建筑力学轴向拉伸与压缩概念题

合集下载

项目三 轴向拉伸与压缩试题

项目三 轴向拉伸与压缩试题

【开始】单选题(分值=2分;答案=C;难度=基本题)在其他条件不变时,若受轴向拉伸的杆件横截面面积增加一倍,则杆件横截面上的正应力()。

A、4倍B、2倍C、1/2倍D、1/4倍【结束】【开始】单选题(分值=2分;答案=C;难度=水平题)在其他条件不变时,若受轴向拉伸的杆件杆长增加一倍,则杆件纵向线应变()。

A、增大B、减小C、不变D、不能确定【结束】【开始】单选题(分值=2分;答案=B;难度=基本题)弹性模量E与()有关。

A、应力和应变B、杆件的材料C、外力大小D、泊松比μ【结束】【开始】单选题(分值=2分;答案=B;难度=水平题)横截面面积不同的两根杆件,受到大小相同的轴向外力作用时,则()。

A、轴力相同,应力也相同B、轴力相同,应力不同C、轴力不同,应力也不同D、轴力不同,应力不同【结束】【开始】单选题(分值=2分;答案=A;难度=基本题)材料在轴向拉伸时,在比例极限内,线应变与()成正比。

A、正应力B、弹性模量EC、泊松比μD、都切应力【结束】【开始】单选题(分值=2分;答案=D;难度=基本题)危险截面的确定,对于杆件对象的工程设计是非常重要的,若杆件的材料相同,轴向拉伸杆件危险截面发生在()的截面上。

A、轴力最大、横截面面积最大B、轴力最小、横截面面积最小C、轴力最小、横截面面积最大D、轴力最大、横截面面积最小【结束】【开始】单选题(分值=2分;答案=D;难度=基本题)下列关于内力的说法中错误的是()。

A、由外力引起的杆件内各部分间的相互作用力B、内力随外力的改变而改变C、内力可由截面法求得D、内力不仅与外力有关,还与杆件的截面形状和尺寸有关【结束】【开始】单选题(分值=2分;答案=B;难度=基本题)对于塑性材料取()作为材料的极限应力。

A、弹性极限B、屈服极限C、比例极限D、强度极限【结束】【开始】单选题(分值=2分;答案=B;难度=基本题)轴向拉压杆的应力与杆件的()有关。

A、外力B、外力、截面面积和形状C、外力、截面面积和形状、材料D、外力、截面面积和形状、材料、杆长【结束】【开始】单选题(分值=2分;答案=D;难度=基本题)轴向拉压杆的纵向线应变与杆件的()有关。

工程力学轴向拉伸与压缩答案

工程力学轴向拉伸与压缩答案

第5 章轴向拉伸与压缩5-1 试用截面法计算图示杆件各段地轴力,并画轴力图.习题5-1 图解:(a)题F Nx(b)题F NxA(c)题F N(kN)x-3(d)题F N-10x5-2 图示之等截面直杆由钢杆 ABC 与铜杆 CD 在 C 处粘接而成.直杆各部分地直径均为 d =36 mm ,受力如图所示.若不考虑杆地自重,试求 AC 段和 AD 段杆地轴向变形量 Δl AC和 Δl AD习题 5-2 图(F N ) l AB (F N ) l BC解: Δl AC =AB πd 2E s4+BC πd 2 E s 4 150 ×103 × 2000 +100 ×103 ×3000 4 = × = 2.947 mm(F N ) 200 ×103 l π ×362100 ×103 × 2500 × 4 Δl = Δl + CD CD = 2.947 + = 5.286 mm AD AC πd 2 E c4105 ×103 × π ×3625-3 长度 l =1.2 m 、横截面面积为 1.10×l0-3m 2 地铝制圆筒放置在固定地刚性块上;刚性板mC B −6 B 直径 d =15.0mm 地钢杆 BC 悬挂在铝筒顶端地刚性板上;铝制圆筒地轴线与钢杆地轴线重 合.若在钢杆地 C 端施加轴向拉力 F P ,且已知钢和铝地弹性模量分别为 E s =200GPa ,E a =70GPa ;轴向载荷 F P =60kN ,试求钢杆 C 端向下移动地距离.解:u A− u B −F l = P AB E a A a 3(其中 u A = 0)3∴ u =60 ×10 ×1.2 ×10= 0.935 mm B 70 ×10 3 ×1.10 ×10 −3 ×10 6钢杆 C 端地位移为F l60 ×103 × 2.1×103u = u + P BC = 0.935 + = 4.50 m m E s A s200 ×103 × π ×15245-4 螺旋压紧装置如图所示.现已知工件所受地压紧力为 F =4 kN .装置中旋紧螺栓 螺纹地内径 d 1=13.8 mm ;固定螺栓内径 d 2=17.3 mm .两根螺栓材料相同,其许用应力[σ ] =53.0 MPa .试校核各螺栓地强度是否安全.解:∑ M B = 0 ,F A = 2kN ∑ F y = 0 ,F B = 6kN习题 5-4 解图习题 5-4 图 σ = F A = 2000 = A π2000 × 42= 13.37 MPa < [σ ] ,安全. A A d 2 π ×13.8 ×104 σ = F B = 16000= 25.53 MPa <[σ ] ,安全. A B π ×17.32 ×10−645-5 现场施工所用起重机吊环由两根侧臂组成.每一侧臂 AB 和 BC 都由两根矩形截面 杆所组成,A 、B 、C 三处均为铰链连接,如图所示.已知起重载荷 F P =1200 kN ,每根矩形 杆截面尺寸比例 b/h =0.3,材料地许用应力[σ ]=78.5MPa .试设计矩形杆地截面尺寸 b 和 h .4⋅2FF N习题 5-5 图解:由对称性得受力图如习题 5-5 解图所示.∑ F y = 0 ,4F N cos α = F P 习题 5-5 解图F = F P = N 4 cos α 1200 ×103960 = 3.275 ×105 Nσ = F N A= F N 0.3h 2≤ [σ ]9602 + 42025h ≥ F N =0.3[σ ]3.275 ×100.3 × 78.5 ×106= 0.118m b = 0.3h ≥ 0.3 × 0.118 = 0.0354m = 35.4mmh = 118mm ,b = 35.4mm5-6 图示结构中 BC 和 AC 都是圆截面直杆,直径均为 d =20mm ,材料都是 Q235 钢, 其许用应力[σ ]=157MP .试求该结构地许用载荷.B习题 5-6 图习题 5-6 解图∑ F x = 0 , F B = 2F A (1)∑ F y= 0 ,2 F A + 23F B − F P = 0 2(2)1 + 3 F P = F B2(3)F ≤ [σ ] ⋅πd2B43 mdWs由式(1)、(2)得:F ≤ 1 + P2 = 1 + 23 ⋅π d 2 [σ ] 43 ⋅π × 202 ×10−4 ×157 ×106 = 67.4kN 4` (4)F P =2 (1 + 23 ) F A = 2 (1 + 2 3 ) ⋅[σ ]π 24= 90.28kN (5)比较(4)、(5)式,得 [F P ] = 67.4 kN5-7 图示地杆件结构中 1、2 杆为木制,3、4 杆为钢制.已知 1、2 杆地横截面面积A 1=A 2=4000 mm 2,3、4 杆地横截面面积 A 3=A 4=800 mm 2;1、2 杆地许用应力[σ]=20MPa , 3、4 杆地许用应力[σ ]=120 MPa .试求结构地许用载荷[F P ].习题 5-7 图P(a)3(b)解:1. 受力分析:由图(a )有5∑ F y = 0 , F 3 =F P 3 4 4由图(b )由∑ F x = 0 , F 1 = − 5 F 3 = − 3 F P∑ F x = 0 , F 4 = 4 F 3 = 5 43 F P2. 强度计算:5∑ F y = 0 , F 2= − 3F 3 = −F P| F 1 |>| F 2 || F 1 |≤ [σ w ] A 14 F ≤ A [σ ] 3P 1 w F ≤ 3 A [σ ] = 3 × 4000 ×10 −6 × 20 ×10 6 = 60 kN P 4 1 w4F 35F 3 > F 4 , ≤ [σ s ] , A 3F P ≤ [σ ]A 3 3F ≤3 [σ] A 3 ×120 ×10 6 × 800 ×10 −6= 57.6 kN[F P] = 57.6 kNa*5-8 由铝板和钢板组成地复合柱,通过刚性板承受纵向载 荷 F P =38 kN ,其作用线沿着复合柱地轴线方向.试确定:铝板和 钢板横截面上地正应力. 解:此为超静定问题.1. 平衡方程2. 变形协调方程:3. 物性关系方程:F Ns + F Na = F P Δl s = Δl a(1)(2)联立解得⎧F F Ns E s A sE s A s= FNaE a A a(3)习题 5-8 图⎪ Ns = E A E A F P ⎪ ⎨ ⎪F = s s + a E a A a a(压) F NaE A + E A P s s a aσ =F Ns =−E s F P = −E s F P s A E b h + E⋅ 2b h b hE + 2b hE s s 0 a 1 0 s 1 a9 3σ = − 200 ×10 ×385 ×10175MPa (压)= − s 0.03 × 0.05 × 200 ×109 + 2 × 0.02 × 0.05 × 70 ×109σa = F Na A = −b hE E a F P+ 2b hEa 0 s 1 aσ = −175E a E s = −17570 200= −61.25MPa (压)*5-9 铜芯与铝壳组成地复合棒材如图所示,轴向载荷通过两端刚性板加在棒材上. 现已知结构总长减少了 0.24 mm .试求:1.所加轴向载荷地大小; 2. 铜芯横截面上地正应力.习题 5-9 图F NcE A =F NaE A(1)E A E A σ aF = ΔlE c A c , F= ΔlE a A aF Nc + F Na = F P(2)Nc l NalF = F + F = ΔlE c A c + ΔlE a A aP Nc Nal l = Δl E A + E A( c c a a) l= 0.24 ×10−3 ⎧ π 2 =π ⎡ 2 2 ⎤⎫ = ⎨105 ×106 × ×(25 ×10−3 ) + 75 ×106 × × (60 ×10−3 ) − (25 ×10−3 ) ⎬ 30 ×10−3⎩ 4 4 ⎭ = 171 kNF =E c A cNc c c F P + E a A aF =E a A a Na c cF P + E a A a⎧ F Nc E c F P E c F P ⎪σ c = ⎪ A c ⎪ ∴ ⎨= E c A c + E a A a = E c ⋅ πd 2 4 + E a π 2 2 ⋅ (D− d ) 4 ⎪ = F Na ⎪ A a ⎪⎩ = πd 2E c 4E aF Pπ(D 2 − d 2 ) + E a 4 9 32. σ =4 ×105 ×10 ×171×1083.5MPa = c105 ×109 × π × 0.0252 + 70 ×109 × π × (0.062 − 0.025)2σa = σcE a = 83.5 × 70= 55.6MPa E c 105*5-10 图示组合柱由钢和铸铁制成,组合柱横截面为边长为 2b 地正方形,钢和铸铁 各占横截面地一半(b ×2b ).载荷 F P ,通过刚性板沿铅垂方向加在组合柱上.已知钢和铸铁 地弹性模量分别为 E s =196GPa ,E i =98.0GPa .今欲使刚性板保持水平位置,试求加力点地 位置 x =?解:∑ M 0 = 0 , (b ⋅ 2b σ 习题 5-10 图) ⋅( x − b ) = (b ⋅ 2b )σs i( 3 b − x )23∴σ σ s =iE sE i2 x − b = σ i3b − 2 x σ s(1)(2)代入(1)得σ i σ s4 x − 2b = 3b − 2 x5= 98 = 1196 2(2)∴ x = b 65-11 电线杆由钢缆通过旋紧张紧器螺杆稳固.已知钢缆地横截面面积为1×103 mm 2 ,E =200GPa ,[σ ] = 300MPa .欲使电杆有稳固力F R =100kN ,张紧器地螺杆需相对移动多少? 并校核此时钢缆地强度是否安全.F R习题 5-11 图解:(1)设钢缆所受拉力为 F N ,由平衡条件F N cos30°=F RF N =100/ cos30°=115.5kNΔl = F N l = 115.5 ×103 ×10 ×103= 6.67mm EA 200 ×103 ×103× 3 / 2张紧器地螺杆需相对移动 6.67mm .(2)钢缆地应力与强度σ = F N A = 115.5 ×10 103= 115.5MP a < [σ ]所以,强度安全.5-12 图示小车上作用着力 F P =15kN ,它可以在悬架地 AC 梁上移动,设小车对 AC梁地作用可简化为集中力.斜杆 AB 地横截面为圆形(直径 d =20mm),钢质,许用应力 [σ]=160MPa .试校核 AB 杆是否安全.3习题 5-12 图F N ABαF N ACF P习题 5-12 解图解:当小车开到 A 点时,AB 杆地受力最大,此时轴力为 F N A B .(1) 受力分析,确定 AB 杆地轴力 F N A B ,受力图如图 5-12 解图所示, 由平衡方程∑Fy= 0 ,F N AB sin α − F P = 0sin α =解得轴力大小为:0.8 0.82 +1.92F N AB = 38.7kN(2)计算应力σ = F N AB = F N AB = 4 × 38.7 ×10 =123 ×106Pa = 123MPa < [σ ] AB强度安全.A AB πd 2 4π × 202 ×10−65-13 桁架受力及尺寸如图所示.F P =30kN ,材料地抗拉许用应力[σ]+=120MPa , 抗压许用应力[σ]-=60MPa .试设计AC 及AD 杆所需之等边角钢钢号.(提示:利用附录B 型钢表.)F N AC45DAF N ADF PF RA习题 5-13 图习题 5-13 解图解:(1)受力分析,确定 AC 杆和 AD 杆地轴力 F N AC 、 F N AD ,对整体受力分析可得, F R A= F R B = F P 2= 15kN再取节点 A ,受力分析,受力图如图 5-13 解图所示,建立平衡方程D D 3 3 2 4 ∑F y = 0 , − F N AC sin 45 + F R A = 0解得 AC 杆轴力大小为:F N AC = 21.2kN(压)∑ F x = 0 , − F N AC cos 45 + F N AD = 0解得 AD 杆轴力大小为: F N AD = 15kN(拉)(2)强度条件拉杆:A AD = F N AD [σ ]+ = 15 ×10 120 = 125mm 2 压杆:(3)选择钢号A AC = F N AC [σ ]− = 21.2 ×10 60 = 353.3mm 2 拉杆: 20 × 20 × 4压杆: 40 × 40 × 55-14 蒸汽机地气缸如图所示.气缸内径D =560mm ,内压强p =2.5MPa ,活塞杆直径 d =100mm .所有材料地屈服极限σs =300MPa . (1)试求活塞杆地正应力及工作安全系数.(2)若连接气缸和气缸盖地螺栓直径为30mm ,其许用应力[σ]=60MPa ,求连接每个气缸盖 所需地螺栓数.习题 5-14 图解:(1)活塞杆受到地轴力为:⎡π (D 2 F = pA = p − d 2 ) ⎤ = 2.5⎡π (560 −1002 ) ⎤ = 596.12kN N ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ ⎣ 4 ⎦活塞杆地正应力:σ =F N A 杆596.12 ×103 ) = = 75.9MPa π ×102 / 4 工作安全系数: (2)螺栓数mn = σ s σ= 300 = 3.95 75.93x 3 x y xm = F N = 596.12 ×10 = 14.1 个 A 栓 [σ ]栓 π × 302 / 4 × 60由于圆对称,取m =16个.5-15 图示为硬铝试件,h =200mm ,b =20mm .试验段长度l 0=70mm .在轴向拉力 F P =6kN 作用下,测得试验段伸长Δl 0=0.15mm ,板宽缩短Δb =0.014mm .试计算硬铝地弹 性模量E 和泊松比ν .习题 5-15 图解:(1)计算弹性模量Eε = Δl 0 l 0= 0.15 = 2.143 ×10−3 70σ = F P = 6 ×10 = 150MPa AE = σ = 20 × 2 150 ×106 = 70GPa ε 2.143 ×10−3 (2) 计算泊松比νε = Δb 0 b 0= − 0.014 = −7 ×10−4 20ε ν = y = − 7 ×10−4 = 0.327 ε 2.143 ×10−3上一章返回总目录下一章。

建筑力学 轴向拉伸压缩考试试题

建筑力学 轴向拉伸压缩考试试题

职业中等专业学校建筑力学 轴向拉伸压缩考试试题一、填空题1、杆件轴向拉伸或压缩时,其受力特点是:作用于杆件外力的合力的作用线与杆件轴线相________。

2、杆件轴向拉伸或压缩时,其横截面上的正应力是________分布的。

3、内力是由外 作用而引起的杆件内各部分间的相互作用力,计算内里的基本方法是 。

4、两杆件的截面相同,材料不同,受相同的轴向力作用,它们的内力 ,应力 ,变形 。

5、圆形截面的拉杆,当其直径增加1倍时,轴向外力不变,其正应力是原来的 倍。

根据拉压杆强度条件课解决工程实际中有关强度的三类问题,一是 ,二是 ,三是 。

6、在国际单位制中,弹性模量E 的单位为________。

7、剪切的受力特点,是作用于构件某一截面两侧的外力大小相等、方向相反、作用线相互________且相距________。

8、剪切的变形特点是:位于两力间的构件截面沿外力方向发生__________。

9、用截面法求剪刀时,沿_______面将构件截分成两部分,取其中一部分为研究对象,由静力平衡方程便可求得剪力。

10、剪切的实用计算中,假设了剪应力在剪切面上是__________分布的。

二、判断题1、轴力的大小与外力有关,与杆件的强度刚度无关()2、拉、压杆横截面上各点的内力分布相同,既应力在横截面上是均匀分布()3、发生破坏的应力限度称为许用应力()4、 是胡克定律的另一种表达式,它表明应力与应变成正比。

()5、拉、压杆件在选择材料时,一般考虑拉杆选择塑性材料,压杆选择脆性材料。

()6、若在构件上作用有两个大小相等、方向相反、相互平行的外力,则此构件一定产生剪切变形。

( )三、画出图示杆的轴力图P=10KN 。

εσE =四、设低碳钢的弹性模量度E1=210Gpa,混凝土的弹性模量E2=28Gpa,求:1、在正应力σ相同的情况下,钢和混凝土的应变的比值;2、在应变ε相同的情况下,钢和混凝土的正应力的比值;3、当应变ε=-0.00015时,钢和混凝土的正应力。

轴向拉伸和压缩—轴向拉(压)杆的应力(建筑力学)

轴向拉伸和压缩—轴向拉(压)杆的应力(建筑力学)

轴向拉伸与压缩
根据从杆件表面观察到的现象,从变形的可能性考虑, 可推断:
轴向拉杆在受力变形时,横截面只沿杆轴线平行移动。 由此可知:横截面上只有正应力σ。 假如把杆想象成是由许多纵向纤维组成的话,则任意两个 横截面之间所有纵向纤维的伸长量均相等,即两横截面间的变 形是均匀的,所以拉(压)杆在横截面上各点处的正应力σ都 相同。
500 500
0.72MPa
由结果可见,砖柱的最大工作应力在柱的下段,其值为 0.72MPa,是压应力。
轴向拉伸与压缩
第三节 轴向拉(压)杆的应力
变形规律试验:
FP
FP
观察发现:当杆受到轴向拉力作用后,所有的纵向线都 伸长了,而且伸长量都相等,并且仍然都与轴线平行;所有 的横向线仍然保持与纵向线垂直,而且仍为直线,只是它们 之间的相对距离增大了。
1
FN1 A1
28.3103
202
90MPa(拉应力)
4
2
FN 2 A2
20103 152
89MPa(压应力)
FP
FN
轴向拉伸与压缩
拉(压)杆横截面上任一点 处正应力的计算公式为
FN
A
式中, A为拉(压)杆横截面的面积;FN为轴力。
当FN为拉力,则σ为拉应力,拉应力为正; 当FN为压力,则σ为压应力,压应力为负。
通过上述分析知:轴心拉杆横截面上只有一分布的,所以拉杆横 截面上正应力的计算公式为
各段横截面上应力为
AB段:
AB
FNAB A
15 103 2500
MPa
6MPa
(压应力)
BC段: BC
FNBC A
8 103 2500
MPa
3.2MPa

建筑力学轴向拉伸与压缩

建筑力学轴向拉伸与压缩
1. 截面法的基本步骤:
① 截开:在所求内力的截面处,假想地用截面将杆件一分为二。 ②代替:任取一部分,其弃去部分对留下部分的作用,用作用
在截开面上相应的内力(力或力偶)代替。 ③平衡:对留下的部分建立平衡方程,根据其上的已知外力来
计算杆在截开面上的未知内力(此时截开面上的内力 对所留部分而言是外力)。
计算结果对圣维南原理的证实
圣 文 南 原 理
计算结果对圣维南原理的证实
(6) 危险截面及最大工作应力: 如果等截面直杆受多个轴向外力的作用,由轴力图可以求 出最大轴力,从而求出最大正应力。
如果直杆横截面积变化,则最大轴力处的截面上不一定具 有最大正应力。
当正应力达到某一极限值时,杆件将在最大正应力处产生 破坏。因此,具有最大正应力的截面叫做危险截面。危险截面 上的正应力称为最大工作应力。
5. 要判断杆是否会因强度不足而破坏,还必须知道: ① 度量分布内力大小的分布内力集度-应力。 ② 材料承受荷载的能力。
大多数情形下,工程构件的内力并非均匀分布,内力集度
的定义不仅准确而且重要,因为“破坏”或“失效”往往从内
力集度(应力)最大处开始。
(2)应力的表示: F1
截面 ?F
△A上的内力平均集度为:
求BC段内的轴力
R
40kN
55kN 25kN
A
B
C
D
2
20kN E
R
40kN
F N2
FN2 ? R ? 40 ? 0
FN2 ? R ? 40 ? 50(kN) ()?
15
轴力图 —例题 1
求CD段内的轴力
R
A
40kN B
55kN 25kN
C
D

轴向拉伸及压缩习题及解答

轴向拉伸及压缩习题及解答

轴向拉伸与压缩习题及解答一、判断改错1、构件力的大小不但与外力大小有关,还与材料的截面形状有关。

答:错。

静定构件力的大小之与外力的大小有关,与材料的截面无关。

2、杆件的某横截面上,假设各点的正应力均为零,那么该截面上的轴力为零。

答:对。

3、两根材料、长度都一样的等直柱子,一根的横截面积为1A ,另一根为2A ,且21A A >。

如下图。

两杆都受自重作用。

那么两杆最大压应力相等,最大压缩量也相等。

答:对。

自重作用时,最大压应力在两杆底端,即max max N All A Aνσν=== 也就是说,最大应力与面积无关,只与杆长有关。

所以两者的最大压应力相等。

最大压缩量为 2max max22N Al l l l A EA Eνν⋅∆===即最大压缩量与面积无关,只与杆长有关。

所以两杆的最大压缩量也相等。

4、受集中力轴向拉伸的等直杆,在变形中任意两个横截面一定保持平行。

所以宗乡纤维的伸长量都相等,从而在横截面上的力是均匀分布的。

答:错 。

在变形中,离开荷载作用处较远的两个横截面才保持平行,在荷载作用处,横截面不再保持平面,纵向纤维伸长不相等,应力分布复杂,不是均匀分布的。

5、假设受力物体某电测得x 和y 方向都有线应变x ε和y ε,那么x 和y 方向肯定有正应力x σ和y σ。

答:错, 不一定。

由于横向效应作用,轴在x 方向受拉〔压〕,那么有x σ;y 方向不受力,但横向效应使y 方向产生线应变,y x εενε'==-。

A 1(a) (b)二、填空题1、轴向拉伸的等直杆,杆的任一点处最大剪应力的方向与轴线成〔45〕2、受轴向拉伸的等直杆,在变形后其体积将〔增大〕3、低碳钢经过冷做硬化处理后,它的〔比例〕极限得到了明显的提高。

4、工程上通常把延伸率δ>〔5%〕的材料成为塑性材料。

5、 一空心圆截面直杆,其、外径之比为0.8,两端承受力力作用,如将外径增加一倍,那么其抗拉刚度将是原来的〔4〕倍。

拉伸与压缩试题

拉伸与压缩试题————————————————————————————————作者:————————————————————————————————日期:第二章 拉伸与压缩一、是非题2-1 、当作用于杆件两端的一对外力等值反向共线时则杆件产生轴向拉伸或压缩变形。

( ) 2-2 、关于轴力有下列几种说法: 1、轴力是作用于杆件轴线上的载荷( ) 2、轴力是轴向拉伸或压缩时杆件横截面上分布内力系的合力( )3、轴力的大小与杆件的横截面面积有关( )4、轴力的大小与杆件的材料无关( )2-3、 同一材料制成的阶梯杆及其受力如图2-1CD 段的横截面面积为ABC 和DE 段均为2A 分别用和表示截面上的轴力和正应力则有1、轴力321N N N F F F >> 。

( )2、正应力1σ>2σ>3σ。

( )2-4、 轴力越大,杆件越容易拉断,因此轴力的大小可以用来判断杆件的强度。

( )2-5 、一轴向拉伸的钢杆材料弹性模量E =200GP a,比例极限p σ=200MP a ,今测得其轴向线应变ε=0.0015,则由胡克定律得其应力εσE ==300MP a 。

( ) 2-6 、关于材料的弹性模量E,有下列几种说法:1、E 的量纲与应力的量纲相同。

( )2、E 表示弹性变形能力的大小。

( )3、各种牌号钢材的E 值相差不大。

( )4、橡皮的E 比钢材的E值要大。

( )5、从某材料制成的轴向拉伸试样,测的应力和相应的应变,即可求的其εσ=E 。

( ) 2-7 、关于横向变形系数(泊松比)μ,有下列几种说法:1、为杆件轴向拉、压时,横向应变ε'与纵向应变ε之比的绝对值。

( )2、 μ值越大,其横向变形能力越差。

( )3、各种材料的μ值都满足:0<μ≤0.5。

( )2-8、 受轴向拉、压的等直杆,若其总伸长为零,则有1、杆内各处的应变必为零。

( )2、杆内各点的位移必为零。

( )3、杆内各点的正应力必为零。

工程力学 第二章 轴向拉伸与压缩.


2 sin ( 2 cos 1 )ctg 3.9 103 m
B1 B B1 B3 B3 B
B B
B B12 B1 B 2 4.45 10 3 m
[例2-11] 薄壁管壁厚为,求壁厚变化和直径变化D。
解:1)求横截面上的正应力
dx
N ( x) l dx EA( x) l
例[2-4] 图示杆,1段为直径 d1=20mm的圆杆,2 段为边长a=25mm的方杆,3段为直径d3=12mm的圆杆。 已知2段杆内的应力σ 2=-30MPa,E=210GPa,求整个 杆的伸长△L
解: P 2 A2
30 25 18.75KN
N 1l Pl l1 l2 EA 2 EA cos l1 Pl cos 2 EA
[例2-8]求图示结构结点A 的垂直位移和水平位移。
解:
N1 P, N 2 0
Pl l1 , l2 0 EA Pl y l1 EA
N1
N2
Pl x l1ctg ctg EA
F
FN
FN F
F
F
CL2TU2
2.实验现象:
平截面假设
截面变形前后一直保持为平面,两个平行的截面之 间的纤维伸长相同。 3.平面假设:变形前为平面的横截面变形后仍为平面。 4.应力的计算 轴力垂直于横截面,所以其应力也仅仅是正应力。按 胡克定律:变形与力成正比。同一截面上各点变形相 同,其应力必然也相同。 FN (2-1) A 式中: A横截面的面积;FN该截面的轴力。 应力的符号:拉应力为正值应力,压缩应力为负 值应力。
1. 截面法的三个步骤 切: 代: 平:
F F F F

建筑力学第三章习题

建筑⼒学第三章习题《建筑⼒学》第三章复习题⼀、名词解释。

1、轴向拉伸:2、轴向压缩:3、内⼒:4、应⼒:⼆、填空题。

1、确定截⾯上内⼒的基本⽅法是。

2、根据梁的强度条件可以解决有关强度等⽅⾯的三类问题,⼀是,⼆是,三是。

3、当杆件受拉⽽伸长时,轴⼒背离截⾯,轴⼒取值,反之取值。

4、是杆件轴向分布内⼒的合⼒。

轴⼒的⼤⼩与有关,与杆件截⾯尺⼨和⽆关。

5、应⼒最⼤的截⾯叫做。

6、正应⼒的符号与相同,拉应⼒为,压应⼒为。

7、如图所⽰杆件M—M截⾯的轴⼒为。

8、在弹性范围内,应⼒和应变成9、在计算简图中,⼀般把节点简化为和10、正应⼒的符号与轴⼒相同,拉应⼒为,压应⼒为。

三、判断题。

1、内⼒是指杆件内部各部分间的相互作⽤⼒。

()2、内⼒的⼤⼩与杆件的强度和刚度及杆件截⾯尺⼨有关。

()3、轴⼒是杆件轴向分布内⼒的合⼒。

()4、单位⾯积上的内⼒叫做应⼒。

()5、轴⼒的⼤⼩与外⼒、截⾯尺⼨有关,⽽与材料⽆关。

()6、为保证杆件安全正常⼯作,不致发⽣破坏,必须规定杆件⼯作的最⾼限度。

()7、⽤截⾯法将杆件截成两部分,左、右两部分所得的结果不仅数值相等⽽且正负号相同。

()8、对于任何受⼒物体,都存在关系()9、⼯程结构和构件在外⼒作⽤下,丧失正常的功能的现象,称为失效。

()10、在⼏何不变体系上增加或减去⼀个⼆元体,得到的体系仍然是⼏何不变体系。

()11、对于多跨静定梁,当荷载作⽤在附属部分上时,其基本部分的杆件不受⼒。

()三、选择题。

1、影响轴⼒⼤⼩的因素是()A、外⼒B、截⾯尺⼨C、材料D、内⼒2、当杆件⼯作应⼒超过⼀定的限度时,杆件就要破坏,发⽣破坏的应⼒限度是()A、⼯作应⼒B、极限应⼒C、许⽤应⼒D、内⼒3、截⾯法求杆件内⼒的步骤有()A、切开B、代替C、平衡D、计算4、图⽰受⼒杆件N—N截⾯的轴⼒等于()。

A、2PB、-3PC、6PD、P5、下列体系中可作为结构的是()A、⼏何不变体系;B、⼏何可变体系;C、瞬变体系;6、1Mpa不等于()A、106N/m2;B、1N/mm2;C、106pa;D、103 N/m7、轴⼒图按规定应把正轴⼒画在轴的哪⼀侧()A、上侧;B、下侧;C、哪侧都⾏五、计算题:1、混凝⼟桥墩要求承受400KN的轴向压⼒,桥墩的截⾯⾯积为400×600mm2,许⽤应⼒[σ]=6Mpa;试校核其强度2、如图,杆AB为直径d=30mm钢杆,其[σ]=160Mpa;杆BC为宽b=50mm⾼度h=100mm 的矩形⽊杆,其[σ]=8Mpa;承受荷载p=80Kn,试校核结构的强度。

材料力学第二章轴向拉伸与压缩作业习题

第二章 轴向拉伸与压缩1、试求图示各杆1-1和2-2横截面上的轴力,并做轴力图。

(1) (2)2、图示拉杆承受轴向拉力F =10kN ,杆的横截面面积A =100mm 2。

如以α表示斜截面与横截面的夹角,试求当α=10°,30°,45°,60°,90°时各斜截面上的正应力和切应力,并用图表示其方向。

3、一木桩受力如图所示。

柱的横截面为边长200mm 的正方形,材料可认为符合胡克定律,其弹性模量E =10GPa 。

如不计柱的自重,试求:(1)作轴力图;(2)各段柱横截面上的应力; (3)各段柱的纵向线应变;(4)柱的总变形。

4、(1)试证明受轴向拉伸(压缩)的圆截面杆横截面沿圆周方向的线应变d ε,等于直径方向的线应变d ε。

(2)一根直径为d =10mm 的圆截面杆,在轴向拉力F 作用下,直径减小0.0025mm 。

如材料的弹性摸量E =210GPa ,泊松比ν=0.3,试求轴向拉力F 。

(3)空心圆截面钢杆,外直径D =120mm,内直径d =60mm,材料的泊松比ν=0.3。

当其受轴向拉伸时, 已知纵向线应变ε=0.001,试求其变形后的壁厚δ。

5、图示A和B两点之间原有水平方向的一根直径d=1mm的钢丝,在钢丝的中点C加一竖直荷载F。

已知钢丝产生的线应变为ε=0.0035,其材料的弹性模量E=210GPa,钢丝的自重不计。

试求:(1) 钢丝横截面上的应力(假设钢丝经过冷拉,在断裂前可认为符合胡克定律);(2) 钢丝在C点下降的距离∆;(3) 荷载F的值。

6、简易起重设备的计算简图如图所示.一直斜杆AB应用两根63mm×40mm×4mm不等边角钢组[σ=170MPa。

试问在提起重量为P=15kN的重物时,斜杆AB是否满足强度成,钢的许用应力]条件?7、一结构受力如图所示,杆件AB,AD均由两根等边角钢组成。

已知材料的许用应力[σ=170MPa,试选择杆AB,AD的角钢型号。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章选择题
1、 塑性材料的极限应力取 。

A .比例极限
B .弹性极限
C .屈服极限
D .强度极限
2、如图所示,轴向拉压杆1-1截面上的轴力等于 。

A .20N
B .5N
C .0N
D .25N
3、现有低碳刚和铸铁两种材料,在如图所示结构中,使用
最合理的是
A .①杆用低碳钢制造,②杆用铸铁制造
B .②杆用低碳钢制造,①杆用铸铁制造
C .①、②杆全部用铸铁制造
4、下列结论中 是正确的。

( )
A .材料力学主要研究各种材料的力学问题。

B .材料力学主要研究各种材料的力学性质。

C .材料力学主要研究杆件受力后变形与破坏的规律。

D .材料力学主要研究各类杆件中力与材料的关系。

5、轴向拉(压)时横截面上的正应力( )分布。

A .均匀 B.线性 C.假设均匀 D.抛物线
6、杆件的抗拉刚度是( )。

A .EJ z
B .GJ p
C .GA
D .EA
7、直杆的两端受到一对等值、反向、作用线沿杆轴线的力。

杆件将产生( )变形。

A .拉压
B .剪切
C .弯曲
D .扭转
8、反映杆件横向应变与线应变之间关系的系数是 。

A .弹性模量
B .泊松比
C .延伸率
D .截面收缩率
9、杆件的应变与杆件的( )有关。

A .外力
B .外力、截面
C .外力、截面、材料
D .外力、截面、杆长、材料
10、杆件的变形与杆件的( )有关。

A .外力
B .外力、截面
C .外力、截面、材料
D .外力、截面、杆长、材料
11、两根相同截面,不同材料的杆件,受相同的外力作用,它们的纵向绝对变形( )。

A .相同
B .不一定
C .不相同
12、两根相同截面、不同材料的杆件,受相同的外力作用,它们的应力( )。

A .相同
B .不一定
C .不相同
13、构件抵抗变形的能力称( )。

A .刚度
B .强度
C .稳定性
D .极限强度
14、构件抵抗破坏的能力( )。

② ①
P
A.刚度B.强度C.稳定性D.极限强度
15、构件保持原来平衡状态的能力称()。

A.刚度B.强度C.稳定性D.极限强度
21、材料的强度指标是()。

A.和B.δ和ψC.E和μ
16、材料的刚度指标是()。

A.和B.δ和ψC.E和μ
17、材料的塑性指标是()。

A.和B.δ和ψC.E和μ
18、杆件的能力与杆件的()有关。

A.外力B.外力、截面C.外力、截面、材料D.外力、截面、杆长、材料19、杆件的应力与杆件的()有关。

A.外力B.外力、截面C.外力、截面、材料D.外力、截面、杆长、材料
第三章轴向拉压变形的填空题
1、杆件的四种基本变形是_________ _____、_______ _______ 、 ______
________ 、 _______ _______。

2、由于外力作用,构件的一部分对另一部分的作用称为______________。

3、内力在一点处的集度称为______________。

4、轴向拉压时与轴线相重合的内力称______________。

5、轴向拉(压)时,用虎克定律求变形时,应用条件是________________________
6、低碳钢拉伸试验中的应力应变图可分为四个阶段分别是_______________ 、
_______________、_______________、_______________。

7、塑性材料以_______________极限作为极限应力,脆性材料_______________极限作为极
限应力。

8、单位长度上的纵向变形称__________________。

9、强度条件有三方面的力学计算分别是
_______________ 、 _______________ 、 _______________ 。

10、工程中通常按延伸率的大小把材料分成两类,延伸率大于等于5%的材料
叫;延伸率小于等于5%的材料叫。

11、在弹性受力范围内,应力与应变成;杆件的纵向变形与轴力及杆长成
比,与杆件的成反比。

12、当杆件受拉而伸长时,轴力F N取_____号。

13、截面法求轴力步骤是________、________、________。

14、我们把单位面积上的内力叫________。

15、垂直于横截面的应力叫做________。

16、轴向拉压杆的强度条件是_________。

17、.随着外力取消即随之消失的变形叫___________,当外力取消时不消失或不完全消失而残
留下来的形变叫做__________。

18、在弹性受力范围内应力与应变成________,比例数E叫做材料的拉压________。

19、低碳钢在拉伸过程中经过弹性阶段,屈服阶段,强化阶段和颈缩阶段。

()
20、抗拉刚度只与材料有关。

()
21、胡克定律表明在任何情况下,应力和应变均成正比关系。

()
22、只要两根杆件所受外力相同,它们的截面应力也必定相等。

()
23、内力是由于外力作用构件内引起的附加力。

()
24、塑性材料的抗压能力一般大于抗拉能力。

()。

相关文档
最新文档