浇注系统
浇注系统的组成及作用

浇注系统的组成及作用
它的基本组元有:浇口杯(又称外浇口)、直浇道、横浇道和内浇道。
(1)浇口杯浇口杯的作用是承受金属液的冲击和分离熔渣,避免金属液对砂型的直接冲击。
(2)直浇道直浇道是一个圆锥形的垂直通道,利用它的高度所产生(的)静压力,可以控制金属液流入铸型的速度并提高充型能力。
(3)横浇道横浇道主要起挡渣作用,金属液在横浇道内速度减缓,熔渣及气体能充分上浮而不进入铸型。
(4)内浇道内浇道是把金属液直接引入铸型的通道。
利用它的位置、大小和数量可以控制金属液流入铸型的速度和方向,以及调节铸件各部分的温度分布。
铸造浇注系统设计讲解

1)、入口处的连接 (与浇口
杯连接处)
采用圆角,一般要求入 口处圆角半径r≥d/4(d为 直浇道上口直径)。
这样可以减少气体的卷 入和避免尖角型砂被冲掉引 起冲砂缺陷。
2).直浇道的形状
• 直浇道的形状—上大下小的锥形即设计锥度 上大下小的锥形,
生产中减轻水平旋涡的措施
a 用大深度浇口杯 b 浇口杯底部安放筛网等
c 在浇口杯底部设置堤坝,形成垂直旋涡。
垂直旋涡的挡渣作用: 金属液沿斜壁流下, 由于流速的减低和流 向的改变,形成垂直 方向的旋流。
a)合理
b)不合理
• 在池形浇口杯中增设隔板和在浇口杯出口处又有 底坎,就能把浇包落入浇口杯中流股的紊乱搅拌
④ 缩短直-横浇道拐弯处的湍流区。
直浇道窝的作用
⑤ 浮出金属液中的气泡:最初注入型内的最初金 属液中,常带有一定量的气体,在直浇道窝内 可以浮出去。
直浇道窝结构设计
直浇道窝的直径应为直浇道下端直径的1.4-2倍,高度为横 浇道直径的2倍,直浇道与横浇道的连接也应做成圆角。
直浇道窝常做成半球形、圆锥台等形状。
主要作用是捕集、保留由渣关口。
要求横浇道平稳、缓慢地输送金属液,而低速流动又可减少充 填时对型腔时的冲击,利于渣粒在横浇道中上浮并滞留在其顶 部而不进入型腔。
1、横浇道中的液流分配
• 金属液从直浇道进入横浇道初期,以较大速度沿 长度方向向前运动,等到达横浇道末端冲击该处 型壁后,金属液的动能转变为势能,横浇道末端 附近液面升高,形成金属浪,并开始返回移动, 使横浇道内液面向直浇道方面逐渐升高,直到全 部充满。
• 计算浇注时间和浇注系统中的最小断面积,确定直 浇道的高度(如有浇口杯则从杯中液面高度算起)
浇注系统设计

浇注系统设计
一、浇注系统构成 浇注系统由浇口杯(外浇口)、直浇道、横浇道和内浇道等构成。其构造见下图
1—浇口杯;2—直浇道;3—横浇道;4—内浇道
注意点:内浇道形状(提议使用Ⅰ型) ❖ Ⅰ型扁平内浇道易于清理,能提升横浇道旳挡渣效果。当使用宽度受限制时,可
用Ⅱ型。 ❖ Ⅲ型内浇道用于铸件垂直壁处或不宜冲刷处。 ❖ Ⅳ型和Ⅴ型内浇道用于需内浇道凝固较慢旳场合,其清理较困难。 ❖ Ⅵ型内浇道冷却较快、轻易清理。
老式浇系极难胜任三大功能旳两项:挡渣和降低紊流
浇注系统旳主要功能:1. 提供金属液进入型腔旳通道;2. 金属液尽量平稳;3.阻止渣/砂和其他反应产物进入型腔;
过滤器应用
带过滤器旳浇系
The controlling crosssection阻流截面
Downsprue : Runner Bar
:
Runner Bar : Ingate
带有过滤器旳浇注系统
❖ 内浇道和横浇道高度比
1. 内浇道形状扁平梯型;
2. H横=(5-6)H内—预防吸动作用产生杂质进型腔(针对放置在横浇道底部) ❖ 内浇道与横浇道连接方式
1. 放置在横浇道底部(在同一平面)---合用于封闭式浇注系统 2. 放置在横浇道顶部(不在同一平面)—封闭-开放式浇注系统
又称“缓流封闭式”。故充型旳平稳性及对型腔旳冲刷力都好于封闭式; ❖ 用于各类灰铸铁件及球铁件
浇注系统设计
(4) 封闭- 开放式---(推荐使用) ❖ F杯>F直<F横<F内 ❖ F杯>F直>F集渣包出口<F横后<F内 ❖ F直>F阻<F横后<F内 ❖ F直>F阻<F内<F横 ❖ 阻流截面设在直浇道下端,或在横浇道中,或在集渣包出口处,或在内浇道之
浇注系统的设计与计算

浇注系统的设计与计算摘要:本文主要讲述了计算机在浇注系统中辅助应用,为铸造工艺设计的科学化、精确化,提供了良好的工具。
关键词:设计原则设计顺序设计方法及计算公式在铸造工艺设计过程中,有许多繁贞的数字计算和大量的查表选择工作,仅凭工艺设计人员的个人经验和手工操作,不但要发费很多时间,而且设计结果往往因人而异,很难保证铸件质量。
60年代以来,特别是进入80年代后,随着电子计算机技术的迅猛发展,计算机辅助设计技术在工业中得到愈来愈广泛的应用,也为铸造工艺设计的科学化、精确化提供了良好的工具,成为铸造技术开发和生产发展的重要内容之一。
浇注系统是在砂型中开设的引导金属液进入型腔和冒口的通道,是铸型充填系统中的一个组成部分,通常由四部分(组元)组成:外浇道(浇口杯、浇口盆)、直浇道、横浇道和内浇道。
如图(1)所示。
设计浇注系统主要是选择浇注系统的结构类型,确定引入位置,计算浇注系统各组元的截面尺寸。
成功的浇注工艺,取决于金属本身的特性、铸型的性质和把金属液引入型腔的浇注系统的结构。
设置浇注系统是铸造技术人员和工人用以控制金属液充型的主要手段。
因此,这是一项重要的技术工作。
1-浇口杯2-直浇道3-横浇道4-内浇道图(1)浇注系统结构示意图一、浇注系统的设计原则所谓浇注系统的设计原则就是确定这些浇注系统的形状、尺寸和浇注条件。
如果浇注系统设计不合理就有可能造成以下铸造缺陷,如气孔、砂眼、渣眼、缩孔、裂纹、浇不足和冷隔等缺陷,因此浇注系统时必须遵守以下原则:(1)液体金属的温度在流动中应不降低太多。
(2)应不卷入空气或铸型与液体金属的界面上发生反应所生成的气体。
(3)应不损坏铸型。
(4)应防止掉砂和熔渣流入型腔。
(5)应防止液体金属过度加热铸型。
(6)应有助于方向性凝固。
(7)应不降低工艺出口率(型腔体积对包括浇注系统在内的整铸型型腔体积之比)。
(8)凝固以后应该容易去除。
二、浇注系统设计顺序不同的铸造方法、工厂、技术人员可能采用不同的浇注系统设计方法。
浇注系统的总体构成

1浇注系统的总体构成浇注系统是指模具个从注射机喷嘴开始到型腔为止的塑料流动通道,其由主流道、力流通浇口及冷料穴组成。
图5。
63用于卧式或立式柱射机用注射模,图5—64用于直角式注时机用注射模。
52.2主流道设计丰流迢是指从注射机喷嘴与模具接触的部位起,到分流通为止的1.主流迢的结构设计(1)卧式或方式注射机用注射模的主流道设计:熔融塑料首先经过主流道,所以它的大小直接影响塑料的流速及填充时间。
主流道的断面形状常为圆形。
主流道截面面积过小,塑料在流动过程中冷却面积相对增加,热量损失大,粘度增加,流动性降低,成型压力损大大,造成成型困难;如主流道截面面积过大,会使流道容积加大,塑料耗量增多,而且会使塑料流动过程中压力减弱,冷却时间延长,容易产生紊流或涡流,使塑件产生气孔,影响塑件质量。
一般对于流动性好,塑件较小,主流道要设计得小些:对于流动性差,塑件较大,主流道要设计得大些。
如图5—65所示,为了便于凝料从主流道中拔出,主流道设计成圆锥形,其半锥角'二1。
一30,内壁必须光滑,表面粗糙度应有及:0.4pm 。
其小端直径D2FD1J(O .5一lmm)l 常取4—8mm ,视塑件重量及补料需要而定。
主流道截面直径的推荐值可查表5—12。
主流道大端处应呈圆角,其半径常取产1一3mm ,以减小科流转向过渡时的阻力。
主流道的一端常设计成带凸台的圆盘,其高度为5一10mm ,并与注射机固定模板的定位孔间隙配合。
衬套的球形凹坑陈皮常取3—5mm ,A =ATL(1—2mm)。
1—上流道衬套2—主流道3—冷料穴 斗一分流道3—浇口6—型腔1一镶块2—主流道3—分流道4—浇口5—型腔6—冷斜穴 ^5-63卧式注射机用摸具的浇注系统图5-64角式注射机用模具的浇注系统存保证塑件成型良好的前提F,主流退的长度乙尽量短,否则将会使主流返凝科增多,塑料耗量大,只增加压力损失,使翅料降温过多而影响注射成型。
通常土流诅长度工可小于或等于60mm。
消失模铸造浇注系统设计

消失模铸造浇注系统设计浇注系统和浇注是获得高质量铸件的重要工序,浇注系统很关键,要经过反复试验,浇注系统可以用泡沫塑料板材来制造,但浇注系统最好是发泡成型,如果可能与模型成为一体,只有这样才能减少飞边,因为薄而复杂的浇注系统在操作过程中很容易损坏,所以使浇注系统简化很重要;浇注系统和浇注操作的目的是减少浇注时产生紊流的倾向,减轻金属液的氧化,防止产生冷隔、皱皮等缺陷,应用成功的浇口设计有很多类型,如顶注、底注、雨淋式浇注,压边浇口、牛浇口等;金属液的充型速度必频与模型热解的速度相同,浇注速度慢或出现断流的现象,都会引起严重的塌箱,金属液量一定要充分,以保持一定的金属静压头防止金属液前沿与熔融模型之间的空隙处发生他乡;铁或铝和氧的亲和性、铁或铝的吸气性以及模型结构对控制浇注的成功至关重要;浇注时泡沫塑料模型要发生一些列的变化,包括熔融、解聚、热解、聚合物裂解等,模型的热解产物会引起很多铸造缺陷,如铝合金中的气孔、缩松,铸件中的碳缺陷,以及铸钢件中的增碳等;金属液充型过程中,模型在约75℃时开始软化,164℃时溶熔,316℃时开始解聚,在580℃时开始分解,设计浇注系统和浇注过程中,要防止气体、干砂、模型的热解残留物卷入金属液中,减少模型热解残留物取决于浇注系统的设计、浇注速度、模型的几何形状尤其是模型的表面和体积之比、涂料、砂箱的排气、真空的使用、模型的密度及种类等;浇注系统的主要作用是用金属液充填型腔,同时必须不对铸型和金属两者产生部可接受的损坏,浇注系统能够在型内建立温度梯度、提供补给金属,以促进健全的铸件,浇注过程中,浇注系统内的金属流不仅要支撑铸型,还要通过浇注系统排除模型的热解产物,在涂料和干砂的充填、紧实的过程中,浇注系统还可用以支撑和搬运,浇注系统还要有一定的强度,便于操作并使模型某些部位可能加固,防止变形;浇注出铸件后,必须去掉浇注系统;浇注系统应该与铸件部重要的部位相连并且面积应尽量减小,一般情况下,面积越小,可增加浇注系统装配模型数量;消失模铸造工艺中多使用较大的浇口杯防止浇注过程中出现断流,能够快速而稳定地浇注,保持液态金属的静压头,浇口杯多采用合粘结剂的型砂制造;生产铸件时常用过滤网,它有助于防止浇注时直浇道的损坏,金属液的静压头必须超过金属与模型界面的压力,否则就会发生反喷,金属液压头越高,通常导致铸件的质量越好,铝合金铸件中采用中空直浇道和其它组元,有助于铝液的充型;1、消失模铸造浇注位置的确定确定浇注位置应考虑以下原则①尽量立浇、斜浇,避免大平面向上浇注,以保证金属有一定上1速度;②浇注位置应使金属与模型热解速度相同,防止浇注速度慢或出现断流现象,而引起塌箱、对流缺陷;③模型在砂箱中的位置应有利于干砂充填,尽量避免水平面和水平向下的盲孔;重要加工面处在下面或侧面,顶面最好是非加工面;⑤浇注位置还应有利于多层铸件的排列,在涂料和干砂充填紧实怕过程方便支撑和搬运,使模型某些部位可能加固,防止变形;2、消失模铸造浇注方式的确定浇注系统按金属液引入型腔的位置分为顶注、侧注、底注或几种方式综合使用;所有这些方法都能够生产出合格的铸件,顶注时充型所需的时间最短,因此需要浇注速度最快,以防止塌箱;侧注充型速度最慢,而底注介于两者之间,因为铝合金浇注时模型分解的速度很慢,型腔保持充满可避免塌箱,因此多采用顶注,但是这样难以控制金属液流,容易卷入热解残留物; 顶注系统:顶注充型所需时间最短,浇注快有利于防止塌箱;温度降低少,有利于防止浇不足和冷隔缺陷;工艺出品率高,顺序凝固补缩效果好,可以消除我铸铁件碳缺陷,因难控制金属液流,容易使EPS热解残留物卷入,增碳倾向降低;由于铝合金浇注时模型分解速度慢,型腔保持充满,可避免塌箱,一般薄壁件多采用顶注;侧浇注系统:液体金属从模型中间引入,一般在铸件最大投影面积部位引入,可缩短内浇道的距离;生产铸件的采用顶注和侧注,铸件上表面出现碳缺陷的机率低;但卷入铸件内部碳缺陷常常出现;底浇注系统:从底部模型引入金属液,上升平稳,充型速度慢,铸件上表面容易出现碳缺陷,尤其厚大件更为严重;因此应将厚大平面置于垂直方向而非水平方向;底注工艺最有利于金属充型,金属液前沿的分解产物在界面空隙中排出的同时,又能够支撑干砂型壁;一般厚大件应采取底注方式;阶梯式浇注系统:分两层或多层引入金属时采用中空直浇道,大部分金属从最上层内浇道引入金属,多层内浇道作用减弱;阶梯浇道引入容易引起冷隔缺陷;一般在高大铸件时采用;上述浇注方式在一定条件下能生产出合格的铸件;浇道比例和引入位置,采用的浇注系统原则①引入液体金属流,应使充型过程连续不断供应金属不断流,液体金属必须支撑干砂型壁,采用封闭式浇注系统最为有利;即内浇道断面最小;如内浇道:直浇道=1:1. 2-1. 4;②浇注系统的形式与传统工艺不同,不考虑复杂结构形式如常用的离心式、阻流式、牛角式等,尽量减少浇注系统组成,常没有横浇道只有直浇道和内浇道以缩短金属流动的距离;形状简单,方形长方形为主;③直浇道与铸件间距离即内浇道长度应保证充型过程不因温度升高而使模型变形;金属压头,应超过金属EPS界面气体压力,以防呛火;呛火是液体金属从直浇道反喷出来,中空直浇道和底注有利于避免反喷,同样适用于铸铝件;对EPS/EPMkIA共聚树脂模型更为突出,高的直浇道压头高容易导致良好的铸件质量和浇注时的安全;生产铸件时,采用顶注和侧注,铸件表面出现碳缺陷,但是由于卷入模型残留物,铸件的内部常常出现碳缺陷;底注能够减少内部的碳缺陷,但是在铸件的上表面容易出现碳缺陷,尤其是在厚大铸件的上表面,目此多将厚大平面置于垂直的而不是水平的方向;厚度介于3. 2-6. 4mm的铸件一般不会出现什么问题,但是对于壁厚较大的铸件,需要更多的内浇道隐入、更低的模型密度、代用模型材料、采用不同的涂料配方、抽真空浇注或其它的调整,以减少碳缺陷;3、内浇道尺寸大小的设计计算首先确定内浇道最小断面尺寸,再按一定比例确定在直浇道和横浇道;计算方法有2种:经验法:以传统砂型工艺为参考查表或经验公式计算后,适当调整,一般增大15%-20%即可;理论计算方法:如水力学计算公式,以球铁包括灰铁为例G:流经内浇道的液态重量kg铸造重+浇注系统重u:流量系数,可参考传统工艺查表,一般可按阻力偏小来取;如Hp:压头高度,根据模型在砂箱中位置确定;t:关键是浇注时间的选择,快速浇注是EPC工艺最大特点;按下式决定t:k1中小件用公式k1是修正系数,有负压时; K1取<1-般为左右;T=k1计算结果是一个参考值,通过浇注试验调整,有确切把握后可和模型联在一起发泡成型是有利的;4、消失模铸造浇注工艺浇注铝合金铸件时由于模型分解速度不快,浇注速度与铸铁件生产相比要低一些,因此,需要较大的内浇道和直浇道,生产铝合金件时的冷隔和皱皮缺陷是由于铝合金液中卷入了模型的热解残留物以及当今束流相遇是铝液的热量不足以充分熔融这些残留物的综合结果所致;底注工艺最有利于金属液充型,金属液以受控最好的方式在直浇道中下降,然后在铸型型腔内有规律地上,金属液前沿使分解产物在金属液与模型的界面空隙中逸出的同时,又能够支撑干砂型壁;一个浇注系统上能够组装多层模型,在浇注结束前金属液的静压头降低和流动的速度减小的情况下,一定要使每个铸型都充满,模型之间不要靠得太近,否则会使型内气压升高,浇注铸铁和铸钢件时,模型的热解的过程中产生大量高温气体,如果这些气体聚集在相邻两个模型间的区域内,模型会受到损坏,使干砂流入型腔内,产生严重的缺陷;如果把这些高温气体从型内排出,则可以解决这些问题;浇注时也可采用抽真空,抽真空能够排出砂箱内的气体,提高铸件表面的光洁度,阻止干砂流态化,改善薄壁铸件的充型性能,抽真空还能够排出浇注时产生的其它产物,真空系统中收集过多的这类产物会发生批爆炸,所以要求真空系统至少能够承受住1MPa的峰值压力;浇注温度的确定:由于模型气化是吸热反应,需要消耗液体金属的热量,浇注温度应高一些,虽然负压下浇注,充型能力大为提高,但从顺利排除EPS固、液相产物也要求温度高一些,特别是球铁件为减少残碳、皱皮等缺陷,温度偏高些对质量有利;一般推荐EPC工艺浇温比砂型高30-50℃,对铸铁件而言,最后浇注的铸件应高于136 0℃表1推荐的浇注温度范围:表l采用消失模铸造工艺时合金浇注温度负压的范围和时间的确定负压的作用:1 紧实干砂,防止冲砂和崩散、型壁移动尤其球铁更为重要;2 加快排气速度和排气量,降低界面气压,加快金属前沿推进速度提高充型能力,有利于减少铸件表面缺陷;3 提高复印性,铸件轮廓更清晰;4 密封下浇注,改善环境;负压大小范围:1根据合金种类,选定负压范围,见表2;表2 负压范围铸件凝固,形成外壳足以保持铸件时即可停止抽气,一般5min左右根据壁厚定为加快凝固冷却速度也可延长负压作用时间;铸件较小负压可选低些,重量大或一箱多铸可选高一些,顶注可选高一些,壁厚或瞬时发气量大也可选略高一些;浇注过程中,负压会发生变化,开始浇注后负压降低,达到最低值后,又开始回升,最后恢复到初始值,浇注过程负压下降最低点不应低于铸铁件l00-200mmHg,生产上最好控制在200mmHg以上,不允许出现正压状态,可通过阀门调节负压,保持在最低限以上;为避免浇注时喷灯效应,不应采用名冒口,而且直浇道是砂箱表面上唯一敞开处,仔细设计浇注系统,要力争减少型内不同方向的金属液的对流,在金属液流的前沿,常有一些模型热解残留物,在两股金属液对流时在交界面处会卷入这些残留物,因此,铸件截面尺寸的突然变化的部位也有类似的问题,设计浇注系统时,一定要懂得在金属液前沿积累的热解残留物一定要力争排除或减少;浇注操作EPC工艺中浇注时多使用较大的浇口杯防止浇注过程中出现断流而使铸型崩散,达到快速稳定浇注并保持静压头;浇口杯多采用砂型制造,生产铸件还常采用过滤网;它有助于防止浇注道的损坏并起滤渣的作用;消失模铸件在模型后退允许情况下,一般应尽快浇注;采用自动浇注机有利于稳定浇注速度,并能够在浇注时快速调整;而手工浇注不便控制,废品率比自动浇注时的要高一些;几种新的自动浇注方法已得到生产应用;如才用加压方法从铸件底部充型;采用真空技术将金属液吸入铸件中,其前景很好;。
浇注系统设计
23:29
38
• C)根据标准冒口形状,从圆柱形冒口中 选择与计算值最接近且大于计算值的冒 口。MR=0.84(6#)符合条件:
MR ≥0.79cm
23:29
39
• d) 冒口直径为:DR=45mm • e)冒口径的横截面积计算如下:
冒口径直径: DN>1/3DR=45/3=15mm 冒口径的面积(为圆形)
34
冒口计算范例
• 为更好的说明冒口计算,此处以球铁的 万向节冒口设计为例。很显然圆柱支柱 是铸件最紧实部分,这部分冷却最慢, 凝固最晚,因此在金属收缩时需要金属 补缩。模板的布置图如下:冒口放置在
圆柱的顶部,以便(1)获得顺序凝固
(2)补缩时借助重 力
23:29
35
如图:
冒口计算范例
35mm
80mm
45
铸造常见的几种缺陷
23:29
1.冷隔 2.砂渣眼 3.掉砂 4.粘板 5.押入
6.错模 7.粘砂 8.气孔 9.缩孔 10.打联
46
分析对铸件缺陷产生原因
1.浇注系统
a)因浇道位置引起的铸件缺陷。 b)因浇道形状引起的铸件缺陷。 c)因浇道面积引起的铸件缺陷。
2.因机器参数设置引起的缺陷
23:29
4. 冒口与铸件如何连接(冒口径) 冒口径的形状设计必须能保证冒口与铸
件间通道始终畅通,金属液以最佳的方式 对铸件进行补缩。
23:29
26
冒口有两种类型的收缩
1.表面缩孔。 2.内部缩松。 改善内部的缩松对策:
a.提高CE值 b.增加砂型强度 c.使用冷铁 d.顺序凝固 e.减少孕育用量 f.铁液净化 g.镁残留量趋进0.035
23:29
4、浇注系统设计 PPT课件
右图为点浇口进料塑件的流动距离比:
= ห้องสมุดไป่ตู้1 L2 L3 L4 L5 L6 t1 t2 t3 t4 t5 t6
§7.4 浇注系统设计
若流动比超过允许值时,会出现充型不足的现象, 常用塑料的极限流动比见下表
§7.4 浇注系统设计
Z形冷料穴:最常用
倒锥形冷料穴
圆环形冷料穴
§7.4 浇注系统设计
特点:
①开模时起拉凝料作用,推出时将凝料自动推出 ②拉料杆固定在推杆固定板上
作用:
①开模时起“拉主流道凝料”作用; ②推出时拉料杆将凝料自动推出。
应用:推杆、推管推出机构中
§7.4 浇注系统设计
底部不带推出的冷料穴
球头形,常用形式
§7.4 浇注系统设计
浇口设计
作用
浇口是连接分流道和型腔的进料通道,是浇 注系统的最远端
分类
限制性浇口 非限制性浇口
§7.4 浇注系统设计
限制性浇口
限制性浇口是指分流道与型腔间采用一段距离很短、截面 很小的流道。
作用:
(1) 通过截面的突然变化,使塑料熔体流速增加,摩擦加剧,温度 升高,黏度降低,提高流动性,有利于填充型腔; (2) 对多型腔模具,可调节浇口截面尺寸,以保证非平衡布置的型 腔同时充满; (3) 型腔充满后,熔体在浇口处首先凝固,防止熔体倒流,保证型 腔内熔料自由收缩固化成形,减小塑件内残余应力; (4) 便于浇注系统与塑件的分离,塑件上残留痕迹小。 但浇口尺寸过小会使压力损失增大,冷凝加快,补缩困难。
热流道
§7.4 浇注系统设计
普通浇注系统的组成
主流道 分流道 冷料穴 浇口
浇注系统用途
浇注系统用途浇注系统是一种用于混凝土施工的工程设备,主要用于将混凝土均匀地倒入模板中并进行振动、压实,以确保混凝土结构的稳定性和质量。
首先,浇注系统主要用于施工各类混凝土结构,比如建筑物的地板、墙壁、柱子、梁等。
浇注系统通过控制混凝土的流动和压实,可以使混凝土在模板内形成预定的形状和尺寸,保证施工结构的精度和一致性。
在大型工程项目中,浇注系统的作用尤为重要,它能够提高施工效率,减少人工成本,并确保施工质量和安全。
其次,浇注系统还可以用于混凝土构件的修补和回填。
在混凝土使用寿命较长的情况下,可能会出现裂缝或损伤,需要进行修复和加固。
浇注系统可以将修补材料均匀地注入到损坏部位,使其与原混凝土形成一体化,恢复构件的强度和使用性能。
同时,浇注系统还可以用于回填土方、填充基坑和地基加固等工程中,通过控制混凝土的流动和密实度,实现土方工程的快速施工和土方固化。
此外,浇注系统还可以用于生产预制混凝土构件。
预制构件是在工厂中生产完成后,再运输至施工现场进行安装和拼接的构件,因此对构件的准确性和一致性要求较高。
浇注系统可以通过控制混凝土的投料速度、流动性和压实程度,以及模板的形状和尺寸,生产出满足设计要求的预制构件。
这样既可以提高构件的质量和效率,又可以减少施工现场的外界影响,提高施工安全性。
此外,浇注系统还可以用于制造混凝土制品,比如护坡砖、排水管、护栏柱等。
这些制品通常是按照一定的规格和要求进行生产的,浇注系统通过控制混凝土的流动和模板的形状,可以批量生产出符合标准的混凝土制品。
这样不仅可以提高生产效率,降低成本,而且可以保证制品的质量和一致性,满足市场需求。
总的来说,浇注系统主要用于混凝土施工,可以提高施工效率,减少人工成本,保证施工质量和安全。
它在建筑施工、土方工程、修补加固、预制构件生产和混凝土制品制造等领域都有重要的应用,对于现代建筑和基础设施建设具有重要意义。
在未来,随着施工技术的发展和自动化程度的提高,浇注系统将会在施工工艺中发挥更大的作用,为建筑产业的发展做出更大的贡献。
浇注系统设计的原理
浇注系统设计的原理熔模铸造干得好不好在很大程度上取决于铸件合格率高不高。
要做到这一点,铸造工艺人员必须能熟练地设计铸造工艺一一确定蜡件的浇口、组合方案、铸件的浇注温度和浇注速度,以及型壳焙烧温度等参数。
铸件工艺设计必须首先进行铸件浇注系统设计和浇注参数确定,确保金属液在凝固前能迅速充满型壳。
保证金属液充填型壳时,一定不能与空气中的氧气发生反应,形成非金属夹杂物。
最后金属液在凝固时不形成缩孔。
本章的主题是使用凝固、热力学和流体流动的原理来设计满足这些条件的熔模铸造工艺。
凝固原理熔模铸件液态金属在型壳中凝固形成的。
通过对浇注系统的设计实现对凝固过程的控制。
在讨论浇注系统设计原理之前,我们先回顾浇注系统设计对铸件凝固的影响。
在凝固过程中,液态金属在型壳中冷却凝固,形成铸件。
在金属液凝固过程中,在液态金属中随机排列的金属原子在固体晶格中占据了固定的位置。
金属原子有序排列,释放出能量,这就是结晶热能。
金属液凝固后,金属原子在固体中所占的空间也小于在液体中所占的空间,如果这种体积差异没有得到补缩,就会导致铸件收缩(这种收缩是金属收缩,它会导致铸件出现缩孔,而不是“模型收缩”。
这是指固体铸件在进一步冷却期间的收缩,可以通过使用加大模型来补偿)。
图5-6钢中集中缩孔的形成过程示意至宿骸券适厚为学对于纯金属来说,凝固温度是确定的。
图1是铝的典型冷却曲线。
液态铝在660。
C冷却直到凝固。
实际上,金属液过冷几度,然后回到熔点,温度不会进一步改变,直到所有的金属液凝固。
在此期间,铝晶体从型壁向中心生长。
这些晶体被称为树枝晶。
当金属液凝固变为固体后,温度将继续下降到常温。
当铸件凝固时,型腔内的金属液高度下降,当铸件凝固后,在铸件会产生一个缩孔,这说明固体比液体密度大,凝固时金属会收缩。
低碳钢,几乎跟纯铁一样,凝固也是这种方式。
大多数铸件不是用纯金属或接近纯金属制成的,而是用合金制成的,合金在液态和固态中形成溶液或者固溶体。