九年级数学-旋转中的最值、路径长

合集下载

初中数学精讲隐圆模型(线段最值和轨迹问题)

初中数学精讲隐圆模型(线段最值和轨迹问题)

几何模型11——隐圆问题在初中数学中利用隐圆解决平面几何问题大致分为三类,第一类是定点加定长构造圆形,第二类是定弦定角,第三类是从动模型之轨迹为圆也就是常说的“瓜豆原理”,在初中数学当中构造定弦定角构造圆形在压轴题当中经常出现,定弦定角构造圆形圆形中一般求一个定点到一动点线段长度的最小值问题的时候一般涉及定弦定角问题。

定弦定角解决问题的步骤:(1)让动点动一下,观察另一个动点的运动轨迹,发现另一个动点的运动轨迹为一段弧(2)找不变的张角(很多时候一般是找出张角的补角),(补角一般为60︒、45︒)(3)找张角所对的定弦,根据三点确定隐形圆,确定圆心位置(4)计算隐形圆的半径(5)圆心与所求线段上定点的距离可以求出来(6)最小值等于圆心到定点之间的距离减去半径例1.如图,在矩形纸片ABCD中,AB=2,AD=3,点E是AB的中点,点F是AD边上的一个动点,将△AEF沿EF所在直线翻折,得到△A′EF,求A′C的长的最小值变式1.如图,在矩形ABCD中,AB=2,AD=,点E为AB中点,点F为AD 边上从A到D运动的一个动点,连接EF,将△AEF沿EF折叠,点A落在点G处,在运动的过程中,求点G运动的路径长(1)直径所对的圆周角是直角. 构造思路:一条定边所对的角始终为直角,则直角顶点轨迹是以定边为直径的圆或圆弧.图形释义:例2.如图,半径为4的⊙O 中,CD 为直径,弦AB ⊥CD 且过半径OD 的中点,点E 为⊙O 上一动点,CF ⊥AE 于点F .当点E 从点B 出发顺时针运动到点D 时,求点F 所经过的路径长变式1.如图,在正方形ABCD 中,AB =2,动点E 从点A 出发向终点D 运动,同时动点F 从点D 出发向终点C 运动,点E ,F 的运动速度相同,当它们到达各自的终点时停止运动.运动过程中线段AF ,BE 相交于点P ,求线段DP 长的最小值变式2.如图,E ,F 是正方形ABCD 的边AD 上两个动点,满足AE =DF .连接CF 交BD 于点G ,连接BE 交AG 于点H .若正方形的边长为2,则线段DH 长度的最小值是 .P PA BOP变式3.如图,在菱形ABCD 中,∠ABC =60°,AB =4,点E 是AB 边上的动点,过点B 作直线CE 的垂线,垂足为F ,当点E 从点A 运动到点B 时,求点F 的运动路径长变式4.如图,Rt △ABC 中,AB ⊥BC ,AB =6,BC =4,P 是△ABC 内部的一个动点,且满足∠P AB =∠PBC ,则线段CP 长的最小值为( )(2)定边对定角在“定边对直角”问题中,依据“直径所对的圆周角是直角”,关键性在于寻找定边、直角,而根据圆周角定理:同圆或等圆中,同弧或等弧所对的圆周角都相.定边必不可少,而直角则可一般为定角.例如,AB 为定值,∠P 为定角,则A点轨迹是一个圆.∠P 度数也是特殊角,比如30°、45°、60°、120°,下分别作对应的轨迹圆.例3.如图,△ABC 是等边三角形,边长为6,E 、F 分别是BC 、AC 上的动点,且CE =AF ,连接AE 、BF 交于点G ,求CG 最小值60°120°O P ABO120°120°P ABP PAB P30°O 60°BAP 90°45°ABO P变式2.如图,△ABC为等边三角形,AB=3.若P为△ABC内一动点,且满足∠P AB=∠ACP,求线段PB长度的最小值变式3.边三角形ABC的边长为6,在AC,BC边上各取一点E,F,连接AF,BE相交于点P.AF=BE,当点E从点A运动到点C时,试求点P经过的路径长.例4.如图,半径为2cm,圆心角为90°的扇形OAB的弧AB上有一运动的点P,从点P向半径OA引垂线PH交OA于点H.设△OPH的内心为I,当点P在弧AB上从点A运动到点B时,求内心I所经过的路径长变式1.如图,AB是⊙O的直径,M、N是(异于A、B)上两点,C是上一动点,∠ACB的角平分线交⊙O于点D,∠BAC的平分线交CD于点E.当点C从点M运动到点N时,则C、E两点的运动路径长的比是.变式2.如图,半径为4的⊙O中,弦AB的长度为4,点C是劣弧上的一个动点,点D是弦AC的中点,点E是弦BC的中点,连接DE、OD、OE.(1)求∠AOB的度数;(2)当点C沿着劣弧从点A开始,逆时针运动到点B时,求△ODE的外心P所经过的路径的长度;例5.如图,AC=3,BC=5,且∠BAC=90°,D为AC上一动点,以AD为直径作圆,连接BD交圆于E点,连CE,则CE的最小值为()16A.213+C.5D.13-B.29变式1.如图,△ABC中,AC=3,BC=24,∠ACB=45°,D为△ABC内一动点,⊙O为△ACD的外接圆,直线BD交⊙O于P点,交BC于E点,弧AE=CP,则AD的最小值为()A.1B.2C.2D.241-4例6.如图,P 是圆O 上一个动点,A 为定点,连接AP ,以AP 为一边作等边△APQ . 考虑:当点P 在圆O 上运动时,Q 点轨迹是?【分析】Q 点满足(1)∠PAQ=60°;(2)AP=AQ ,故Q 点轨迹是个圆: 考虑∠PAQ=60°,可得Q 点轨迹圆圆心M 满足∠MAO=60°;考虑AP=AQ ,可得Q 点轨迹圆圆心M 满足AM=AO ,且可得半径MQ=PO . 即可确定圆M 位置,任意时刻均有△APO ≌△AQM .例7.如图,正方形ABCD 中,25AB ,O 是BC 边的中点,点E 是正方形内一动点,OE=2,连接DE ,将线段DE 绕点D 逆时针旋转90°得DF ,连接AE 、CF .求线段OF 长的最小值.【解析】E 是主动点,F 是从动点,D 是定点,E 点满足EO=2,故E 点轨迹是以O 为圆心,2为半径的圆.答案为52-2 变式1.如图,已知在扇形AOB 中,OA =3,∠AOB =120º,C 是在上的动点,以BC 为边作正方形BCDE ,当点C 从点A 移动至点B 时,求点D 运动的路径长?OPA Q60°MQAPOO AB CD E F O A B C D EF M变式2.如图,AB为⊙O的直径,C为⊙O上一点,其中AB=2,∠AOC=120°,P为⊙O上的动点,连AP,取AP中点Q,连CQ,则线段CQ的最大值为____________.变式3.如图,在等腰Rt△ABC中,AC=BC=22,点P在以斜边AB为直径的半圆上,M为PC的中点,当半圆从点A运动至点B时,点M运动的路径长为________.。

第一学期九年级数学期中试题

第一学期九年级数学期中试题

第一学期九年级数学期中试题初中的数学其实开始有一点难度了,所以大家要多花心思去学习哦,今天小编就给大家参考一下九年级数学,仅供参考秋季学期九年级上数学期中试题一、单选题(共 10 题,共 40 分)数学试题卷1.已知⊙O 的半径为 5,若 PO=4,则点 P 与⊙O 的位置关系是( )A.点 P 在⊙O 内B.点 P 在⊙O 上C.点 P 在⊙O 外D.无法判断2.与函数 y = 2( x - 2)2 的图象形状相同的抛物线解析式是( )A. y = 1 + 1x2B. y =(2x +1)2C. y =( x - 2)2D. y = 2x23.如图,在Rt△ABC 中,∠B=30°,∠C=90°,绕点 A 按顺时针方向旋转到△AB1C1 的位置,使得点C,A,B1 在同一条直线上,那么旋转角等于( )A.140°B.120°C.60°D.50°4.已知二次函数 y =( x -1)2 -1(0 ≤ x ≤ 3)的图象如图所示,关于该函数在所给自变量取值范围内,下列说法正确的是( )A.有最小值 0,有最大值 3B.有最小值-1,有最大值 0C.有最小值-1,有最大值 3D.有最小值-1,无最大值第 3 题图第 4 题图第 5 题图5.图 1 和图 2 中所有的小正方形都全等,将图 1 的正方形放在图2 中①②③④的某一位置,使它与原来7 个小正方形组成的图形是中心对称图形,这个位置是( )A.①B.②C.③D.④6.下列选项中,能使关于 x 的一元二次方程ax2 - 4x + c=0 一定有实数根的是( ) A.a>0 B.a=0 C.c>0 D.c=07.某种植物的主干长出若干数目的枝干,每个枝干又长出同样数目的小分支,主干、枝干和小分支的总数是 91.设每个枝干长出 x 个小分支,则 x 满足的关系式为( ) A.x+x2=91 B.1+x2=91C.1+x+x2=91D.1+x(x−1)=918.下列各图中,AB 与 BC 不一定垂直的是( )9.对于方程(ax+b)2=c,下列叙述正确的是( )A.不论 c 为何值,方程均有实数根B.方程的根是抛物线 y=(ax+b)2 与直线 y=c 的交点坐标C.当c≥0 时,方程可化为:ax+b=D.若抛物线 y=(ax+b)2 与直线 y=c 没有交点,则 c<010.如图,AC 是⊙O 的直径,BD 是⊙O 的弦,BE=DE,连接 BC,若 BD=8 cm,AE=2cm,则点 O 到 BC 的距离是( )B.2.5 cm D.3 cm二、填空题(共 6 题,共 30 分)11.已知一个二次函数的图象开口向下,且经过原点,请写出一个满足条件的二次函数解析式 .12.如图,A、B、C 为⊙O 上的三点,若∠AOB=138°,则∠C= .13 . 有一边长为 3 的等腰三角形,它的另两边长是方程 x2 - 4x + k = 0 的两根,则k = .14.如图,在△ABC 中,∠CAB=70°,在同一平面内将△ABC 绕A 点旋转到△AB′C′位置,且CC′∥AB,则∠BAB′的度数是 .15.如图,已知 AB、CD 为⊙O 的两条弦,OC⊥AB,连接 AD、OB,若∠ADC=29°,则∠ABO = .16.在平面直角坐标系中,直线 y=m 被抛物线 y = x2 + bx + c 截得的线段长为 6,则抛物线顶点到直线 y=m 的距离为 .三、解答题(共 8 题,共 80 分)17.(8 分)解下列方程:(1)3x2-4x-1=0 (2)(x-3)2+4x(x-3)=0.18.(8 分)如图,方格纸中的每个小方格都是边长为1 个单位长度的小正方形,每个小正方形的顶点叫格点.点A、B、C、D、E、F、O 都在格点上.(1)画出△ABC 向上平移 3 个单位长度的△A1B1C1;(2)画出△DEF 绕点 O 按逆时针方向旋转90°后所得到的△D1E1F1;(3)△A1B1C1 和△D1E1F1 组成的图形是轴对称图形吗?19.(8 分)如图,在Rt△ABC 中,∠BAC=90°.(1)先作∠ACB 的平分线交 AB 边于点 P,再以点 P 为圆心,PA 的长为半径作⊙P(要求:尺规作图,保留作图痕迹,不写作法);(2)请你判断(1)中 BC 与⊙P 的位置关系,并证明你的结论.20.(8 分)小明的家门前有一块空地,空地外有一面长 10 米的围墙,为了美化生活环境,小明的爸爸准备靠墙修建一个矩形花圃,他买回了 32 米长的花圃围栏,为了浇花和赏花的方便,准备在花圃的中间再围出一条宽为 1 米的通道(属于花圃一部分)及在左右花圃各留一个1 米宽的门(其他材料).设花圃与围墙平行的一边长为 x 米,(1)花圃与围墙垂直的一边长为米(用 x 表示).(2)如何设计才能使花圃的面积最大?21.(10 分)已知二次函数 y=x2-2x-3.(1)求函数图象的顶点坐标,与 x 轴和 y 轴的交点坐标,并画出函数的大致图象;(2)根据图象直接回答:当 x 满足时,y<0;当-122.(12 分)如图,⊙O 的直径 AB=12 cm,C 为 AB 延长线上一点,CP 与⊙O 相切于点P,过点 B 作弦BD∥CP,连接 PD.(1)求证:点 P 为B⌒D的中点;(2)若∠C=∠D,求四边形 BCPD 的面积.23.(12 分)已知抛物线 C:y1=a(x-h)2-1,直线 l:y2=kx-kh-1(1)试说明:抛物线 C 的顶点 D 总在直线 y2=kx-kh-1 上;(2)当 a=-1,m≤x≤2 时,y1≥x-3 恒成立,求 m 的最小值;(3)当 024.(14 分)我们定义:如果一个三角形一条边上的高等于这条边,那么这个三角形叫做“等高底”三角形,这条边叫做这个三角形的“等底”.(1)概念理解:如图1,在△ABC 中,AC=6,BC=3,∠ACB=30°,试判断△ABC 是否是“等高底”三角形,请说明理由.(2)问题探究:如图2,△ABC 是“等高底”三角形,BC 是“等底”,作△ABC 关于 BC所在直线的对称图形得到△A'BC,连结AA'交直线BC 于点D.若BC=2BD,求 ACBC的值.(3)应用拓展:如图 3.已知l1∥l2, l1 与 l2 之间的距离为2.“等高底”△ABC 的“等底”BC 在直线 l1 上,点 A 在直线 l2 上,AC= BC.将△ABC 绕点C 按顺时针方向旋转45°得到△A'B'C,A'C 所在直线交 l2 于点 D.求 CD 的值.九年级上期中考试数学试题卷一、单选题(共 10 题,共 40 分)1.二次函数 y = 2( x - 3)2 + 4 的顶点坐标是( )A.(3,4)B.(-2,4)C.(2,4)D.(-3,4)2.投掷一枚质地均匀的硬币两次,对两次朝上一面的描述,下列说法正确的是( )A.都是正面的可能性较大B.都是反面的可能性较大C.一正一反的可能性较大D.上述三种的可能性一样大3.一个直角三角形的两条直角边长的和为14 cm,其中一直角边长为 x (cm),面积为y (cm2),则 y 与 x 的函数的关系式是( )A.y=7xB.y=x(14-x)C.y=x(7-x)D. y = 1 x (14 - x)24.以坐标原点O 为圆心,5 为半径作圆,则下列各点中,一定在⊙O 上的是( ) A.(3,3) B.(3,4) C.(4,4) D.(4,5)5.已知 a = 3 ,则 a + b 的值是( )6.如图,已知BD 是⊙O 的直径,弦BC∥OA,若∠B 的度数是50°,则∠D 的度数是( ) A.50° B.40° C.30° D.25°第 6 题图第 7 题图7.如图,在半径为 13 cm 的圆形铁片上切下一块高为 8 cm 的弓形铁片,则弓形弦 AB 的长为( )A.10 cmB.16 cmC.24 cmD.26 cm8.对于抛物线 y =-( x +1)2 + 3 ,下列结论:①抛物线的开口向下; ②对称轴为直线 x=1;③顶点坐标为(﹣1,3); ④x>1 时,y 随 x 的增大而减小. 其中正确结论的个数为( )A.1B.2C.3D.49.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①a<0;②c<0;③a-b+c>0;④b+2a=0.其中正确的结论有( )A.4 个B.3 个C.2 个D.1 个第 9 题图第 10 题图10.如图,C 是以 AB 为直径的半圆 O 上一点,连结 AC,BC,分别以 AC,BC 为斜边向外作等腰直角三角形△ACD,△BCE, AC , BC 的中点分别是 M,N.连接DM,EN,若C 在半圆上由点A 向B 移动的过程中,DM∶EN 的值的变化情况是( )A. 变大B. 变小C. 先变大再变小D. 保持不变二、填空题(共 6 题,共 30 分)11.抛物线 y =-2x2 + 4x +1 的对称轴是直线 .12.将抛物线 y = x2 - 2 向左平移 1 个单位后所得抛物线的表达式为 .13.如图 ABCD 中,E,F 是对角线 BD 上的两点,且 BE=EF=FD,连结 CE 并延长交 AB 于点 G,若 EG=2,则 CG= .第 13 题图第 15 题图14.三名运动员参加定点投篮比赛,原定出场顺序是:甲第一个出场,乙第二个出场,丙第三个出场,由于某种原因,要求这三名运动员用抽签方式重新确定出场顺序,则抽签后每个运动员的出场顺序都发生变化的概率为 .15.如图,点 A、B、C、D、O 都在方格纸的格点上,每个方格的长度为 1,若△ COD 是由△ AOB 绕点 O 按逆时针方向旋转90°而得,则线段 AB 扫过的面积(阴影部分面积) 为 .16.已知半径为 3 的⊙O 经过平行四边形 ABCD 的三个顶点 A,B,C,与 AD,CD 分别交于点 E,F,若弧 EF 的度数为40°,则 AE 与CF 的弧长之和为= .三、解答题(共 8 题,共 80 分)17.(8 分)(1)已知 x = y ,求代数式2 3x + y2x - y的值.(2)求比例式 x +1 = 3x - 2 中字母 x 的值.3 418.(8 分)如图⊙O 中弦 AC 与弦 BD 交于点 P,连结 AB,CD,已知 AB=CD,(1)求证 AC=BD(2)已知 AB = BC , BD 的度数为160°,求 AB 的度数.19.(8 分)A 口袋中装有三个相同的小球,它们的标号分别为 1,2 和 3,B 口袋中装有三个相同的小球,它们的标号分别为 4,5,6,从这 2 个口袋中各随机地取出 1 个小球.(1)求取出的 2 个小球的标号之和是奇数的概率是多少?(2)现在将 A 口袋中舍弃一个球剩下 2 个球,B 口袋不变,再从这2 个口袋中各随机地取出1 个小球.发现标号之和为奇数的概率变大,问:A 口袋中舍弃的是哪号球.20.(10 分)已知二次函数的表达式是 y = x2 - 4x + 3 .(1)用配方法把它化成 y =( x + m)2 + k 的形式;(2)在直角坐标系中画出抛物线 y = x2 - 4x + 3 的图象;(3)若 A(x1,y1)、B(x2,y2)是函数 y = x2 - 4x + 3 图象上的两点,且x1” “<” 或“=”);(4)利用函数 y = x2 - 4x + 3 的图象直接写出方程x2 - 4x + 3 =1的近似解(精确到 0.1).21.(10 分)在直角坐标系中有点 A(4,0),B(0,4),(1)画一个△ABC,使点C 在x 轴的负半轴上,且△ABC 的面积为12.(2)找出(1)中△ABC 的外接圆圆心 P,并画出△ABC 的外接圆;并写出点 P 的坐标,△ABC 的外接圆半径 R= .22.(10 分)已知△ABC 中,AB=BC,CH⊥AB 垂足为 H,以AB 为直径作⊙O,交 AC、BC、CH 分别于点 D,E,P,连结 DP,AP.(1)求证:∠APD=∠ACH;(2)若 AB=5,AC=6,求 CH 的长.23.(12 分)某水果商户发现近期金桔的批发价格不断上涨,就以每箱 100 元的价格购进80 箱的金桔,购进后,金桔价格每天都上涨5 元/箱,但每天总有 1 箱金桔因变质而丢弃.且商户还要承担这批金桔的储存费用每天 100 元.(1)若商户在购进这批金桔10 天后立即出售这批金桔可以赚多少钱?(2)设商户在购进这批金桔x 天后立即出售这批金桔,求商户的利润 y 与 x 的函数关系式?(3)问几天后立即出售利润最大,最大利润是多少元?24.(14 分)如图(1),抛物线 y =-x2 + bx + c 与 x 轴相交于点 A、B,与 y 轴相交于点 C,已知 A、C 两点的坐标为 A(-1,0),C(0,3).点 P 是抛物线上第一象限内一个动点,(1)求抛物线的解析式;并求出 B 的坐标;(2)如图(2),抛物线上是否存在点 P,使得△ OBP≌△ OCP,若存在,求点 P 的坐标;(3)如图(2),y 轴上有一点 D(0,1),连结 DP 交 BC 于点 H,若H 恰好平分 DP,求点 P的坐标;(4)如图(3),连结 AP 交 BC 于点 M,以 AM 为直径作圆交 AB、BC 于点 E、F,若 E,F关于直线 AP 轴对称,求点 E 的坐标.九年级数学上学期期中试卷阅读一、选择题(每小题3分,共24分)1.若在实数范围内有意义,则x的取值范围是A. x≥1B. x>1C. x≤1D. x≠12.方程的解是A. B. C. D.3.如图,AD∥BE∥CF,直线a、b与这三条平行线分别交于点A、B、C和点D、E、F.若AB=4,BC=6,DE=3,则EF的长为A.4B. 4.5C. 5D. 6(第3题) (第4题) (第5题)4.如图,在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线.若CD=4,AC=6,则cosA的值是A. B. C. D.5.如图,学校种植园是长32米,宽20米的矩形.为便于管理,现要在中间开辟一横两纵三条等宽的小道,使种植面积为600平方米.若设小道的宽为x米,则下面所列方程正确的是A. (32-x)(20-x)=600B.(32-x)(20-2x)=600C. (32-2x)(20-x)=600D.(32-2x)(20-2x)=6006.已知点、在二次函数的图象上.若,则与的大小关系是A. B. C. D.7. 如图,在⊙O中,半径OA垂直弦BC于点D.若∠ACB=33°,则∠OBC的大小为A.24°B. 33°C. 34°D. 66°8.如图,△ABC和△ADE均为等边三角形,点D在BC上,DE与AC相交于点F.若AB=9,BD=3,则CF的长为A.1B.2C.3D.4二、填空题(每小题3分,共18分)9.计算:= .10.若关于的一元二次方程有实数根,则的取值范围是 .11.将抛物线向下平移2个单位后,得到的抛物线所对应的函数表达式为 .12.如图,四边形ABCD是圆内接四边形,E是BC延长线上一点.若∠BAD =105°,则∠DCE的大小是度.(第12题) (第13题) (第14题)13. 如图,在平面直角坐标系中,线段AB两个端点的坐标分别为(6,6),(8,2).以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则点C的坐标为 .14.如图,在平面直角坐标系中,点A在第二象限,以A为顶点的抛物线经过原点,与x轴负半轴交于点B,对称轴为直线x=-2,点C 在抛物线上,且位于点A、B之间(C不与A、B重合).若四边形AOBC 的周长为a,则△ABC的周长为(用含a的代数式表示).三、解答题(本大题共10小题,共78分)15.(6分)计算:.16.(6分)解方程:.17.(6分)某工厂一种产品2013年的产量是100万件,计划2015年产量达到121万件.假设2013年到2015年这种产品产量的年增长率相同.求2013年到2015年这种产品产量的年增长率.18.(7分)图①、图②均是边长为1的正方形网格,△ABC的三个顶点都在格点上.按要求在图①、图②中各画一个三角形,使它的顶点均在格点上.(1)在图①中画一个△A1B1C1,满足△A1B1C1∽△ABC ,且相似比不为1.(2)在图②中将△AB C绕点C顺时针旋转90°得到△A2B2C,求旋转过程中B点所经过的路径长.19.(7分)如图,AB是半圆所在圆的直径,点O为圆心,OA=5,弦AC=8,OD⊥AC于E,交⊙O于D,连结BC、BE.(1)求OE的长.(2)设∠BEC=α,求tanα的值.20.(7分) 如图,在平面直角坐标系中,过抛物线的顶点A作x轴的平行线,交抛物线于点B,点B在第一象限.(1)求点A的坐标.(2)点P为x轴上任意一点,连结AP、BP,求△ABP的面积.21.(8分)(8分)某超市利用一个带斜坡的平台装卸货物,其纵断面ACFE如图所示. AE为台面,AC垂直于地面,AB表示平台前方的斜坡.斜坡的坡角∠ABC为43°,坡长AB为2m.为保障安全,又便于装卸货物,决定减小斜坡AB的坡角,AD是改造后的斜坡(D在直线BC上),坡角∠ADC为31°.求斜坡AD底端D与平台AC的距离CD.(结果精确到0. 1m)【参考数据:sin43°=0.68,cos43°=0.73,tan43°=0.93;sin31°=0.52,cos31°=0.86,tan31°=0.60】22.(9分)(9分)如图,在Rt△ABC中,∠B=30°,∠ACB=90°,AB=4.延长CA到O,使AO=AC,以O 为圆心,OA长为半径作⊙O交BA延长线于点D,连结OD、CD.(1)求扇形OAD的面积.(2)判断CD所在直线与⊙O的位置关系,并说明理由.23. (10分)如图,在Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm.动点P从点B出发,在BA边上以每秒5cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4cm的速度向点B匀速运动,运动时间为t秒(0(1)用含t的代数式表示BP、BQ的长.(2)连结PQ,如图①所示.当△BPQ与△ABC相似时,求t的值.(3)过点P作PD⊥BC于D,连结AQ、CP,如图②所示.当AQ⊥CP时,直接写出线段PD的长.图①24.(12分)如图,在平面直角坐标系中,抛物线与x轴交于A(4,0)、B(-3,0)两点,与y轴交于点C.(1)求这条抛物线所对应的函数表达式.(2)如图①,点D是x轴下方抛物线上的动点,且不与点C重合.设点D的横坐标为m,以O、A、C、D为顶点的四边形面积为S,求S 与m之间的函数关系式.(3)如图②,连结BC,点M为线段AB上一点,点N为线段BC 上一点,且BM=CN=n,直接写出当n为何值时△BMN为等腰三角形.一、1.A 2. C 3. B 4. D 5. C 6. D 7. A 8. B二、9. 10. 11.(化成一般式也可) 12. 105 13.(3,3) 14. a-4三、15.原式=.(化简正确给2分,计算sin30°正确给1分,结果2分)16. .(1分)∵a=1,b=-3,c=-1,∴.(2分)(最后结果正确,不写头两步不扣分)∴. (5分)∴ (6分)【或,(2分) .(3分),.(5分)(6分)】17.设2013年到2015年这种产品产量的年增长率为x. (1分)根据题意,得. (3分)解得 x1=0.1=10%,x2=﹣2.1(不合题意,舍去). (5分)答:2013年到2015年这种产品产量的年增长率为10%.(6分)18.(1)(2)画图略. (4分)(每个图2分,不用格尺画图总共扣1分,不标字母不扣分)(2)由图得. (5分)(结果正确,不写这步不扣分)旋转过程中B点所经过的路径长:. (7分)(过程1分,结果1分)19. (1)∵OD⊥AC,∴. (1分)在Rt△OEA中,. (3分)(过程1分,结果1分)(2)∵AB是⊙O的直径,∴∠C=90°. (4分)在Rt△ABC中,AB=2OA=10,∴. (5分)∵OD⊥AC,∴. (6分)在Rt△BCE中,tan=. (7分)20. (1).(3分)(过程2分,结果1分)(用顶点坐标公式求解横坐标2分,纵坐标1分)∴点A的坐标为(4,2). (4分)(2)把代入中,解得,(不合题意,舍去). (6分)∴. (7分)∴. (8分)21. 在Rt△ABC中,sin∠ABC=,∴AC=ABsin43°=2×0.68=1.36 (m) . (4分)(过程2分,有其中两步即可,结果2分)在Rt△ADC中,tan∠ADC=,∴(m). (给分方法同上)∴斜坡AD底端D与平台AC的距离CD约为2.3m.(8分)(不答不扣分,最终不写单位扣1分)22. (1)在Rt△ABC中,∠ACB=90°,∠B=30°,∴,(1分)∠BAC=60°. (2分)∴AO=AC=2,∠OAD=∠BAC=60°.∵OA=OD,∴△OAD是等边三角形. (3分)∴∠AOD=60°. (4分)∴. (5分)(2)CD所在直线与⊙O相切.(只写结论得1分)理由:∵△OAD是等边三角形,∴ AO=AD,∠ODA=60°. (6分) ∵AO=AC,∴ AC=AD.∴∠ACD=∠ADC=. (7分)∴∠ODC=∠ODA+∠ADC=60°+30°=90°,即OD⊥CD . (8分) ∵OD为⊙O的半径,∴CD所在直线与⊙O相切. (9分)23. (1)BP=5t,BQ=8-4t. (2分)(2)在Rt△ABC中,. (3分)当△BPQ∽△BAC时,,即.(4分)解得. (5分)当△BPQ∽△BCA时,,即.(6分)解得. (8分)(3). (10分)24. (1)把A(4,0)、B(-3,0)代入中,得解得 (2分)∴这条抛物线所对应的函数表达式为. (3分)(2)当-3当0(每段自变量1分,若加等号共扣1分,解析式2分) (3),,. (12分)。

专题04 中考数学专题复习最值问题(隐圆)练习(解析版)-备战2022年中考数学复习专题最值问题训练

专题04 中考数学专题复习最值问题(隐圆)练习(解析版)-备战2022年中考数学复习专题最值问题训练

中考数学专题复习最值问题(隐圆)练习1.如图,在Rt ABC D 中,ACB Rt Ð=Ð,8AC =cm ,3BC =cm .D 是BC 边上的一个动点,连接AD ,过点C 作CE AD ^于E ,连接BE ,在点D 变化的过程中,线段BE 的最小值是( )A .1BC .2D 【答案】A 【分析】由∠AEC =90°知,点E 在以AC 为直径的⊙M 的 CN 上(不含点C 、可含点N ),从而得BE 最短时,即为连接BM 与⊙M 的交点(图中点E ′点),BE 长度的最小值BE ′=BM −ME ′.【解析】如图,由题意知,90AEC Ð=°,E \在以AC 为直径的Me 的 CN上(不含点C 、可含点)N ,BE \最短时,即为连接BM 与M e 的交点(图中点E ¢点),在Rt BCM D 中,3BC cm =,142CM AC cm ==,则5BM cm ==.4ME MC cm ¢==Q ,BE \长度的最小值1BE BM ME cm ¢=-¢=,故选:A .【点睛】本题主要考查了勾股定理,圆周角定理,三角形的三边关系等知识点,难度偏大,解题时,注意辅助线的作法.2.如图,△ACB中,CA=CB=4,∠ACB=90°,点P为CA上的动点,连BP,过点A作AM⊥BP 于M.当点P从点C运动到点A时,线段BM的中点N运动的路径长为()ABπCD.2π【答案】A【解析】解:设AB的中点为Q,连接NQ,如图所示:∵N为BM的中点,Q为AB的中点,∴NQ为△BAM的中位线,∵AM⊥BP,∴QN⊥BN,∴∠QNB=90°,∴点N的路径是以QB的中点O为圆心,14AB长为半径的圆交CB于D的 QD,∵CA=CB=4,∠ACB=90°,∴AB==QBD=45°,∴∠DOQ=90°,∴ QD为⊙O的14周长,∴线段BM的中点N=故选:A.3.如图,在△ABC 中,∠ACB =90°,AC =BC ,AB =4cm ,CD 是中线,点E 、F 同时从点D 出发,以相同的速度分别沿DC 、DB 方向移动,当点E 到达点C 时,运动停止,直线AE 分别与CF 、BC 相交于G 、H ,则在点E 、F 移动过程中,点G 移动路线的长度为( )A .2B .πC .2πDπ【答案】D 【解析】解:如图,∵CA =CB ,∠ACB =90°,AD =DB ,∴CD ⊥AB ,∴∠ADE =∠CDF =90°,CD =AD =DB ,在△ADE 和△CDF 中,AD CD ADE CDF DE DF =ìïÐ=Ðíï=î,∴△ADE ≌△CDF (SAS ),∴∠DAE =∠DCF ,∵∠AED =∠CEG ,∴∠ADE =∠CGE =90°,∴A 、C 、G 、D四点共圆,∴点G的运动轨迹为弧CD,∵AB=4,AB=,∴AC=∴OA=OC=∵DA=DC,OA=OC,∴DO⊥AC,∴∠DOC=90°,∴点G=π.故选:D.4.如图,在等腰Rt∆ABC中,AC BC==,点P在以斜边AB为直径的半圆上,M为PC的中点.当点P沿半圆从点A运动至点B时,点M运动的路径长是()A.4+B.2p C.2+D.4p【答案】B【解析】分析:取AB的中点O、AC的中点E、BC的中点F,连结OC、OP、OM、OE、OF、EF,如图,利用等腰直角三角形的性质得到AB BC=8,则OC=12AB=4,OP=12AB=4,再根据等腰三角形的性质得OM⊥PC,则∠CMO=90°,于是根据圆周角定理得到点M在以OC为直径的圆上,由于点P 点在A点时,M点在E点;点P点在B点时,M点在F点,则利用四边形CEOF为正方得到EF=OC=4,所以M点的路径为以EF为直径的半圆,然后根据圆的周长公式计算点M运动的路径长.解析:取AB的中点O、AC的中点E、BC的中点F,连结OC、OP、OM、OE、OF、EF,如图,∵在等腰Rt△ABC中,AC=BC AB BC=8,∴OC=12AB=4,OP=12AB=4.∵M为PC的中点,∴OM⊥PC,∴∠CMO=90°,∴点M在以OC为直径的圆上,点P点在A点时,M点在E点;点P点在B点时,M点在F点,易得四边形CEOF为正方形,EF=OC=4,∴M点运动的路径为以EF为直径的半圆,∴点M运动的路径长=12•4π=2π.故选B.点睛:本题考查了轨迹:点按一定规律运动所形成的图形为点运动的轨迹.解决此题的关键是利用等腰三角形的性质和圆周角定理确定M点的轨迹为以EF为直径的半圆.5.如图,在Rt V ABC中,∠ACB=90°,D为AC的中点,M为BD的中点,将线段AD绕A点任意旋转(旋转过程中始终保持点M为BD的中点),若AC=8,BC=6,那么在旋转过程中,线段CM长度的取值范围是____.【答案】3≤CM≤7【分析】由勾股定理可求AB=10,由三角形中位线定理可求OM=2,点M在以O为圆心,OM长为半径的圆上运动,即可求解.【解析】解:如图,取AB中点O,连接OC,OM,∵AC=8,BC=6,∴AB10=,∵D为AC的中点,点O是AB中点,∴AD=4,CO=5,∵M为BD的中点,点O是AB中点,AD=2,∴OM=12∴点M在以O为圆心,OM长为半径的圆上运动,∴当点M在线段OC上时,CM有最小值=5﹣2=3,当点M在线段CO的延长线时,CM有最大值=5+2=7,∴线段CM长度的取值范围3≤CM≤7,故答案为:3≤CM≤7.【点睛】本题主要考查三角形中位线及隐圆问题,熟练掌握三角形的中位线及动点的运动轨迹是解题的关键.6.如图,在锐角△ABC中,AB=2,AC,∠ABC=60°.D是平面内一动点,且∠ADB=30°,则CD的最小值是________【答案】33【分析】作AH⊥BC于H,证明△ACH为等腰直角三角形,求得BC,在BC上截取BO=AB=2,则△OAB 为等边三角形,以O为圆心,2为半径作⊙O,根据∠ADB=30°,可得点D在⊙O上运动,当DB经过圆心O时,CD最小,其最小值为⊙O的直径减去BC的长.【解析】解:如图,作AH⊥BC于H,∵AB=2,AC,∠ABC=60°,∴BH=12AB=1,∴AH==,CH==∴△ACH为等腰直角三角形,∴∠ACB=45°,BC=CH+BH,在BC上截取BO=AB=2,则△OAB为等边三角形,以O为圆心,2为半径作⊙O,∵∠ADB=30°,∴点D在⊙O上运动,当DB经过圆心O时,CD最小,最小值为4-)故答案为:3【点睛】本题考查了勾股定理,含30度角的直角三角形的性质,等腰直角三角形的判定和性质,圆周角定理.解题的关键是得出点D在⊙O上运动.7.如图,在四边形ABCD中,∠BAD=∠BCD=90°,∠ACD=30°,AD=2,E是AC的中点,连接DE,则线段DE长度的最小值为______.【答案】1)## (1-【分析】先判断出四边形ABCD是圆内接四边形,得到∠ACD=∠ABD=30°,根据题意知点E在以FG为直径的⊙P上,连接PD交⊙P于点E,此时DE长度取得最小值,证明∠APD=90°,利用含30度角的直角三角形的性质求解即可.【解析】解:∵∠BAD=∠BCD=90°,∴四边形ABCD是圆内接四边形,∴∠ACD=∠ABD=30°,∴∠ADB=60°,∵AD=2,∴BD=2AD=4,分别取AB、AD的中点F、G,并连接FG,EF,EG,∵E是AC的中点,∴EF∥BC,EG∥CD,∴∠AEF=∠ACB,∠AEG=∠ACD,∴∠AEF+∠AEG=∠ACB+∠ACD=90°,即∠FEG =90°,∴点E在以FG为直径的⊙P上,如图:当点E恰好在线段PD上,此时DE的长度取得最小值,连接PA,∵F、G分别是AB、AD的中点,BD=2,∴FG∥BD,FG=12∴∠ADB=∠AGF=60°,∵PA=PG,∴△APG是等边三角形,∴∠APG=60°,∵PG=GD=GA,且∠AGF=60°,∴∠GPD=∠GDP=30°,∴∠APD=90°,∴PD==∴DE长度的最小值为1) .故答案为:1).【点睛】本题考查了圆周角定理,圆内接四边形的性质,等边三角形的判定和性质,含30度角的直角三角形的性质,得到点E在以FG为直径的⊙P上是解题的关键.8.如图,△ABC为⊙O的内接等边三角形,BC=12,点D为 BC上一动点,BE⊥OD于E,当点D 由点B沿 BC运动到点C时,线段AE的最大值是____.【答案】【分析】连接BO,取BO中点M,连接ME,求得12ME OB=,点E在以M为圆心,以12OB为半径的圆上,求得当A M E、、共线且点E在AM的延长线上时,AE最大,求解即可.【解析】解:连接BO,取BO中点M,连接ME,如下图:∵BE OD ^,M 为BO 中点∴12ME OB=∴点E 在以M 为圆心,以12OB 为半径的圆上∴当A M E 、、共线且点E 在AM 的延长线上时,AE 最大延长BO 交AC 于点H ,如上图:∵△ABC 为⊙O 的内接等边三角形∴HB 垂直平分AC ,12AC BC ==∴162AH CH AC ===∴BH =23OB BH ==∴12OM OB ==MH =∴AM ==∴AE 的最大值为故答案为:【点睛】此题考查了圆与内接正三角形的性质,涉及了直角三角形的性质,勾股定理,三角形外心的性质,解题的关键是理解题意,利用性质确定出点E 的运动轨迹.9.如图,点A ,B 的坐标分别为()4,0A ,()0,4B ,C 为坐标平面内一动点,且2BC =,点M 为线段AC 的中点,连接OM ,当AC 取最大值时,点M 的纵坐标为____.【答案】2【分析】根据同圆的半径相等可知:点C 在半径为2的⊙B 上,通过画图可知,C在AB 的延长线上时,AC 最大,根据中点坐标公式可得结论.【解析】解:如图,∵点C 为坐标平面内一点,BC =2,∴C 在⊙B 上,且半径为2,∴当C 在AB 的延长线上时,AC 最大,过点C 作CD ⊥x 轴,∵点A ,B 的坐标分别为()4,0A ,()0,4B ,∴4OA OB ==,∵=90BOA а,∴BOA △是等腰直角三角形,∴45A Ð=°,AB ==∴2AC BC AB =+=+.∵CD ⊥x 轴,∴CDA V 是等腰直角三角形,∴CD AD =,∵222=CD AD AC +,即(222=2CD +,解得:4CD =,∴C 4,∵点M 为线段AC 的中点,∴点M 2+.2.【点睛】本题考查了坐标和图形的性质,动点线段最值问题,勾股定理等知识,确定AC 为最大值时点C 的位置是解题的关键.10.如图,⊙O 的半径为2,弦AB =2,点P 为优弧AB 上一动点,AC ⊥AP 交直线PB 于点C ,则△ABC 的最大面积是_________.【分析】连接OA 、OB ,如图1,由OA =OB =AB =2可判断△OAB 为等边三角形,则∠AOB =60°,根据圆周角定理得∠APB =12∠AOB =30°,由于AC ⊥AP ,所以∠C =60°,因为AB =2,则要使△ABC 的最大面积,点C 到AB 的距离要最大;由∠ACB =60°,可根据圆周角定理判断点C 在⊙D 上,且∠ADB =120°,如图2,于是当点C 优弧AB 的中点时,点C 到AB 的距离最大,此时△ABC 为等边三角形,从而得到△ABC 的最大面积.【解析】解:连接OA 、OB ,如图1,∵OA=OB=2,AB=2,∴△OAB为等边三角形,∴∠AOB=60°,∠AOB=30°,∴∠APB=12∵AC⊥AP,∴∠C=60°,∵AB=2,要使△ABC的最大面积,则点C到AB的距离最大,作△ABC的外接圆D,∵∠ACB=60°,点C在⊙D上,∴∠ADB=120°,如图2,当点C优弧AB的中点时,点C到AB的距离最大,此时△ABC2=∴△ABC【点睛】本题考查了圆的综合题:熟练掌握圆周角定理和等边三角形的判断与性质;记住等边三角形的面积公式.11.如图,AB是半圆O的直径,点D在半圆O上,AB=13,AD=5,C是弧BD上的一个动点,连接AC,过D点作DH⊥AC于H.连接BH,在点C移动的过程中,BH的最小值是 ___.【分析】连接BD,取AD的中点E,连接BE,由题意先判断出点H在以点E为圆心,AE为半径的圆上,当B、H、E三点共线时,BH取得最小值,然后在直角三角形中,利用勾股定理求出BE的长,利用直角三角形中,斜边上的中线等于斜边的一半,求出EH的长,由BH BE EH=-即可算出BH的长度.【解析】解:连接BD,取AD的中点E,连接BE,如下图:∵DH⊥AC∴点H在以点E为圆心,AE为半径的圆上,当B、H、E三点共线时,BH取得最小值∵AB是直径∴90BDAÐ=o在Rt BDAV中,AB=13,AD=5由勾股定理得:222BD AB AD=-即:216925144BD=-=∵0BD>∴=12BD∵E为AD的中点∴1522 DE AD==在Rt BDEV中,=12BD,52 DE=由勾股定理得:222BE DE BD =+即:225601+144=44BE =∵0BE >∴BE 又∵DH ⊥AC ,且点E 为AD 的中点∴52EH =∴52BH BE =-=【点睛】本题考查勾股定理解三角形,直径所对的圆周角为直角,直角三角形斜边上的中线等于斜边的一半,隐圆问题的处理等相关知识点,能够判断出从动点的运动轨迹是解题的关键.12.如图,Rt △ABC 中,∠ACB =90°,∠CAB =60°,AB =4,点P 是BC 边上的动点,过点c 作直线记的垂线,垂足为Q ,当点P 从点C 运动到点B 时,点Q 的运动路径长为_______.【答案】23p 【解析】解:∵AQ ⊥CQ ,∴∠AQC =90°,∴当点P 从点C 运动到点B 时,点Q 的运动的轨迹是以AC 为直径的半圆上,路径是120度的弧长,在Rt△ABC 中,∵AB =4,∠B =30°,∴AC 12=AB =2,∴点Q 的运动路径长为120121803p ××=π13.如图,正方形ABCD,边长为4,点P和点Q在正方形的边上运动,且PQ=4,若点P从点B出发沿B→C→D→A的路线向点A运动,到点A停止运动;点Q从点A出发,沿A→B→C→D 的路线向点D运动,到达点D停止运动.它们同时出发,且运动速度相同,则在运动过程中PQ的中点O所经过的路径长为_____.【答案】3p【解析】解:画出点O运动的轨迹,如图虚线部分,则点P从B到A的运动过程中,PQ的中点O所经过的路线长等于3224p´´=3π,故答案为:3π.14.如图,△ABC为等边三角形,AB=2,若P为△ABC内一动点,且满足∠PAB=∠ACP,则点P运动的路径长为_________.【解析】解:∵△ABC 是等边三角形,∴∠ABC =∠BAC =60°,AC =AB =2,∵∠PAB =∠ACP ,∴∠PAC +∠ACP =60°,∴∠APC =120°,∴点P 的运动轨迹是 AC ,如图所示:连接OA 、OC ,作OD ⊥AC 于D ,则AD =CD 12=AC =1,∵ AEC 所对的圆心角=2∠APC =240°,∴劣弧AC 所对的圆心角∠AOC =360°﹣240°=120°,∵OA =OC ,∴∠OAD =30°,∵OD ⊥AC ,∴OD =2OD =,∴ AC=π;15.△ABC 中,AB =4,AC =2,以BC 为边在△ABC 外作正方形BCDE ,BD 、CE 交于点O ,则线段AO 的最大值为______.【答案】【解析】解:如图:以AO为边作等腰直角△AOF,且∠AOF=90°∵四边形BCDE是正方形∴BO=CO,∠BOC=90°∵△AOF是等腰直角三角形∴AO=FO,AF=∵∠BOC=∠AOF=90°∴∠AOB=∠COF,且BO=CO,AO=FO∴△AOB≌△FOC(SAS)∴AB=CF=4若点A,点C,点F三点不共线时,AF<AC+CF;若点A,点C,点F三点共线时,AF=AC+CF∴AF≤AC+CF=2+4=6∴AF的最大值为6∵AF=∴AO的最大值为故答案为:16.如图一,等边△ABC中,AB=6,P为AB上一动点,PD⊥BC,PE⊥AC,求DE的最小值.【答案】92DE =【分析】由题意易得∠PEC =∠PDC =90°,所以P 、D 、C 、E 四点共圆,又因为∠EOD =120°,所以当直径最小时,弦DE 的值最小.【解析】解:∵PD ⊥BC ,PE ⊥AC ,∴∠PEC =∠PDC =90°,∴四边形PDCE 对角互补,∴P 、D 、C 、E 四点共圆,如图2.∴∠EOD =2∠ECD =120°,要使得DE 最小,则要使圆的半径最小,故直径PC 最小,则当CP ⊥AB 时,PC 最短,∵△ABC 是等边三角形,∴60,3B BP Ð=°=,∴CP ==,∵60DOP Ð=°,∴92sin 2DE OD DOP =×Ð=.【点睛】本题主要考查圆的基本性质、三角函数及等边三角形的性质,熟练掌握圆的基本性质、三角函数及等边三角形的性质是解题的关键.17.问题发现:(1)如图①,点A和点B均在⊙O上,且∠AOB=90°,点P和点Q均在射线AM上,若∠APB =45°,则点P与⊙O的位置关系是;若∠AQB<45°,则点Q与⊙O的位置关系是.问题解决:如图②、图③所示,四边形ABCD中,AB⊥BC,AD⊥DC,∠DAB=135°,且AB=1,AD=,点P是BC边上任意一点.(2)当∠APD=45°时,求BP的长度.(3)是否存在点P,使得∠APD最大?若存在,请说明理由,并求出BP的长度;若不存在,也请说明理由.【答案】(1)点P在⊙O上,点Q在⊙O外;(2)PB2;(3−1【分析】(1)如图①中,根据圆周角与圆心角的关系即可判断;(2)如图2中,造等腰直角三角形△AOD,与O为圆心作⊙O交BC于P、P′,易知∠APD=∠AP′D=45°.求出BP′和BP的长即可解决问题;(3)作线段AD的垂直平分线,交AD于E,交BC于F,点O在EF上,以OA为半径作⊙O,当⊙O与BC相切于点P时,∠APD最大,求出此时BP的值即可;【解析】解:(1)如图①中,∠AOB=45°,∵∠APB=12∴点P在⊙O上,∵∠AQB<45°,∴点Q在⊙O外.故答案为点P在⊙O上,点Q在⊙O外.(2)如图2中,如图构造等腰直角三角形△AOD,与O为圆心,OA为半径作⊙O交BC于P、P′,易知∠APD=∠AP′D=45°.延长DO交BC于H,∵∠DAB=135°,∠DAO=45°,∴∠OAB=∠B=90°,∴OA∥BC,∴∠DOA=∠OHB=90°,∴四边形ABHO是矩形,∴AB=OH=1,OA=BH,∵AD=∴OA=OD=OP=OP′=2,在Rt△OPH和Rt△OP′H中,易知HP =HP =,∴BH =OA =2,∴BP ′=2,PB =2.(3)如图③中,存在.作线段AD 的垂直平分线,交AD 于E ,交BC 于F ,点O 在EF 上,以OA 为半径作⊙O ,当⊙O 与BC 相切于点P 时,∠APD 最大,理由:在BC 上任意取一点M ,连接MA 、MD ,MD 交⊙O 于N ,连接AN .∵∠AND >∠AMD ,∠APD =∠AND ,∴∠APD >∠AND ,连接OP ,延长DA 交CB 的延长线于点G .∵AB ⊥BC ,∠DAB =135°,∴∠G =∠EFG =45°,∴△ABG ,△EFG 都是等腰直角三角形,∵AB =BG =1,∴AG∵AD =OE ⊥AD ,∴AE =ED∴EG =EF =GF EG =4,设OP =PF =r ,则OF ,OE =EF −OF =r ,在Rt △AOE 中,AE 2+OE 2=OA 2,∴()222+r =,解得r =4 或4(舍弃),∴BP =GF −GB −PF =4−1−r −1.【点睛】本题考查圆综合题、圆周角与圆心角的关系、点与圆的位置关系、矩形的判定和性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,利用辅助圆解决问题.18.如图,在平面直角坐标系xOy 中,点A 与点B 的坐标分别是(1,0),(7,0).(1)对于坐标平面内的一点P ,给出如下定义:如果∠APB =45°,则称点P 为线段AB 的“等角点”.显然,线段AB 的“等角点”有无数个,且A 、B 、P 三点共圆.①设A 、B 、P 三点所在圆的圆心为C ,直接写出点C 的坐标和⊙C 的半径;②y 轴正半轴上是否有线段AB 的“等角点”?如果有,求出“等角点”的坐标;如果没有,请说明理由;(2)当点P 在y 轴正半轴上运动时,∠APB 是否有最大值?如果有,说明此时∠APB 最大的理由,并求出点P 的坐标;如果没有请说明理由.【答案】(1)①(4,3)或(4,−3),半径为②存在,(0,) 或(0,3),见解析;(2)有,见解析,(0【分析】(1)①在x 轴的上方,作以AB 为斜边的等腰直角三角形△ACB ,易知A ,B ,P 三点在⊙C 上,圆心C 的坐标为(4,3),半径为,根据对称性可知点C (4,−3)也满足条件;②当圆心为C (4,3)时,过点C 作CD ⊥y 轴于D ,则D (0,3),CD =4,根据⊙C 的半径得⊙C 与y 轴相交,设交点为1P ,2P ,此时1P ,2P 在y 轴的正半轴上,连接1CP 、2CP 、CA ,则1CP =2CP =CA =r得2DP (2)如果点P 在y 轴的正半轴上,设此时圆心为E ,则E 在第一象限,在y 轴的正半轴上任取一点M (不与点P 重合),连接MA ,MB ,PA ,PB ,设MB 交于⊙E 于点N ,连接NA ,则∠APB=∠ANB,∠ANB是△MAN的外角,∠ANB>∠AMB,即∠APB>∠AMB,过点E作EF⊥x轴于AB=3,OF=4,四边形OPEF是矩形,OP=EF,PE=OF=4,得EF=F,连接EA,EP,则AF=12则OP=【解析】(1)①如图1中,在x轴的上方,作以AB为斜边的等腰直角三角形△ACB,易知A,B,P三点在⊙C上,圆心C的坐标为(4,3),半径为,根据对称性可知点C(4,−3)也满足条件;②y轴的正半轴上存在线段AB的“等角点“。

2022年九年级中考数学冲刺专题---几何动态及最值问题

2022年九年级中考数学冲刺专题---几何动态及最值问题

中考数学冲刺专题---几何动态及最值问题一、单选题1.(2020·江阴模拟)如图,在边长为6的等边三角形ABC中,E是对称轴AD上的一个动点,连接CE,将线段CE绕点C逆时针旋转60°得到FC,连接DF.则在点E运动过程中,DF的最小值是()A.6B.3C.2D.1.52.(2020·无锡模拟)如图,在平面直角坐标系中,四边形OABC的顶点坐标分别为O(0,0),A(12,0),B(8,6),C(0,6).动点P从点O出发,以每秒3个单位长度的速度沿边OA向终点A运动;动点Q从点B同时出发,以每秒2个单位长度的速度沿边BC向终点C运动.设运动的时间为t秒,作AG⊥PQ于点G,则AG的最大值为()C.365D.6 A.√73B.18√553.(2020·无锡模拟)如图,在平面直角坐标系中,已知A(10,0),点P为线段OA上任意一点.在直线y=34x上取点E,使PO=PE,延长PE到点F,使PA=PF,分别取OE、AF中点M、N,连结MN,则MN的最小值是()A.4.8B.5C.5.4D.64.(2020·宜兴模拟)如图,等边△ABC的边长为1,D,E两点分别在边AB,AC上,CE=DE,则线段CE的最小值为()A.2﹣√3B.2 √3﹣3C.12D.√3−125.(2020·南通模拟)如图,在矩形纸片ABCD中,AB=8,AD=17,折叠纸片使点B落在边AD上的E处,折痕为PQ.当E在AD边上移动时,折痕的端点P,Q也随着移动.若限定P,Q分别在边BA,BC上移动,则点E在边AD上移动的最大距离为()A.6B.7C.8D.96.(2020·无锡模拟)如图,正方形ABCD中,AB=4,E,F分别是边AB,AD上的动点,AE=DF,连接DE,CF交于点P,过点P作PK//BC,且PK=2,若∠CBK的度数最大时,则BK长为()A.6B.2√5C.2√10D.4√27.(2020·镇江模拟)如图,已知P是半径为3的⊙A上一点,延长AP到点C,使AC=4,以AC为对角线作▱ABCD,AB=4 √3,⊙A交边AD于点E,当▱ABCD面积为最大值时,EP⌢的长为()A.12πB.πC.32πD.3π8.(2020·泰兴模拟)如图,直线l与⊙O相切于点A,M是⊙O上的一个动点,MH⊥l,垂足为H.若⊙O的半径为1,则MA-MH的最大值为()A.12B.13C.14D.159.(2020·如皋模拟)如图,矩形ABCD中,AB=2,AD=3.E,F分别是AD,CD上的动点,EF=2.Q是EF的中点,P为BC上的动点,连接AP,PQ.则AP+PQ的最小值等于()A.2B.3C.4D.510.(2019·丹阳模拟)如图,已知⊙C的半径为3,圆外一点O满足OC=5,点P为⊙C上一动点,经过点O的直线l上有两点A、B,且OA=OB,∠APB=90°,l不经过点C,则AB的最小值()A.2B.4C.5D.611.(2020·鼓楼模拟)如图,△ABC中,∠BAC=45°,∠ABC=60°,AB=4,D是边BC上的一个动点,以AD为直径画⊙O分别交AB、AC于点E、F,则弦EF长度的最小值为()A.√3B.√6C.2 √2D.2 √3 12.(2020·张家港模拟)如图,已知A,B两点的坐标分别为(8,0),(0,8),点C,F分别是直线x=−5和x轴上的动点,CF=10,点D是线段CF的中点,连接AD交y轴于点E,当ΔABE面积取得最小值时,tan∠BAD的值是()A.817B.4√217C.4√213D.71713.(2020·苏州模拟)如图,正方形ABCD的边长为1,点P为BC上任意一点(可与点B或C重合),分别过B、C、D作射线AP的垂线,垂足分别是B′、C′、D′,则BB′+CC′+DD′的最小值是()A.1B.√2C.√3D.√514.(2020·无锡模拟)如图,正方形ABCD中,AB=2,E是BC中点,CD上有一动点M,连接EM、BM,将的最小值为()ΔBEM沿着BM翻折得到ΔBFM.连接DF、CF,则DF+12FCA.52B.83C.94D.125二、填空题15.(2020·苏州模拟)如图,AB是半⊙O的直径,点C在半⊙O上,AB=5cm,AC=4cm.D是BC⏜上的一个动点,连接AD,过点C作CE⊥AD于E,连接BE.在点D移动的过程中,BE的最小值为.16.(2020·扬州模拟)已知点A、B是半径为2的⊙O上两点,且∠BOA=120°,点M是⊙O上一个动点,点P是AM的中点,连接BP,则BP的最小值是.17.(2020·昆山模拟)如图,已知在△ABC中,AB=AC=13,BC=10,点M是AC边上任意一点,连接MB,以MB、MC为邻边作平行四边形MCNB,连接MN,则MN的最小值是18.(2020·南京模拟)如图,矩形ABCD中,AB=3,BC=4,点E是A边上一点,且AE=√3,点F 是边BC上的任意一点,把△BEF沿EF翻折,点B的对应点为G,连接AG,CG,则四边形AGCD 的面积的最小值为.19.(2020·徐州模拟)如图,在矩形ABCD中,AB=6,AD=8,点E在AD边上,且AE:ED=1:3,动点P从点A出发,沿AB运动到点B停止,过点E作EF⊥PE,交射线BC于点F,设M是线段EF 的中点,则在点P运动的整个过程中,点M运动路线的长为.20.(2020·苏州模拟)如图,折线AB−BC中,AB=3,BC=5,将折线AB−BC绕点A按逆时针方向旋转,得到折线AD−DE,点B的对应点落在线段BC上的点D处,点C的对应点落在点E处,连接CE,若CE⊥BC,则tan∠EDC=°.21.(2020·扬州模拟)如图,在平面直角坐标系中,A(1,√3),B(2,0),C点在x轴上运动,过点O作直线AC的垂线,垂足为D.当点C在x轴上运动时,点D也随之运动.则线段BD长的最大值为.22.(2020·镇江模拟)如图,在RtΔABC中, ∠ACB=90°,AC=10,BC=5,将直角三角板的直角顶点与AC边的中点P重合,直角三角板绕着点P旋转,两条直角边分别交AB边于M,N,则MN的最小值是.23.(2020·宜兴模拟)如图,已知⊙O的半径是2,点A,B在⊙O上,且∠AOB=90°,动点C在⊙O 上运动(不与A,B重合),点D为线段BC的中点,连接AD,则线段AD的长度最大值是.24.(2020·太仓模拟)如图所示,等边△ABC的边长为4,点D是BC边上一动点,且CE=BD,连接AD,BE,AD与BE相交于点P,连接PC.则线段PC的最小值等于.25.(2020·惠山模拟)在Rt△ABC中,∠ABC=90°,AB=8,BC=4.如图,将直角顶点B放在原点,点A放在y轴正半轴上,当点B在x轴上向右移动时,点A也随之在y轴上向下移动,当点A到达原点时,点B停止移动,在移动过程中,点C到原点的最大距离为.26.(2020·淮安模拟)如图,正方形ABCD的边长为2,E为BC上一点,且BE=1,F为AB边上的一个动点,连接EF,以EF为底向右侧作等腰直角△EFG,连接CG,则CG的最小值为.27.(2020·江阴模拟)如图,等边△AOB,点C是边AO所在直线上的动点,点D是x轴上的动点,在矩形CDEF中,CD=6,DE= √3,则OF的最小值为.28.(2020·灌南模拟)如图,在ΔABC中,AB=10,AC=8,BC=6,经过点C且与边AB相切的动圆与CA,CB分别相交于点P,Q,则线段PQ长度的最小值是.29.(2019·崇川模拟)如图,在等边△ABC中,AB=4,点P是BC边上的动点,点P关于直线AB,AC的对称点分别为M,N,则线段MN长的取值范围是.三、综合题30.(2021·泰州模拟)如图,在▱ABCD 中,AB =5,BC =10,sinB =45,点P 以每秒2个单位长度的速度从点B 出发,沿着B→C→D→A 的方向运动到点A 时停止,设点P 运动的时间为ts.(1)连接AC ,判断△ABC 是否是直角三角形,试说明理由;(2)在点P 运动的过程中,若以点C 为圆心、PC 长为半径的⊙C 与AD 边相切,求t 的值;(3)在点P 出发的同时,点Q 以每秒1个单位长度的速度从点C 出发,沿着C→D→A 的方向运动,当P 、Q 中的一点到达终点A 时,另一点也停止运动.求当BP ⊥CQ 时t 的值.31.(2021·扬州模拟)如图,在矩形ABCD 中,AB =6,BC =8,点E 是AD 边上的动点,将矩形ABCD 沿BE 折叠,点A 落在点A′处,连接A′C 、BD.(1)如图1,求证:∠DE A′=2∠ABE ;(2)如图2,若点A′恰好落在BD 上,求tan ∠ABE 的值;(3)若AE =2,求S △A′CB .(4)点E 在AD 边上运动的过程中,∠A′ CB 的度数是否存在最大值,若存在,求出此时线段AE 的长;若不存在,请说明理由.32.(2020·无锡模拟)在综合与实践课上,老师组织同学们以“三角形纸片的旋转”为主题开展数学活动.如图1,现有矩形纸片ABCD,AB=8cm,AD=6cm.连接BD,将矩形ABCD沿BD剪开,得到△ABD 和△BCE.保持△ABD位置不变,将△BCE从图1的位置开始,绕点B按逆时针方向旋转,旋转角为α(0°≤α<360°).在△BCE旋转过程中,边CE与边AB交于点F.(1)如图2,将图1中的△BCE旋转到点C落在边BD上时,CF=;(2)继续旋转△BCE,当点E落在DA延长线上时,求出CF的长;(3)在△BCE旋转过程中,连接AE,AC,当AC=AE时,直接写出此时α的度数及△AEC的面积.33.(2020·常州模拟)如图,△ABC中,∠ACB=90∘,BC=6,AC=8.点E与点B在AC的同侧,且AE⊥AC.(1)如图1,点E不与点A重合,连结CE交AB于点P.设AE=x,AP=y,求y关于x的函数解析式,写出自变量x的取值范围;(2)是否存在点E,使△PAE与△ABC相似,若存在,求AE的长;若不存在,请说明理由;(3)如图2,过点B作BD⊥AE,垂足为D.将以点E为圆心,ED为半径的圆记为⊙E.若点C到OE上点的距离的最小值为8,求⊙E的半径.34.(2020·无锡模拟)如图1,已知:在矩形ABCD中,AB =3√3cm,AD=9cm,点O从A点出发沿AD以acm/s的速度移向点D移动,以O为圆心,2cm长为半径作圆,交射线AD于M(点M在点O右侧).同时点E从C点出发沿CD以√3cm/s的速度移向点D移动,过E作直线EF∥BD交BC于F,再把△CEF沿着动直线EF对折,点C的对应点为点G.若在整过移动过程中△EFG的直角顶点G 能与点M重合.设运动时间为t(0<t≤3)秒.(1)求a的值;(2)在运动过程中,①当直线FG与⊙O相切时,求t的值;②是否存在某一时刻t,使点G恰好落在⊙O上(异于点M)?若存在,请写出t的值;若不存在,请说明理由.35.(2020·无锡模拟)如图,在平面直角坐标系中,点A的坐标为(6,0),点B的坐标为(0,2),点M从点A出发沿x轴负方向以每秒3cm的速度移动,同时点N从原点出发沿y轴正方向以每秒1cm 的速度移动.设移动的时间为t秒.(1)若点M在线段OA上,试问当t为何值时,△ABO与以点O、M、N为顶点的三角形相似?(2)若直线y=x与△OMN外接圆的另一个交点是点C.①试说明:当0<t<2时,OM、ON、OC在移动过程满足OM+ON= √2OC;②试探究:当t>2时,OM、ON、OC之间的数量关系是否发生变化,并说明理由. 36.(2020·南通模拟)(1)如图,已知△ABC中,D、E分别是AB、AC的中点,求证:DE∥BC,DE= 12BC.(2)利用第(1)题的结论,解决下列问题:①如图,在四边形ABCD中,AD∥BC,E、F分别是AB、CD的中点,求证:EF∥BC,FE= 12(AD+BC)②如图,在四边形ABCD中,∠A=90°,AB=3 √3,AD=3,点M,N分别在边AB,BC上,点E,F分别为MN,DN的中点,连接EF,求EF长度的最大值.37.(2020·南京模拟)如图①,在△ABC中,∠C=90°,AC=15,BC=20,经过点C的⊙O与△ABC 的每条边都相交.⊙O与AC边的另一个公共点为D,与BC边的另一个公共点为E,与AB边的两个公共点分别为F、G.设⊙O的半径为r.(1)(操作感知)根据题意,仅用圆规在图①中作出一个满足条件的⊙O,并标明相关字母;(2)(初步探究)求证:CD2+CE2=4r2;(3)当r=8时,则CD2+CE2+FG2的最大值为;(4)(深入研究)直接写出满足题意的r的取值范围;对于范围内每一个确定的r的值,CD2+CE2+FG2都有最大值,每一个最大值对应的圆心O所形成的路径长为.38.(操作体验)如图①,已知线段AB和直线l,用直尺和圆规在l上作出所有的点P,使得∠APB=30°,如图②,小明的作图方法如下:第一步:分别以点A,B为圆心,AB长为半径作弧,两弧在AB上方交于点O;第二步:连接OA,OB;第三步:以O为圆心,OA长为半径作⊙O,交l于P1,P2;所以图中P1,P2即为所求的点.(1)在图②中,连接P1A,P1B,说明∠AP1B=30°(方法迁移)(1)如图③,用直尺和圆规在矩形ABCD内作出所有的点P,使得∠BPC=45°,(不写做法,保留作图痕迹).(2)已知矩形ABCD,BC=2.AB=m,P为AD边上的点,若满足∠BPC=45°的点P恰有两个,则m 的取值范围为.(3)已知矩形ABCD,AB=3,BC=2,P为矩形ABCD内一点,且∠BPC=135°,若点P绕点A逆时针旋转90°到点Q,则PQ的最小值为.39.(1)如图1,点A在⊙O上,请在图中用直尺(不含刻度)和圆规作等边三角形ABC,使得点B、C 都在⊙O上.(2)已知矩形ABCD中,AB=4,BC=m.①如图2,当m=4时,请在图中用直尺(不含刻度)和圆规作等边三角形AEF,使得点E在边BC上,点F在边CD上;②若在该矩形中总能作出符合①中要求的等边三角形AEF,请直接写出m的取值范围. 40.(2020·建邺模拟)(概念认识)若以三角形某边上任意一点为圆心,所作的半圆上的所有点都在该三角形的内部或边上,则将符合条件且半径最大的半圆称为该边关联的极限内半圆.如图①,点P是锐角△ABC的边BC上一点,以P为圆心的半圆上的所有点都在△ABC的内部或边上.当半径最大时,半圆P为边BC关联的极限内半圆.(1)(初步思考)若等边△ABC的边长为1,则边BC关联的极限内半圆的半径长为.(2)如图②,在钝角△ABC中,用直尺和圆规作出边BC关联的极限内半圆(保留作图痕迹,不写作法).(3)(深入研究)如图③,∠AOB=30°,点C在射线OB上,OC=6,点Q是射线OA上一动点.在△QOC中,若边OC关联的极限内半圆的半径为r,当1≤r≤2时,求OQ的长的取值范围.。

初中数学圆中最值定值问题专题(推荐)

初中数学圆中最值定值问题专题(推荐)

初中数学圆中最值定值问题专题(推荐)圆中最值域定值问题研究类型一:例1:在图中,AB是⊙O的直径,AB=10cm,M是半圆AB的一个三等分点,N是半圆AB的一个六等分点,P是直径AB上一动点,连接MP、NP。

求MP+NP的最小值。

例2:已知圆O的面积为3π,AB为直径,弧AC的度数为80度,弧BD的度数为20度,点P为直径AB上任一点。

求PC+CD的最小值。

例3:在菱形ABC中,∠A=60度,AB=3,圆A、圆B的半径为2和1,P、E、F分别是CD、圆A和圆B上的动点。

求PE+PF的最小值。

类型二:折叠隐圆基本原理】:点A为圆外一点,P为圆O上动点,连接AO并延长交圆于P1,则AP的最小值为AP2,最大值为AP1.例1:在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上一动点,将△XXX沿MN所在的直线翻折得到△A′MN,连接A′C,求A′B长度的最小值。

例2:已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A(1,1),点B(5,6),点P为BC边上的动点(点P不与点B、C重合),经过点O、P折叠该纸片,则CB’的最小值为多少?例3:在四边形ABCD中,AD∥BC,∠A=90,AD=1,AB=2,BC=3,P是线段AD上一动点,将△ABP沿BP所在直线翻折得到△QBP,则△CQD的面积最小值为多少?类型三:随动位似隐圆例:在Rt△ABC中,∠ACB=90°,∠BAC=30°,BC=6,点D是边AC上一点且AD=23,将线段AD绕点A旋转得线段AD′,点F始终为BD′的中点,则将线段CF最大值为多少?分析]:易知D’轨迹为以A为圆心AD为半径的圆,则在运动过程中AD’为定值23,故取AB中点G,则FG为中位线,FG=3,故F点轨迹为以G为圆心,3为半径的圆。

问题实质为已知圆外一点C和圆G上一点F,求CF的最大值。

方法归纳:1.如图,点A和点O1为定点,圆O1半径为定值,P为圆O1上动点,M为AP中点。

中考数学几何最值问题题型梳理

中考数学几何最值问题题型梳理

中考数学几何最值问题题型梳理专题1 单线段最值之单动点型例题.如图,矩形ABCD 中,4AB =,6BC =,点P 是矩形ABCD 内一动点,且∆∆=PAB PCD S S ,则PC PD +的最小值为_____.【解析】ABCD 为矩形,AB DC ∴= 又=PAB PCD S S∴点P 到AB 的距离与到CD 的距离相等,即点P 线段AD 垂直平分线MN 上, 连接AC ,交MN 与点P ,此时PC PD +的值最小,且PC PD AC +=====巩固1.如图,等腰Rt △ABC 中,斜边AB 的长为2,O 为AB 的中点,P 为AC 边上的动点,OQ ⊥OP 交BC 于点Q ,M 为PQ 的中点,当点P 从点A 运动到点C 时,点M 所经过的路线长为( )ABC .1D .2【解析】连接OC ,作PE ⊥AB 于E ,MH ⊥AB 于H ,QF ⊥AB 于F ,如图,∵△ACB 为到等腰直角三角形,∴AC =BC=2AB,∠A =∠B =45°, ∵O 为AB 的中点,∴OC ⊥AB ,OC 平分∠ACB ,OC =OA =OB =1,∴∠OCB =45°, ∵∠POQ =90°,∠COA =90°,∴∠AOP =∠COQ ,在Rt △AOP 和△COQ 中,A OCQ AO COAOP COQ ∠=∠=∠=∠⎧⎪⎨⎪⎩,∴Rt △AOP ≌△COQ ,∴AP =CQ , 易得△APE 和△BFQ 都为等腰直角三角形,∴PE=2AP=2CQ ,QF2BQ , ∴PE +QF=2,CQ +BQ,=2BC=2∵M 点为PQ 的中点, ∴MH 为梯形PEFQ 的中位线,∴MH =12,PE +QF ,=12,即点M 到AB 的距离为12, 而CO =1,∴点M 的运动路线为△ABC 的中位线,∴当点P 从点A 运动到点C 时,点M 所经过的路线长=12AB =1,选C , 巩固2.如图,在平面内,线段AB =6,P 为线段AB 上的动点,三角形纸片CDE 的边CD 所在的直线与线段AB 垂直相交于点P ,且满足PC =P A .若点P 沿AB 方向从点A 运动到点B ,则点E 运动的路径长为______,【解析】如图,由题意可知点C运动的路径为线段AC′,点E运动的路径为EE′,由平移的性质可知AC′=EE′,在Rt,ABC′中,易知AB=BC′=6,∠ABC′=90°,,EE′=AC巩固3.如图,等边三角形ABC的边长为4,点D是直线AB上一点.将线段CD绕点D顺时针旋转60°得到线段DE,连结BE.(1)若点D在AB边上(不与A,B重合)请依题意补全图并证明AD=BE;(2)连接AE,当AE的长最小时,求CD的长.【解析】(1)补全图形如图1所示,AD=BE,理由如下:∵∵ABC是等边三角形,∵AB=BC=AC,∠A=∠B=60°,由旋转的性质得:∠ACB=∠DCE=60°,CD=CE,∵∠ACD=∠BCE,∵∵ACD≌∵BCE(S A S),∵AD=BE.(2)如图2,过点A作AF⊥EB交EB延长线于点F.∵∵ACD≌∵BCE,∵∠CBE=∠A=60°,∵点E的运动轨迹是直线BE,根据垂线段最短可知:当点E与F重合时,AE的值最小,此时CD=CE=CF,∵∠ACB=∠CBE=60°,∵AC∥EF,又∵AF⊥BE,∵AF⊥AC,在Rt∵ACF中,∵CF∵CD=CF=.例题.如图,点D 在半圆O 上,半径5OB =,4=AD ,点C 在弧BD 上移动,连接AC ,作DH AC ⊥,垂足为H ,连接BH ,点C 在移动的过程中,BH 的最小值是______.【解析】如图,设AD 的中点为点E ,则114222EA ED AD ===⨯= 由题意得,点H 的运动轨迹在以点E 为圆心,EA 为半径的圆上由点与圆的位置关系得:连接BE ,与圆E 交于点H ,此时BH 取得最小值,2EH = 连接BDAB 为半圆O 的直径,90ADB ∴∠=︒BD ∴===BE ∴===2BH BE EH ∴=-=巩固1.如图,长方形ABCD 中,AB =6,BC =4,在长方形的内部以CD 边为斜边任意作Rt ∵CDE ,连接AE ,则线段AE 长的最小值是_____.【解析】如图,点E '在以点F 为圆心,DF 为半径的圆上运动,当A ,E ,F 三点共线时,AE 值最小,DF =12×6=3,在长方形ABCD 中,AD =BC =4,由勾股定理得:AF . ∵EF =12CD =12×6=3,∵AE =AF ﹣EF =5﹣3=2,即线段AE 长的最小值是2.巩固3.如图,Rt ABC △中,AB BC ⊥,6AB =,4BC =,P 是ABC △内部的一个动点,且满足90PAB PBA ︒∠+∠=,则线段CP 长的最小值为________.【解析】∵∠P AB +∠PBA =90°,∵∠APB =90°,∵点P 在以AB 为直径的弧上(P 在∵ABC 内),设以AB 为直径的圆心为点O ,如图,接OC ,交∵O 于点P ,此时的PC 最短∵AB =6,∵OB =3,∵BC =4,∵5OC ==,∵PC =5-3=2巩固4.如图,在Rt ABC ∆中,90︒∠=C ,4AC =,3BC =,点O 是AB 的三等分点,半圆O 与AC 相切,M ,N 分别是BC 与半圆弧上的动点,则MN 的最小值和最大值之和是( )A .5B .6C .7D .8【解析】如图,设∵O 与AC 相切于点D ,连接OD ,作OP BC ⊥垂足为P 交∵O 于F , 此时垂线段OP 最短,PF 最小值为OP OF -,∵4AC =,3BC =,∵5AB =,∵90OPB ︒∠=,∵OP AC ∥∵点O 是AB 的三等分点,∵210533OB =⨯=,23OP OB AC AB ==,∵83OP =, ∵∵O 与AC 相切于点D ,∵OD AC ⊥,∵OD BC ∥,∵13OD OA BC AB ==,∵1OD =, ∵MN 最小值为85133OP OF -=-=, 如图,当N 在AB 边上时,M 与B 重合时,MN 经过圆心,经过圆心的弦最长, MN 最大值1013133=+=,513+=633,∵MN 长的最大值与最小值的和是6.选B . 巩固5.如下图所示,在矩形纸片ABCD 中,2AB =,3AD =,点E 是AB 的中点,点F 是AD 边上的一个动点,将AEF 沿EF 所在直线翻折,得到'A EF △,则'A C 的长的最小值是( )A .2B .3C 1D 1【解析】以点E 为圆心,AE 长度为半径作圆,连接CE ,当点'A 在线段CE 上时,A'C 的长取最小值,如图所示,根据折叠可知:112A'E AE AB ===.在Rt BCE △中,112BE AB ==,3BC =,90B ∠=,CE ∴,A'C ∴的最小值1CE A'E =-=.选D .技法1:借助直角三角形斜边上的中线例题1.如图,在∵ABC 中,∠C =90°,AC =4,BC =2,点A 、C 分别在x 轴、y 轴上,当点A在x 轴上运动时,点C 随之在y 轴上运动,在运动过程中,点B 到原点的最大距离是( )A .6B .C .D .【解析】如图,取CA 的中点D ,连接OD 、BD ,则OD =CD =AC =×4=2,由勾股定理得,BD ==2,当O 、D 、B 三点共线时点B 到原点的距离最大,所以,点B 到原点的最大距离是2+2.技法2:借助三角形两边之和大于第三边,两边之差小于第三边例题2.如图,已知等边三角形ABC 边长为A 、B 分别在平面直角坐标系的x 轴负半轴、轴的正半轴上滑动,点C 在第四象限,连接OC ,则线段OC 长的最小值是( )A 1B .3C .3D 【解析】如图所示:过点C 作CE ⊥AB 于点E ,连接OE ,∵∵ABC 是等边三角形,∵CE =AC ×si n 60°=3=,AE =BE ,∵∠AOB =90°,∵EO 12=AB =∵EC -OE ≥OC , ∵当点C ,O ,E 在一条直线上,此时OC 最短,故OC 的最小值为:OC =CE ﹣EO =3B .巩固1.如图,∠MON =90°,矩形ABCD 的顶点A 、B 分别在边OM 、ON 上,当B 在边ON 上运动时,A 随之在OM 上运动,矩形ABCD 的形状保持不变,其中AB =4,BC =2.运动过程中点D 到点O 的最大距离是______.【解析】如图,取AB 的中点E ,连接OE 、DE 、OD ,∵OD ≤OE +DE ,∵当O 、D 、E 三点共线时,点D 到点O 的距离最大,此时,∵AB =4,BC =2,∵OE =AE =12AB =2,DE=∵OD 的最大值为,巩固2.如图,在Rt ABC ∆中,90ACB ∠=,将ABC ∆绕顶点C 逆时针旋转得到'',A B C M ∆是BC 的中点,N 是''A B 的中点,连接MN ,若4,60BC ABC =∠=︒,则线段MN 的最大值为( )A .4B .8C .D .6【解析】连接CN ,∵将ABC ∆绕顶点C 逆时针旋转得到''A B C ∆,∵''=90A CB ACB ∠=∠︒,''460'B C BC A B C ABC ==∠=∠=︒,,∵'30A ∠=︒,''8A B =,∵N 是''A B 的中点,∵1''42CN A B ==, ∵在△CMN 中,MN <CM +CN ,当且仅当M ,C ,N 三点共线时,MN =CM +CN =6, ∵线段MN 的最大值为6.选D .技法3:借助构建全等图形例题3.如图,在∵ABC 中,∠ACB =90°,∠A =30°,AB =5,点P 是AC 上的动点,连接BP ,以BP 为边作等边∵BPQ ,连接CQ ,则点P 在运动过程中,线段CQ 长度的最小值是______.【解析】如图,取AB 的中点E ,连接CE ,PE .∵∠ACB =90°,∠A =30°,∵∠CBE =60°, ∵BE =AE ,∵CE =BE =AE ,∵∵BCE 是等边三角形,∵BC =BE ,∵∠PBQ =∠CBE =60°, ∵∠QBC =∠PBE ,∵QB =PB ,CB =EB ,∵∵QBC ≌∵PBE (S A S ),∵QC =PE ,∵当EP ⊥AC 时,QC 的值最小,在Rt ∵AEP 中,∵AE =52,∠A =30°,∵PE =12AE =54,∵CQ 的最小值为54.巩固4.如图,边长为12的等边三角形ABC 中,M 是高CH 所在直线上的一个动点,连结MB ,将线段BM 绕点B 逆时针旋转60°得到BN ,连结HN .则在点M 运动过程中,线段HN 长度的最小值是( )A .6B .3C .2D .1.5【解析】如图,取BC 的中点G ,连接M G ,∵旋转角为60°,∵∠MBH +∠HBN =60°, 又∵∠MBH +∠MBC =∠ABC =60°,∵∠HBN =∠G BM ,∵CH 是等边∵ABC 的对称轴,∵HB =12AB ,∵HB =B G ,又∵MB 旋转到BN ,∵BM =BN , 在∵MB G 和∵NBH 中,BG BH MBG NBH MB NB =⎧⎪∠=∠⎨⎪=⎩,∵∵MB G ≌∵NBH (S A S ),∵M G=NH ,根据垂线段最短,当M G ⊥CH 时,M G 最短,即HN 最短,此时∠BCH =12×60°=30°,C G=12AB =12×12=6,∵M G=12C G=12×6=3,∵HN =3;选B . 技法4:借助中位线例题4.如图,在等腰直角∆ABC 中,斜边AB 的长度为 8,以AC 为直径作圆,点P 为半圆上的动点,连接BP ,取BP 的中点M ,则CM 的最小值为( )A. B.CD.【解析】连接AP 、CP ,分别取AB 、BC 的中点E 、F ,连接EF 、EM 和FM ,,EM 、FM 和EF 分别是,ABP 、,CBP 和,ABC 的中位线,EM ∥AP ,FM ∥CP ,EF ∥AC ,EF =12AC ,,∠EFC =180°-∠ACB =90° ,AC 为直径,,∠APC =90°,即AP ⊥CP ,,EM ⊥MF ,即∠EMF =90°,点M 的运动轨迹为以EF 为直径的半圆上,取EF 的中点O ,连接OC ,点O即为半圆的圆心,当O 、M 、C 共线时,CM 最小,如图所示,CM 最小为CM 1的长,,等腰直角∆ABC 中,斜边 AB 的长度为 8,,AC =BC AB =,EF =12AC =FC =12BC =,OM 1=OF =12EF根据勾股定理可得OC =,CM 1=OC -OM 1即CM ,选C .巩固5.如图,抛物线2119y x =-与x 轴交于A B ,两点,D 是以点()0,4C 为圆心,1为半径的圆上的动点,E 是线段AD 的中点,连接,OE BD ,则线段OE 的最小值是( )A .2B .2C .52D .3 【解析】∵2119y x =-,∵当0y =时,21019x =-,解得:=3x ±, ∵A 点与B 点坐标分别为:(3-,0),(3,0),即:AO =BO =3,∵O 点为AB 的中点,又∵圆心C 坐标为(0,4),∵OC =4,∵BC 长度5=,∵O 点为AB 的中点,E 点为AD 的中点,∵OE 为∵ABD 的中位线,即:OE =12BD , ∵D 点是圆上的动点,由图可知,BD 最小值即为BC 长减去圆的半径,∵BD 的最小值为4,∵OE =12BD =2,即OE 的最小值为2,选A . 专题2 单线段最值之双动点型技法1借助等量代换实现转化例题1.如图,ABC ∆中,90B ︒∠=,4AB =,3BC =,点D 是AC 上的任意一点,过点D 作DE AB ⊥于点E ,DF BC ⊥于点F ,连接EF ,则EF 的最小值是_________.【解析】连接BD ,90,B DE AB DF BC ︒∠=⊥⊥,∴四边形BEDF 是矩形。

九年级旋转试题与答案

一、单选题1、如图,在正方形ABCD中,AD=4√3把边CD绕点C逆时针旋转30度得到线段CE,连接BE并延长交AD于点F连接DE则线段EF的长度为()A. 4−4√3B. 8−4√3C. 4−2√3D. 8−2√32、以下每对函数,其图象一定关于原点对称的是()A. y=x2与y=-2x2B. y=x2+1与y=-x2C. y=x2+1与y=-x2-1D. y=(x-1)2与y=(x+1)23、下列说法正确的是()。

A. 线段绕着它的中点旋转180°后与原线段重合,那么线段是中心对称图形B. 等边三角形绕着它的三边中线的交点旋转120°后与原图形重合,那么等边三角形是中心对称图形C. 正方形绕着它的对角线交点旋转90°后与原图形重合,那么正方形是中心对称图形D. 正五角星绕着它的中心旋转72°后与原图形重合,那么正五角星是中心对称图形4、在下列图形中,既是中心对称图形又是轴对称图形的是()。

A. B. C. D.5、如图所示,既是中心对称又是轴对称图形的是()。

A. B.C. D.6、将下列图形绕直线旋转一周,可以得到如图所示的立体图形的是()。

A. B.C. D.7、若点P(m,3)与点Q(3,n)关于原点对称,则m,n的值分别是()。

A. m=-3,n=3B. m=3,n=3C. m=-3,n=-3D. m=3,n=-38、如图,在平面直角坐标系xoy中,△ABC顶点的横、纵坐标都是整数。

若将△ABC以某点为旋转中心,顺时针旋转90°得到△DEF,则旋转中心的坐标是()。

A. (0,0)B. (1,0)C. (1,-1)D. (2.5,0.5)9、如图,在△ABC中,∠CAB=20°,将△ABC在平面内绕点 A逆时针旋转到△AB'C'的位置,且CC'∥AB,则旋转角的度数为()A. 120°B. 130°C. 140°D. 160°10、如图,正方形ABCD中,点E、F分别是BC、CD上的动点(不与点B,C,D重合),且∠EAF=45°,AE、AF与对角线BD分别相交于点G、H,连接EH、EF,则下列结论:①△ABH∽△GAH;② △ABG∽△HEG;③ AE=√2AH;④ EH⊥AF;⑤ EF=BE+DF其中正确的有()A. 2B. 3C. 4D. 511、如图,将边长为a的正六边形A1A2A3A4A5A6在直线上由图1的位置按顺时针方向向右作无滑动滚动,当A1第一次滚动到图2位置时,顶点A1所经过的路径的长为()。

中考数学 图形的旋转考点课件

(1)如图①,观察并猜想,在旋转过程中,线段 EA1 与 FC 有怎样的数量关系?并证明你 的结论;
(2)如图②,当 α=30°时,试判断四边形 BC1DA 的形状,并说明理由; (3)在(2)的情况下,求 ED 的长.
解:(1)EA1=FC(提示:证明△ABE≌△C1BF) (2)菱形(证明略) (3)过点 E 作 EG⊥AB,则 AG=BG=1. 在 Rt△AEG 中,AE=cAosGA=cos130°=23 3. 由(2)知 AD=AB=2,∴ED=AD-AE=2-32 3
类型二 旋转作图
如图,在矩形 OABC 中,点 B 的坐标为(-2,3). 画出矩形 OABC 绕点 O 顺时针 旋转 90°后的矩形 OA1B1C1,并直接写出点 A1、B1、C1 的坐标.
【点拨】本题重点考查旋转作图,在作图前要先由已知条件明确:旋转中心、旋转方向、 旋转角以及关键点的个数,作图时只要把每一个关键点都按相同方向、转动相同角度得到相 应对应点即可,最后把各对应点按顺序实线相连.
A.180° B.120° C.9 Nhomakorabea° D.60° 解析:正六边形每个内角为 120°,所以转动 60°即可与原图形重合. 答案:D
8.△ABC 在如图所示的平面直角坐标系中,将△ABC 向右平移 3 个单位长度后得到 △A1B1C1,
再将△A1B1C1 绕点 O 旋转 180°后得到△A2B2C2,则下列说法正确的是( ) A.A1 的坐标为(3,1) B.S 四边形 ABB1A1=3 C.B2C=2 2 D.∠AC2O=45° 解析:根据题意画出图来解答. 答案:D
第 3 讲 图形的旋转
图形的旋转与作图.
1.(2008·丽水)如图,以点 O 为旋转中心,将∠1 按顺时针方向旋转 110°,得到∠2.若∠1 =40°,则∠2=________度.

2025年甘肃中考数学一轮复习中考命题探究第6章 圆微专题7 圆中最值及隐圆问题

2025年甘肃中考数学一轮复习中考命题探究
微专题七
圆中最值及隐圆问题
类型 11
点圆最值
已知平面内一定点D和⊙O,点E是⊙O上一点,当D,O,E三点共线时,线段
已知条件
DE有最大(小)值(依据:直径是圆中最长的弦),设点O与点D之间的距离为d,
⊙O的半径为r
位置关系
点D在⊙O内
点D在⊙O上
点D在⊙O外

△A′BC′.若BC=6,则点C运动的路径长为____.
思路点拨
第一步:依据特征找模型
特征1:是否存在一定点和一动点(定
点:点B,动点:点C)
特征2:连接定点和动点的线段长度是
否固定(BC=6 )
第二步:抽离模型
第三步:模型应用
以点B为圆心,BC长为半径作圆,

点C′在’上.
例 2 在△ABC中,AB=AC,∠BAC=100°,D是△ABC外一点,且AD=AC,
(1)点A,B,C,D在同一个圆上,AB为⊙O的直径;
(2)圆内接四边形的对角互补
例 5 如图,在四边形ABCD中,∠ABC=∠ADC=90°,连接AC,BD,若AC=2,∠BCD=
135°,则BD的长为( A )
A. 2
B.2 2
C. 3
D.2 3
9.如图,矩形ABCD的对角线相交于点O,过点O作OE⊥BD,交AD于
A.1.5
B.1.2
C.2.4
D.以上都不对
类型 31
已知条件
定点定长作隐圆
平面内,O为定点,B为动点,且OB长度
OA=OB=OC
固定
类型
一点作圆
三点作圆
图示
结论
点B的轨迹在以点O为圆心,OB长为半径

九年级数学求最值问题大全

九年级数学求最值问题大全1.如图,AB为⊙0的直径,C为⊙0上一点,其中AB=4,∠AOC=120°,P为上⊙0上的动点,连AP,取AP的中点Q,,连CQ,则线段CQ的最大值为2.2019海淀如图,在平面直角坐标系xoy中,P是直线y=2上的一个动点,⊙P的半径为1,直线OQ切⊙P于点Q,则线段OQ的最小值为Q3.如图,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上的一动点,将△AMN沿MN所在直线翻折得到△A′MN,连接A′C,则A′C长度的最小值是4.半径为2的圆O,AB是弦,向圆内部作正方形ABCD,则OD的最小值是5.已知圆o半径为1,P(x0,y0)在直线y=x-2上,若圆上存在点Q,使得∠OPQ=30o,则x0的取值范围;点P向圆O作两条切线PA,PB,则∠APB最大度数为.6.如图,在Rt△ABC中,∠ACB=90o,将△ABC绕顶点C逆时针旋转得到△A′B′C,M是BC 的中点,N是A′B′的中点,连接MN,若BC=4,∠ABC=60°,则线段MN的最大值为7.如图,已知⊙O的半径为4,A为⊙O外一点,OA=8,P为⊙O上的一个动点,以AP为边作等边△APQ,则段OQ的取值范围是.8.如图,在⊙O中,OA=4,∠AOB=120°,为 AB上的一个动点,将线段AB绕点P旋转120°,使点落在平面上的Q点,则当动P点在⊙O从A点运动到B点过程中,动点Q的运动路径长为9.如图,△ABC中,∠BAC=60°,∠ABC=45°,AB D是线段BC上的一个动点,以AD 为直径画⊙O分别交AB,AC于E,F,连接EF,则线段EF长度的最小值为10.如下图,在Rt△ABC中,∠BAC=90°,AB=AC,BC=2,点D是AC边上一个动点,连接BD,以AD为直径的圆交BD于点E,连CE,则线段CE长度的最小值为11.在Rt△ABC中,∠ACB=90°,AC=2,BC3,过点B作直线∥AC,将△ABC绕点C逆时针旋转得到△A′B′C,直线CA′,CB′分别交直线l于点D,E.(1)当点A′,D首次重合时,①请在图1中,补全旋转后的图形;②直接写出∠A′CB的度数;(2)如图2,若CD⊥AB,求线段DE的长;(3)求线段DE长度的最小值.12.如图,点A是直线y=-x上的动点,点B是x轴上的动点,在矩形ABCD中,AB=2,AD=1,则OD的最大值.13.半径为1的圆的圆心坐标为(2,2),圆上一点的坐标A(x,y),求yx最大值与最小值分别是14.如图,矩形ABCD中,AB=2,BC=1.∠MON=45°,且A、B分别是边OM、ON上的动点,则线段OD长的最大值为15.在平面直角坐标系中,A(2,0),B(0,2),C(4,0),D(3,2),P是△AOB外部的第一象限内一动点,且∠BPA=135°,则2PD+PC的最小值是16.(1)如图1,已知正方形ABCD的边长为4,圆B的半径为2,点P是圆B上的一个动点,求PD+12PC的最小值和PD-12PC的最大值.(2)如图2,已知正方形ABCD的边长为9,圆B的半径为6,点P是圆B上的一个动点,那么PD+23PC的最小值为106,PD-23PC的最大值为106.(3)如图3,已知菱形ABCD的边长为4,∠B=60°,圆B的半径为2,点P是圆B上的一个动点,那么PD+12PC的最小值为37,PD-12PC的最大值为3718.如上图,Rt△ABC中∠ACB=90°,∠A=60°,D为AB中点,BE=3,AC=4,⊙B经过点E,P为⊙B上一动点,则4PC+3PD的最小值为.19.如图,AB=2,BC=4,点A是⊙B上任一点,点C为⊙B外一点,△ACD为等边三角形,则△BCD的面积的最大值为()A.43+4B.43C.43+8D.6320.例题:如图1,已知P是正方形ABCD外的点,PA=3,PB=4,求PC的最大值21.如图,已知P是正六边形ABCDEF外的点,且PA=3,PB=4,求PC、PD、PE、PF的最大值分别是.22.如图,已知P是正方形ABCD外的点,对角线AC、BD相交于点O,且PA=3,PB=4,求PO的最大值.23.如图40,在Rt△ABC中,∠ABC=90°,tan∠BAC=3/4,P是DABC外的一点,且P A=3,PB=4,求PC的最值为.24.如图,已知AB是半圆O的直径,AB=12,点P在半圆上运动,点Q在弦AP上,AQ=2PQ,BQ交圆O于点M,当点P从A运动到B时,弧AM的最大值是.25.在△ABC中,∠ACB=90°,AC=BC=4,M当AB的中点,D是射线BC上一个动点,连轻AD,将线段AD绕点A逆时针旋转90°得到线段AE,连接ED,N为ED的中点,连接AN,MN,(1)如图1,当BD=2时,AN=,NM与AB的位置关系是;(2)当4<BD<8时①依题意补全图2②判断(1)中MM与AB的位置关系是否发生变化,并证明你的结论;(3)连接ME,在点D运动的过程中,当BD的长为何值时,ME的长最小?最小值是多少?请直接写出结果.图1图2备用图26.如图,等边△ABC的边长为4,点D是边AC上的动点,连接BD,以BD为斜边向上作等腰Rt△BDE,连接AE,求AE的最小值.27.已知⊙O半径为3,点A、B在⊙O上,∠BAC=90°,AB=AC,OC的最小值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第13讲 旋转中的最值、路径长 【板块一】旋转最值 题型一 运用垂线段最短求最值 【例1】如图,等边△ABC边长为6,点E是中线AD上的一个动点,连接EC,将线段EC绕点C逆时针旋转60°得到FC,连接DF,在点E运动过程中,DF的最小值为 .

BACEFDBA

CEFD

G

【解析】取AC的中点G,连接EG,在△DCF和△GCE中,CE=CF,∠DCF=∠GCE, ∴△DCF≌△GCE(SAS),∴DF=EG.根据垂线段最短,EG⊥AD时,EG最短,即DF最短,

∵306021CAD,362121ACAG,∴EG的最小值为5.132121AG, ∴DF的最小值为1.5. 【例2】如图,点B(0,3),点A为x轴上一动点,将线段AB绕点A顺时针旋转90°得AC,连接OC,求OC长的最小值.

B

ACx

y

OB

ACEFD

x

yO 【解析】在x轴正半轴上取点F,使OF=OB=3,延长CF交y轴于点D,在OB上截取OE=OA. 证△AFC≌△BEA. ∴∠CFA=∠AEB=135°,得点C在直线DF上运动,△ODF为等腰

直角三角形,当OC⊥DF时OC最小为22323.

题型二 运用两边之和大于第三边求最值 【例3】如图,在直角△ABC中,∠ACB=90°,BC=AC=5,BP=2,将PC绕点C逆时针旋转90°得 线段CD,连接BD,当BP绕点B旋转时,线段BD的最小值为 .

CAB

P

DCAB

P

D

【解析】连接AP,∴△DCB≌△PCA(SAS),∴AP=BD,当点P在AB的延长线上时, AP的最大值=AB+PB=25+2,∴BD的最大值为225. 【例4】如图,△ABC为等腰直角三角形,∠ACB=90°,BC=CA.若AC=52,点P为BC的中点,动点Q满足PQ=3,将线段AQ绕点A逆时针旋转90°到线段AM,连PM,则线段PM的最小值为 .

BC

AMQ

PBC

AMQ

P

N

【解析】连接AP,将AP绕点A逆时旋转90°到AN,连接PN,MN.易证△APQ≌△ANM,∴MN=PQ=3,AP=AN=522PCAC,∴PN=2AP=25,325MNPNPM,∴PM最小值为325. 题型三 运用中线,中位线求最值 【例5】如图,边长为2的正方形ABCD的对角线交于点O,把边BA,CD分别绕点B,C以相同的速度同时逆时针旋转一周,四边形ABCD的形状也随之发生改变,A'C与D'B交于点O′,那么在旋转的过程中,求AO'的最大值.

BADCOD'A'

O'

BADC

OD'A'

O'

G 【解析】首先证A'B∥CD',得四边形A'BCD'为菱形,∴A'C⊥BD'.取BC的中点G,连接AG,O′G, 则O′G=BC21=1,AG=51222,在△AO′G中,15'15AO,故AO′的最大值为15.

题型四 运用平移、轴对称结合旋转求最值 【例6】如图,在等腰△ABC中,∠BAC=120°,AB=AC=62,点D在边BC上,CD=2,将线段CD绕点C逆时针旋转(其中0<≤360)得到CE,连接AE,以AB,AE为边作□ABFE,连接DF,则DF的最大值为( ) A.615 B.214 C.262 D.226

CADEBFCADEB

FO

H

【解析】过点C作CO∥AB,CO=AB,连接OF,则四边形COFE为平行四边形,CO=EF=AB=62, OF=CE=CD=2,连接DO,则DF≤OD+OF,由OC//AB,得∠BCO=∠ABC=30°,过点O作OH⊥BC于点H,则OH=621OC,2322OHOCHC,又DC=2,故HD=22,1422HDOHOD,因DF≤OD+OF,而OD+OF=214,故214DF,∴DF的最大值为214. 针对练习1 1.如图,在△ABC中,∠C=90°,BC=6,AC=10,D为线段AC上一动点,将线段BD绕点D逆时针旋转90°.点B的对应点为点E,连接AE,求AE长的最小值.

AC

BDEAC

BDEFG

解:在AC上取点F,使CF=BC=6.在CB上取点G,使CG=CD,可证△DEF≌△BDG,∴∠EFD=∠BGD=135°,∴∠AFE=45°,得点E在直线FE上运动,且AE⊥FE时,AE的最小值为222610. 2.如图,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(5,0),点P为线段AB外一动点,且PA=2,将PB绕点P逆时针旋转90°得PM,求AM长的最大值.

xAMB

P

y

OxAM

B

NP

y

O 解:将△APM绕点P顺时针旋转90°得△NPB,连接AN,则BN=AM,△ANP为等腰直角三角形, ∴222PAAN,又3AB.∴在△ANB中,223223BN,即AM长的最大值为223.

3.如图,边长为4的正方形ABCD外有点E ,∠AEB=90°,F为DE的中点,连接CF.求CF的最大值.

FE

DCBA

解: CNMABDEFG

取AB的中点G,过点G作GN⊥CD于点N,延长DC至点M,使CM=CD,则MN=6,GN=4,∴GM=226+4=213,又EG=12AB=2,∴在△EMG中,EG≤213+2,而FC=12EM,故FC≤13+1,∴CF的最大值是13+1. 【板块二】旋转图形中动点的路径与动线段的取值范围 题型一 旋转图形中点的运动路径 【例1】在平面直角坐标系中,点C沿某条路径运动,以点C为旋转中心,将点A(0,4)逆时针旋转90°到点B(m,1),若-5≤m≤5,求点C运动的路径长. 【解析】

y

xA

BCMN

O-55

如图,过点C作MN∥y轴,AN⊥MN于点N,BM⊥MN于点M,则△CAN≌△BCM,AN=CM,CN=BM,∵AN=xc,CM=yC-1,CN=4- yC,BM=xC-m,解得xC=32m,yC=52m,∵-5≤m≤5,∴-2≤m+3≤8,∴-1≤xC≤4,yC=xC+1,当xC=-1时,C(-1,0);当xC=4时,C(4,5);点C的运动路径为224(1)5=52.

【例2】如图,在平面直角坐标系中,直线y=13x-1分别交x轴,y轴于点B,点A,点M为直线AB上一动点,连接OM,将线段OM绕点M逆时针旋转90°,点O的对应点为点N.当点M运动时,判断点N的运动路线是什么图形,并说明理由.

y

x

NM

B

AO

【解析】 yxO

A

BC

DM

N 点N在直线y=-12x-32上运动,理由如下:设M(m,13m-1),过点M作MC⊥OB于点C,过点N作ND⊥MC于点D,可证△OCM≌△MDN,OC=MD=m,ND=CM=1-13m,D(m,-1-23m),N(43m

-1,-1-23m),xN=43m-1①,yN=-1-23m②,由①+②×2得:-2-43m+43m-1=xN+2yN,∴xN+2yN =-3,yN = -12x-32· 题型二 旋转图形中变量的取值范围 【例3】在Rt△ABC中,∠ACB=90°,AC=BC,D,E分别在AC,BC上,DE∥AB,CF⊥DE于点F,AC=6,CF=4,G是AE中点. (1)如图1,直接写出FG,BE的数量关系和位置关系为 ; (2)如图2,将△CFE绕点C旋转,在旋转过程中,线段GF的取值范围是 .

图1ABCDEFG图2AB

CEFG

【解析】(1)FG=12BE,且FG⊥BE; (2)延长EF至点D,使DF=EF,连接AD,易得FG=12AD,在Rt△CDE中,CD=42.由旋转得,当点D在边AC上时,AD最小,最小值为AC-CD=6-42,FG最小=12AD=3-22,当点D在边AC延长线时,AD最大,AD最大值为AC+CD=6+42,∴FG最大=12AD=3+22,∴3-22≤FG≤3+22. 针对练习2 1.如图,矩形ABCD中,BC=2AB=8.点M,N分别为AD,BC的中点,连接MN,点P是BC边上的动点,将PM绕点P顺时针方向旋转90°得PE,当点P从点B运动到点C的过程中,点E运动的路径长为 .

NMPABCD

EF

解:

相关文档
最新文档