七年级下册数学第五六章测试题.docx
第6章 实数 人教版数学七年级下册单元测试(含答案)

第六章实数达标检测一、单选题:1.在实数,,,,,3.212212221…中,无理数的个数是()个.A.1B.2C.3D.4【答案】D【分析】无理数常见的三种类型(1)开不尽的方根;(2)特定结构的无限不循环小数;(3)含有π的绝大部分数,如2π.【详解】−1.414是有限小数,是有理数,是无理数,π是无理数,无限循环小数是有理数,是无理数,3.212212221…是无限不循环小数是无理数,故选:D.【点睛】本题主要考查的是无理数的认识,掌握无理数的常见类型是解题的关键.2.下列各式中,正确的是( )A.B.C.D.【答案】A【分析】根据立方根,算术平方根逐项判断即可.【详解】解:A. ,故该选项正确;B. ,故该选项错误;C. ,故该选项错误;D. ,故该选项错误.故选:A.【点睛】本题考查立方根,算术平方根,解题关键是理解立方根与算术平方根的意义.3.下列说法正确的是()A.平方根是B.的平方根是C.平方根等于它本身的数是1和0D.一定是正数【答案】D【分析】A、根据平方根的概念即可得到答案;B、的平方根其实是9的平方根;C、平方根等于它本身的数与算术平方根是它本身的数要分清楚;D、先判断出,再利用算术平方根的性质直接得到答案.【详解】A、是负数,负数没有平方根,不符合题意;B、,9的平方根是,不符合题意;C、平方根等于它本身的数是0,1的平方根是,不符合题意;D、,正数的算术平方根大于0,符合题意.故选:D.【点睛】此题考查了平方根及算术平方根的定义及性质,熟练掌握相关知识是解题关键.4.下列关于的说法中,错误的是()A.是无理数B.C.5的平方根是D.【答案】C【分析】根据无理数的定义,算术平方根的估算,平方根和化简绝对值依次判断即可.【详解】解:A、是无理数,说法正确,不符合题意;B、2<<3,说法正确,不符合题意;C、5的平方根是±,故原题说法错误,符合题意;D、,说法正确, 不符合题意;故选C.【点睛】本题考查了平方根、算术平方根的估算,无理数的定义.注意一个正数的平方根有两个,它们互为相反数.5.计算:-+-的结果是( )A.1B.-1C.5D.-3【答案】D【分析】首先求出各个根式的值,进而即可求解.【详解】-+-,=-3+2-2,=-3.故选D.【点睛】此题主要考查了实数的运算,解题关键是能够求解一些简单的二次根式的加减问题.6.如图,在数轴上表示实数的点可能().A.点P B.点Q C.点M D.点N【答案】C【分析】确定是在哪两个相邻的整数之间,然后确定对应的点即可解决问题.【详解】解:∵9<15<16,∴3<<4,∴对应的点是M.故选:C.【点睛】本题考查实数与数轴上的点的对应关系,解题关键是应先看这个无理数在哪两个有理数之间,进而求解.7.有一个数值转换器,原理如下:当输入的x为4时,输出的y是()A.4B.2C.D.-【答案】C【分析】直接利用规定的运算顺序计算得出答案.【详解】解:4的算术平方根为:=2,则2的算术平方根为:,是无理数.故选C.【点睛】本题考查算术平方根、有理数和无理数定义,正确把握运算顺序是解题关键.8.若与互为相反数,则的值为().A.B.C.D.【答案】A【分析】根据相反数与立方根的性质计算即可得答案.【详解】解:∵与是相反数,∴==∴3x-1=2y-1,整理得:3x=2y,即,故选A.【点睛】本题主要考查立方根的性质,正数的立方根是正数,负数的立方根还是负数,一个数只有一个立方根,熟练掌握立方根的性质是解题关键.9.如图所示,直径为单位1的圆从原点沿着数轴无滑动的逆时针滚动一周到达A点,则A点表示的数是( )A.﹣2π﹣1B.﹣1+πC.﹣1+2πD.﹣π【答案】D【分析】先求出圆的周长π,即得到OA的长,然后根据数轴上的点与实数一一对应的关系即可得到点A表示的数.【详解】∵直径为单位1的圆的周长=π×1=π,∴OA=π,∴点A表示的数为﹣π,故选D.【点睛】本题考查了实数与数轴,解题的关键是熟知数轴上的点与实数一一对应.10.如图,是按一定规律排成的三角形数阵,按图中数阵的排列规律,第9行从左至右第5个数是( )A.2B.C.5D.【答案】B【分析】根据三角形数列的特点,归纳出每一行第一个数的通用公式,即可求出第9行从左至右第5个数.【详解】根据三角形数列的特点,归纳出每n行第一个数的通用公式是,所以,第9行从左至右第5个数是=.【点睛】本题主要考查归纳推理的应用,根据每一行第一个数的取值规律,利用累加法求出第9行第五个数的数值是解决本题的关键,考查学生的推理能力.二、填空题:11.的算术平方根是_________;的平方根是____________.【答案】 2【分析】根据算术平方根和平方根的定义求解即可.【详解】解∵,∴的算术平方根是2,的平方根是±3.故答案为:2,±3.【点睛】本题主要考查了算术平方根,平方根的定义,解题的关键在于能够熟练掌握平方根和算术平方根的定义.12._____;______;______;______.【答案】 2 3.5【分析】根据平方根的定义、算术平方根的定义以及立方根的定义,即如果一个数的平方等于a,这个数就叫做a的平方根;一般地,如果一个正数x的平方等于a,即,那么这个正数x叫做a的算术平方根,记作;如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根.这就是说,如果,那么x叫做a的立方根,记作:.计算即可.【详解】原式=2;原式;原式;原式;故答案为:2,,,.【点睛】本题主要考查了平方根,算术平方根以及立方根,熟记相关定义是解答本题的关键.13.若将三个数,,表示在数轴上,其中一个数被墨迹覆盖(如图所示),则这个被覆盖的数是______.【分析】根据被覆盖的数的范围求出被开方数的范围,然后即可得解.【详解】设被覆盖的数是,根据图形可得,∴,∴三个数,,中符合范围的是.故答案为:.【点睛】本题考查了实数与数轴的关系,根据数轴确定出被覆盖的数的取值范围是解题的关键.14.若一个正数的平方根是2a+1和﹣a+2,则a=_____,这个正数是_____.【答案】 -3 25【分析】根据已知得出方程2a+1﹣a+2=0,求出即可.【详解】解:∵一个正数的平方根是2a+1和﹣a+2,∴2a+1﹣a+2=0,解得:a=﹣3,即这个正数是[2×(﹣3)+1]2=25,故答案为:﹣3;25.【点睛】本题考查了对平方根的应用,注意:正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根.15.计算:=___.【答案】3【分析】原式利用绝对值的代数意义,以及二次根式性质化简即可得到结果.【详解】解:∵>0,<0,﹣2<0,∴原式=﹣()+|﹣2|=﹣2+3-+2=3,故答案为:3.【点睛】本题考查了绝对值的化简,二次根式的性质,准确掌握性质是解题的关键.16.比较大小:____;____;____;____.【答案】 <, <, >, >【分析】根据实数的比较大小,将根指数不同的根式化为与之相等的同根式比较,利用放缩法比较,利用中间过渡法比较,利用有理数化为根式形式比较.【详解】解:∵,,8<9,∴_<_;∵,即,∴_<___;∵,,∴,∴__>__;∵7=,_>__.故答案为<;<;>;>.【点睛】本题考查实数的大小比较,掌握实数的比较方法,化为同次根式,比较被开方数大小,放缩法比较大小,中间过渡法比较是解题关键.17.若与互为相反数,则________.【答案】2.【分析】根据相反数的概念列式,根据非负数的性质列出方程求出a、b的值,代入所求代数式计算即可.【详解】解:由题意得:,则:a−1=0,b+1=0,解得:a=1,b=−1,则1+1=2,故答案为:2.【点睛】本题考查了非负数的性质.解题的关键是掌握非负数的性质:几个非负数的和为0时,这几个非负数都为0.18.若2+的小数部分为a,5-的小数部分为b,则a+b的值为______.【答案】1【分析】估算确定出a与b的值,即可求出所求.【详解】解:∵4<6<9,∴2<<3,即4<2+<5,2<5-<3,则a=2+-4,b=5--2,则a+b=2+-4+5--2=1.故答案为1.【点睛】本题考查有理数的大小,弄清估算的方法是解本题的关键.19.已知的立方根是3,的算术平方根是4,c是的整数部分,则的平方根为___________.【答案】±4【分析】利用立方根的意义、算术平方根的意义、无理数的估算方法,求出a、b、c的值,代入代数式求出值后,进一步求得平方根即可.【详解】∵5a+2的立方根是3,3a+b-1的算术平方根是4,∴5a+2=27,3a+b-1=16,∴a=5,b=2,∵c是的整数部分,∴c=3,∴∴的平方根是±4.故答案为:±4.【点睛】本题主要考查的知识点是立方根的意义、算术平方根的意义、无理数的估算方法、平方根的意义、代数式求值,解题关键是读懂题意,掌握解答顺序,正确计算即可.20.已知,若,则______;________;_________;若,则_______.【答案】 214000 214【分析】根据平方根、算术平方根、立方根的概念依次求解即可.【详解】解:∵,且,∴,∵,∴,∵,∴,∵且,∴,故答案为:214000,±0.1463,-0.1289,214.【点睛】本题考查了平方根、算术平方根、立方根的概念等,属于基础题,熟练掌握其定义是解决本类题的关键.三、解答题:21.把下列各数分别填入相应的集合中:-(-230),,0,-0.99,1.31,5,,3.14246792…,-.(1)整数集合:{…}(2)非正数集合:{…}(3)正有理数集合:{…}(4)无理数集合:{…}【答案】(1)整数集合:{-(-230),0,5,…};(2)非正数集合:{0,-0.99,-,…};(3)正有理数集合:{-(-230),,1.31,5,…};(4)无理数集合:{,3.142 467 92…,…}【分析】根据整数、非负数、有理数、无理数的定义判断可得答案.【详解】解:根据整数、非负数、有理数、无理数的定义可得:(1)整数集合:{-(-230),0,5,…};(2)非正数集合:{0,-0.99,-,…};(3)正有理数集合:{-(-230),,1.31,5,…};(4)无理数集合:{,3.142 467 92…,…}【点睛】本题主要考查整数、非负数、有理数、无理数的定义.22.求下列各式的值:(1);(2);(3);(4).【答案】(1);(2);(3)0.4;(4)0.3【分析】根据平方根和立方根的定义,即可求解.【详解】解:(1);(2);(3);(4).【点睛】本题主要考查了平方根和立方根的定义,熟练掌握一般地,如果一个数的平方等于,则称是的一个平方根,记作:;如果一个数的立方等于,则称是的一个立方根,记作:是解题的关键.23.比较下列各组数的大小:(1)与6;(2)与;(3)与.【答案】(1);(2);(3)【分析】(1)直接化简二次根式进而比较得出答案;(2)直接估算无理数的取值范围进而比较即可;(3)直接估算无理数的取值范围进而比较即可.【详解】解:(1)∵,∴;(2)∵,∴;(3)∵,∴,∵,∴,∴.【点睛】本题主要考查了实数比较大小,正确估算无理数取值范围是解题关键.24.计算:(1)(2)【答案】(1)(2)9【分析】(1)根据绝对值的意义去绝对值,然后合并即可;(2)先进行开方运算,然后进行加法运算.【详解】解:(1)原式==2-4;(2)原式=-(-2)+5+2=2+5+2=9.25.求下列各式中的x:(1);(2)(3);(4).【答案】(1);(2);(3)或;(4)【分析】(1)先移项,系数化为1,再根据平方根定义进行解答.(2)由得=,再根据立方根定义即可解答.(3)由得:,再开平方后解一元一次方程即可.(4)由得:,再开平方后解一元一次方程即可.【详解】(1)移项得:,系数化为1:,∵,∴.(2)由得:,∵,∴,解得:.(3)由得:,∴或,解得:或.(4)由得:,,∴或,解得:.【点睛】本题考查平方根、立方根的意义,等式的性质,掌握等式的性质和平方根、立方根的求法是正确计算的前提.26.已知的平方根是,的算术平方根是4,求的平方根.【答案】【分析】根据平方根和算术平方根的定义即可求出和的值,进而求出a和b的值,将a和b的值代入即可求解.【详解】解:∵的平方根是,的算术平方根是4,∴=9,=16,∴a=4,b=-1把a=4,b=-1代入得:3×4-4×(-1)=16,∴的平方根为:.【点睛】本题主要考查了算术平方根和平方根,熟练掌握算术平方根和平方根的定义是解题的关键.注意:一个正数有两个平方根,它们互为相反数.27.已知M是m+3的算术平方根,N是n﹣2的立方根.求(n﹣m)2008.【答案】【分析】由M是m+3的算术平方根,N是n﹣2的立方根,建立方程组:,解方程组可得答案.【详解】解:M是m+3的算术平方根,N是n﹣2的立方根.即:解得:,【点睛】本题考查的是算术平方根,立方根的含义,二元一次方程组的解法,乘方符号的确定,掌握以上知识是解题的关键.28.观察下列各式,并用所得出的规律解决问题:(1),,,……,,,……由此可见,被开方数的小数点每向右移动______位,其算术平方根的小数点向______移动______位.(2)已知,,则_____;______.(3),,,……小数点的变化规律是_______________________.(4)已知,,则______.【答案】(1)两;右;一;(2)12.25;0.3873;(3)被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4)-0.01【分析】(1)观察已知等式,得到一般性规律,写出即可;(2)利用得出的规律计算即可得到结果;(3)归纳总结得到规律,写出即可;(4)利用得出的规律计算即可得到结果.【详解】解:(1),,,……,,,……由此可见,被开方数的小数点每向右移动两位,其算术平方根的小数点向右移动一位.故答案为:两;右;一;(2)已知,,则;;故答案为:12.25;0.3873;(3),,,……小数点的变化规律是:被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4)∵,,∴,∴,∴y=-0.01.【点睛】此题考查了立方根,以及算术平方根,弄清题中的规律是解本题的关键.。
2021-2022学年人教版数学七年级下册第5、6、7章综合试题

图254D3E21C B A初一数学第5、6、7章综合试题(A 卷)一.选择题(每小题2分,共20分) 1. 下列哪个图形是由左图平移得到的( )A BCD2、如图1,所示是一条街道的路线图,若AB//CD ,且∠ABC = 130º,那么当∠CDE 等于( )时,BC//DEA .40ºB . 50ºC .70ºD . 130º3、如图2,点A 的坐标为( )A.(3,4)B.(4,0)C.(4,3)D.(0,3) 4、25的算术平方根是( )A 、5B 、–5C 、5±D 、5± 5、如图,下列能判定AB ∥CD 的条件有( )个. (1) ︒=∠+∠180BCD B ; (2)21∠=∠; (3) 43∠=∠; (4) 5∠=∠B .A.1B.2C.3D.4 6、下列叙述正确的是( )A 、0.4的平方根是2.0±B 、32)(--的立方根不存在 C 、6±是(-6)2的算术平方根 D 、–27的立方根是–3 7、下列等式中,错误的是( )A 、864±=±B 、1511225121±= C 、62163-=- D 、1.0001.03-=- 8、下列各数中无理数有( ).3.141,227-,327-,π,0,0.1010010001A .2个B .3 个C . 4个D .5个 9、下列语句中,假命题的是( )A 、如果A(a ,b)在x 轴上,那么B (b ,a )在y 轴上xy 12341234AOXy1-11-1B 、如果直线a 、b 、c 满足a ∥b ,b ∥c 那么a ∥cC 、两直线平行,同旁内角互补D 、垂直于同一条直线的两直线互相平行 10、如果两个角的一边在同一直线上,而另一边互相平行,那么这两个角( ) A.相等 B.互补 C.相等且互余 D.相等且互补 二、填空题(每题3分,共15分)11、“两条直线相交,只有一个交点”写成“如果……,那么……”的形式_______________________________________________________________________ 12、25的平方根是 ,16的算术平方根是 13、如图,已知BC AC ⊥ ,AB CD ⊥,垂足分别是C 、D ,其中AC=6,BC=8,AB=10,CD=4.8,那么点B 到AC 的距离是 。
2021学年人教版七年级数学下册第6章实数期末综合复习知识点分类训练附答案.docx

2021学年人教版七年级数学下册《第6章实数》期末综合复习知识点分类训练(附答案)一. 平方根1.若2a- 1与-a+2都是正数x的平方根,求a的值和这个正数的值.2.已知|a-27|与2 3-36) 2互为相反数,求(抵诚)的平方根.二. 算术平方根3.正数”扩大到原来的100倍,则它的算术平方根()A.扩大到原来的100倍B.扩大到原来的10倍C.比原来增加了100倍D.比原来增加了10倍4,已知9.972 = 99.4009 , 9.982 = 99.6004 , 9.992 =99.8001,求^997000之值的个位数字为何?()A.0B. 4C. 6D. 85.给出表格:含k的代数式表示)6.我们规定用(a, b)表示一对数对.给出如下定义:记〃=坯其中(a>0, bVa>0),将(m, n)与(〃,m)称为数对(s b)的一对"对称数对例如:(4, 1)的一对“对称数对”为(■!, 1)和(1, 1);2 2(1)数对(9, 3)的一对"对称数对”是(2)若数对(3, y)的一对“对称数对”相同,则y的值为;(3)若数对(x, 2)的一个“对称数对”是(、但,1),则x的值为(4)若数对(a, b)的一个“对称数对”是(如,3桓),求沥的值.7.观察与猜想:(27= [3X9=3 B(I)J4号与J5啧分别等于什么?并通过计算验证你的猜想(2)计算L 一3为正整数)等于什么?V n 2+l 三. 非负数的性质:算术平方根 8.已知实数s b 为+ABC 的两边,且满足侦不五+溪一物+4 = 0, 边c 上的高的值是( ) 四. 立方根10.要使式子业埋有意义,则m 的取值范围是()m-2 A. mN - 2,且秫乂2B. mW2C. - 2D. m^211-己知寺2. 019^12639,为20.]痒2.7629,则 0Q2019^ ----------------------------------- '五. 计算器一数的开方12. 如图,某计算器中有 E, 口、ED 三个按键,以下是这三个按键的功能. ① [S :将荧幕显示的数变成它的算术平方根;②回:将荧幕显示的数变成它的倒 数; ③匠]:将荧幕显示的数变成它的平方.小明输入一个数据后,按照以下步骤操作,依次按照从第一步到第三步循环按键.若一开始输入的数据为10,那么第2018步之后,显示的结果是()第三边c =则第三c.探29.已知:非负数a 、Z?满足Va<+Vb^2=0-求】•ab + (a+l) (b+1) *(a+2)(b+2)的值.B. 100C. 0.01D. 0.1A.B.D.1 第一步第二步第三步输入x1013.用计算器探索:(1)7121(1+2+1)=.(2)”12321(1+2+3+2+1)=,(3 )^1234321(1+2+3+4+3+2+1) = ,…,由此猜想:01234567654321 (1+2+3+4+5+6+7+6+5+4+3+2+1=.14.(1)利用计算器计算:9+19=;(2)利用计算器计算:V99X 99+199=;(3)利用计算器计算:4999X 999+1999=;(4)利用计算器计算:内9…g x 9 +199…+9=,V n n n六. 无理数15.在实数:3. 1259,扼裁,0. 1020020002-, 0. 1030030003,-兀,A. 12B. 13七. 实数16.下列说法正确的是()A.0. ] 3是无理数B.匹是分数3C.4是无限小数,是无理数11D.0.13579-(小数部分由连续的奇数组成)是无理数17.有下列说法:①不存在最大的无理数,也不存在最小的无理数;②无限小数都是无理数;③无理数都是无限小数;④带根号的数都是无理数;⑤两个无理数的和还是无理数;⑥有绝对值最小的数;(*)2, o.3 26,(-0.5)3中无理数有x个,有理数有〉个,非负数有z个, 则x+y+z等于(C. 14D. 18⑦比负数大的是正数.其中,错误的有()A. 3个B. 4个C. 5个D. 6个18.我们规定:相等的实数看作同一个实数.有下列六种说法:①数轴上有无数多个表示无理数的点;②带根号的数不一定是无理数;③每个有理数都可以用数轴上唯一的点来表示;④数轴上每一个点都表示唯-- 个实数;⑤没有最大的负实数,但有最小的正实数;⑥没有最大的正整数,但有最小的正整数.其中说法错误的有(注:填写出所有错误说法的编号)19.在J],血,匹,…近两中,有理数的个数是()A. 42B. 43C. 44D. 4520.若一个自然数的算术平方根是机,则此自然数的下一个自然数(即相邻且更大的自然数)的算术平方根是()A.寸—2 +] B . +1 C. 777+1 D. +121.把几个数用大括号括起来,中间用逗号断开,若:{1, 2, 8}, { - 0.2, 1,岳,20%},7我们称之为集合,其中的数称其为集合的元素.如果一个集合满足:当有理数a是集合的元素时,有理数8 -。
人教版七年级数学下册第六章第三节实数习题五(含答案) (88)

人教版七年级数学下册第六章第三节实数作业复习题五(含答案)规定用符号[]m 表示一个实数m 的整数部分,例如203⎡⎤=⎢⎥⎣⎦,[]3.143=,按此规律1⎤⎦=( )A .1B .2C .3D .4【答案】D【解析】【分析】 的取值范围可以得到答案.【详解】解:∵34<<,415∴<<,所以1⎤⎦=4,故选:D.【点睛】此题考查了估算无理数的大小,注意首先估算无理数的值,再根据不等式的性质进行计算.估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.32.下列各数中,无理数是( )A .3.14B .3.010010001C .D .2π【答案】D【解析】【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:A、3.14是有理数,故A错误;B、3.010010001是有理数,故B错误;C、是有理数,故C错误;D、2π是无理数,故D正确.故选D.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.33.下列选项中的实数,属于无理数的是()D.﹣2A B.0.36 C.22【答案】A【解析】【分析】分清无理数和有理数的区别即可【详解】A是无理数;B、0.36是有理数;C、22是分数,为有理数;7D、﹣2是有理数.;故选:A.【点睛】此题主要考查了无理数的定义.解答此题的关键就是熟知无理数的定义:无理数为无限不循环小数.34.下列说法中,正确的是()A.数轴上的点表示的数都是有理数B.凡是有理数都可以用数轴上的点表示C.数轴上的点只能表示整数D.数轴上找不到既不表示正数,又不表示负数的点【答案】B【解析】【分析】根据实数与数轴上的点一一对应的关系即可得到答案.【详解】A. 数轴上的点表示的数可能是有理数也可能是无理数,故错误;B. 凡是有理数都可以用数轴上的点表示,正确;C. 数轴上的点能表示任何实数,故错误;D. 0既不表示正数,又不表示负数,故错误.故选择B项.【点睛】本题考查实数与数轴上的点,解题的关键是掌握实数与数轴上的点一一对应的关系.35)A.3到4之间B.4到5之间C.5到6之间D.6到7之间【答案】D【解析】【分析】的取值范围,最后估算和的运算结果.【详解】3,3<4,+6到7之间.故选D.【点睛】本题主要考查无理数的估算,找到无理数在哪两个整数之间是解题的关键.36.下列各数中,3.14159,0.131131113…,﹣π数的个数是()A.1个B.2个C.3个D.4个【答案】B【解析】【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】在所列实数中,无理数有0.131131113…,﹣π这2个,故选B .【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.37.比较下列各组数的大小,正确的是 ( )A .1.7>B .π 3.14<C .>D .5<【答案】C【解析】【分析】根据正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小可得答案.【详解】 解:根据正负数的比较大小的法则可得>故选:C .【点睛】此题主要考查了实数的比较大小,关键是掌握比较大小的法则.38.下列说法错误的是( )A .π是无理数B .面积为2的正方形的边长是无理数C.有限小数是有理数D.无限小数是无理数【答案】D【解析】【分析】直接利用无理数的定义分析得出答案.【详解】A.π是无理数,正确,不合题意;B.面积为2是无理数,正确,不合题意;C.有限小数是有理数,正确,不合题意;D.无限不循环小数是无理数,故此选项错误,符合题意.故选D.【点睛】本题考查了实数,正确掌握无理数的定义是解题的关键.39.在下列各数3.1415、0.2060060006…、0、0.2、π-227、无理数的个数是()A.1 B.2 C.3 D.4【答案】C【解析】【分析】化为2的形式,再根据无理数的定义进行解答即可【详解】=2,∴这一组数中的无理数有:0.2060060006…、-π3个.故答案为:C【点睛】此题考查无理数的定义,难度不大40.估计√6﹣1的值在( )A.1到2之间B.2到3之间C.3到4之间D.4到5之间【答案】A【解析】【分析】先估算出√6的范围,继而可得出√6﹣1的范围.【详解】解:∵2=√4<√6<√9=3,∴1<√6﹣1<2.故选:A.【点睛】本题考查估算无理数的大小,属于基础题,解题的关键是正确估算√6的范围.。
新版北师大版数学七年级下册第五章达标测试卷及参考答案(2套)

新版北师大版数学七年级下册第五章达标测试卷(1)时间:120分钟满分:120分题号一二三四五六总分得分一、选择题(本大题共6小题,每小题3分,满分18分,每小题只有一个正确选项)1.瑞昌剪纸是一门古老的传统民间艺术,选材十分广泛,山川树木、花鸟虫鱼、劳动生活场景应有尽有.下列四副瑞昌剪纸中,是轴对称图形的是( )2.已知等腰三角形顶角的度数为120°,那么它的底角为( )A.120° B.30°C.60° D.90°3.如图,已知△ABC与△A′B′C′关于直线MN对称,BB′交MN于点O,则下列说法不一定正确的是( )A.AC=A′C′ B.BO=B′O C.AA′⊥MN D.AB∥B′C′第3题图第4题图4.在7×9的网格中,∠AOB的位置如图所示,则到∠AOB两边距离相等的点应是( ) A.M点 B.N点 C.P点 D.Q点5.如图,在△ABE中,∠BAE=105°,AE的垂直平分线MN交BE于点C,且AB=CE,则∠B的度数是( )A.45° B.60°C.50° D.55°第5题图第6题图6.如图,AD是△ABC的角平分线,AB=AC,DE⊥AC于点E,BF∥AC交ED的延长线于点F,AE=2EC,给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AB=3BF.其中正确的结论为( )A.①②③B.①③④C.②③ D.①②③④二、填空题(本大题共6小题,每小题3分,满分18分)7.在“等腰三角形、正方形、圆”中,只有一条对称轴的图形是____________.8.如图①是一把园林剪刀,把它抽象为图②,其中OA=OB.若剪刀张开的角为30°,则∠A=________°.9.如图,在△ABC中,DE垂直平分AC,AE=6cm,△ABD的周长为26cm,则△ABC的周长为________cm.第9题图第10题图10.如图,在△ABC中,∠C=90°,O为△ABC的三条角平分线的交点,OD⊥BC,OE⊥AC,OF⊥AB,点D,E,F分别是垂足,且AB=10cm,BC=8cm,CA=6cm,则OD的长度为________cm.11.如图,△ABC的内部有一点P,且D,E,F是P分别以AB,BC,AC为对称轴的对称点.若△ABC的内角∠BAC=70°,∠ABC=60°,∠ACB=50°,则∠ADB+∠BEC+∠CFA=________°.12.有一张三角形纸片ABC,∠A=80°,点D是AC边上一点,沿BD方向剪开三角形纸片后,发现所得两张纸片均为等腰三角形,则∠C的度数可以是__________.三、解答题(本大题共5小题,每小题6分,满分30分)13.如图,以虚线为对称轴,画出图形的另一半,并说明图形是什么形状.14.如图,在△ABC中,∠BAC=108°,AB=AC,AD⊥BC,垂足为D,求∠BAD的度数.15.如图,在长方形ABCD中,将△ADE沿着AE折叠,使点D落在BC边上的点F处.如果∠BAF=60°,求∠DAE的度数.16.如图,在△ABC中,∠ACB=90°,BE平分∠ABC交AC于E,DE垂直平分AB交AB 于D.试说明:BE+DE=AC.17.如图,△ABC和△DCE都是等边三角形,且C是线段AD的中点,请仅用无刻度的直尺完成以下作图:(1)作BC的中点P;(2)过点C作AD的垂线.四、(本大题共3小题,每小题8分,共24分)18.如图,在△ABC中,AB=AC,∠BAC=120°,AD⊥BC于点D,且BD=BE,求∠ADE 的度数.19.解答下面2个小题:(1)已知等腰三角形的底角是顶角的2倍,求这个三角形各个内角的度数;(2)已知等腰三角形的周长是12,一边长为5,求它的另外两边长.20.如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,△ABC的面积是30cm2,AB=12cm,AC=8cm,求DE的长.五、(本大题共2小题,每小题9分,共18分)21.如图,在△ABC中,AB边的垂直平分线l1交BC于D,AC边的垂直平分线l2交BC于E,l与l2相交于点O.△ADE的周长为6cm.1(1)求BC的长;(2)分别连接OA,OB,OC,若△OBC的周长为16cm,求OA的长.22.如图①,定义:在四边形ABCD中,若AD=BC,且∠ADB+∠BCA=180°,则把四边形ABCD叫作互补等对边四边形.如图②,在等腰△ABE中,AE=BE,四边形ABCD是互补等对边四边形.试说明:∠ABD=∠BAC=12∠E.六、(本大题共12分)23.(1)如图,△ABC为等边三角形,M是BC上任意一点,N是CA上任意一点,且BM=CN,BN与AM交于点Q,猜测∠BQM的度数,并做出合理的解释;(2)若点M是BC延长线上任意一点,点N是CA延长线上任意一点,且BM=CN,BN与AM 的延长线交于点Q,(1)中结论还成立吗?画出相应图形,说明理由.新版北师大版数学七年级下册第五章达标测试卷(1)参考答案1.D 2.B 3.D 4.A 5.C6.D 解析:∵AB =AC ,AD 平分∠BAC ,∴BD =CD ,AD ⊥BC ,故②③正确.∵BF ∥AC ,∴∠C =∠CBF .在△CDE 与△BDF 中,⎩⎨⎧∠C =∠CBF ,CD =BD ,∠EDC =∠FDB ,∴△CDE ≌△BDF ,∴DE =DF ,CE =BF ,故①正确.∵AE =2EC ,∴AC =3EC =3BF .∵AB =AC ,∴AB =3BF ,故④正确.故选D.7.等腰三角形 8.75 9.38 10.211.360 解析:连接AP ,BP ,CP .∵D ,E ,F 是P 分别以AB ,BC ,AC 为对称轴的对称点,∴∠ADB =∠APB ,∠BEC =∠BPC ,∠CFA =∠APC ,∴∠ADB +∠BEC +∠CFA =∠APB +∠BPC +∠APC =360°.12.40°或25°或10° 解析:由题意知△ABD 与△DBC 均为等腰三角形,对于△ABD ,可以分以下3种情况进行分类讨论.(1)AB =BD ,此时∠ADB =∠A =80°,∴∠BDC =180°-∠ADB =180°-80°=100°,∠C =12(180°-100°)=40°;(2)AB =AD ,此时∠ADB =12(180°-∠A )=12(180°-80°)=50°,∴∠BDC =180°-∠ADB =180°-50°=130°,∠C=12(180°-130°)=25°;(3)AD =BD ,此时∠ADB =180°-2×80°=20°,∴∠BDC =180°-∠ADB =180°-20°=160°,∠C =12(180°-160°)=10°.综上所述,∠C 的度数可以为40°或25°或10°.13.解:图略.(4分)图①为五角星,图②为一棵树.(6分)14.解:∵AB =AC ,AD ⊥BC ,∴AD 平分∠BAC ,(4分)∴∠BAD =12∠BAC =54°.(6分)15.解:由折叠可知,△ADE 与△AFE 关于AE 成轴对称,则∠DAE =∠FAE .(3分)∵∠BAD =90°,∠BAF =60°,∴∠FAD =30°,∴∠DAE =12∠FAD =15°.(6分)16.解:∵∠ACB=90°,∴AC⊥BC.∵ED⊥AB,BE平分∠ABC,∴CE=DE.(3分)∵DE垂直平分AB,∴AE=BE.∵AE+CE=AC,∴BE+DE=AC.(6分)17解:(1)如图①所示,点P即为所求.(3分)(2)如图②所示,CQ即为所求.(6分)18.解:∵AB=AC,∠BAC=120°,∴∠B=∠C=12(180°-∠BAC)=12×(180°-120°)=30°.(3分)∵BD=BE,∴∠BED=∠BDE=12(180°-∠B)=12×(180°-30°)=75°.(5分)∵AD⊥BC,∴∠ADB=90°,∴∠ADE=∠ADB-∠BDE=90°-75°=15°.(8分) 19.解:(1)设等腰三角形的顶角为x°,则底角为2x°,由题意得x+2x+2x=180,解得x=36,∴2x=72,∴这个三角形三个内角的度数分别为36°,72°,72°.(4分)(2)∵等腰三角形的一边长为5,周长为12,∴当5为底边长时,其他两边长都为3.5,5,3.5,3.5可以构成三角形;(6分)当5为腰长时,其他两边长分别为5和2,5,5,2可以构成三角形.(7分)∴另外两边长分别是3.5,3.5或5,2.(8分)20.解:∵AD为∠BAC的平分线,DE⊥AB,DF⊥AC,∴DE=DF.(2分)∵△ABC的面积是30cm2,AB=12cm,AC=8cm,∴12AB·DE+12AC·DF=30cm2,∴12×12DE+12×8DF=30cm2,(6分)∴DE=3cm.(8分)21.解:(1)∵l1,l2分别是线段AB,AC的垂直平分线,∴AD=BD,AE=CE,∴AD+DE+AE =BD+DE+CE=BC.(3分)∵△ADE的周长为6cm,即AD+DE+AE=6cm,∴BC=6cm.(4分) (2)∵AB边的垂直平分线l1与AC边的垂直平分线l2交于点O,∴OA=OB=OC.(6分)∵△OBC 的周长为16cm,即OC+OB+BC=16cm,∴OC+OB=16-6=10(cm),∴OC=5cm,∴OA=5cm.(9分)22.解:∵AE=BE,∴∠EAB=∠EBA.∵四边形ABCD是互补等对边四边形,∴AD=BC.(2分)在△ABD 与△BAC中,⎩⎨⎧AD =BC ,∠DAB =∠CBA ,AB =BA ,∴△ABD ≌△BAC ,(4分)∴∠ABD =∠BAC ,∠ADB =∠BCA .∵∠ADB +∠BCA =180°,∴∠ADB =∠BCA =90°.(6分)在等腰△ABE 中,∵∠EAB =∠EBA =12(180°-∠E )=90°-12∠E ,∴∠ABD =90°-∠EAB =90°-⎝ ⎛⎭⎪⎫90°-12∠E =12∠E ,∴∠ABD =∠BAC =12∠E .(9分)23.解:(1)∠BQM =60°.(1分)理由如下:∵△ABC 为等边三角形,∴AB =BC ,∠ACB =∠ABC =60°.又∵BM =CN ,∴△ABM ≌△BCN (SAS),∴∠BAM =∠CBN .(3分)∵∠CBN +∠ABN =∠ABC =60°,∴∠BAM +∠ABN =60°,∴∠AQB =120°,∴∠BQM =60°.(5分)(2)成立,所画图形如图所示.(7分)理由如下:∵△ABC 为等边三角形,∴AB =BC ,∠ACB =∠ABC =60°.又∵BM =CN ,∴△ABM ≌△BCN (SAS),∴∠BAM =∠NBC .(9分)∵∠BAC =∠ABC =60°,∴∠NBA =∠CAM .而∠CAM +∠QAB =180°-∠BAC =120°,∴∠NBA +∠QAB =120°.∴∠BQM =180°-(∠NBA +∠QAB )=60°.(12分)新版北师大版数学七年级下册第五章达标测试卷(2)一、选择题(每小题3分,共24分)1.如图是小华的正方形风筝图案,他以图中的对角线AB为对称轴,在对角线的下方再画一个三角形,使得新的风筝图案成为轴对称图形,若下列有一图形为此对称图形,则此图为()2.下列图形中,△A 'B'C'与△ABC关于直线MN成轴对称的是()3.如果一个三角形的两边长为2和5,则第三边长可能是()A.2B.3 C.5 D.84.在△ABC中,∠A:∠B:∠C=3:4:5,则∠C等于()A.45°B.60° C.75° D.90°3.如图,OP是∠AOB的平分线,点C,D分别在角的两边OA,OB上,添加下列条件,不能判定△POC≌△POD的是 ( )A.PC⊥OA,PD⊥OBB.OC=ODC.∠OPC=∠OPDD.PC=PD4.下列轴对称图形中,对称轴最多的是()5.如图,在△ABC中,AB=AC,∠A=30°,AB的垂直平分线l交AC于点D,则∠CBD的度数为()A.30°B.45°C.50°D.75°6.如图,在△ABC中,∠ACB=90°,∠A=20°,若将△ABC沿CD折叠,使B点落在AC边上的E 点处,则∠ADE的度数是()A.30°B.40°C.50°D.55°7.如图,在△ABC中,AB=AC, BC=BD,AD=DE=EB,则∠A等于()A.30°B.36°C.45°D.54°8.如图,在3×3方格图中,将其中一个小方格的中心画上半径相等的圆,使三个圆为轴对称图形,方法有()A.2种B.3种C.4种D.5种二、填空题(每小题4分,共32分)9.现有以下四种说法:①关于某条直线对称的两个图形是全等形;②平面上两个全等的图形一定关于某条直线对称;③两个对称图形对称点连线的垂直平分线就是它们的对称轴;④线段和角都是轴对称图形.其中错误的是 .(填写序号即可)10.如图,△ABC是等边三角形,BD平分∠ABC,点E在BC的延长线上,且BD=DE,则∠BDE=11.如图,P是∠AOB内一点,P1,P2分别是点P关于OA,OB的对称点,P1P2交OA于点M,交OB于点N,若P 1P2=5cm,则△PMN的周长是 .第5题图第6题图第7题图第8题图12.将量角器按如图所示的方式放置在三角形纸片上,使点C 在半圆圆心上,点B 在半圆上,则∠A 的度数约为 .13.如图,在△ABC 中,AD 为角平分线,DE ⊥AB 于点E ,DF ⊥AC ⊥于点F ,AB=10cm,AC=8cm,△ABC 的面积为45cm 2,则DE 的长度为 cm.14. 如图,在梯形ABCD 中,AD ∥⊥BC,将梯形沿对角线BD 折叠,点A 恰好落在DC 边上的点A '处,若∠A 'BC=15°,则∠A 'BD 的度数为 .15. 如图,△ABC 的三边AB,BC,CA 的长分别为40,50,60,其三条角平分线交于点O ,则 S △ABO : S △BCO :S △CAO = .16. 将一个等腰三角形(底角大于60°) 沿对称轴对折后,剪掉一个60°的角,展开后得到如图所示的形状,若∠ABD=15°,则∠A= . 二、解答题(共64分)第16题图第15题图第12题图第10题图第11题图第14题图第13题图17.(10分)秋天红透的枫叶,总能勾起人们无尽的遐想,所以诗人杜牧说:“停车坐爱枫林晚,霜叶红于二月花.”下图中有半片枫叶,请以直线L为对称轴补画出枫叶的另一半.18.(10分)如图,∠ABC=60°,AD垂直平分BC于点D,∠ABC的平分线BE交AD于点E,连接EC,求∠AEC的度数.19.(10分)如图,点D为锐角∠ABC的平分线上一点,点M 在边BA上,点N在边BC上,∠BMD+∠BND=180°试说明:DM=DN20.(14分)如图,在等腰△ABC中,CH是底边上的高,点P是线段CH上不与端点重合的任意一点,连接AP并延长交BC于点E,连接BP并延长交AC于点F.试说明:(1)∠CAE=∠CBF(2)AE=BF21.(20分)如图1,在△ABC中,AB=AC,AB的垂直平分线交AB于点N,交BC的延长线于点M,∠A=40°.(1)求△NMB的大小.(2)如图2,如果将(1)中∠A的度数改为70°,其余条件不变,再求∠NMB的大小. (3)根据(1)、(2)的计算,你能发现其中蕴含的规律吗?请说明理由.(4)如图3,将(1)中∠A改为钝角,其余条件不变,对这个问题规律的认识是否需要修改?请你代入一个钝角度数验证你的结论.新版北师大版数学七年级下册第五章达标测试卷(2)参考答案。
人教版七年级数学下册第5 6 7单元测试题及答案汇总-推荐下载

A、第一次左拐 30°,第二次右拐 30°
B、第一次右拐 50°,第二次左拐 130° C、第一次右拐 50°,第二次右拐 130°
D、第一次向左拐 50°,第二次向左拐 130°
6、下列哪个图形是由左图平移得到的( )
A
7、如图,在一个有 4×4 个小正方形组成的正方形网格中,阴影
部分面积与正方形 ABCD 面积的比是(
B
A
B
4
C
3
M
2
1
G
E
N
FC
D
3
五、(第 23 题 9 分,第 24 题 10 分,共 19 分)
23、如图,E 点为 DF 上的点,B 为 AC 上的点,∠1=∠2,∠C=∠D,那么 DF∥AC,请完成它成立
的理由 ∵∠1=∠2,∠2=∠3 ,∠1=∠4( ∴∠3=∠4( ∴________∥_______ (
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术通关,1系电过,力管根保线据护敷生高设产中技工资术艺料0不高试仅中卷可资配以料置解试技决卷术吊要是顶求指层,机配对组置电在不气进规设行范备继高进电中行保资空护料载高试与中卷带资问负料题荷试2下卷2,高总而中体且资配可料置保试时障卷,各调需类控要管试在路验最习;大题对限到设度位备内。进来在行确管调保路整机敷使组设其高过在中程正资1常料中工试,况卷要下安加与全强过,看度并22工且22作尽22下可22都能22可地护以缩1关正小于常故管工障路作高高;中中对资资于料料继试试电卷卷保破连护坏接进范管行围口整,处核或理对者高定对中值某资,些料审异试核常卷与高弯校中扁对资度图料固纸试定,卷盒编工位写况置复进.杂行保设自护备动层与处防装理腐置,跨高尤接中其地资要线料避弯试免曲卷错半调误径试高标方中高案资等,料,编试要5写、卷求重电保技要气护术设设装交备备置底4高调、动。中试电作管资高气,线料中课并敷3试资件且、设卷料中拒管技试试调绝路术验卷试动敷中方技作设包案术,技含以来术线及避槽系免、统不管启必架动要等方高多案中项;资方对料式整试,套卷为启突解动然决过停高程机中中。语高因文中此电资,气料电课试力件卷高中电中管气资壁设料薄备试、进卷接行保口调护不试装严工置等作调问并试题且技,进术合行,理过要利关求用运电管行力线高保敷中护设资装技料置术试做。卷到线技准缆术确敷指灵设导活原。。则对对:于于在调差分试动线过保盒程护处中装,高置当中高不资中同料资电试料压卷试回技卷路术调交问试叉题技时,术,作是应为指采调发用试电金人机属员一隔,变板需压进要器行在组隔事在开前发处掌生理握内;图部同纸故一资障线料时槽、,内设需,备要强制进电造行回厂外路家部须出电同具源时高高切中中断资资习料料题试试电卷卷源试切,验除线报从缆告而敷与采设相用完关高毕技中,术资要资料进料试行,卷检并主查且要和了保检解护测现装处场置理设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
七年级下册第五章——第六章综合试题卷
学习好资料 欢迎下载七年级下册第五章——第六章综合试题卷一、 填空题。
(每小题4分,共32分)1、若∠A 与∠B 互为邻被角,且∠A=125°,则∠B=_________。
2、如图,OA ⊥OB 、∠AOC ∶∠BOC=2∶1,则∠AOC=_______,∠BOC=_________。
3、如图,直线AB 、CD 、EF 分别相交于点O ,∠AOE=25°,∠DOF=45°,则∠AOC =_______。
4、a 、b 、c 是平面内的三条不同的直线,若a ∥c ,b ∥的位置关系是________。
5、如图,直线AB ∥CD ,EF 与AB 、CD 分别相交于∠BGF=118º,则∠EHD=______ 。
6、如图,∠A=120°,∠C=60°,EF 与AB 、CD ∠EHC=70°,则∠AGH= ____。
7、命题“若∠1=30°,∠2=30°,则∠1=∠2” 的题设是_______________,结论是_____________。
8、把命题“对顶角相等”改写成“如果------,那么是______________________________________________。
10.在数轴上表示的点离原点的距离是 。
的边长为x ,那么x =11. 9的算术平方根是 ;94的平方根是 , 271的立方根是 , -125的立方根是 .25-的相反数是 ,32-= ;=-2)4( ; =-33)6( ; 2)196(= .38-= .比较大小215- 5.0; 15. 要使62-x 有意义,x 应满足的条件是16.已知051=-+-b a ,则2)(b a -的平方根是________; 17.10.1== ; 18. 一个正数x 的平方根是2a -3与5-a ,则a=________;19.一个圆它的面积是半径为3cm 的圆的面积的25倍,则这个圆的半径为_______. (每小题4分,共32分) . 有下列说法:其中正确的说法的个数是( ) A .1 B .2 C .3 D .4 .如果一个实数的平方根与它的立方根相等,则这个数是( ) A . 0 B . 正整数 C . 0和1 D . 1 能与数轴上的点一一对应的是( ) A 整数 B 有理数 C 无理数 D 实数 下列各数中,不是无理数的是 ( ) A.7 B. 0.5 C. 2π D. 0.151151115…)个之间依次多两个115(5.()20.7-的平方根是( )A .0.7-B .0.7±C .0.7D .0.49 6. 下列说法正确的是( ) A . 0.25是0.5 的一个平方根B ..正数有两个平方根,且这两个平方根之和等于0C . 7 2 的平方根是7D . 负数有一个平方根7.一个数的平方根等于它的立方根,这个数是 ( ) A.0 B.-1 C.1 D.不存在 8.下列运算中,错误的是 ( )①1251144251=,②4)4(2±=-,③3311-=- ④2095141251161=+=+A . 1个 B. 2个 C. 3个 D. 4个 9. 若225a =,3b =,则b a +的值为 ( )A .-8B .±8C .±2D .±8或±2 9、如图,直线AB 、CD 、EF 相交于点O ,且AB ⊥∠BOE=70°,则∠FOD= ( )A 、10°B 、20°C 、30°D 、7010、如图,直线DE 经过点A ,则能判定DE ∥BC A 、∠C=∠BAD B 、∠C=∠BAC C 、∠B+∠BAE=180° D 、∠C+∠BAD=180° 11、下列命题中,正确的是 ( ) A 、相等的角是对顶角 B 、和为180C 、两条直线被第三条直线所截,同位角相等D 、在同一平面内垂直于同一条直线的两条直线平行 12、在同一平面内两条直线的位置关系可能是( A 、相交或垂直 B 、平行或垂直 C 、相交或平行 D 、不能确定13、同一平面内的三条直线a 、b 、c ,若a ⊥b ,b ⊥c ,则a 与c 是( )A 、平行B 、相交C 、垂直 D14、如图,直线AB ∥CD ,EF 与AB 、CD ∠BGH =2∠DHG , 则∠GHC = ( )A 、60°B 、100°C 、120° 15、如图,AB ∥CD ∥EF ,且CG ∥AF A 、6个 B 、5个 C 、4个 D 、3个16、平移改变了图形的( )A 、形状B 、大小C 、位置D 、方向 三、解答题。
人教版七年级下册数学期中试卷 第五六七八章试题
人教版七年级下册数学期中考试试卷(考试范围:第五、六、七、八章)一、选择题(共8小题,每小题3分,共24分)每小题只有一个选项是正确的. 1.(3分)下列各图中,∠1与∠2是对顶角的是()A.B. C.D.2.(3分)下列实数:、、π、,其中无理数的个数是()A.1 B.2 C.3 D.43.(3分)下列各式正确的是()A.=±0.6 B.C.=3 D.=﹣24.(3分)下列语句不是命题的是()A.两点之间线段最短B.互补的两个角之和是180°C.画两条相交直线D.相等的两个角是对顶角5.(3分)如图,下列条件中,不能判断直线a∥b的是()A.∠1=∠3 B.∠2+∠4=180°C.∠4=∠5 D.∠2=∠36.(3分)如图,AB∥CD,DB⊥BC,∠1=40°,则∠2的度数是()A.40°B.45°C.50°D.60°7.(3分)已知y轴上的点P到原点的距离为5,则点P的坐标为()A.(5,0)B.(0,5)或(0,﹣5)C.(0,5)D.(5,0)或(﹣5,0)8.(3分)如图,下列说法不正确的是()A.∠1与∠EGC是同位角B.∠1与∠FGC是内错角C.∠2与∠FGC是同旁内角D.∠A与∠FGC是同位角二、填空题(共8小题,每小题3分,共24分)9.(3分)16的算术平方根是.10.(3分)将点A(1,1)先向左平移2个单位,再向下平移3个单位得到点B,则点B的坐标是.11.(3分)如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置.若∠EFB=65°,则∠AED′等于°.12.(3分)a、b、c是同一平面内不重合的三条直线,下列四个命题:①如果a∥b,a⊥c,那么b⊥c;②如果b∥a,c∥a,那么b∥c;③如果b⊥a,c⊥a,那么b⊥c;④如果b⊥a,c⊥a,那么b∥c.其中真命题是(填写所有真命题的序号)13.(3分)若,则=.14.(3分)已知点A(4,3),AB∥y轴,且AB=3,则B点的坐标为.15.(3分)如图,直线a∥b,一块含60°角的直角三角板ABC(∠A=60°),按如图所示放置,若∠1=55°,则∠2的度数为.16.(3分)已知方程2x a﹣3﹣(b﹣2)y|b|﹣1=4,是关于x、y的二元一次方程,则a﹣2b=.三、解答题(共5题,共52分)下面各题需要在答题制定位置写出文字说明、证明过程或计算步骤17.(10分)(1)++(2)(﹣)+|+|18.(10分)(1)若(x﹣1)2﹣16=0,求x的值;(2)解方程组:.19.(10分)如图,三角形ABC经过平移后,使点A与点A′(﹣1,4)重合,(1)画出平移后的三角形A′B′C′;(2)写出平移后的三角形A′B′C′三个顶点的坐标A′,B′,C′;(3)若三角形ABC内有一点P(a,b),经过平移后的对应点P′的坐标.20.(10分)如图,AB交CD于O,OE⊥AB.(1)若∠EOD=20°,求∠AOC的度数;(2)若∠AOC:∠BOC=1:2,求∠EOD的度数.21.(12分)如图,∠1+∠2=180°,∠DAE=∠BCF,DA平分∠BDF.(1)AE与FC会平行吗?说明理由.(2)AD与BC的位置关系如何?为什么?(3)BC平分∠DBE吗?为什么?四、选择题(共2小题,每小题4分,共8分)下面每小题的四个选项中,有且只有一个是正确的,请把正确选项前的代号填在答卷制定位置22.(4分)如图1,在边长为a的大正方形中剪去一个边长为b的小正方形,再将图中的阴影部分剪拼成一个长方形,如图2.这个拼成的长方形的长为30,宽为20,则图2中Ⅱ部分的面积是()A.60 B.100 C.125 D.15023.(4分)如图,长方形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙分别由点A (2,0)同时出发,沿长方形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2015次相遇地点的坐标是()A.(2,0)B.(﹣1,1)C.(﹣2,1)D.(﹣1,﹣1)五、填空题(共2题,每题4分,共8分)下列各题不需要写出解答过程,请将结果直接填写在答卷制定的位置24.(4分)方程组:的解是.25.(4分)如图,已知EF∥GH,A、D为GH上的两点,M、B为EF上的两点,延长AM于点C,AB平分∠DAC,直线DB平分∠FBC,若∠ACB=100°,则∠DBA的度数为.六、解答题下列各题需要在答题卷指定位置写出文字说明、证明过程或计算步骤26.(10分)如图,在三角形ABC中,过点C作CD∥AB,且∠1=70°,点E是AC边上的一点,且∠EFB=130°,∠2=20°.(1)直线EF与AB有怎样的位置关系,并说明理由.(2)若∠CEF=70°,求∠ACB的度数.27.(12分)如图,在直角坐标系中,点A、C分别在x轴、y轴上,CB∥OA,CB=8,OC=8,OA=16.(1)直接写出点A、B、C的坐标;(2)动点P从原点O出发沿x轴以每秒2个单位的速度向右运动,当直线PC把四边形OABC 分成面积相等的两部分时停止运动,求P点运动时间;(3)在(2)的条件下,在y轴上是否存在一点Q,连接PQ,使三角形CPQ的面积与四边形OABC的面积相等?若存在,求点Q的坐标;若不存在,请说明理由.28.(12分)如图1,点A是直线HD上一点,C是直线GE上一点,B是直线HD、GE之间的一点,∠DAB+∠ABC+∠BCE=360°(1)求证:AD∥CE;(2)如图2,作∠BCF=∠BCG,CF与∠BAH的平分线交于点F,若2∠B﹣∠F=90°,求∠BAH 的度数;(3)如图3,在(2)的条件下,若点P是AB上一点,Q是GE上任一点,QR平分∠PQG,PM∥QR,PN平分∠APQ,下列结论:①∠APQ+∠NPM的值不变;②∠NPM的度数不变,其中有且只有一个是正确的,请你找出正确的结论并求其值.参考答案与试题解析一、选择题(共8小题,每小题3分,共24分)下面每小题给出的四个选项中国,有且只有一个是正确的,请把正确选项前的代号填在答卷指定位置.1.(3分)(2014•福州模拟)下列各图中,∠1与∠2是对顶角的是()A.B. C.D.【分析】根据对顶角的定义对各选项分析判断后利用排除法求解.【解答】解:A、∠1与∠2不是对顶角,故A选项错误;B、∠1与∠2是对顶角,故B选项正确;C、∠1与∠2不是对顶角,故C选项错误;D、∠1与∠2不是对顶角,故D选项错误.故选:B.【点评】本题主要考查了对顶角的定义,熟记对顶角的图形是解题的关键.2.(3分)(2016春•江汉区期中)下列实数:、、π、,其中无理数的个数是()A.1 B.2 C.3 D.4【分析】先化简个数,再根据无理数的定义即可解答.【解答】解:=﹣4,,故无理数是,π,共2个,故选:B.【点评】本题考查了无理数的定义,解决本题的关键是熟记无理数的定义.3.(3分)(2016春•江汉区期中)下列各式正确的是()A.=±0.6 B.C.=3 D.=﹣2【分析】原式利用算术平方根,以及立方根定义判断即可.【解答】解:A、原式=±0.6,正确;B、原式=3,错误;C、原式=﹣3,错误;D、原式=|﹣2|=2,错误,故选A.【点评】此题考查了立方根,平方根,以及算术平方根,熟练掌握各自的定义是解本题的关键.4.(3分)(2016春•江汉区期中)下列语句不是命题的是()A.两点之间线段最短B.互补的两个角之和是180°C.画两条相交直线D.相等的两个角是对顶角【分析】可以判定真假的语句是命题,根据其定义对各个选项进行分析,从而得到答案.【解答】解:A,是,因为可以判定这是个真命题;B,是,因为可以判定其是真命题;C,不是,因为这是一个陈述句,无法判断其真假;D,是,可以判定其是真命题;故选C.【点评】此题主要考查学生对命题的理解及运用,属于基础题,难度较小.5.(3分)(2013秋•遂宁期末)如图,下列条件中,不能判断直线a∥b的是()A.∠1=∠3 B.∠2+∠4=180°C.∠4=∠5 D.∠2=∠3【分析】利用平行线的判定方法分别得出即可.【解答】解:A、∵∠1=∠3,∴a∥b,(内错角相等,两直线平行),故此选项错误;B、∵∠2+∠4=180°,∴a∥b,(同旁内角互补,两直线平行),故此选项错误;C、∵∠4=∠5,∴a∥b,(同位角相等,两直线平行),故此选项错误;D、∠2=∠3,无法判定直线a∥b,故此选项正确.故选:D.【点评】此题主要考查了平行线的判定,正确把握平行线的判定方法是解题关键.6.(3分)(2016•路北区二模)如图,AB∥CD,DB⊥BC,∠1=40°,则∠2的度数是()A.40°B.45°C.50°D.60°【分析】根据“两直线平行,同位角相等”可得出∠BCD=∠1=40°,再根据DB⊥BC,得出∠BCD+∠2=90°,通过角的计算即可得出结论.【解答】解:∵AB∥CD,∠1=40°,∴∠BCD=∠1=40°.又∵DB⊥BC,∴∠BCD+∠2=90°,∴∠2=90°﹣40°=50°.故选C.【点评】本题考查了平行线的性质以及垂直的性质,解题的关键是找出∠BCD=∠1=40°.本题属于基础题,难度不大,解决该题型题目时,根据平行线的性质找出相等(或互补)的角是关键.7.(3分)(2016春•滨州期末)已知y轴上的点P到原点的距离为5,则点P的坐标为()A.(5,0)B.(0,5)或(0,﹣5)C.(0,5)D.(5,0)或(﹣5,0)【分析】首先根据点在y轴上,确定点P的横坐标为0,再根据P到原点的距离为5,确定P点的纵坐标,要注意分两情况考虑才不漏解,P可能在原点上方,也可能在原点下方.【解答】解:由题中y轴上的点P得知:P点的横坐标为0;∵点P到原点的距离为5,∴点P的纵坐标为±5,所以点P的坐标为(0,5)或(0,﹣5).故选B.【点评】此题主要考查了由点到原点的距离确定点的坐标,要注意点在坐标轴上时,点到原点的距离要分两种情况考虑.8.(3分)(2016春•江汉区期中)如图,下列说法不正确的是()A.∠1与∠EGC是同位角B.∠1与∠FGC是内错角C.∠2与∠FGC是同旁内角D.∠A与∠FGC是同位角【分析】根据同位角、内错角、同旁内角概念分清楚截线与被截线逐一判断.【解答】解:A、∠1与∠EGC无直接联系,此选项错误;B、∠1与∠FGC是AB、AC被DE所截构成的内错角,此选项正确;C、∠2与∠FGC是DE、BC被AC所截构成的同旁内角,此选项正确;D、∠A与∠FGC是AB、DE被AC所截构成的同位角,此选项正确;故选:A.【点评】此题主要考查了三线八角,关键是掌握同位角的边构成“F“形,内错角的边构成“Z“形,同旁内角的边构成“U”形.二、填空题(共8小题,每小题3分,共24分)9.(3分)(2014•恩施州)16的算术平方根是4.【分析】根据算术平方根的定义即可求出结果.【解答】解:∵42=16,∴=4.故答案为:4.【点评】此题主要考查了算术平方根的定义.一个正数的算术平方根就是其正的平方根.10.(3分)(2016春•江汉区期中)将点A(1,1)先向左平移2个单位,再向下平移3个单位得到点B,则点B的坐标是(﹣1,﹣2).【分析】让点A的横坐标减2,纵坐标减3即可得到平移后点B的坐标.【解答】解:点B的横坐标为1﹣2=﹣1,纵坐标为1﹣3=﹣2,所以点B的坐标是(﹣1,﹣2).故答案为:(﹣1,﹣2).【点评】本题考查点的平移规律;用到的知识点为:点的平移,左右平移只改变点的横坐标,左减右加;上下平移只改变点的纵坐标,上加下减.11.(3分)(2009•梅州)如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置.若∠EFB=65°,则∠AED′等于50°.【分析】首先根据AD∥BC,求出∠FED的度数,然后根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等,则可知∠DEF=∠FED′,最后求得∠AED′的大小.【解答】解:∵AD∥BC,∴∠EFB=∠FED=65°,由折叠的性质知,∠DEF=∠FED′=65°,∴∠AED′=180°﹣2∠FED=50°.故∠AED′等于50°.【点评】此题考查了翻折变换的知识,本题利用了:1、折叠的性质;2、矩形的性质,平行线的性质,平角的概念求解.12.(3分)(2016春•江汉区期中)a、b、c是同一平面内不重合的三条直线,下列四个命题:①如果a∥b,a⊥c,那么b⊥c;②如果b∥a,c∥a,那么b∥c;③如果b⊥a,c⊥a,那么b⊥c;④如果b⊥a,c⊥a,那么b∥c.其中真命题是①②④(填写所有真命题的序号)【分析】根据平行线的判定定理与性质对各小题进行逐一分析即可.【解答】解:①∵a∥b,a⊥c,∴b⊥c,是真命题;②∵b∥a,c∥a,∴b∥c,是真命题;③∵b⊥a,c⊥a,∴b∥c,故原命题是假命题;④∵b⊥a,c⊥a,∴b∥c,是真命题.故答案为:①②④.【点评】本题考查的是命题与定理,熟知在同一平面内垂直于同一条直线的两条直线互相平行是解答此题的关键.13.(3分)(2016春•江汉区期中)若,则=﹣1.【分析】根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,1+5a=0,5﹣b=0,解得a=﹣,b=5,∴==﹣1.故答案为:﹣1.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.14.(3分)(2016春•江汉区期中)已知点A(4,3),AB∥y轴,且AB=3,则B点的坐标为(4,0)或(4,6).【分析】由AB∥y轴和点A的坐标可得点B的横坐标与点A的横坐标相同,根据AB的距离可得点B的纵坐标可能的情况【解答】解:∵A(4,3),AB∥y轴,∴点B的横坐标为4,∵AB=3,∴点B的纵坐标为3+3=6或3﹣3=0,∴B点的坐标为(4,0)或(4,6).故填(4,0)或(4,6).【点评】本题涉及到的知识点为:平行于y轴的直线上的点的横坐标相等;一条直线上到一个定点为定长的点有2个.15.(3分)(2016春•江汉区期中)如图,直线a∥b,一块含60°角的直角三角板ABC(∠A=60°),按如图所示放置,若∠1=55°,则∠2的度数为115°.【分析】直接利用三角形内角和定理结合对顶角的定义得出∠4的度数,再利用平行线的性质得出∠2的度数.【解答】解:∵∠1=55°,∠A=60°,∴∠3=∠4=65°,∵a∥b,∴∠4+∠2=180°,∴∠2=115°.故答案为:115°.【点评】此题主要考查了平行线的性质以及对顶角的定义,正确得出∠4的度数是解题关键.16.(3分)(2016春•江汉区期中)已知方程2x a﹣3﹣(b﹣2)y|b|﹣1=4,是关于x、y的二元一次方程,则a﹣2b=8.【分析】根据二元一次方程的定义可得到关于a、b的方程,可求得a、b的值,可求得答案.【解答】解:∵方程2x a﹣3﹣(b﹣2)y|b|﹣1=4,是关于x、y的二元一次方程,∴可得,解得,∴a﹣2b=4﹣2×(﹣2)=4+4=8,故答案为:8.【点评】本题主要考查二元一次方程的定义,掌握二元一次方程含有未知数的项的次数是1是解题的关键.三、解答题(共5题,共52分)下面各题需要在答题制定位置写出文字说明、证明过程或计算步骤17.(10分)(2016春•江汉区期中)(1)++(2)(﹣)+|+|【分析】(1)原式利用算术平方根及立方根定义计算即可得到结果;(2)原式利用二次根式乘法,立方根定义,以及绝对值的代数意义化简,计算即可得到结果.【解答】解:(1)原式=0.2﹣3+2=﹣0.8;(2)原式=1﹣2+2﹣=1﹣.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.(10分)(2016春•江汉区期中)(1)若(x﹣1)2﹣16=0,求x的值;(2)解方程组:.【分析】(1)方程整理后,利用平方根定义开方即可求出x的值;(2)方程组利用加减消元法求出解即可.【解答】解:(1)方程整理得:(x﹣1)2=16,开方得:x﹣1=4或x﹣1=﹣4,解得:x1=5,x2=﹣3;(2),①+②得:4x=12,即x=3,把x=3代入①得:y=﹣1,则方程组的解为.【点评】此题考查了解二元一次方程组,以及解一元二次方程﹣直接开平方法,熟练掌握运算法则是解本题的关键.19.(10分)(2016春•江汉区期中)如图,三角形ABC经过平移后,使点A与点A′(﹣1,4)重合,(1)画出平移后的三角形A′B′C′;(2)写出平移后的三角形A′B′C′三个顶点的坐标A′(﹣1,4),B′(﹣4,﹣1),C′(1,1);(3)若三角形ABC内有一点P(a,b),经过平移后的对应点P′的坐标(a﹣3,b﹣2).【分析】(1)由点A(2,6)到点A′(﹣1,4),横坐标减3,纵坐标减2,由此得出平移后A′,B′,C′三点坐标,画出△A′B′C′;(2)根据(1)所画图形,写出A′,B′,C′三点坐标;(3)根据(1)得到平移规律,即横坐标减3,纵坐标减2,可知由P(a,b)到点P′的坐标.【解答】解:(1)画图如图所示;(2)由(1)画图可知,A′(﹣1,4),B′(﹣4,﹣1),C′(1,1);(3)根据(1)所得平移规律可知,点P(a,b),经过平移后的对应点P′的坐标为(a﹣3,b﹣2),故答案为:(a﹣3,b﹣2).【点评】本题考查的是平移变换作图.作平移图形时,找关键点的对应点也是关键的一步.平移作图的一般步骤为:①确定平移的方向和距离,先确定一组对应点;②确定图形中的关键点;③利用第一组对应点和平移的性质确定图中所有关键点的对应点;④按原图形顺序依次连接对应点,所得到的图形即为平移后的图形.20.(10分)(2016秋•东营期中)如图,AB交CD于O,OE⊥AB.(1)若∠EOD=20°,求∠AOC的度数;(2)若∠AOC:∠BOC=1:2,求∠EOD的度数.【分析】(1)利用垂直的定义,∠AOE=90°,即可得出结果;(2)利用邻补角的定义,解得∠AOC=60°,有对顶角的定义,得∠BOD=60°,解得∠EOD.【解答】解:(1)∵OE⊥AB,∴∠AOE=90°,∵∠EOD=20°,∴∠AOC=180°﹣90°﹣20°=70°;(2)设∠AOC=x,则∠BOC=2x,∵∠AOC+∠BOC=180°,∴x+2x=180°,解得:x=60°,∴∠AOC=60°,∴∠BOD=60°,∴∠EOD=180°﹣90°﹣60°=30°.【点评】本题主要考查了垂直的定义,邻补角的定义,对顶角的性质,熟练掌握垂直的定义,邻补角的定义是解决此题的关键.21.(12分)(2013春•邹平县期末)如图,∠1+∠2=180°,∠DAE=∠BCF,DA平分∠BDF.(1)AE与FC会平行吗?说明理由.(2)AD与BC的位置关系如何?为什么?(3)BC平分∠DBE吗?为什么?【分析】(1)∠1+∠2=180°而∠2+∠CDB=180°,则∠CDB=∠1,根据同位角相等,两直线平行,求得结论;(2)要说明AD与BC平行,只要说明∠BCF+∠CDA=180°即可.而根据AE∥FC可得:∠CDA+∠DEA=180°,再据∠DAE=∠BCF就可以证得.(3)BC平分∠DBE即说明∠EBC=∠DBC是否成立.根据AE∥FC,可得:∠EBC=∠BCF,据AD∥BC得到:∠BCF=∠FAD,∠DBC=∠BAD,进而就可以证出结论.【解答】解:(1)平行;证明:∵∠2+∠CDB=180°,∠1+∠2=180°,∴∠CDB=∠1,∴AE∥FC.(2)平行,证明:∵AE∥FC,∴∠CDA+∠DAE=180°,∵∠DAE=∠BCF∴∠CDA+∠BCF=180°,∴AD∥BC.(3)平分,证明:∵AE∥FC,∴∠EBC=∠BCF,∵AD∥BC,∴∠BCF=∠FDA,∠DBC=∠BDA,又∵DA平分∠BDF,即∠FDA=∠BDA,∴∠EBC=∠DBC,∴BC平分∠DBE.【点评】解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.本题是一道探索性条件开放性题目,能有效地培养“执果索图”的思维方式与能力.四、选择题(共2小题,每小题4分,共8分)下面每小题的四个选项中,有且只有一个是正确的,请把正确选项前的代号填在答卷制定位置22.(4分)(2016春•洪洞县期末)如图1,在边长为a的大正方形中剪去一个边长为b的小正方形,再将图中的阴影部分剪拼成一个长方形,如图2.这个拼成的长方形的长为30,宽为20,则图2中Ⅱ部分的面积是()A.60 B.100 C.125 D.150【分析】分析图形变化过程中的等量关系,求出变化后的长方形的长和宽即可.【解答】解:如图:∵拼成的长方形的长为(a+b),宽为(a﹣b),∴有,解之的a=25,b=5∴长方形Ⅱ的面积=b(a﹣b)=5×(25﹣5)=100故:选B【点评】本题考查了完全平方公式(a+b)2=a2+2ab+b2的几何背景,解题的关键是找出图形等积变化过程中的等量关系.23.(4分)(2016春•江汉区期中)如图,长方形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙分别由点A(2,0)同时出发,沿长方形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2015次相遇地点的坐标是()A.(2,0)B.(﹣1,1)C.(﹣2,1)D.(﹣1,﹣1)【分析】利用行程问题中的相遇问题,由于矩形的边长为4和2,物体乙是物体甲的速度的2倍,求得每一次相遇的地点,找出规律即可解答.【解答】解:矩形的边长为4和2,因为物体乙是物体甲的速度的2倍,时间相同,物体甲与物体乙的路程比为1:2,由题意知:①第一次相遇物体甲与物体乙行的路程和为12×1,物体甲行的路程为12×=4,物体乙行的路程为12×=8,在BC边相遇;②第二次相遇物体甲与物体乙行的路程和为12×2,物体甲行的路程为12×2×=8,物体乙行的路程为12×2×=16,在DE边相遇;③第三次相遇物体甲与物体乙行的路程和为12×3,物体甲行的路程为12×3×=12,物体乙行的路程为12×3×=24,在A点相遇;…此时甲乙回到原出发点,则每相遇三次,两点回到出发点,∵2015÷3=671…2,故两个物体运动后的第2015次相遇地点的是:第二次相遇地点,即物体甲行的路程为12×2×=8,物体乙行的路程为12×2×=16,在DE边相遇;此时相遇点的坐标为:(﹣1,﹣1).故选D.【点评】此题主要考查了点的变化规律以及行程问题中的相遇问题及按比例分配的运用,通过计算发现规律就可以解决问题.五、填空题(共2题,每题4分,共8分)下列各题不需要写出解答过程,请将结果直接填写在答卷制定的位置24.(4分)(2016春•江汉区期中)方程组:的解是.【分析】方程组整理后,利用加减消元法求出解即可.【解答】解:方程组整理得:,①×2+②得:15y=﹣15,即y=﹣1,把y=﹣1代入①得:x=2,则方程组的解为.故答案为:.【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.25.(4分)(2016春•江汉区期中)如图,已知EF∥GH,A、D为GH上的两点,M、B为EF 上的两点,延长AM于点C,AB平分∠DAC,直线DB平分∠FBC,若∠ACB=100°,则∠DBA 的度数为50°.【分析】根据两直线平行,内错角相等可得∠2=∠3,再根据三角形的内角和定理表示出∠4,然后表示∠5,再利用平角等于180°列式表示出∠DBA整理即可得解.【解答】解:如图,设∠DAB=∠BAC=x,即∠1=∠2=x,∵EF∥GH,∴∠2=∠3,在△ABC内,∠4=180°﹣∠ACB﹣∠1﹣∠3=180°﹣∠ACB﹣2x,∵直线BD平分∠FBC,∴∠5=(180°﹣∠4)=(180°﹣180°+∠ACB+2x)=∠ACB+x,∴∠DBA=180°﹣∠3﹣∠4﹣∠5=180°﹣x﹣(180°﹣∠ACB﹣2x)﹣(∠ACB+x)=180°﹣x﹣180°+∠ACB+2x﹣∠ACB﹣x=∠ACB=×100°=50°.故答案为:50°.【点评】本题考查了平行线的性质,角平分线的定义,三角形的内角和定理,熟记性质并理清图中各角度之间的关系是解题的关键.六、解答题下列各题需要在答题卷指定位置写出文字说明、证明过程或计算步骤26.(10分)(2016春•江汉区期中)如图,在三角形ABC中,过点C作CD∥AB,且∠1=70°,点E是AC边上的一点,且∠EFB=130°,∠2=20°.(1)直线EF与AB有怎样的位置关系,并说明理由.(2)若∠CEF=70°,求∠ACB的度数.【分析】(1)由CD与AB平行,利用两直线平行内错角相等得到一对角相等,根据∠CBA﹣∠2求出∠ABF度数,得到一对同旁内角互补,利用同旁内角互补两直线平行得到EF与AB平行;(2)直接利用平行线的性质得出∠A的度数,即可得出∠ACB的度数.【解答】解:(1)EF与AB平行,理由:∵CD∥AB,∴∠1=∠CBA=70°,∵∠2=20°,∴∠ABF=∠CBA﹣∠2=50°,∵∠EFB=130°,∴∠EFB+∠ABF=180°,∴EF∥AB;(2)∵EF∥AB,∠CEF=70°,∴∠A=70°,∵CD∥AB,∴∠ACD=110°,∴∠ACB=40°.【点评】此题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.27.(12分)(2016春•江汉区期中)如图,在直角坐标系中,点A、C分别在x轴、y轴上,CB∥OA,CB=8,OC=8,OA=16.(1)直接写出点A、B、C的坐标;(2)动点P从原点O出发沿x轴以每秒2个单位的速度向右运动,当直线PC把四边形OABC 分成面积相等的两部分时停止运动,求P点运动时间;(3)在(2)的条件下,在y轴上是否存在一点Q,连接PQ,使三角形CPQ的面积与四边形OABC的面积相等?若存在,求点Q的坐标;若不存在,请说明理由.【分析】(1)根据线段的长和线段的特点确定出点的坐标;(2)先求出S四边形OABC=96,从而得到×OP×8=48,求出OP即可;(3)根据四边形OABC的面积求出△CPQ的面积是96,得到CQ=16,最后求出点Q的坐标.【解答】解:(1)∵点A、C在x轴上,OA=16.∴A(16,0),∵C在y轴上,OC=8,∴C(0,8),∵CB∥OA,CB=8,∴B(8,8);(2)∵CB=8,OC=8,OA=16,∴S四边形OABC=(OA+BC)×OC=(16+8)×8=96,∵当直线PC把四边形OABC分成面积相等的两部分,∴S△OPC=OP×OC=×OP×8=S四边形OABC=48,∴OP=12,∵动点P从原点O出发沿x轴以每秒2个单位的速度向右运动,∴P点运动时间为12÷2=6s;(3)由(2)有OP=12,∴S△CPQ=CQ×OP=CQ×12=96,∴CQ=16,∵C(0,8),∴Q(0,24)或Q(0,﹣16).【点评】此题是三角形综合题,主要考查了线段长的求法,点的坐标的确定,三角形四边形面积的计算,解本题的关键是三角形你觉得计算.28.(12分)(2016春•江汉区期中)如图1,点A是直线HD上一点,C是直线GE上一点,B是直线HD、GE之间的一点,∠DAB+∠ABC+∠BCE=360°(1)求证:AD∥CE;(2)如图2,作∠BCF=∠BCG,CF与∠BAH的平分线交于点F,若2∠B﹣∠F=90°,求∠BAH 的度数;(3)如图3,在(2)的条件下,若点P是AB上一点,Q是GE上任一点,QR平分∠PQG,PM∥QR,PN平分∠APQ,下列结论:①∠APQ+∠NPM的值不变;②∠NPM的度数不变,其中有且只有一个是正确的,请你找出正确的结论并求其值.【分析】(1)如图1,过B作BH∥AD,根据平行线的性质得到∠DAB+∠1=180°,由已知条件得到∠+∠BCE=180°,根据平行线的判定得到BH∥CE,由平行公理的推论即可得到结论;(2)首先设∠BAF=x°,∠BCF=y°,过点B作BM∥AD,过点F作FN∥AD,根据平行线的性质,可得∠AFC=(x+2y)°,∠ABC=(2x+y)°,又由2∠B﹣∠F=90°,可得方程:90﹣(x+2y)=180﹣2(2x+y),继而求得答案.(3)根据两直线平行,内错角相等可得∠MPQ=∠PQR=∠PQG,然后根据∠APQ=∠PAH+∠PQG,列式表示出∠NPM=∠APQ﹣∠PQG=(∠APQ﹣∠PQG)=∠PAH=30°,从而判定②正确.【解答】(1)证明:如图1,过B作BH∥AD,∴∠DAB+∠1=180°,∵∠DAB+∠ABC+∠BCE=360°,∴∠+∠BCE=180°,∴BH∥CE,∴AD∥CE;(2)解:设∠BAF=x°,∠BCF=y°,∵∠BCF=∠BCG,CF与∠BAH的平分线交于点F,∴∠HAF=∠BAF=x°,∠BCG=∠BCF=y°,∠BAH=2x°,∠GCF=2y°,如图2,过点B作BM∥AD,过点F作FN∥AD,∵AD∥CE,∴AD∥FN∥BM∥CE,∴∠AFN=∠HAF=x°,∠CFN=∠GCF=2y°,∠ABM=∠BAH=2x°,∠CBM=∠GCB=y°,∴∠AFC=(x+2y)°,∠ABC=(2x+y)°,∵2∠B﹣∠F=90°,∴90﹣(x+2y)=180﹣2(2x+y),解得:x=30,∴∠BAH=60°.(3)如图3,由(1)可知∠APQ=∠PAH+∠PQG,∴∠PAH=∠APQ﹣∠PQG,∵QR平分∠PQR,PM∥QR,∴∠MPQ=∠PQR=∠PQG,∵PN平分∠APQ,∴∠NPM=∠APQ ﹣∠PQG=(∠APQ﹣∠PQG)=∠PAH,∵点P是AB上一点,∴∠PAH=60°,∴∠NPM=30°;∴①∠APQ+∠NPM的值随∠DGP的变化而变化;②∠NPM的度数为30°不变.【点评】本题考查了角平分线的定义,平行线性质和判定:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.此题考查了平行线的性质与判定以及余角、补角的定义.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用,理清各角度之间的关系是解题的关键,也是本题的难点.第21 页共21 页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级下册数学第五、六单元测试题
姓名: __________ 班 :14 2 班 学号 :_______
得分 :_______
一、 (每小 3 分,共 30 分)
1、如 AB∥ CD可以得到( )
A、∠1=∠2 B 、∠2=∠3 C 、∠1=∠4 D 、∠3=∠4
8、下列 象属于平移的是( )
① 打气筒活塞的 复运 ,② 梯的上下运 ,③ 的 ,④ 的 ,⑤ 汽
在一条笔直的 路上行走
A、③ B 、②③ C 、①②④ D 、①②⑤
2、下列 法不正确的是(
)
A D
1
2
的平方根是
B、- 9 是 81 的一个平方根
A、
4
B 3 C
(第2题)
C、的算 平方根是 D、- 27 的立方根是- 3
A D
2 c 1
2
1 3 4
b
4
B
3 6 5
9、下列 法正确的是( )
A、有且只有一条直 与已知直 平行
B、垂直于同一条直 的两条直 互相垂直
C、从直 外一点到 条直 的垂 段,叫做 点到
条直 的距离。
D、在平面内 一点有且只有一条直 与已知直 垂直。
10、直 AB∥ CD,∠ B=23°,∠ D=42°, ∠ E=(A、23°
B 、42° C 、65° D 、19°
A
B
E
C
( 第10题) D
)
(第2题)
C
7 8
a
3、如 所示,∠1 和∠2 是 角的是(
(第4题)
)
A 1 2 B 1 C
1
1
D
2
2 2
4、如 所示,直
a 、b 被直 c
所截, 出下列四种条件:
①∠2=∠6 ②∠2=∠8 ③∠1+∠4=180° ④∠3=∠8,其中能判断
是 ∥ b 的条件的序号是( )
a
A、①② B 、①③ C 、①④ D 、③④
5、某人在广 上 汽 ,两次拐弯后,行 方向与原来相
同, 两次拐弯的角度可能是( )
A、第一次左拐 30°,第二次右拐
30°
B、第一次右拐 50°,第二次左拐
130°
C、第一次右拐 50°,第二次右拐
130°
D、第一次向左拐 50°,第二次向左拐
130°
6、下列哪个 形是由左 平移得到的( )
A B C
D
7. 若 x 是 9 的算 平方根, x 是( )
A、3 B 、-3 C 、9 D 、81
二、填空 (每 2分. 共 20分)
11、直 AB、 CD相交于点 O,若∠ AOC=100°, ∠
AOD
=___________。
12、若 AB∥ CD,AB∥EF, CD_______EF,其理由是 _______________________ 。
13、把命 “等角的 角相等”写成“如果⋯⋯那么⋯⋯” 的形式是:
_________________________。
14、如果两条平行 被第三条直 所截,一 同旁内角的度数之比是 2:7,那么 两个角
分 是 _______。
15.
81 的平方根是
__________,
16、一个数的算 平方根等于它本身, 个数 是 __________。
17、
3
8 的 是
__________。
18、若 5 +1和 -19是数 的平方根, 的 __________。
a a m m
19、若 25.36 =, 253.6 =, 253600 =__________。
20、若
10
的整数部分
a,小数部分 b, a=________,b=
_______。
三 ( 共 50分)
21、如 所示,直 AB∥CD,∠1=75°,求∠2 的度数。 (5 分)
M
A 1 B
C 2 D
N
第17题
21、如图,直线
AB
、 相交于 , 平分∠ ,⊥于点 ,∠1=50°,求∠ 、
CD O OD AOF OE CD O COB
E DF B
∠的度数。 (6 分 )
22、如图, 点为 上的点, 为 上的点,∠ 1=∠2,∠ =∠ ,那么∥ ,请完
F
AC CD DF AC
BOF
成它成立的理由 (8 分)
D
∵∠1=∠2,∠2=∠3 ,∠1=∠4(
)
B
O
∴∠3=∠4(
)
1
A
)
∴________∥_______ (
D E F
∴∠ =∠ ( )
C
( 第18题) E
C ABD
1
∵∠=∠( )
C D
∴∠ =∠ ( )
D ABD
3
4
22. 求下列各式中的
∴ ∥ ( )
x(10 分)
DF AC
(1) 、4
x
2- 16=0 (2) 、 27( x-3) 3
=- 64
2
A B C
第19题)
23、已知 2 - 1 的平方根是± 3, 3 + - 1 的算术平方根是 4,求
a +2 b 的值。 (7 分) a a b
20、△ ABC在网格中如图所示,请根据下列提示作图
( 1)向上平移 2 个单位长度。 (3 分)
( 2)再向右移 3 个单位长度。 (3 分)
A
B C
21、把一张长方形纸片
沿
EF 折叠后 与 的交点为 ,、分别在 M 、 N
的位置
ABCD ED BC G D C
上,若∠ =55°,求∠1 的度数。 (8 分 )
EFG
E
D A
1
B 2 F C
M
G
N