压杆稳定

合集下载

材料力学压杆稳定

材料力学压杆稳定

D 0, C 1 l 2
3
x 0, w
1 Fa l 2
3 EIl
3EI Fcr al
§14.7 纵横弯曲旳概念
❖9.15
作业9-2
在图示铰接杆系ABC中,AB和BC皆为细长压杆, 且截面相同,材料一样。若因在ABC平面内失稳而 破坏,并要求0<</2,试拟定F为最大值时旳角。
Fcr
2 EI ( l )2
截 面
F
F



同 ,
1.5l
2l




顺 l 3l
2l
序 。
(1)
(4)
F
F
F
4l
5l
3l
2.8l
2.5l
1.5l
(2)
(3)
(5)
Fcr
2 EI ( l )2
图示托架中AB杆旳直径
d=30mm,长度l=800mm,
两端可视为铰支,材料为
F
A3钢,s=240MPa。试求
第九章 压杆稳定
§9.1 压杆稳定旳概念 §9.2 两端铰支细长压杆旳临界压力 §9.3 其他支座条件下细长压杆旳临界压力 §9.4 欧拉公式旳合用范围 经验公式 §9.5 压杆旳稳定校核 §9.6 提升压杆稳定性旳措施 §9.7 纵横弯曲旳概念
§9.1 压杆稳定旳概念
1. 平衡旳稳定性
a)稳定平衡
B = 0 sinkl=0 kl = n k = n/l
F
k 2 EI
n
2
EI
l
Fcr
2 EI l2
w
A
sin
x
l
§9.3 其他支座条件下细长压杆 旳临界压力

材料力学之压杆稳定

材料力学之压杆稳定

材料力学之压杆稳定引言材料力学是研究物体内部受力和变形的学科,压杆稳定是其中的一个重要内容。

压杆稳定是指在受到压力作用时,压杆能够保持稳定,不发生失稳或破坏的现象。

本文将介绍压杆稳定的基本原理、稳定条件以及一些常见的失稳形式。

压杆的受力分析在进行压杆稳定分析前,我们首先需要对压杆受力进行分析。

压杆通常是一根长条形材料,两端固定或铰接。

在受到外部压力作用时,压杆会受到内部的压力,这些压力会导致杆件产生变形和应力。

在分析压杆稳定性时,我们主要关注压杆的弯曲和侧向稳定性。

压杆的基本原理压杆的稳定性是由杆件的弯曲和侧向刚度共同决定的。

当压杆弯曲和侧向刚度足够大时,压杆能够保持稳定。

所以,为了提高压杆的稳定性,我们可以采取以下几种措施:1.增加杆件的截面面积,增加抗弯能力;2.增加杆件的高度或长度,增加抗弯刚度;3.增加杆件的横向剛性,增加抗侧向位移能力;4.添加支撑或加固结构,增加整体稳定性。

压杆的稳定条件压杆稳定的基本条件是在承受外部压力时,内部应力不超过材料的极限强度。

当内部应力超过材料的极限强度时,压杆将会发生失稳或破坏。

在实际工程中,我们一般采用压杆的临界压力比来判断压杆的稳定性。

临界压力比是指杆件在失稳前的临界弯曲载荷与临界弯曲载荷之比。

当临界压力比大于1时,压杆是稳定的;当临界压力比小于1时,压杆是不稳定的。

临界压力比的计算可以采用欧拉公式或者Vlasov公式等方法。

这些方法能够给出压杆在不同边界条件下的临界压力比。

在工程实践中,我们可以根据具体问题选择合适的方法来计算临界压力比。

压杆的失稳形式压杆失稳通常有两种形式:弯曲失稳和侧向失稳。

弯曲失稳压杆的弯曲失稳是指杆件在受到外部压力作用时,发生弯曲变形并导致失稳。

在弯曲失稳中,压杆的弯曲形态可以分为四种:1.局部弯曲失稳:杆件出现弯曲局部失稳,形成凸起或凹陷;2.局部弯扭失稳:杆件出现弯曲和扭曲共同失稳;3.全截面失稳:整个杆件截面均发生失稳;4.全体失稳:整个杆件完全失稳并失去稳定性。

建筑力学 第十三章 压杆稳定

建筑力学 第十三章 压杆稳定

受干扰前杆的直线形状的平衡状态称为临界平衡状态,压
力Fcr称为压杆的临界力。 临界平衡状态实质上是一种不稳定的平衡状态,因为此时
杆一经干扰后就不能维持原有直线形状的平衡状态了。 压杆从稳定的平衡状态转变为不稳定的平衡状态,这种现象称
为丧失稳定性,简称失稳。
(3)压力F超过Fcr后
杆的弯曲变形将急剧增大,甚至最
因为临界力是使压杆产生失稳所需要的最小压力,而钢压杆在 各纵向平面内的弯曲刚度EI相同,所以公式中的μ应取较大的值, 即失稳发生在杆端约束最弱的纵向平面内。
由已知条件,钢压杆在xy平面内的杆端约束为两端铰支, μ=1;在xz平面内杆端约束为一端铰支、一端固定,μ=0.7。故 失稳将发生在xy平面内,应取μ=1进行计算。 临界力为
2

2 10 109 597.3 104 1012
1 3
2
N
655 102 N 65.5kN
在临界力Fcr作用下,木柱将在弯曲刚度最小的xz平面内发 生失稳。
F<Fcr
变形,在干扰撤去后,杆经若干次振动后仍会回到
原来的直线形状的平衡状态。
压杆原有直线形状的平衡状态称为稳 定的平衡状态。
(2)压力F增至某一极限值Fcr时
给杆一微小的横向干扰,使杆发
F=Fcr
生微小的弯曲变形,则在干扰撤去后,
杆不再恢复到原来直线形状的平衡状
态,而是仍处于微弯形状的平衡状态。
O
【解】 由于木柱两端约束为球形铰支,故木柱两端 在各个方向的约束都相同(都是铰支)。因为临界力是 使压杆产生失稳所需要的最小压力,所以公式中的I应 取Imin。由图知,Imin 104 mm4
O
故临界力为

材料力学第九章 压杆稳定

材料力学第九章 压杆稳定

02
创新研究方法与手段
积极探索新的实验技术和数值模拟方法,提高压杆稳定研究的精度和可
靠性。
03
拓展应用领域
将压杆稳定研究成果应用于更多领域,解决实际工程问题,推动科学技
术进步。
THANKS
感谢观看
稳定性取决于压杆的初始弯曲程度、压力的大小 和杆件的材料特性。
当压杆受到微小扰动时,如果能够恢复到原来的 平衡状态,则称其为稳定;反之,则为不稳定。
压杆的临界载荷
临界载荷是指使压杆由稳定平衡 状态转变为不稳定平衡状态的载
荷。
当压杆所受压力小于临界载荷时, 压杆保持稳定平衡状态;当压力 大于临界载荷时,压杆将失去稳
相应措施进行解决。
建筑结构中的压杆问题
02
高层建筑、大跨度结构等建筑中的梁、柱等部件可能发生失稳,
需要加强设计和施工控制。
压力容器中的压杆问题
03
压力容器中的管道、支撑部件等可能发生失稳,需要采取相应
的预防和应对措施。
05
压杆稳定的未来发展与展望
压杆稳定研究的新趋势
跨学科交叉研究
压杆稳定与材料科学、计算科学、工程结构等领域相互渗透,形 成多学科交叉的研究趋势。
工程中常见的压杆问题
1 2
细长杆失稳
细长杆在压力作用下容易发生弯曲,导致失稳。
短粗杆失稳
短粗杆在压力作用下可能发生局部屈曲,导致失 稳。
3
弹性失稳
材料在压力作用下发生弹性变形,当压力超过某 一临界值时,杆件发生失稳。
解决压杆失稳的方法与措施
加强材料质量
选择优质材料,提高材料的弹 性模量和抗拉强度,以增强压
材料力学第九章 压杆稳 定
• 引言 • 压杆稳定的基本理论 • 压杆稳定的实验研究 • 压杆稳定的工程应用 • 压杆稳定的未来发展与展望

压杆稳定

压杆稳定

表 细长压杆临界力与杆端支承的关系
两端铰支
Fcr
L l 相当(折算)长度
(与支承有关的)长度系数
Fcr
π 2 EI
L 2
l
EI
L 1l
O
一端固定一端自由
Fcr
一端固定一端铰支
Fcr
两端固定
Fcr
L 0.7l
l
EI
l
EI L 0.5l
O
O
EI l
L 2l
O
图示材料相同,直径相同的四根细长圆杆, ( )杆能承受的压力最大。
Fcr=?
●其它构件的稳定性问题
深梁失稳
薄壁圆管失稳
压杆稳定
Stability of Compressed Columns
2 细长压杆的临界力
2.1 两端铰支细长压杆的临界力——欧拉公式
临界状态: 微弯状态的平衡 杆的任一横截面上的弯矩:
x Fcr
Fcr wM x
Fcr
M x Fcrw
EI
l
cr F
A
cr
1 安全系数法
cr
nst
cr
nst:稳定安全系数
[cr]:稳定许用应力
稳定条件:
F A
cr
例5: 图示结构中,支承柱CD的直径d=20mm,
材料为A3钢,A、C、D三铰均为球铰。已知: P=25kN,l1=1.25m,l2=0.55mm,E=106 GPa,规定 的稳定安全系数nst=2.0,试校核CD杆是否安全。
压杆稳定
1 压杆稳定性的概念 2 细长压杆的临界力 3 压杆的柔度与压杆的非弹性失稳 4 压杆的稳定计算 5 提高压杆稳定性的措施
压杆稳定

工程力学压杆稳定

工程力学压杆稳定
4
MA=MA =0 相当长为2l旳两端简支杆
Fcr
EI 2
(2l ) 2
l
F
0.5l
两端固定 EI 2
Fcr (0.5l) 2
图形比拟:失稳时挠曲线 上拐点处旳弯矩为0,故可设想 此处有一铰,而将压杆在挠曲 线上两个拐点间旳一段看成为 两端铰支旳杆,利用两端铰支 旳临界压力公式,就可得到原 支承条件下旳临界压力公式。
两端铰支
= 1
一端固定,一端自由 = 2
一端固定,一端铰支 = 0.7
两端固定
= 0.5
§11-4中小揉度杆旳临界压力
一、临界应力与柔度
cr
Fcr A
对细长杆
cr
2 EI (l)2 A
2 Ei2 ( l ) 2
2E ( l )2
记 l
i
i
cr
2E 2
––– 欧拉公式
:柔度,长细比
[cr] = [] < 1,称为折减系数
[ cr ] [ ]
根据稳定条件
F Fcr nst
F A
Fcr Anst
cr
nst
[ cr : 工作压力
: 折减系数
A: 横截面面积
[]:材料抗压许用值
解:首先计算该压杆柔度,该丝杆可简化为图示
下端固定,上端自由旳压杆。
=2
F
l=0.375m
i I d A4
l l 2 0.375 75
i d 0.04 / 4 4
查表, = 0.72
F
A
80 103
0.72 0.042
88.5106 88.5MPa [ ] 160MPa
4
故此千斤顶稳定性足够。

压杆稳定


一、稳定平衡与不稳定平衡 :
1. 不稳定平衡
4
2. 稳定平衡
5
3. 稳定平衡和不稳定平衡
6
§9.2 两端铰支细长压杆的临界压力
假定压力已达到临界值,杆已经处于微弯状态,如图,
从挠曲线入手,求临界力。 P
xL
P P
xM
y
① 弯矩: M(x,y)Py
② 挠曲线近似微分方程:
yMP y EI EI
31
当压杆在各个弯曲平面内 的约束情况都相同时,应 尽量使其截面对任一形心 主轴的惯性矩都相等,这 样可使压杆在各个弯曲平 面内都具有相同的稳定性( 称为等稳定性设计)。
保国寺大殿的拼 柱形式
1056年建,“双筒体”结构,塔身平面 为八角形。经历了1305年的八级地震。32
[例7 ] 图示立柱,L=6m,由两根10号槽钢组成,材料为A3
b
Pcry


2E L22
I
y
=0.7,
bh3 I z 12 ,
Pcrz(0.27EL1I)z 2
③压杆的临界力 P crmP icn r,y(P cr)z
17
[例4] 求下列细长压杆的临界力。已知:L=0.5m , E=200GPa。
解:图(a)
P
P
Im in51 1 02 30 1 1 0 24.1 1 70 9m 4
令:k 2 P
x
Px
EI
M0
yk2yk2 M
yccoksx dsPiknx M
P
ydco k x scsiknx
M0 P
M0 边界条件为:
P
x 0 ,y y 0 ;x L ,y y 0

压 杆 稳 定


压杆稳定
环保设 备
2.不同约束条件下压杆的欧拉公式
压杆稳定
压杆稳定
三、压杆的稳定性校核
F [F ] Fcr nst
工作安全系数

压杆稳定性条件
Fcr — 压杆临界压力
nst— 稳定安全系数
n
Fcr F
nst
n cr
nst
n
Fcr F
nst
F— 压杆实际压力
四、提高压杆稳定性的措施
1.合理的选用材料 2.减小压杆的柔度 (1) 选择合理的截面形状,增大截面的惯性矩 (2) 减小压杆的长度。 (3) 改善压杆支承。
一、压杆稳定的概念
压杆稳定
压力小于临界力
压力大于临界力
压力等于临界力
压杆稳定
压力等于临界力
压杆的稳定性试验
压杆丧失直 线状态的平衡, 过渡到曲线状态 的平衡。称为丧 失稳定,简称失 稳,也称为屈曲
压杆稳定
二、计算临界力的欧拉公式
1.两端铰支中心压杆的欧拉公式
----欧拉公式
适用条件: •理想压杆(轴线为直线,压 力与轴线重合,材料均匀) •线弹性,小变形 •两端为铰支座
环保设 备
当细长杆受压时,在应力远远 低于极限应力时,会因突然 产生显著的弯曲变形而失去 承载能力。
当压力超过一定数值后,在外 界微小的扰动下,其直线平 衡形式将转变为弯曲形式, 从而使杆件或由之组成的机 器丧失正常功能。这是一种 区别于强度失效与刚度失效 的又一种失效形式,称为
“稳定失效”。ຫໍສະໝຸດ 压杆稳定

第八章:压杆稳定


材料
(强度极限 b/ MPa ) (屈服点 S /MPa )
a
b
(MPa) (MPa)
P
S
Q235 钢( b 372 , S 235 ) 304 1.12 100
62
优质碳钢( b 471 ,S 306 ) 461 2.568 100
60
硅钢 ( b 510 , S 353 ) 578 3.744 100
二、其他支座条件下细长压杆的临界应力 表8-1 压杆的长度系数
Fcr
2EI ( l)2
杆端约束 情况
一端固定 一端自由
两端铰支
一端固定 一端铰支
两端固定
挠 曲 线 形 状
长度系数
2.0
1.0
0.7
0.5
第二节:细长压杆的临界荷载
例8-3 图示细长压杆,已知材料的弹性模量 E 210GPa,压杆
第二节:细长压杆的临界荷载
例8-1 细长压杆为钢制空心圆管,外径和内径分别为 20mm 和 16mm,杆长 0.8m,钢材的弹性模量为 210GPa,
压杆两端铰支,试求压杆的临界载荷 Fcr。
解:压杆横截面的惯性矩为
I (D4 d 4 ) (0.024 0.0164 ) m4
64
64
4.63109 m4
(2)如果 F k l ,即 F k l ,则杆将继续偏斜,不能回复到原来的竖直平衡位
置,表明其原来的竖直平衡状态是不稳定的;
(3)如果 F k l ,即 F k l ,则杆不仅在竖直位置保持平衡,而且在偏斜状
态也能够保持平衡。
第一节:压杆稳定的概念
临界压力或临界力:当压力逐渐增加到某一极限值时,如果再作用 一个微小的侧向干扰力,使其产生微小的侧向变形,在除去干扰力 后,压杆将不再能够恢复其原来的直线平衡状态,这说明压杆原来 直线形状的平衡是不稳定的,上述压力的极限值称为临界压力或临 界力。一般用Fcr表示,它是判断压杆是否失稳的一个指标。

压杆稳定—压杆稳定的概念(建筑力学)


二、压杆稳定概念
压杆稳定
当FP值超过某一值Fcr时,撤除干扰后,杆不能恢复到原来 的直线形状,只能在一定弯曲变形下平衡(图d),甚至折 断,此时称杆的原有直线状态的平衡为不稳定平衡。
由此可知,压杆的直线平衡状态是否稳定,与压力FP的大 小有关。
压杆稳定
当压力FP逐渐增大至某一特定值Fcr时,压杆将从稳定平 衡过渡到不稳定平衡,此时称为临界状态。 压力Fcr称为压杆的临界力。 当外力达到压杆的临界力值时,压杆即开始丧失稳定。
压杆稳定
第一节 压杆稳定概念
一、稳定问题的提出
两根相同材料(松木)制成的杆,
σb=20MPa;A=10mm×30mm
短杆长:l=30mm;
长杆长:l=1000mm F
若按强度条件计算,
两根杆压缩时的极限承载
能力均应为:
F
F =σbA=6kN
F
1m 30mm
F
压杆的破坏实验结果:
(1)短杆在压力增加到约 为6kN时,因木纹出现裂纹而 破坏。
(2)长杆在压力增加到约40N 时突然弯向一侧,继续增大压力 ,弯曲迅速增大,杆随即折断。
F
1m
F
30mm
F
F
结论:
短压杆与长压杆在压缩时的破坏 性质完全不同
• 短压杆的破坏属于强 度问题;
F• 长压杆的破坏则属于能否保持其原来的直线平衡
状态的问题
F
F
1m 30mm
F
压杆稳定性:压杆保持其原来直线平衡状态 的能力。
压杆稳定
压杆稳定
学习目标:
1.深刻理解压杆稳定的概念,理解临界力和柔度的概念。 2. 理解杆端约束对临界力的影响,了解压杆的分类和临界 应力总图。 3.掌握压杆临界力、临界应力的计算。 4.掌握压杆的稳定计算以及提高压杆稳定性的措施。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
材料力学
Fcr n nst FN 2
柔度:
l 2 1 0 .6 80 d2 / 4 i2
0 < p
可用直线公式.
因此
Fcr cr A2 (a b ) A2
6
2 (304 1.12 80) 10 d 2 4
151.47 KN
二、细长压杆的临界力
1、两端铰支的细长压杆的临界力 2、其他杆端约束细长压杆的临界力
材料力学
压杆稳定问题/细长压杆的临界力
1、两端铰支的细长压杆的临界力 考察微弯状态下局部压杆的平衡
FBx Fp
材料力学
y
压杆稳定问题/细长压杆的临界力
若 p , 则压杆的弯曲变形为 d2y EI 2 M ( x) Fp y dx Fp y d2y 2 dx EI Fp 2 设k , 则 EI
二、压杆的稳定条件:
P A
材料力学

杆的 AB 杆为圆松木,长 L= 6m,[ ] =11MPa 直径 d = 0.3m,试此杆的容许压力 解:折减系数法
B
①最大柔度
T1 T2
x y面内, =1.0
A
y W
xy
1 6 4 80 i 0.3
L
z y面内, =2.0
l2 y(x)=a sin nx l —欧拉公式
F cr =
材料力学
2EI
l2
压杆稳定问题/细长压杆的临界力
• 分析
1)、I 如何确定 ?
压杆总是在抗弯能力最小的纵向平面内弯曲
I I min
F h b
y
x
F
z 例如矩形截面压杆首先在哪个平面内失稳弯曲? (绕哪个轴转动)
材料力学
压杆稳定问题/细长压杆的临界力
粗短杆—不发生失稳,而发生屈服(< 0)
(小柔度杆,按强度问题处理cr= s (b))
材料力学
压杆稳定问题/压杆的临界应力
中长杆临界应力的经验公式
1) 直线公式
cr a b
a s 0 b
a、b是与材料有关的常数。
直线公式的适用范围: 0 < p
p s
a设不符)
sin kl 0
解得:
材料力学
n k , ( n 0,1,2, ) l
压杆稳定问题/细长压杆的临界力
k
n , (n 0,1,2, ) EI l Fp
Fp=
由此得到两个重要结果
载荷 屈曲位移函数
临界载荷
n22EI
2
I i ——惯性半径 A
材料力学
压杆稳定问题/压杆的临界应力
E cr 2
2
—欧拉公式
4、欧拉公式的适用范围
p—比例极限
材料力学
E cr 2 p
2
压杆稳定问题/压杆的临界应力

E p p
E 200GPa, p 200MPa,
F — 工作应力 A
压杆稳定问题/压杆的稳定计算
压杆的稳定条件
n nst
Fcr cr n F F A nst
材料力学
— 工作安全因数 — 工作应力
——稳定安全因数
压杆稳定问题/压杆的稳定计算
例8-2 已知:b=40 mm, h=60 mm, l=2300 mm,Q235钢, E=200 GPa, FP=150 kN, nst=1.8,s 235MPa, p 200MPa 校核:稳定性是否安全。
受均布载荷q=4 KN/m 作用;已知钢管的稳定安全系数nw=3,试对立 柱进行稳定校核。
l
q
A
B
a C
F
材料力学
压杆的稳定条件(折减系数法) 一、压杆的稳定容许应力: 1.安全系数法确定容许应力:
W
W
cr
nW
2.折减系数法确定容许应力:

折减系数 , 它是的函数
y l 0.5 2.3 99.6 y i y b / 12
z y p
所以压杆可能在xy平面内首 先失稳(绕z轴转动).
hb 3 / 12 b iy A 12 bh 材料力学
Iy
压杆稳定问题/压杆的稳定计算
其临界压力为
工作安全因数为
E Fcr cr A 2 bh 269KN z
0.57 s
临界应力总图
材料力学
压杆稳定问题/压杆的临界应力
例8-1 有一千斤顶,材料为A3钢.螺纹内径d=5.2cm,最大高 度l=50cm,求临界载荷 Fcr 。(已知 s 235MPa, p 200MPa ) 解:
F
惯性半径:
柔度:
I d i A 4
l 2 0.5 77 i d /4
6
462KN
材料力学
压杆稳定问题/压杆的稳定计算
四、压杆的稳定计算
材料力学
压杆稳定问题/压杆的稳定计算
压杆的稳定条件(安全系数法)
Fcr F [ Fst ] nst
nst
F
——稳定安全因数 ——工作压力
[ Fst ] ——稳定许用压力

材料力学
cr
nst
[ st ]
[ st ] ——稳定许用应力
d y 2 (二阶线性常数 k y 0 齐次微分方程) 2 dx 通解为
2
y a sin kx b cos kx
材料力学
式中a、b、k为待定常数。
压杆稳定问题/细长压杆的临界力
边界条件为:
1)x=0,y=0 2)x=l,u=0 若a=0,则 因此 b=0 y a sin kx
临界应力总图——临界应力随柔度变化的曲线
材料力学
压杆稳定问题/压杆的临界应力
粗短杆 中长杆 细长 杆
0
临界应力总图
材料力学
压杆稳定问题/压杆的临界应力
2) 抛物线公式
cr a b
2
(0 < c)
a , b 是与材料有关的常数。
E c 0.57 s
2
材料力学
压杆稳定问题/压杆的临界应力
材料力学
Fcr 151.47 FN 2 F 50.5KN nst 3
所以起重机架的最大起重量取决于杆AC的强度,为
Fmax 26.7 KN
材料力学
例8-4 图示托架结构,梁AB与圆杆BC 材料相同。梁AB为16号工字
钢,立柱为圆钢管,其外径D=80 mm,内径d=76mm,l=6m,a=3 m,
材料力学
弯 曲 平 衡 构 形
压杆稳定问题/稳定的概念
失稳与屈曲(Buckling)
在扰动作用下,直线平衡状态转变为弯曲平衡状态,
扰动除去后,不能恢复到直线平衡状态的现象,称为失
稳或屈曲。
“ Such failures can be catastrophic and lead to a large loss of life as well as major economic loss”
C
w
0.7l
F cr =
2EI
(0.7l)2
材料力学
压杆稳定问题/细长压杆的临界力
3) 两端固定 同理
M C 0, M D 0
0.7l
D 0.5l
F cr =
2EI
(0.5l)2
C
材料力学
压杆稳定问题/细长压杆的临界力
各种支承压杆临界载荷的通用公式
F cr =
( l)2
l——相当长度
材料力学
压杆稳定问题/稳定的概念
临界载荷的概念
压杆的压力逐渐上升,使压杆的平衡由稳定的平衡状态
向不稳定的状态的质变的转折点,称为临界载荷,以 Fcr
表示.
压杆保持直线状态平衡的最大力。 临界载荷 Fcr :
使压杆失稳(不能保持直线形式的稳 稳定平衡)的最小力。
材料力学
压杆稳定问题/细长压杆的临界力
y
x
z
x
材料力学
压杆稳定问题/压杆的稳定计算
解:
2E p 99.35 p
y x z x
考虑xy平面失稳(绕z轴转动)
Iz bh 3 / 12 h iz A 12 bh
z l 1 2.3 z 132.8 h / 12 iz
考虑xz平面失稳(绕y轴转动)
2EI
——相当系数(长度系数),
一端自由,一端固定 =2.0
一端铰支,一端固定 =0.7
两端固定 两端铰支
材料力学
=0.5 =1.0
压杆稳定问题/压杆的临界应力
三、压杆的临界应力
材料力学
压杆稳定问题/压杆的临界应力
1、问题的提出
材料和直
径均相同
能不能应用 欧拉公式计算 四根压杆的临 界载荷?
A3钢:
p 100

p时,欧拉公式成立.
( p )
细长杆(大柔度杆)—发生弹性失稳 (p)
材料力学
压杆稳定问题/压杆的临界应力
5、临界应力的经验公式
p时, ?
中长杆—发生弹塑性失稳 (0 < p) (中柔度杆)
( p s )
C 2 45° B
材料力学
F
1
A 0.6m
解: 1、受力分析
FN 1 2F (拉),FN 2 F (压)
2、由杆AC的强度条件确定 Fmax 。
F
FN 1 FN 2
相关文档
最新文档