得x 0=2或者x 0=-12(舍), ∴所求圆的方程为(x -2)2+(y -1)2=1.3.(2021年调研)D 是由不等式组⎩⎪⎨⎪⎧x -2y ≥02x +y ≥0,所确定的平面区域,那么圆x 2+y 2=4在区域D 内的弧长为________.答案:π4.(2021年高考宁夏、卷改编)圆C 1:(x +1)2+(y -1)2=1,圆C 2与圆C 1关于直线x -y -1=0对称,那么圆C 2的方程为________________.解析:圆C 1:(x +1)2+(y -1)2=1的圆心为(-1,1).圆C 2的圆心设为(a ,b ),C 1与C 2关于直线x -y -1=0对称,∴⎩⎪⎨⎪⎧ b -1a +1=-1,a -12-b +12-1=0,解得⎩⎪⎨⎪⎧a =2,b =-2,圆C 2的半径为1,∴圆C 2的方程为(x -2)2+(y +2)2=1.5.(原创题)圆x 2+y 2-4x +2y +c =0与y 轴交于A 、B 两点,其圆心为P ,假设∠APB =90°,那么实数c 的值是________.解析:当∠APB =90°时,只需保证圆心到y 轴的间隔 等于半径的22倍.由于圆的HY 方程为(x -2)2+(y +1)2=5-c ,即2=22×5-c ,解得c =-3.6.点A (-3,0),B (3,0),动点P 满足(mǎnzú)|P A |=2|PB |.(1)假设(jiǎshè)点P 的轨迹(guǐjì)为曲线C ,求此曲线(qūxiàn)的方程;(2)假设点Q 在直线l :x +y +3=0上,直线l 2经过点Q 且与曲线C 只有一个公一共点M ,求|QM |的最小值,并求此时直线l 2的方程.解:(1)设点P 的坐标为(x ,y ),那么(x +3)2+y 2=2(x -3)2+y 2,化简可得(x -5)2+y 2=16即为所求.(2)曲线C 是以点(5,0)为圆心,4为半径的圆,如图那么直线l 2是此圆的切线,连结CQ ,那么|QM |=|CQ |2-|CM |2=|CQ |2-16, 当CQ ⊥l 1时,|CQ |取最小值,|CQ |=|5+3|2=42, 此时|QM |的最小值为32-16=4,这样的直线l 2有两条,设满足条件的两个公一共点为M 1,M 2,易证四边形M 1CM 2Q 是正方形,∴l 2的方程是x =1或者y =-4.B 组1.(2021年质检)圆心在直线2x -3y -1=0上的圆与x 轴交于A (1,0),B (3,0)两点,那么圆的方程为________________.解析:所求圆与x 轴交于A (1,0),B (3,0)两点,故线段AB 的垂直平分线x =2过所求圆的圆心,又所求圆的圆心在直线2x -3y -1=0上,所以两直线的交点坐标即为所求圆的圆心坐标,解之得圆心坐标为(2,1),进一步可求得半径为2,所以圆的HY 方程为(x -2)2+(y -1)2=2.2.(2021年调研)假设直线ax +by =1过点A (b ,a ),那么以坐标原点O 为圆心,OA 长为半径的圆的面积的最小值是___.解析:∵直线ax +by =1过点A (b ,a ),∴ab +ab =1,∴ab =12,又OA =a 2+b 2,∴以O 为圆心,OA 长为半径的圆的面积:S =π·OA 2=(a 2+b 2)π≥2ab ·π=π,∴面积的最小值为π.3.(2021年高考卷改编(gǎibiān))点P (4,-2)与圆x 2+y 2=4上任一点(yī diǎn)连线的中点轨迹方程是________________.解析(jiě xī):设圆上任一点(yī diǎn)坐标为(x 0,y 0),那么x 02+y 02=4,连线中点坐标为(x ,y ),那么⎩⎪⎨⎪⎧ 2x =x 0+4,2y =y 0-2,⇒⎩⎪⎨⎪⎧x 0=2x -4,y 0=2y +2,代入x 02+y 02=4中得(x -2)2+(y +1)2=1. 4.点P (1,4)在圆C :x 2+y 2+2ax -4y +b =0上,点P 关于直线x +y -3=0的对称点也在圆C 上,那么a =________,b =________.解析:点P (1,4)在圆C :x 2+y 2+2ax -4y +b =0上,所以2a +b +1=0,点P 关于直线x+y-3=0的对称点也在圆C上,所以圆心(-a,2)在直线x+y-3=0上,即-a+2-3=0,解得a=-1,b=1.5.圆的方程为x2+y2-6x-8y=0.设该圆过点(3,5)的最长弦和最短弦分别为AC和BD,那么四边形ABCD的面积为___________.解析:由题意知,圆心坐标为(3,4),半径r=5,故过点(3,5)的最长弦为AC=2r=10,最短弦BD=252-12=46,四边形ABCD的面积为20 6.6.过圆x2+y2=4外一点P(4,2)作圆的两条切线,切点为A、B,那么△ABP的外接圆的方程是____________________.解析:∵圆心为O(0,0),又∵△ABP的外接圆就是四边形OAPB的外接圆.其直径d=OP=25,∴半径r= 5.而圆心C为(2,1),∴外接圆的方程为(x-2)2+(y-1)2=5.7.动点P(x,y)满足x2+y2-|x|-|y|=0,O为坐标原点,那么PO的取值范围是______.解析:方程x2+y2-|x|-|y|=0可化为(|x|-12)2+(|y|-12)2=12.所以动点P(x,y)的轨迹如图:为原点和四段圆孤,故PO的取值范围是{0}∪[1, 2 ].8.(2021年质检)曲线f(x)=x ln x在点P(1,0)处的切线l与坐标轴围成的三角形的外接圆方程是____________.解析(jiě xī):曲线(qūxiàn)f(x)=x ln x在点P(1,0)处的切线(qiēxiàn)l方程(fāngchéng)为x-y-1=0,与坐标轴围成的三角形的外接圆圆心为(12,-12),半径为22,所以方程为(x-12)2+(y+12)2=12.答案:(x-12)2+(y+12)2=129.设实数x 、y 满足x 2+(y -1)2=1,假设对满足条件的x 、y ,不等式y x -3+c ≥0恒成立,那么c 的取值范围是________.解析:由题意,知-c ≤y x -3恒成立,又y x -3=y -0x -3表示圆上的点与定点(3,0)连线的斜率,范围为[-34,0],所以-c ≤-34,即c 的取值范围是c ≥34. 10.如图,在平面直角坐标系xOy 中,A (a,0)(a >0),B (0,a ),C (-4,0),D (0,4),设△AOB 的外接圆圆心为E .(1)假设⊙E 与直线CD 相切,务实数a 的值;(2)设点P 在圆E 上,使△PCD 的面积等于12的点P 有且只有三个,试问这样的⊙E 是否存在,假设存在?求出⊙E 的HY 方程;假设不存在,说明理由.解:(1)直线CD 方程为y =x +4,圆心E (a 2,a 2),半径r =22a . 由题意得|a 2-a 2+4|2=22a ,解得a =4. (2)∵|CD |=(-4)2+42=42,∴当△PCD 面积为12时,点P 到直线CD 的间隔 为3 2.又圆心E 到直线CD 间隔 为22(定值),要使△PCD 的面积等于12的点P 有且只有三个,只须圆E 半径2a 2=52,解得a =10, 此时,⊙E 的HY 方程为(x -5)2+(y -5)2=50.11.在Rt △ABO 中,∠BOA =90°,OA =8,OB =6,点P 为它的内切圆C 上任一点,求点P 到顶点A 、B 、O 间隔 的平方和的最大值和最小值.解:如下(rúxià)图,以O 为原点,OA 所在(suǒzài)直线为x 轴,OB 所在(suǒzài)直线为y 轴,建立(jiànlì)直角坐标系xOy ,那么A (8,0),B (0,6),内切圆C 的半径r =12(OA +OB -AB )=8+6-102=2.∴内切圆C 的方程为(x -2)2+(y -2)2=4. 设P (x ,y )为圆C 上任一点,点P 到顶点A 、B 、O 的间隔 的平方和为d ,那么d =P A 2+PB 2+PO 2=(x -8)2+y 2+x 2+(y -6)2+x 2+y 2=3x 2+3y 2-16x -12y +100=3[(x -2)2+(y -2)2]-4x +76.∵点P (x ,y )在圆C 上,∴(x -2)2+(y -2)2=4.∴d =3×4-4x +76=88-4x .∵点P (x ,y )是圆C 上的任意点,∴x ∈[0,4].∴当x =0时,d max =88;当x =4时,d min =72.12.(2021年高考卷)在平面直角坐标系xOy 中,设二次函数f (x )=x 2+2x +b (x ∈R )的图象与两个坐标轴有三个交点,经过这三个交点的圆记为C .(1)务实数b 的取值范围;(2)求圆C 的方程;(3)问圆C 是否经过某定点(其坐标与b 无关)?请证明你的结论.解:(1)显然b ≠0.否那么,二次函数f (x )=x 2+2x +b 的图象与两个坐标轴只有两个交点(0,0),(-2,0),这与题设不符.由b ≠0知,二次函数f (x )=x 2+2x +b 的图象与y 轴有一个非原点的交点(0,b ),故它与x 轴必有两个交点,从而方程x 2+2x +b =0有两个不相等的实数根,因此方程的判别式4-4b >0,即b <1.所以(suǒyǐ)b 的取值范围(fànwéi)是(-∞,0)∪(0,1).(2)由方程(fāngchéng)x 2+2x +b =0,得x =-1±1-b .于是(yúshì),二次函数f (x )=x 2+2x +b 的图象与坐标轴的交点是(-1-1-b ,0),(-1+1-b ,0),(0,b ).设圆C 的方程为x 2+y 2+Dx +Ey +F =0.因圆C 过上述三点,将它们的坐标分别代入圆C 的方程,得 ⎩⎪⎨⎪⎧ (-1-1-b )2+D (-1-1-b )+F =0,(-1+1-b )2+D (-1+1-b )+F =0,b 2+Eb +F =0.解上述方程组,因b ≠0,得⎩⎪⎨⎪⎧ D =2,E =-(b +1),F =b .所以,圆C 的方程为x 2+y 2+2x -(b +1)y +b =0.(3)圆C 过定点.证明如下:假设圆C 过定点(x 0,y 0)(x 0,y 0不依赖于b ),将该点的坐标代入圆C 的方程,并变形为x 02+y 02+2x 0-y 0+b (1-y 0)=0.(*)为使(*)式对所有满足b <1(b ≠0)的b 都成立,必须有1-y 0=0,结合(*)式得x 02+y 02+2x 0-y 0=0.解得⎩⎪⎨⎪⎧ x 0=0,y 0=1,或者⎩⎪⎨⎪⎧x 0=-2,y 0=1.经检验知,点(0,1),(-2,1)均在圆C 上, 因此,圆C 过定点. 内容总结。
2024届新高考一轮复习人教A版 第八章 第3节 圆的方程 课件(31张)
A.1
B.2
C.-4
D.8
解析:由 x2+y2+x+4y-m=0 得(x+)2+(y+2)2=m+4+,所以 m+4+=,
所以 m=-4.
3.(选择性必修第一册P85T1改编)与圆(x-1)2+y2=4同圆心且经过点P(-2,4)的
圆的标准方程为( D )
A.(x-1)2+y2=17
第3节
圆的方程
[课程标准要求]
1.掌握圆的标准方程的特征,能根据所给条件求圆的标准方程.
2.掌握圆的一般方程,能对圆的一般方程与标准方程进行互化,了解二元二次
方程表示圆的条件.
1.圆的定义与方程
定义
标准方程
平面上到 定点 的距离等于 定长 的点的集合叫做圆
2
2
圆心为 (a,b)
2
(x-a) +(y-b) =r (r>0)
.
.
.
1.以A(x1,y1),B(x2,y2)为直径端点的圆的方程为(x-x1)(x-x2)+(y-y1)(y-y2)=0.
2.同心圆系方程:(x-a)2+(y-b)2=r2(r>0),其中a,b是定值,r是参数.
1.(选择性必修第一册P85T2改编)已知圆的标准方程是(x-3)2+(y+2)2=16,下列
= ,
+ - = ,
故所求圆的方程为(x-1)2+(y-1)2=4.故选 C.
法二(几何法)
由
= ,
+ - =
圆心一定在 AB 的中垂线上,A#43;(y-1)2=4.故选 C.
圆的方程3 PPT课件
o
因为点M在圆上,所以 x02+y02=r2 , 所求切线方程是
x0x+y0y=r2
过一点求圆的切线的方程
1、求经过圆上一点M(x0,y0)的切线的方程 。 (1)圆C的方程为:
1、下列方程各表示什么图形?
(1) x2+y2=0
(原点)
(圆心为(1,-2)半径为1的圆) (2) x2+y2-2x+4y-6=0
(3) x2+y2+2ax-b2=0 (圆心为(-a,0)半径为 的圆)
2、求下列各圆的半径和圆心坐标:
(1) x2+y2-6x=0 半径为3 圆心坐标为(3,0) (2) x2+y2+2by=0 半径为b 圆心坐标为(0,-b)
已知圆心是C(1,3),那么只要求出圆的半径r, 就能写出圆的方程。
解 因为圆C和直线3x-4y-7=0相切,所以 半径r等于圆心C到这条直线的距离。根据点 到直线的距离公式,得
因此,所求的圆的方程是
例3 已知圆的方程是 ,求经过 圆上一点M(x0,y0)的切线的方程 。 解: 如图2-8,设切线的斜率为k。OM的斜率为K1.
过一点求圆的切线的方程
1、求经过圆上一点M(x0,y0)的切线的方程 。 (1)圆C的方程为:
(2)圆C的方程为: 2、求经过圆外一点M(x0,y0)的切线的方程 。 常用求法简介:
练 习 2
例2 已知一曲线是与两个定点O(0,0)、A(3,0)距离 的比 为1:2的点的轨迹,求这个曲线的方程,并画出曲线。 解: 在给定的坐标系里,设点M(x、y)是曲线上 M 任意一点,也就是点M属于集合
圆的方程的三种形式
圆的方程的三种形式
圆的方程有两种形式,分为标准方程、一般方程。
圆的标准方程形式为:(x-a)^2+(y-b)^2=r^2。
圆的一般方程形式为:x^2+y^2+Dx+Ey+F=0。
和标准方程对比来看,其实D=-2a,E=-2b,F=a^2+b^2-r^2。
圆的方程形式
圆的标准方程:在平面直角坐标系中,以点O(a,b)为圆心,以r为半径的圆的标准方程是(x-a)^2+(y-b)^2=r^2。
圆的一般方程:把圆的标准方程展开,移项,合并同类项后,可得圆的一般方程是x^2+y^2+Dx+Ey+F=0。
和标准方程对比,其实D=-2a,E=-2b,F=a^2+b^2-r^2。
圆
在一个平面内,一动点以一定点为中心,以一定长度为距离旋转一周所形成的封闭曲线叫做圆。
圆有无数条对称轴。
在同一平面内,到定点的距离等于定长的点的集合叫做圆。
圆可以表示为集合{M||MO|=r},其中O是圆心,r是半径。
圆的标准方程是(x-a)²+(y - b)² = r²,其中点(a,b)是圆心,r是半径。
圆形是一种圆锥曲线,由平行于圆锥底面的平面截圆锥得到。
2025高考数学一轮复习-8.3-圆的方程【课件】
A.a<-2
B.-23<a<0
C.-2<a<0
D.-2<a<23
【解析】 由方程表示圆的条件得 a2+(2a)2-4(2a2+a-1)>0, 即 3a2+4a-4<0,∴-2<a<23.故选 D.
6.已知实数 x,y 满足(x-2)2+y2=4,则 3x2+4y2 的最大值为___4_8____.
3.过点 A(1,-1),B(-1,1),且圆心在直线 x+y-2=0 上的圆的方程是( C ) A.(x-3)2+(y+1)2=4 B.(x+3)2+(y-1)2=4 C.(x-1)2+(y-1)2=4 D.(x+1)2+(y+1)2=4
【解析】 解法一:∵圆心在直线 x+y-2=0 上,
设圆心(a,2-a),圆方程为(x-a)2+(y-2+a)2=r2,代入点 A(1,-1),B(-1,1)得
【解析】 由(x-2)2+y2=4,得 y2=4x-x2≥0,得 0≤x≤4.所以 3x2+4y2=3x2+4(4x -x2)=-x2+16x=-(x-8)2+64,0≤x≤4,所以当 x=4 时,3x2+4y2 取得最大值 48.
易错点睛:(1)忽视表示圆的充要条件 D2+E2-4F>0 致误. (2)忽视圆的方程中变量的取值范围致误.
x-y-1=0.联立 Nhomakorabeax-y-1=0, 2x-7y+8=0,
解得
x=3, y=2.
∴r= 6-32+0-22= 13.
∴圆 C 的方程为(x-3)2+(y-2)2=13.
解法二(待定系数法):设圆 C 的方程为(x-a)2+(y-b)2=r2.
由题意得61- -aa22+ +05- -bb22= =rr22, , 2a-7b+8=0,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
26 12 37 D.x2+y2- x- y- =0 5 5 5
解析:设所求圆的方程为 (x+ 1)2+ (y-2)2- 4+ k(2x+ y+ 4)= 0, 即 x2+y2+ 2(k+ 1)x+ (k-4)y+ 1+ 4k= 0, 化为圆的标准方程得 [x+ (k + 1)]
2
2 1 1 1 + y+2k-4 = (k+ 1)2+ (k- 4)2- (4k+ 1), 由 (k+ 1)2+ (k 4 4
D=-10, 或E=-8, F=4.
故所求圆的方程为x2+y2-2x-12=0或x2+y2-10x-8y+4=0.
(2)法一
设圆的方程为(x-a)2+(y-b)2=10.
由圆心在直线y=2x上,得b=2a.① 由圆在直线x-y=0上截得的弦长为4 2, 将y=x代入(x-a)2+(y-b)2=10, 整理得2x2-2(a+b)x+a2+b2-10=0. 由弦长公式得 2 a+b2-2a2+b2-10=4 2,
解析: 法一
直线 3x-4y+12=0 与两坐标轴的交点分别为 A(-
4,0),B(0,3), 所以线段 AB 的中点为
3 C -2,2,|AB|=5.
2
故所求圆的方程为(x+2)
32 52 + y-2 =2 .
法二 易得圆的直径的两端点为 A(-4,0),B(0,3), 设 P(x,y)为圆上任一点,则 PA⊥PB. y y-3 ∴kPA· kPB=-1 得 · =-1(x≠-4,x≠0), x+ 4 x 即 x(x+4)+y(y-3)=0. 化简得(x+2)
第三节
圆的方程
[最新考纲]
1.掌握确定圆的几何要素,掌握圆的标准方程与一般方程. 2.初步了解用代数方法处理几何问题.
1.圆的定义及方程
定义 标准
平面内与 定点 的距离等于 定长的点的集合(轨迹) (x-a)2+(y-b)2=r2 (r>0)
方程
一般 方程
r 圆心: (a,b,半径: )
D E - ,- 2 2
)
1 解析:由(4m)2+4-4×5m>0 知 m< 或 m>1. 4
答案:B
1.确定一个圆的方程,需要三个独立条件.“选形式、定 参数”是求圆的方程的基本方法:是指根据题设条件恰当选择 圆的方程的形式,进而确定其中的三个参数.
2.求圆心在过切点且与切线垂直的直线上. (2)圆心在任一弦的中垂线上.
答案:B
3. 过直线 2x+y+4=0 和圆(x+1)2+(y-2)2=4 的交点,并且 面积最小的圆的方程为 26 12 37 A.x2+y2+ x- y+ =0 5 5 5 26 12 37 B.x +y + x- y- =0 5 5 5
2 2
(
)
26 12 37 C.x +y - x- y+ =0 5 5 5
-4)2-(1+4k)>0,得 5k2-16k+16>0,此时,所求圆的半径 r= 1 1 k+12+ k-42-1+4k= 5k2-16k+16. 4 2 -16 8 16 显然,当 k=- ,即 k= 时,5k2-16k+16 有最小值 ,此时, 10 5 5 26 12 圆的半径最小, 从而面积最小. 故所求的圆的方程为 x2+y2+ x- 5 5 37 y+ =0. 5
10-8= 2.
又弦心距等于圆心(a,b)到直线x-y=0的距离, |a-b| |a-b| 所以d= ,即 = 2.③ 2 2 又已知b=2a.④ 解③、④得a=2,b=4或a=-2,b=-4. 故所求圆的方程是(x-2)2+(y-4)2=10 或(x+2)2+(y+4)2=10.
与圆有关的最值问题也是命题的热点内容,它着重考查数 形结合与转化思想.归纳起来常见的命题角度有:
用. (2)待定系数法:利用待定系数法求圆的方程关键是根据条件设出圆的方 程,再由题目给出的条件建立关于 a,b,r或D,E, F的方程组,求 出相关量.一般地,与圆心和半径有关,选择标准式,否则,选择一 般式.不论是哪种形式,都要确定三个独立参数,所以应该有三个独 立等式.
[练一练]
1.圆心在 y 轴上且通过点(3,1)的圆与 x 轴相切,则该圆的方程是 ( A.x2+y2+10y=0 B.x2+y2-10y=0 C.x2+y2+10x=0 D.x2+y2-10x=0
x2+y2+Dx+Ey+F=0 圆心: (D2+E2-4F>0) 半径:
,
D2+E2-4F
2.点与圆的位置关系
点M(x0,y0)与圆(x-a)2+(y-b)2=r2的位置关系:
2 2 2 ( x - a ) + ( y - b ) > r 0 0 (1)若M(x0,y0)在圆外,则
2 2 2 (2)若M(x0,y0)在圆上,则 (x0-a) +(y0-b) =r
解
(1)设圆的方程为x2+y2+Dx+Ey+F=0(D2+E2-4F>0).①
将P,Q点的坐标分别代入①得
4D-2E+F=-20, D-3E-F=10,
② ③ ④
令x=0,由①得y2+Ey+F=0. 由已知|y1-y2|=4 3,其中y1,y2是方程④的两根, 所以(y1-y2)2=(y1+y2)2-4y1y2=E2-4F=48.⑤ D=-2, 解②、③、⑤组成的方程组得E=0, F=-12
2 2 2 ( x - a ) + ( y - b ) < r 0 0 (3)若M(x0,y0)在圆内,则
.
. .
对于方程x2+y2+Dx+Ey+F=0表示圆时易忽视D2+E2-4F >0这一成立条件.
[试一试]
方程 x2+y2+4mx-2y+5m=0 表示圆的充要条件是( 1 A. <m<1 4 1 C.m< 4 1 B.m< 或 m>1 4 D.m>1
解析:两圆的圆心均在第一象限,先求 |PC1|+|PC2|的最小值, 作点 C1 关于 x 轴的对称点 C1 (2, -3), 则(|PC1|+|PC2|)min=|C1 C2|=5 2,所以(|PM|+|PN|)min=5 2-(1+3)=5 2-4.
′ ′
答案:A
[类题通法]
数形结合法求解与圆有关的最值问题
答案:A
2.经过点(1,0),且圆心是两直线x=1与x+y=2的交点的圆的 方程为 A.(x-1)2+y2=1 C.x2+(y-1)2=1
x=1, 解析:由 x+y=2
( B.(x-1)2+(y-1)2=1 D.(x-1)2+(y-1)2=2
x=1, 得 y=1,
)
即所求圆的圆心坐标为 (1,1),又由该圆过点 (1,0),得其半 径为 1,故圆的方程为(x-1)2+(y-1)2=1.
当直线y=kx与圆相切时,斜率k取最大值或最小值,此时 |2k-0| = k2 + 1 3,解得k=± 3.(如图)
y 所以x的最大值为 3,最小值为- 3.
角度二
截距型最值问题
2.在[角度一]条件下求y-x的最大值和最小值.
解:y-x可看作是直线y=x+b在y轴上的截 距,当直线y=x+b与圆相切时,纵截距b取 得最大值或最小值,此时 图) 所以y-x的最大值为-2+ 6,最小值为-2- 6. |2-0+b| = 2 3 ,解得b=-2± 6.(如
2
32 52 +y-2 =2 .
32 25 + y-2 = 4
答案:(x+2)
2
(2014· 陕西卷)若圆C的半径为1,其圆心与点(1,0)关于直线y= x2+(y-1)2=1 . x对称,则圆C的标准方程为_______________ (2010新课标全国)圆心在原点且与直线x+y-2=0相切的圆
(3)两圆内切或外切时,切点与两圆圆心三点共线.
1.圆心在y轴上,半径为1,且过点(1,2)的圆的方程为( A.x2+(y-2)2=1 C.(x-1)2+(y-3)2=1 B.x2+(y+2)2=1 D.x2+(y-3)2=1
)
解 析 : 设 圆 心 坐 标 为 (0 , b) , 则 由 题 意 知 0-12+b-22=1,解得 b=2,故圆的方程为 x2 +(y-2)2=1.
角度四
利用对称性求最值
4.(2013· 重庆高考)已知圆 C1:(x-2)2+(y-3)2=1,圆 C2:(x -3)2+(y-4)2=9,M,N 分别是圆 C1,C2 上的动点,P 为 x 轴上的动点,则|PM|+|PN|的最小值为 A.5 2-4 B. 17-1 C.6-2 2 ( D. 17 )
解析:设圆心为(0,b),半径为 r,则 r=|b|, ∴圆的方程为 x2+(y-b)2=b2. ∵点(3,1)在圆上, ∴9+(1-b)2=b2,解得:b=5. ∴圆的方程为 x2+y2-10y=0.
)
答案:B
2.以直线3x-4y+12=0夹在两坐标轴间的线段为直径的圆的方 程为______________.
(1)形如 t= 题;
y- b 形式的最值问题,可转化为动直线斜率的最值问 x-a
(2)形如 t=ax+by 形式的最值问题, 可转化为动直线截距的最值 问题;
(3)形如 t=(x-a)2+(y-b)2 形式的最值问题,可转化为动点到定 点的距离的最值问题.
[针对训练] 已知点 P(x,y)是圆(x+2)2+y2=1 上任意一点. (1)求 P 点到直线 3x+4y+12=0 的距离的最大值和最小值; (2)求 x-2y 的最大值和最小值; y-2 (3)求 的最大值和最小值. x-1
2 + y2 = 2 的方程为x ____________ .
【针对训练】 根据下列条件,求圆的方程. (1)求过 P(4, -2), Q(-1,3)两点, 且在 y 轴上截得的线段长为 4 3 的圆的方程. (2)已知圆的半径为 10,圆心在直线 y=2x 上,圆被直线 x-y=0 截得的弦长为 4 2.