超细氢氧化镁阻燃剂的制作与研究

合集下载

氢氧化镁阻燃剂的表面改性进展

氢氧化镁阻燃剂的表面改性进展

氢氧化镁阻燃剂的表面改性进展作者:刘家伟王容李盈颖郑冉宋健健赵丽来源:《科技创新与应用》2017年第15期摘要:介绍了氢氧化镁阻燃剂的阻燃机理,阐述了近年来氢氧化镁阻燃剂的表面改性进展,展望了氢氧化镁阻燃剂的研究方向。

关键词:氢氧化镁;阻燃剂;表面改性卤系阻燃剂虽然具有较好的有机聚合物材料阻燃性能,但材料一经燃烧产生大量的有毒气体,严重危害身体健康,加之北美西欧等国家已经取缔卤系阻燃剂的使用,发展新型有效的无卤阻燃剂成为研究的热点。

新型无机阻燃剂氢氧化镁用于材料的阻燃不产生有毒物质,具有安全环保的特点,在高分子材料中应用广泛。

本文对氢氧化镁阻燃剂的特点进行了论述,重点对其改性研究进行了阐述。

1 氢氧化镁阻燃剂特点氢氧化镁是白色粉末状的六角形或无定性的片状结晶,其密度为2.39g/cm3,难溶于水,18℃时的溶解度为9*10-3g/L。

Mg(OH)2的起始热分解温度比Al(OH)3要高,接近300℃。

其最大分解峰温比Al(OH)3高约100℃,约400℃[1,2]。

氢氧化镁阻燃性能来源于其特殊的热分解性能。

氢氧化镁受热分解为氧化镁和水蒸气。

总结其阻燃机理和特点如下[3,4]:(1)氢氧化镁热分解产生的水蒸气可有效稀释氧气浓度,阻碍燃烧;(2)氢氧化镁的热容大,热分解过程中可有效降低高分子基材所吸收的热能,使高分子基材的热分解有所延缓;(3)氢氧化镁形成的表面炭化层可以延缓燃烧,并能够抑制分解气体的燃烧;(4)氢氧化镁分解吸收大量的热量,降低被阻燃材料的温度,可有效延缓高聚物分解速度;(5)氢氧化镁热分解产生的氧化镁本身就是优良的耐火材料,覆盖于高分子基材表面能够隔绝空气使燃烧受阻;(6)氢氧化镁用作阻燃剂时添加量较大才能提高高聚物的难燃性。

虽然氢氧化镁因其独特的热分解特性赋予其阻燃和抑烟的特性,但氢氧化镁用于高分子基材的阻燃仍受到一定的限制。

首先,氢氧化镁具有较高的表面能,未经改性的氢氧化镁易于团聚,分散性能差。

氢氧化镁阻燃剂的应用进展

氢氧化镁阻燃剂的应用进展

硼酸锌 ,对 热处理后 的P r M g OH)的 枝 物使 Mg OH) 与 P 级 添 0h ( , ( , A6增容 以及增容
S可 达 UL 4 9 HB。 分 析 ,研 究 发 现 炭层 中存 在 聚 合 物 碎 AB
剂 对 体系 力学 性 能和燃 烧性 能的影 响 ,
片 ,这 表明硼 酸锌 的存 在减 缓 了聚合物
中科 院广 州 有 机 化 学 研 究 所 发 现 结 果发现 加入大 分子接枝 物改性 后的材
的 分 解 ,形 成 一 层 玻 璃 状 的 保 护 层 ,这 用 稀土偶 联剂 RE C处理后 的 Mg OH) 料 热 释 放 速 率 下 降 明 显 ,点 燃 时 间增 ( ,
层 保护层 可作为一层 物理 障碍和对 乙烯 作 阻燃剂 ,体 系的力 学性 能和流 动性都 加 ,阻燃效 果 明显得 到 改善 。 链 段可 作一层 玻璃 罩 。 较 好 ,REC 处理 后对 体 系 的热 氧老 化 江南大学 化学与 材料 工程学 院倪忠
A. v I 为改善 E Ri a 1 等 VA的 阻燃性 过程 无 明显影 响 ,对 光氧 老化过 程有 轻 斌 『 在 前 人 对 新 型 表 面 改性 剂 用 于 l
美 国的 Mo tn公司 为了改善填 料 于 L P ro D E和 HD E, P 材料达 到阻燃级 别 ,
中国 糟 铸 工 业 20年第5 08 期
论 文选 萃
T e i h ss
机械性 能 仅有适度 下 降 。
F b e r e te [等 在 E a in Ca p n ir 1 VA
已成 为 选 择 阻 燃 剂 的 一 个 重 要 因素 , 因
报道 ,Ma n fn在尼龙 6及尼龙 6 g ii 6中 的含量 可达 5 0~6 %,此时材料 的阻燃 0

氢氧化镁阻燃剂

氢氧化镁阻燃剂

氢氧化镁阻燃剂
分子式:Mg(OH)2 分子量:58.33
产品性质
作为无卤阻燃剂,氢氧化镁优越于氢氧化铝。

它的硬度比氢氧化铝低,加工时对设备磨损较小;氢氧化镁的热分解温度高为340~390℃(氢氧化铝为200℃)、热熔高为1.37KJ/g(氢氧化铝为1.17KJ/g),氢氧镁阻燃复合材料能够承受更高的加工温度;阻燃效果好、而且抑烟效果也比氢氧化铝好;氢氧化镁还具有促进聚合物碳化的作用;价格也比氢氧化铝低10~30%。

我司在华南理工大学粉体表面处理技术的基础上,引进全套台湾研磨生产线,进一步研发成功的独有配方复合型活化阻燃剂,能够改善阻燃剂分散性同时又增强其与高分子基体的相容性,改善加工性能,提高产品的综合性能,属于国内首创。

技术指标
项目指标
Mg(OH)2≥94
MgO(%)≥65
失水温度℃300℃以上
水分(105℃)≤0.5
白度%≥94
目数3000~7000目
产品用途
我司AMH阻燃剂性能、价格、加工、应用等综合性能优越,可与国外进口的同类产品相媲美,是EV A、PE、PP、PVC、PA、PS、PBT、ABS、尼龙等树脂的优良阻燃剂和添加剂。

已被生产低烟无卤阻燃电线电缆、阻燃铝塑板、挤塑制品、阻燃电器、环保涂料等企业广泛应用于生产中。

包装、运输、贮存
1. 25kg/袋,内衬聚乙烯薄膜袋,外覆编织袋(或客户指定包装)。

2. 产品应存放于室内通风干燥库房,避免日晒雨淋。

氧化镁制备工艺及应用技术

氧化镁制备工艺及应用技术

1、氢氧化镁、其制造方法和该氢氧化镁构成的阻燃剂及含该氢氧化镁的阻燃性树脂组成物2、一种采用轻烧氧化镁粉合成片状阻燃级氢氧化镁的制备方法3、氢氧化镁阻燃剂的制备方法及氢氧化镁阻燃剂4、绝缘电缆瓷柱用氧化镁的制备方法及氧化镁及其应用5、通过包含氧化镁的聚合物混配物的原位水合制得的氢氧化镁类阻燃组合物6、一种由氧化镁制备亚微米片状氢氧化镁的方法7、多晶氧化镁材料及其制造方法和氧化镁膜的制造方法8、水热法将普通氢氧化镁转化为六角片状氢氧化镁的工艺9、氨全循环法生产氢氧化镁和氧化镁的工艺10、一种氢氧化镁阻燃剂制备方法及所制备的氢氧化镁阻燃剂11、氧化镁脱硫副产物分解再生氧化镁和二氧化硫的系统和方法12、用于由钾盐镁矾混盐与氨同时制备硫酸钾、硫酸铵、氢氧化镁和/或氧化镁的方法13、氧化镁膨胀剂中氧化镁含量的测试方法14、氧化锌膜(ZnO)或氧化镁锌膜(ZnMgO)的成膜方法及氧化锌膜或氧化镁锌膜的成膜装置15、利用低品位氧化镁及菱镁矿生产高纯氧化镁的方法16、白云石灰烟气脱硝脱硫制取氢氧化镁、氧化镁和石膏方法17、一种镁6锌-20氧化镁半固态浆料中氧化镁颗粒均匀分散方法18、一种铝1.8硅-15氧化镁半固态浆料中氧化镁颗粒均匀分散方法19、一种锌10铁-5.5氧化镁半固态浆料中氧化镁颗粒均匀分散方法20、一种用热解氧化镁制备硅钢级氧化镁的方法21、一种用碳酸锂副产物氧化镁渣制备氢氧化镁阻燃剂的方法22、氧化镁煅烧回转窑氧化镁粉余热发电装置23、氢氧化镁纳米颗粒、其制备方法和掺入氢氧化镁纳米颗粒的组合物24、一种用氧化镁生产阻燃剂级氢氧化镁的方法25、球状的氢氧化镁颗粒和球状的氧化镁颗粒以及它们的制造方法26、一种以菱镁矿为原料生产氢氧化镁和轻质氧化镁的方法27、氧化镁薄膜及利用该氧化镁薄膜的等离子显示面板及其制造方法28、氧化镁水泥泡沫剂和氧化镁泡沫混凝土生产工艺29、氢氧化镁细颗粒和氧化镁细颗粒以及它们的制造方法30、低品位菱镁矿生产高纯氢氧化镁和氧化镁的方法31、制备超纯氢氧化镁和氧化镁的方法32、具有高比表面积的球状氢氧化镁颗粒和球状氧化镁颗粒、以及它们的制造方法33、正丁烷氧化脱氢反应催化剂用氧化镁-氧化锆复合载体的制造方法,被由此获得的氧化镁-氧化锆复合载体负载的原钒酸镁催化剂的制造方法及使用所述催化剂生产正丁烯和1,3-丁二烯的方法34、高温焙烧和乙酸浸泡复合改性活性氧化镁的方法及获得的改性活性氧化镁作为除氟剂的应用35、将低级电熔氧化镁制备成高级电工级氧化镁的方法36、氢氧化镁在制药中的用途以及氢氧化镁制剂和制备方法37、一种由氢氧化镁制备高纯硅钢级氧化镁的工艺38、一种制备多孔状氢氧化镁和氧化镁六角片的方法39、一种以团聚态氢氧化镁为原料制备高分散氢氧化镁的方法40、一种氧化镁粉体材料的制备方法及其制备的氧化镁粉体材料41、以盐湖卤水或水氯镁石为原料制备超细高分散氢氧化镁阻燃剂的方法42、卤水石灰法生产高纯氢氧化镁的工艺43、无机化合物包覆的氢氧化镁粉体及其制备方法与应用44、一种拌制外掺氧化镁碾压混凝土的方法45、氢氧化镁复合阻燃剂及其应用46、一种高粘度硅钢级氧化镁的制备方法47、两种综合利用硼泥、菱镁矿和滑石矿制备氧化镁、二氧化硅的方法48、制备氧化镁(MgO)的改进方法49、一种制备氧化镁的改进方法50、利用硼镁肥生产碱式碳酸镁联产纳米氧化镁的方法51、一种填充阻燃剂纳米氢氧化镁铝的制备方法52、利用硼镁肥生产纤维状氢氧化镁阻燃剂的方法53、利用盐湖老卤生产高纯氧化镁及锂盐的工艺54、菱美矿制备氧化镁的方法55、一步法制备高分散性四方块状微细氢氧化镁的工艺56、一种制备氧化镁晶体电弧炉的热分析控制方法57、以蛇纹石为原料生产碳酸镁和/或氧化镁及多孔性二氧化硅的方法58、联产硫酸钡和氧化镁的盐酸循环法59、氧化铝-氧化锆-碳化硅-氧化镁组成与切削工具60、氧化铝-氧化锆-碳化硅-氧化镁陶瓷制品61、稳定的氢氧化镁浆62、氧化镁-镍系梯度功能材料的制造方法63、从蛇纹石中提取氧化镁的方法64、氢氧化镁及其水悬浮液的制造方法65、高温镍/氧化镁催化剂及其制备方法66、氢氧化镁系固溶体及其制造方法和应用67、用氧化镁与氧化钙材料制造工业铝电解槽化学挡板的方法68、低氧化镁绝热材料及其生产方法69、改善水质和底部沉积物质量的氧化镁基改良剂70、一种用硅酮树脂改性的氧化镁粉末及其制备方法71、块状水镁石制备超轻氧化镁72、一种提高蛇纹石铵盐焙烧产物中氧化镁溶出率的方法73、一种高效制备氢氧化镁的制备方法及装置74、一种氧化镁-石墨复合物为载体的钌系氨合成催化剂75、粉状氧化镁发泡剂76、氧化镁阻燃发泡剂77、用天然碱和氯化镁生产碳酸镁和氧化镁的方法78、能快速生长氧化镁膜的膜生长方法及其生长装置79、表面活化氢氧化镁阻燃剂的制备工艺80、含有氢氧化镁的耐酸热塑性树脂组合物及其应用81、菱镁矿直接生产氢氧化镁新工艺82、利用氧化镁稳定的含ACE抑制剂的组合物83、氢氧化镁粒子,其制造方法和含粒子的树脂组合物84、氧化铝-氧化镁-石墨耐火材料85、一种氯化镁热解制备高纯氧化镁的方法86、氧化镁颗粒、其制造方法、散热性填料、树脂组合物、散热性脂膏和散热性涂料组合物87、用于气化炉的氧化铝-氧化镁材料88、一种使循环水中的氧化镁颗粒快速沉降的方法89、一种从磷矿尾矿中回收磷并制备轻质氧化镁的方法90、一种皮革阻燃用氢氧化镁粒子表面化学改性方法91、氧化镁烟气脱硫回收七水硫酸镁新工艺92、耐火型氧化镁板93、一种高纯大尺寸氧化镁单晶的制备方法94、氢氧化镁/二氧化钛阻燃抗菌复合材料的制备方法95、一种轻烧氧化镁窑炉的连续生产方法96、氢氧化镁口服固体制剂97、一种取向硅钢带表面氧化镁的涂布工艺98、一种超细氢氧化镁分散悬液的制备方法99、氧化镁净化板及安装装置100、一种测定铁矿石中氧化镁含量的方法101、一种复合改性氢氧化镁/聚丙烯高抗冲无卤阻燃复合材料及其制备方法102、高纯氢氧化镁的制备方法103、一种阻燃氢氧化镁的制备方法104、盐湖卤水制备棒状氢氧化镁的方法105、一种双反浮选工艺同时脱除中低品位磷矿中氧化镁、氧化铁及氧化铝倍半氧化物的方法106、一种取向硅钢带表面氧化镁的涂布方法107、一种利用金矿尾砂和氧化镁晶须制备复合型压裂支撑剂的方法108、采用海绵钛副产品熔融氯化镁制备高纯氧化镁的方法109、氧化镁无机发泡防火板及其制作方法110、电焊条药皮用氧化镁粉的制备方法111、一种电热管用氧化镁导热绝缘材料的制备方法112、氧化镁负载钴铁金属磁性纳米材料在降解废水中橙黄Ⅱ的应用113、轻烧氧化镁的热选方法及其装置114、原位自生氧化镁和金属间化合物混杂增强镁基复合材料及其制备方法115、包含氧化镁的熔融粘合环氧涂料组合物116、一种利用天然气还原热解硫酸镁生产高纯氧化镁的方法117、一种氧化镁蒸镀装置118、一种用氧化镁、氯化镁板材制成的乐器配件及其制造工艺119、一种氧化镁矿物绝缘防火电缆的加工工艺120、一种阻燃剂型氢氧化镁的生产方法121、氧化镁模板协同氢氧化钾活化制备多孔炭材料的方法122、一种直接利用氧化镁制备钛酸钾镁的方法123、氢氧化镁复合阻燃材料及其制备方法124、一种白云石生产高纯氧化镁的工艺方法125、一种纳米管状氢氧化镁的制备方法126、一种磁性氧化镁表面分子印迹固相萃取剂的制备方法127、一种利用盐湖碳酸锂副产氧化镁制备的磷酸镁水泥128、利用可酸溶出镁离子性原料制备氢氧化镁的方法129、一种高强度、高密度、高纯氧化镁坩埚的制备方法130、利用轻烧白云石制备氢氧化镁的方法131、利用硫酸镁原料制备氢氧化镁的方法132、基于氧化镁的烟气脱硫脱硝装置和方法133、由油棕榈纤维和氧化镁制成的板材及其生产方法134、盐析法盐湖卤水除镁生产碳酸锂、硼酸和高纯氧化镁的方法135、一种胶磷矿中氧化镁的脱除方法136、一种降低铜镍精矿中氧化镁含量的浮选方法137、一种六方片状氢氧化镁的制备方法138、利用氧化镁直接制备含无水氯化镁的电解质熔体的方法139、防发黑添加剂及防发黑高温氧化镁的制作方法140、利用轻烧白云石粉料制备氢氧化镁的方法141、一种纳米氧化镁抗紫外疏水纤维素织物的整理方法142、一种由硼镁铁矿制备氧化镁、氧化铁、二氧化硅及硼酸的方法143、制备纳米氢氧化镁的反应系统及方法144、一种中空纳米氧化镁微球及其制备方法145、真空感应炉自烧结氧化镁质坩埚的干式制作方法146、一种球形氢氧化镁的制备方法147、一种水合法制备阻燃型氢氧化镁的方法148、一种氢氧化镁阻燃剂生产方法149、一种快速制备高致密度氧化镁纳米陶瓷的方法150、一种牺牲氧化镁载体制备铂黑/铂钌黑纳米电催化剂的方法151、一种利用研磨预处理提高氧化镁在P-RC APMP生产中使用效果的方法152、一种矿物加热电缆用氧化镁绝缘预制管棒的制备方法153、一维碱式碳酸镁纳米线和多孔氧化镁纳米线的制备方法154、正丁烷氧化脱氢催化剂的氧化镁-氧化锆复合载体及其制备方法155、一种纳米氧化镁无机抗菌剂、制备方法及用途156、一种制备活性氧化镁的方法157、氢氧化镁阻燃剂制备方法158、一种纳米管状氧化镁的制备方法159、利用氧化镁制备无水氯化镁的方法160、低品位非晶质菱镁矿-氧化镁物理提纯新工艺161、纳米级改性氢氧化镁的制备方法162、氧化镁烧成物粉末163、含氯的氧化镁粉末164、含锌氧化镁烧结物粉末165、含铝氧化镁烧结物粉末166、氧化镁薄膜167、有机酸类铵盐催化水化生产氢氧化镁的方法168、耐火的、碳结合的氧化镁砖及其制备方法169、烟气湿式氧化镁脱硫废液回收方法170、氢氧化镁的分散方法171、一种耐高温有机纤维上氧化镁晶体取向膜的制备172、氧化镁/活性炭复合材料的制备方法及其应用173、一种氧化镁质预制耐火材料及其施工方法174、低品位红土镍矿盐酸浸出液提镁制备纳米级氢氧化镁的方法175、含氟氧化镁烧成物粉末的制造方法176、可降解的化学氧化镁合金支架及其制备方法177、单分散的稳定的纳米级氢氧化镁的制造方法及所得产品178、电热管氧化镁粉的防潮方法179、氢氧化镁粉末及其制备方法180、含碳酸基的氢氧化镁颗粒及其制备方法181、氧化镁颗粒聚集物及其制造方法182、用于清除带钢上氧化镁粉尘的除尘装置183、用纳米氧化镁提高中温铁铬变换催化剂性能的制备方法184、氢氧化镁/二氧化硅复合无机阻燃剂的制备方法185、氢氧化钠法制备高纯超细氢氧化镁的工艺186、一种含氧化镁的氧化铝空心球制品187、一步水热法制备高分散氢氧化镁阻燃剂的方法188、一种用反相单微乳液制备氢氧化镁的方法189、一种氢氧化镁六方纳米片的合成方法190、制备包含枸橼酸、氧化镁、碳酸氢钾和匹可硫酸钠的药物产品的方法,包含通过该方法获得的细粒的药物组合物以及中间体191、一种纳米氧化镁的制备方法192、一种超细氢氧化镁聚乙烯阻燃复合材料及其制备工艺193、含有氢氧化镁的阻燃涂料194、一种氢氧化镁阻燃剂合成方法195、纳米氢氧化镁的改性方法196、纳米氢氧化镁的制备方法197、氧化镁质泡沫陶瓷过滤器198、一种氢氧化镁的制备方法199、超细氢氧化镁表面改性方法200、一种制备纳米氧化镁的新方法201、制备硫酸纳和氢氧化镁的方法202、一种硫酸镁废液治理及联产活性氧化镁的方法203、氧化镁用于稀土溶液沉淀剂的生产工艺204、高纯高分散氢氧化镁阻燃剂的制备方法205、一种表面改性纳米氢氧化镁的制备方法206、一种氢氧化镁晶须材料表面改性的化学包覆方法207、氧化镁单晶蒸镀材料及其制造方法208、氧化镁单晶蒸镀材料及其制造方法209、一种可用于高能固体推进剂的氧化镁纳米催化剂材料及其合成方法210、用于氢氧化镁晶片增强轮胎的橡胶合成物211、海水提取高纯超细微粉氢氧化镁的生产方法212、一种利用双重模板剂制备大孔-介孔氧化镁的方法213、一种磷酸锌包覆氢氧化镁型复合无机阻燃剂的制备方法214、用溶胶-凝胶技术制备氧化镁防蚀保护薄膜的方法215、利用菱镁矿石粉、粒在隧道窑中烧结轻烧氧化镁的方法216、用于厚电介质电致发光显示器的含有氧化镁的阻挡层217、单晶氧化镁及其制造方法218、一种钢渣中游离氧化镁含量的测定方法219、低品位菱镁矿制备超细氢氧化镁和碱式硫酸镁晶须的方法220、制备纳米氧化镁和活性轻质碳酸钙的方法221、降低氢氧化镁产品中硫酸钙的洗涤方法222、一种取向硅钢片用特种氧化镁的制备方法223、取向硅钢热拉伸退火机组氧化镁除尘系统224、一种甲钴胺与轻质氧化镁的药物组合物及其制备方法225、一种制备超纯氧化镁粉体的方法226、氧化镁质透气砖的制备方法227、采用青海盐湖水氯镁石转化的氢氧化镁煅烧高纯镁砂工艺228、一种氧化镁晶须的制备方法229、利用富硼渣生产硼酸联产氢氧化镁和硫酸钙的方法230、氢氧化镁晶须增强ABS复合材料的制备方法及产品231、一种氧化镁湿法烟气脱硫及产物自浓集的回收工艺232、含镍蛇纹石活化酸浸制备氢氧化镁纳米粉体的方法233、硫酸镁废液除锰制备氧化镁纳米粉体的方法234、湿式镁法脱硫剂氧化镁活性测定方法235、以碳酸镁水合物为中间体生产氧化镁并联产氯化铵的方法236、氧化镁的制备设备及其制备方法237、高致密度氧化镁靶材的制造方法238、取向硅钢生产中氧化镁粉尘的除尘方法239、一种氧化镁八面体的制作方法240、一种碱强化制备亚微米片状氢氧化镁的方法241、一种利用脂肪胺溶剂热法制备多孔氧化镁的方法242、一种活性氧化镁生产工艺243、一种氧化镁泡沫陶瓷过滤器及其制备方法244、利用橄榄石尾矿制备高纯氢氧化镁及六硅酸镁的方法245、等离子体显示面板的制造方法、氧化镁晶体粉体的制造方法246、一种由水镁石矿制备氢氧化镁的方法247、非乳化法制备过氧化镁的方法248、一种用碳酸氢盐解吸被氢氧化镁沉淀吸附的钾、钠、锂、硼的方法249、一种用CO2气体解吸被氢氧化镁沉淀吸附的钾、钠、锂、硼的方法250、氢氧化镁组合物、其制造方法、以及树脂组合物及其成形品251、一种由菱镁矿制备亚微米片状氢氧化镁的方法252、聚酰亚胺插层接枝氢氧化镁阻燃剂的制备方法资料较多,这里列举部分目录,具体目录联系管理人员898、纳米氧化镁作为膨胀剂在水泥基材料中的应用899、氢氧化镁微粒900、一种聚乙烯-醋酸乙烯酯共聚物/氢氧化镁-碳纳米管复合阻燃材料的制备方法901、含氯化镁、氯化钙混合溶液石灰晶种法生产氢氧化镁的方法902、一种采用两炉排烧法制备高纯氧化镁的工艺903、白云石凹凸棒石粘土热活化制备纳米氧化镁基复合材料的方法及应用904、一种氧化镁泡沫陶瓷的制备方法905、基于氧化镁靶的磁隧道结制备方法906、分离氢氧化镁溶液的陶瓷过滤器装置及工艺907、一种高纯氧化镁的生产方法908、一种片状氢氧化镁的制备方法909、一种轻烧氧化镁超细粉制备装置及方法910、一种制备氧化镁纤维砖的简单方法911、一种以含棉布料为模板制备氧化镁纤维布的简单方法912、氢氧化镁及其制备方法913、一种氢氧化镁纳米晶的制备方法914、一种氧化镁纳米带-碳纳米管复合材料的制备方法915、一种利用盐泥制取轻质氧化镁方法916、一种菱镁矿除硅铝生产氢氧化镁的工艺917、利用氧化镁为原料电解制备镁合金的方法918、一种一体化制备高分散性超细氢氧化镁阻燃剂的方法919、以磷尾矿为原料用氨循环法制取氢氧化镁、碳酸钙并分离出磷矿的方法920、一种氧化镁绝缘空芯复合电缆的制备方法921、一种电工级氧化镁粉的生产方法922、一种抗氧化镁基复合材料及其粉末冶金制备方法923、一种氢氧化镁阻燃剂表面改性的方法924、一种电工钢专用氧化镁柠檬酸活性度曲线测定方法925、一种氧化镁铜基复合材料及其粉末冶金制备方法926、一种制备高纯氢氧化镁阻燃剂的方法927、一种硫酸镁溶液制备氢氧化镁的方法928、一种表面改性纳米氢氧化镁的制备方法929、氧化镁烧结体及其制造方法930、一种氧化镁抗静电材料931、一种由水氯镁石和白云石制备镁水泥用氧化镁的方法932、一种氢氧化镁包覆滑石粉复合阻燃填料的制备方法933、一种用高镁磷尾矿制备氢氧化镁的方法934、制备纳米氧化镁的方法935、制备氢氧化镁的方法936、一种利用纳米氧化镁提高土无侧限抗压强度的方法937、一种采用配体解析技术制备氧化镁纤维的方法938、一种利用碳酸镁粗矿制备高纯氧化镁的方法939、偏高岭土基氧化镁型快速修补材料的制备方法941、一种利用碳酸镁粗矿制备高纯氧化镁的方法942、氢氧化镁阻燃剂的制备方法943、一种电工级高温氧化镁专用助剂的生产方法944、一种可纺性氧化镁纤维前驱体溶胶及其制备方法与应用945、一种磷矿反浮选脱氧化镁捕收剂的配方及其制备方法946、一种用聚丙烯酸/氧化镁杂合微球分离纯化螺旋藻藻蓝蛋白的方法947、使用具有不同氧化镁(MgO)厚度的多个磁性隧道结的多级存储器单元948、氢氧化镁的制备方法949、纳米氧化镁的制备方法950、一种磷铵与氢氧化镁联产方法及系统951、一种球形氢氧化镁的制备方法952、一种氢氧化镁的制备方法953、氢氧化镁的改性方法954、新型无机阻燃剂氢氧化镁的制备方法955、一种具有高浓度料浆的氢氧化镁的制备方法956、一种氧化镁矿物绝缘母线957、一种高分散纳米氢氧化镁的制备方法958、一种含有氧化镁脱硫废液的硫氧镁水泥及其制备方法959、一种碳酸钙氧化镁复合剂及其制备方法960、一种氧化镁铝热还原法制备金属镁的工艺961、超高温氧化镁纤维制品及其制备方法962、低品位菱镁矿生产高纯氧化镁的工艺963、一种氢氧化镁包覆碳微球阻燃剂的制备方法964、一种提高铜镍的浮选回收率并降低硫化铜镍矿精矿氧化镁含量的方法965、一种以氧化镁/石墨烯杂化材料为催化剂制备α-苯乙醇的方法966、一种以磷尾矿为原料生产原位改性纳米氢氧化镁的工艺967、一种利用氧化镁治理SO废气同时回收副产品的方法968、一种活性氧化镁的制备方法969、一种以磷尾矿为原料制备原位改性纳米氢氧化镁的方法970、一种以磷尾矿为原料制备原位改性纳米氢氧化镁晶须的方法971、一种隔离性氧化镁绝缘防火电缆972、氧化镁烧结体的制造方法973、一种二氧化钛掺杂氧化镁复合光催化剂制备方法974、一种氧化镁纳米晶包覆石墨烯复合材料及其制备方法975、一种氢氧化镁阻燃剂的制备方法976、氢氧化镁复配阻燃剂及阻燃交联聚乙烯泡沫塑料复合材料977、一种氢氧化镁粒径控制及改性的方法978、一种纳米氢氧化镁材料的制备方法979、由工业氢氧化镁制备轻质碳酸镁的工艺980、无卤环保型氧化镁-硫酸镁不燃无机复合材料981、一种用水氯镁石生产氢氧化镁、镁和镁铝尖晶石的方法982、高导热性聚酰亚胺/氧化镁复合薄膜的制备方法983、用盐湖卤水生产氢氧化镁、氯化钡和硫化氢的生产工艺985、比表面积大的氧化镁固化剂986、针状或薄片状纳米氢氧化镁及其制备方法987、带钢氧化镁涂层质量在线检测系统988、氧化镁蓄热材料的制造方法1、本套技术资料320元2、资料都为电子版的技术资料,资料包括相关配方制备工艺等,客户也可以根据自己需要选择适合自己的进行打印。

氢氧化镁-重质碳酸钙复合阻燃填料的制备与表征

氢氧化镁-重质碳酸钙复合阻燃填料的制备与表征
g r o un d c a l c i u m c a r b o na t e
c a l c i u m h y ro d x i d e wa s a d o p t e d .Th e p r e p a r e d c omp o s i t e l f a me r e t a r d a n t
制发 烟 以及 分解 产 物化 学 性 质稳 定 等特 点 , 因此 不产 生二 次 危 害 [ 1 - 3 ] 。近年 来 , 氢 氧化镁 阻燃 剂虽 然发 展迅
速 ,但 是在 实 际应 用 中存在填 充量 大并 且与 高聚 物之
文章编号 : 1 0 0 8 — 5 5 4 8 ( 2 0 1 5 】 0 4 — 0 0 8 9 — 0 4
第 2 卷
第 4期
2 0 1 5年 8, E J
喜 0 HI 中国 粉体技术 0o C N A P O W D E R S C I E N C E A N D T E C H N O L O G Y
V0 1 . 21 No. 4
Aug.2Leabharlann 15 d o i : 1 0 . 1 3 7 3 2  ̄ . i s s n . 1 0 0 8 — 5 5 4 8 . 2 0 1 5 . 0 4 . 0 2 0
间 的结合 能力差等 缺点 , 因此需要 进行表 面改性[ ] 。 重
质碳 酸钙具 有纯 度高 、 价格低 廉 、 加 工工 艺简 单并 且在 基材 中分 散性好 等特 点 ,作 为填 料可 以提 高材料 的阻 燃性 , 降低 成本 [ 6 - 9 ] 。 本 文 中利用氢 氧化钙沉 淀法制备 氢
氢氧化镁一 重质碳酸钙 复合 阻燃填 料的制备与表 征

纳米氢氧化镁复合阻燃聚烯烃材料的研究

纳米氢氧化镁复合阻燃聚烯烃材料的研究
理想 , 限 氧指数 低 , 极 易燃 、 燃烧 时发 烟量 大 、 滴 严 融
阻燃剂 具有 无毒 、 腐蚀 、 产生 有毒 气 体 等 优 点 , 无 不 因而被 称 为绿色 环 保 型 阻燃 剂 , 为 金 属氢 氧 化 物 作 的氢 氧化 镁 , 是无 机 添加 型 无 毒 阻 燃 剂 , 有 阻 燃 , 具 消 烟 , 充等 多重 性 , 填 但其 添加 量通 常 在 6 % 以上 0
究 了复 配阻燃剂 的用量对 复合 共混材料 力学性能和 阻燃性 能的影响 以及 氯化聚 乙烯共混材料 的机械性 能和 阻燃性 能。结果
表 明, 复配 阻燃剂含量增加对材料 的拉伸 强度有较 明显的影响 , 填料在 2 以 内对材料的缺 口冲击强度影 响较 小。复配 阻燃 0份
剂显著提 高 了材料 的阻燃性 能 , 在含量 为 2 P R时 ,P氧指 数达到 2 2 P R时 H P 0H P 7,5 H D E氧指 数达到 2 垂 直燃烧 F 7, V一1级 ,
纳米氢 氧化镁 复合 阻燃聚烯烃材料 的研 究
刘启 明 , 良波 李
( .南京工业大学 , 1 江苏 南京 2 1 1 ;.济南大学 化 工学院 , 186 2 山东 济南 2 02 ) 50 2

要 : 制 了纳米 氢氧化镁 为主和十 溴联 苯醚、 研 硅烷偶联 剂复配 阻燃 剂与聚烯 烃( P H P ) P 、 D E 的填 充共混复 合材料 , 实验研
微量发烟 。氯化聚 乙烯和硅氧烷 处理 的纳米氢氧化镁 的随着含量 变化 , 阻燃性能和抗冲击性 能有 所改善 。
关 键 词 : 米 氢 氧 化 镁 ; 合 阻燃 ; 烯 烃 ; 纳 复 聚 氯化 聚 乙烯 ; 混材 料 共
中图分类 号 :U 5 T 5 1

轻烧镁粉制备超细片状氢氧化镁

轻烧镁粉制备超细片状氢氧化镁汪艳;王伟;张俊;胡珊【摘要】The superfine and sheet magnesium hydroxide was preparaed by direct precipitation method, using the calcined magnesite as magnesium source and ammonia as agent precipitation. The influence of magnesium hydroxide' s average particle size with the relationship of different reaction conditions by particle size tester was studied. And then the best process conditions of the synthesis of magnesium hydroxide was got. The product was verified for magnesium hydroxide by X-ray diffraction, scanning electron microscope,thermo-gravimetric analysis and infrared spectromete. At last, the best synthesis condition was got. The influence of surfactant to magnesium hydroxide was researched. The results show that the experiment product is superfine and sheet magnesium hydroxide; the best synthetic process conditions are of 40 ℃ reaction temperature, reaction time of h 1. 5, ammonia water dosage of 170 mL and adding speed of 12 mL/min; the anionic surfactant-SDBS can effectively improve the dispersion and morphology of magnesium hydroxide.%以轻烧镁粉为镁源,氨水为沉淀剂,采用直接沉淀法制备超细片状氢氧化镁.通过粒度测试仪研究了不同反应条件对氢氧化镁平均粒径的影响,最终得到合成氢氧化镁的最佳工艺条件.利用X 射线衍射、热失重分析、扫描电子显微镜和红外光谱仪对产物氢氧化镁进行了表征.分析了表面活性剂对制备氢氧化镁的影响.结果表明:实验所得产物为超细氢氧化镁,且晶体比较完善,形貌为六方片状.最佳合成工艺条件为反应温度40℃、反应时间1.5h、氨水的用量和滴加速度分别为170 mL和12 mL/min;添加阴离子表面活性剂十二烷基苯磺酸钠能有效改善氢氧化镁的分散性和形貌.【期刊名称】《武汉工程大学学报》【年(卷),期】2013(035)001【总页数】5页(P41-45)【关键词】轻烧镁粉;粒度;表面活性剂;形貌【作者】汪艳;王伟;张俊;胡珊【作者单位】武汉工程大学材料科学与工程学院,湖北武汉430074;武汉工程大学材料科学与工程学院,湖北武汉430074;中国地质大学材料与化学学院,湖北武汉430074;中国地质大学材料与化学学院,湖北武汉430074【正文语种】中文【中图分类】O611.4;O611.30 引言氢氧化镁的用途非常广泛,主要应用于环保和阻燃两方面.由于氢氧化镁具有无毒、抑烟和填充三方面的优势,因此氢氧化镁是一种非常环保的阻燃剂,应用量非常之大.而作为阻燃用氢氧化镁必须有规整的形貌,如片状、纤维状或其他形状,这就要求合成氢氧化镁时必须控制氢氧化镁的形貌.氢氧化镁的主要生产方法有直接沉淀法、水镁石粉碎法、氧化镁水化法等[1-4].张波、李丽娟等[5]介绍了一种以硫酸镁为原料制备花球状氢氧化镁阻燃剂的方法.Yi Ding[6]等人用不同的镁盐和碱液制备了纳米针状、片状、纤维状、粒状的不同晶型的氢氧化镁;ChenlinYan[7]等用氯化镁和尿素在不加入任何表面活性剂的情况下合成了分布均匀的纳米花瓣状的Mg(OH)2.本文利用菱镁矿煅烧所得轻烧镁粉为镁源,氨水为沉淀剂,采用直接沉淀法制备了超细片状氢氧化镁.本文还研究了阴离子表面活性剂十二烷基苯磺酸钠对氢氧化镁分散性和形貌的影响.本文研究的意义在于有效利用菱镁矿,节约矿产资源,提高其利用率和附加值.1 实验部分1.1 实验原料和仪器轻烧镁粉,工业级,沈阳万众三威股份有限公司;氯化铵,分析纯,天津博迪化工股份有限公司;氨水,分析纯,天津天力化学试剂有限公司;十二烷基苯磺酸钠,分析纯,国药集团化学试剂有限公司.数显控温电热套:SXKW,北京市永光明医疗仪器厂;扫描电子显微镜(SEM):JSM-6390LV,日本电子株式会社;X-射线衍射仪(XRD):D/Max2500,日本Rigaku公司;红外光谱仪:Nicolet 6700,Thermo Electron Corp,USA;热失重分析仪:STA-409,德国Netsch公司;激光粒度仪:JL-1155,四川省轻工业研究设计院.1.2 实验过程第一步:轻烧镁粉的消化.按一定比例取轻烧镁粉和氯化铵加入到1000mL的三口烧瓶中,再取500mL蒸馏水加入三口烧瓶中,开动搅拌,当温度达到110℃时记时反应1h,反应结束后抽滤得到氯化镁溶液.第二步:超细片状氢氧化镁的制备.将第一步制备的氯化镁溶液加入到三口烧瓶中加热搅拌,当达到设定的温度后,开始滴加氨水,达到反应时间后停止搅拌.数次洗涤所得溶液,直到检测不到Cl-为止.然后将沉淀过滤得到滤饼,将滤饼放入真空干燥箱中于80℃烘6h,最后得到白色粉末状物质.在氯化镁溶液中加入十二烷基苯磺酸钠之后再滴加氨水就得到表面改性氢氧化镁.2 结果与讨论2.1 不同反应条件对氢氧化镁平均粒径的影响2.1.1 反应温度对氢氧化镁平均粒径的影响图1为反应温度对合成氢氧化镁粉体平均粒径的影响.由图可知,温度低时,由于Mg(OH)2溶解度大,溶度积高,溶液局部过饱和度小,离子活性低,扩散慢,因而晶体成核速率小,产物粒径大.随着温度的升高,Mg(OH)2溶解度减小,溶度积降低,过饱和度变大,因而成核速率变大,Mg(OH)2的粒径减小.但是当温度继续升高,粒子运动加快,因而不利于晶体成核,生成的Mg(OH)2会发生团聚,产物平均粒度又增大.图1 反应温度对合成氢氧化镁平均粒径的影响Fig.1 Effect of reaction temperature on average particle size of Mg(OH)22.1.2 反应时间对氢氧化镁平均粒径的影响图2为反应时间对合成氢氧化镁粉体平均粒径的影响.由图可知,随着反应时间的延长,合成氢氧化镁的平均粒径呈现先急速降低然后略微增大的趋势.从实验的周期性以及节约能量的角度考虑,氢氧化镁合成的最佳反应时间为1.5h.图2 反应时间对合成氢氧化镁平均粒径的影响Fig.2 Effect of reaction time on average particle size of Mg(OH)22.1.3 氨水用量对氢氧化镁平均粒径的影响图3为氨水用量对氢氧化镁平均粒径的影响.由图可知,随着氨水用量的增加,氢氧化镁的平均粒径先减小后增大.在氨水用量为170mL时,氢氧化镁的平均粒径最小,为1.15μm.主要原因就是,当氨水用量较少时,此时溶液中的过饱和度比较小,晶核形成的速率小于晶体成长的速率,容易形成大颗粒.而当氨水用量很大时,虽然此时的过饱和度较大,但是溶液中形成的氢氧化镁粉体容易团聚,导致粒径变大.图3 氨水用量对合成氢氧化镁平均粒径的影响Fig.3 Effect of ammonia water dosage on average particle size of Mg(OH)2图4 滴加速度对合成氢氧化镁平均粒径的影响Fig.4 Effect of drop acceleration on average particle size of Mg(OH)22.1.4 氨水滴加速度对氢氧化镁平均粒径的影响图4为氨水滴加速度对氢氧化镁平均粒径的影响.由图可知,合成氢氧化镁的平均粒径随着氨水滴加速度的增加,呈现先减小再增大的趋势.在12mL/min时平均粒径达到最小值,为1.34μm.主要原因就是,当氨水滴加速率较小时,溶液中过饱和度也很小,使得晶粒的成核速率也远小于生长速率,因此晶粒较大;随着加料速率的增大,成核速率逐渐接近长大速率,使得平均粒径减小;随着加料速率进一步增大,体系中形成了大量的细微晶粒,晶粒来不及生长就相互团聚,导致平均粒径又增大.2.2 氢氧化镁的XRD分析采用上述最佳实验条件制备出氢氧化镁,其XRD测试结果如图5所示.由图5可见,图中各峰的位置与氢氧化镁标准卡片一致,属于六方晶系.除了氢氧化镁的特征峰外,几乎没有其他特征峰,而且图中的001面和101面的峰很尖锐,说明氢氧化镁结晶性能很好.图5 合成氢氧化镁的XRD图谱Fig.5 The XRD atlas of Mg(OH)22.3 氢氧化镁的红外分析图6是氢氧化镁粉末的红外光谱图.由图可知3700cm-1是氢氧化镁中-OH的伸缩振动峰,在3460cm-1是氢氧化镁晶体表面吸附水分子的羟基伸缩振动峰.在1640cm-1和1410cm-1是氢氧化镁晶体中的Mg-OH和-OH弯曲振动峰.由此可得,进一步证明实验室制备的粉末状物质为氢氧化镁.2.4 氢氧化镁的TG分析图7是氢氧化镁的TG曲线.从图中可以看出,氢氧化镁有两个明显的失重峰,第一次失重发生在温度大约为200℃,这主要是氢氧化镁失去结晶水.第二次失重在温度为345℃左右,对应的就是氢氧化镁开始分解生成氧化镁和水蒸气.除了还有少量未完全干燥的水分,氢氧化镁的含量大约为65.3%,其余为结晶水与少量杂质.图6 合成氢氧化镁的红外光谱图Fig.6 The infrared spectrogram of Mg(OH)2图7 合成氢氧化镁的TG图谱Fig.7 The TG atlas of Mg(OH)22.5 氢氧化镁的形貌分析图8是氢氧化镁扫描电镜图片.从图片中可以看出氢氧化镁的形貌大致为六方片状,且粒径约为1μm,属于超细氢氧化镁.但是图2~8中的氢氧化镁由于没有加任何表面活性剂,从而导致氢氧化镁团聚比较严重.图8 氢氧化镁的扫描电镜(SEM)照片Fig.8 The SEM image of Mg(OH)2 2.6 表面活性剂对氢氧化镁的影响2.6.1 表面活性剂对氢氧化镁分散性的影响图9为表面活性剂对氢氧化镁分散性能影响的偏光显微镜照片.图9a为未改性的氢氧化镁照片,氢氧化镁明显团聚在一起,图9b为添加SDBS的氢氧化镁照片,对比发现,表面活性剂对氢氧化镁的分散性比较明显.图9 SDBS表面改性POE照片Fig.9 SDBS surface modified POE photograph 2.6.2 表面活性剂对氢氧化镁形貌的影响图10为表面活性剂对氢氧化镁形貌的影响.由图10a可知,未改性氢氧化镁形貌基本上是薄片状,还含有少量的花瓣状氢氧化镁,粒径分布不均匀,并且容易团聚在一起,分散性不好;而图10b中,当添加表面活性剂十二烷基苯磺酸钠后得到的氢氧化镁晶体形貌变得更加规整,全部是粒径分布均匀的薄片状,并且分散性也有明显的改善.3 结语图10 不同条件下制备的氢氧化镁的SEM照片Fig.10 The SEM image of Mg (OH)2on different conditionsa.采用轻烧镁粉和氨水为原料,控制合适的工艺条件可以制备出超细片状氢氧化镁.产物结晶性能好、极性较低、形貌较规整,平均粒径大致为1μm,但容易团聚.最佳合成工艺条件为反应温度40℃、反应时间1.5h、氨水加入量和滴加速度分别为170mL和12mL/min.b.采用表面活性剂十二烷基苯磺酸钠能够有效改善氢氧化镁的分散性,并且还能改善氢氧化镁形貌的规整性.参考文献:[1]Martinal V,Labor M,PetricN,et al.Sedimen-tation of magnesium hydroxide in seawater and its effect on plant capacity[J].Indian J Mar Sci,1997,26(4):335-340.[2]郭如新.日本氢氧化镁生产现状及应用前景[J].海湖盐与化工,2001,30(5):24-27.[3]郭如新.美国氢氧化镁生产现状及应用前景[J].海湖盐与化工,2000,29(3):35-38.[4]金陵.无极阻燃剂氢氧化镁发展潜力惊人[N].中国化工报,2001-10-10(3).[5]张波,李丽娟.花球状氢氧化镁制备过程中的颗粒形成机理研究[J].广州化工,2010,38(10):3-7.[6]Yi Ding,Guangtao Zhang,Hao Wu,et al.Nanoscale Magnesium Hydroxide and Magnesium Oxide Powder:Control over Size,Shape,andStructure via Hydrothermal Synthesis[J].Chem mater,2001,13(2):435-440.[7]Chenlin Yan,Dongfeng Xue,Longjiang Zou,et al.Preparation of magnesium hydroxide nanoflowers[J].Journal of Crystal Growth,2005,282(3-4):448-454.。

金属氢氧化物阻燃剂的工作原理

金属氢氧化物阻燃剂是一种常见的阻燃剂,在许多工业和消费品中被广泛使用。

它具有良好的阻燃效果,对阻燃材料的性能起着重要的作用。

本文将介绍金属氢氧化物阻燃剂的工作原理。

一、金属氢氧化物阻燃剂的分类金属氢氧化物阻燃剂主要包括氢氧化铝、氢氧化镁、氢氧化铁等。

这些金属氢氧化物阻燃剂在阻燃材料中起着不同的作用,具有不同的阻燃效果。

二、金属氢氧化物阻燃剂的工作原理1. 水合吸热作用金属氢氧化物阻燃剂在高温下分解产生水合物,水合物的分解过程伴随着吸热反应,从而降低了燃烧体系的温度,阻止了燃烧的进行,起到了阻燃作用。

2. 分解产生惰性气体金属氢氧化物阻燃剂在高温下分解产生惰性气体,这些惰性气体可以稀释空气中的氧气成分,降低氧气浓度,从而抑制燃烧反应的进行。

3. 形成保护膜金属氢氧化物阻燃剂在高温下分解产生金属氧化物,这些金属氧化物在燃烧表面形成一层保护膜,隔离氧气和燃料之间的接触,有效抑制了燃烧反应。

4. 隔热作用金属氢氧化物阻燃剂的分解产生的氢氧化物可以对燃烧表面进行隔热,降低了燃烧温度,从而抑制了燃烧的进行。

三、金属氢氧化物阻燃剂的应用金属氢氧化物阻燃剂广泛应用于聚合物材料、涂料、胶黏剂等领域,提高了材料的阻燃性能和安全性能。

四、金属氢氧化物阻燃剂的发展趋势随着人们对材料阻燃性能要求的不断提高,金属氢氧化物阻燃剂的研究和开发也将不断深入。

未来,金属氢氧化物阻燃剂可能会在材料阻燃领域发挥更重要的作用。

金属氢氧化物阻燃剂是一种重要的阻燃材料,在材料阻燃领域具有重要的应用价值。

深入研究金属氢氧化物阻燃剂的工作原理对于提高阻燃材料的性能、促进阻燃材料的应用具有重要意义。

金属氢氧化物阻燃剂是一种有效的阻燃材料,在工业和消费品中被广泛使用。

它的工作原理以及在阻燃材料中的作用,对于提高材料的阻燃性能和安全性具有重要意义。

下面将对金属氢氧化物阻燃剂的工作原理进行深入探讨,并结合其应用领域和未来发展趋势进行分析。

一、水合吸热作用对阻燃效果的影响金属氢氧化物阻燃剂的水合吸热作用是其阻燃效果的关键因素之一。

水热法制备阻燃剂氢氧化镁

( 昆明理 工大学 材料 与冶金工程 学 院, 6 0 9 ) 昆明 5 0 3
摘 要 : 硫酸镁溶液添加氢 氧化钠沉淀出氢氧化镁凝胶 , 再用水热法改性制得阻燃剂级氢氧化镁 , 研究试 验条件( 氢氧化钠
浓度 、 热 处 理 温度 、 热 处 理 时 间 ) 水 水 与水 热 产 物性 能 的关 系 。 水 热 改 性 后 的氢 氧 化 镁 颗 粒 为 针 状 , 度 均 匀 。 在 试 验 条 件 下 , 粒 氢
的阻燃剂 、 高纯氧 化镁 或磁性材 料等 高附加值 产 品。
第 一步产 出 的凝胶 氢 氧化镁颗 粒 , 团聚倾 向大 , 在塑
L- ) ( ) 1 ;3 取一定 量 的硫 酸 镁 和氢 氧 化钠 溶 液反应 , 生成 絮凝状 的氢氧化 镁 ;4 把得 到的絮 凝状 氢 氧化 ()
镁 放入 高压釜 中( 温度 控制 在 2 0 ) 0 ℃ 加热 4 ;5 过 h () 滤、 洗涤 从高压 釜 出来 的氢 氧化镁 , 放入 烘干箱 中干 燥 1 h 温 度调 到 1 0 左右 ) 即得成 品 。 6( 0℃ 后 通 常条 件 下 得到 的氢 氧化镁 粒 度粗 , 目前 要 求 粒度小 于 9 %以上颗粒 小 于 3 m, 究 过程 中用 光 5 研 学显微镜 就能 看清 1 m 以上 的颗 粒 。因此 , 阻燃 剂
种是水 镁石 ( 然氢 氧 化镁 ) 天 粉碎 法 _ , 3 也有 用菱 j
苦土 ( O 直接 水 化 的 , 外 还有 正在 研究 之 中的 Mg ) 另
纳米级氢 氧化 镁 制 备 方 法 l 等 。在 这 些 简 单 的无 4 ]
机反应 中 , 存在着 许 多 复 杂 的 因素 影 响产 品 的结 晶 性、 粒度 、 度 及 过 滤 性 能 , 纯 因而 若 要 制 备 高 纯 、 微

氢氧化镁阻燃剂及其结晶机理的研究进展

氢氧化镁阻燃剂及其结晶机理的研究进展陈敏;刘志启;李丽娟【摘要】我国是镁资源大国,西部的盐湖镁资源尤为丰富,如何合理的利用盐湖镁资源,已成为制约盐湖资源向规模化、产业化深度开发的阻碍.本文综述了近几年氢氧化镁阻燃剂的制备及其结晶理论研究的最新进展;展望了氢氧化镁阻燃领域的发展方向及其工业化过程中急需解决的关键问题.【期刊名称】《广州化工》【年(卷),期】2010(038)007【总页数】3页(P17-19)【关键词】氢氧化镁;阻燃剂;制备;机理【作者】陈敏;刘志启;李丽娟【作者单位】青海省化工设计研究院有限公司工程咨询部,青海,西宁,810008;中国科学院青海盐湖研究所,中国科学院盐湖资源与化学重点实验室,青海,西宁,810008;中国科学院研究生院,北京,100049;中国科学院青海盐湖研究所,中国科学院盐湖资源与化学重点实验室,青海,西宁,810008【正文语种】中文我国是镁资源大国,其中西部的盐湖镁资源尤为丰富[1-2].盐湖镁资源以品位高,储量大著称于世,但是由于技术、气候等因素的制约,镁资源利用率却不足2%,在开发其它盐湖资源过程中大量镁资源被作为废弃物排放,不仅造成镁资源的严重浪费,还在一定程度上破坏了盐湖资源结构,影响盐湖资源的可持续开发和利用[3].如何合理的利用盐湖镁资源,使盐湖镁资源实现大规模产业化开发,这已成为制约盐湖资源向规模化、产业化深度开发发展的"瓶颈".随着国内外塑料、橡胶、纤维、建材等行业的快速发展及消防、环保对阻燃剂安全、无毒、无害、低污染等方面的要求不断提高,阻燃剂工业正朝着环保化、低毒化、高效化、多功能化的方向发展[4-5],阻燃剂已成为仅次于增塑剂的第二大高分子材料助剂.作为重要的无机阻燃剂产品,氢氧化镁由于环境友好、阻燃性能强而备受人们青睐[6-7].氢氧化镁与同类无机阻燃剂相比,具有良好的填充性能、安全无毒、性能稳定、产品生产成本低,在生产、使用和废弃的过程中均不含有毒物质,而且还能中和燃烧过程中产生的酸性与腐蚀性气体等优点[8-9],已在天然和合成高分子材料中以及工业生产和人们的日常生活中得到越来越广泛的应用.因此利用盐湖镁盐生产各种镁系化合物,积极投入研究开发氢氧化镁系列产品生产新工艺,开发出具有高附加值及工业应用前景的功能材料-氢氧化镁阻燃剂,这对发展地方经济,改善盐湖资源的综合利用,提升国产氢氧化镁阻燃剂在国际市场上的竞争力具有深远的意义.2008年国家科技部将氢氧化镁阻燃剂项目列入国家科技支撑计划项目,2009年已正式立项,计划在柴达木循环经济园建成年1万吨高纯超细阻燃剂氢氧化镁生产线.因此,我们在大规模生产氢氧化镁阻燃剂的同时,研究和开发具有我国自主知识产权的超细细氢氧化镁阻燃剂生产技术具有十分重要的意义.氢氧化镁是一种表面极性很强的无机化合物,晶体表面带有正电荷,具有亲水疏油的性质,晶粒间趋于二次团聚[10],作为阻燃剂添加到聚合物中时,在聚合物中的分散性和相容性较差,颗粒表面与聚合物之间的界面形成空隙,影响复合材料的加工性能和机械性能[6,11].为了使氢氧化镁更好地用于高分子材料的阻燃,国内外许多研究机构对其进行了系统研究,并相继开发了许多不同性能的氢氧化镁阻燃剂产品.目前生产氢氧化镁的方法主要有两种[12-13]:一是水镁石直接粉碎法;二是含镁原料反应转化法.后者主要原料为氯化镁、硫酸镁、硝酸镁、氟化镁等[14-19],制备方法包括直接沉淀法[20-21]、溶胶凝胶法[22]、水热法[16,23]、微波法[24-25]、沉淀-共沸蒸馏法[26]等.由于特殊形貌及粒度分布均匀的氢氧化镁添加到高分子材料中可以明显提高复合材料的阻燃性能和机械性能[11,27],所以人们在制备氢氧化镁阻燃剂的同时,研究内容都主要集中在粒子的超细化及制备特殊形貌的氢氧化镁阻燃剂. 在高分子材料的加工温度下,氢氧化镁的都是以颗粒状存在于体系中,一般而言,填充量相当时,氢氧化镁的粒子越细,其分散越均匀,阻燃效果越明显,对材料物理力学性能的负面影响越小,甚至还会起到刚性粒子增塑增强的效果[28].郭笑荣[29]等用螺旋通道型旋转床,考察了加料方式对产品分散性的影响及氨镁摩尔比对产品形貌的影响,采用超重力法制备了分散均匀、平均粒径为0.7μm的片状超细氢氧化镁.许楠[14]等探讨了白云石碳化法制备纳米级氢氧化镁的工艺条件,研究了沉淀剂、反应温度对纳米级氢氧化镁形貌的影响,以及表面活性剂对纳米级氢氧化镁分散性的影响,制备出了粒径为10 ~20nm的氢氧化镁产品.孙永明[30]等以氨水为沉淀剂与氯化镁反应,直接沉淀法制备氢氧化镁,研究了反应温度、反应时间、镁离子初始浓度、原料配比对产品粒径和形貌的影响,制备出了粒径为150nm 的片状氢氧化镁粉体.Xu[31]等以盐卤和氨水为沉淀剂在反应温度为55℃条件下制备出了平均粒径为230nm分散性良好的纳米片状氢氧化镁.Wu[19]在用直接沉淀法制备氢氧化镁,研究发现当对所得产品进行表面改性时,可以降低氢氧化镁的二次团聚,制得单分散氢氧化镁产品.Jiang[18]等用氢氧化钠和氯化镁为原料,研究了乙醇和尿素对氢氧化镁产品纯度的影响,合成了粒径为200nm的片状氢氧化镁.综合上述报道,人们已经利用不同原料,采用不同方法制备出了不同粒度分布的氢氧化镁产品,但是这些工作主要集中在制备方法和工艺条件对氢氧化镁粒度分布的影响上,对氢氧化镁结晶动力学和机理方面则研究较少.由于特殊形貌氢氧化镁有着独特的性质,制备特殊形貌的氢氧化镁一直都是氢氧化镁阻燃剂研究领域最活跃的研究课题之一.研究者为了获取特殊形态的目标产物,通常将常温合成的氢氧化镁进行水热改性,在特定的条件下使氢氧化镁重新结晶来改变晶体的结构和形态[16,32].目前文献报道的实验合成的氢氧化镁形貌主要为六角片状、纤维状、针状、棒状、花状等几种形态.球形氢氧化镁也有报道[33],但是从实验结果来看并不是真正意义上的球形,称为花状最为合适.Lv[34]等研究了以化学纯氯化镁为原料,采用稀氨水为沉淀剂,经低温沉淀、升温陈化,分别制得了片状、棒状和纤维状三种形态的氢氧化镁粉体.胡章文[35]用蛇纹石酸浸滤液提镁利用表面活性剂在固/液界面的双亲性,制备了针状纳米氢氧化镁. Yunliang[36]等在搅拌条件下,将一定量氢氧化钙粉末缓慢加入到氯化镁溶液中,置于45℃水浴中,得到悬浊液,烘干后分别加入一定量、体积比为3:1的乙醇水溶液和氢氧化钠溶液,62℃恒温搅拌3h,得到氢氧化镁晶须.龙旭[37]等利用PVP高分子在溶液中的一维聚集特点,在PVP/乙二醇溶液体系中形成一维纳米胶束结构,并利用该胶束结构作为纳米功能材料的软模板,用低温回流法合成了多晶、长径比较高的一维氢氧化钠纳米丝和纳米棒.虽然许多研究者已经通过不同的方法制备出了不同形态的氢氧化镁阻燃剂,并对如何控制反应沉淀过程的粒度和粒度分布做了一定的研究,但是对影响目标产品的粒径、粒度分布及形貌本质的定量关系还未搞清楚.在反应沉淀法制备氢氧化镁颗粒过程中,化学反应速度很快,产生很高的过饱和度,成核速率极快,其诱导期为毫秒级,而颗粒生长速率相对很慢,最终颗粒的粒度分布和形态取决于成核过程.目前有关阻燃剂氢氧化镁的研究还是集中在形貌及影响粒度分布的工艺参数上,对氢氧化镁结晶机理、结晶动力学以及结晶过程的动态模拟的研究则相对较少.向兰[16,32]从负离子配位多面体模型出发,提出了氢氧化镁的晶体生长基元为Mg(OH)64-八面体的观点,并且Mg(OH) 64-八面体的共棱连接方式决定了氢氧化镁的结晶习性.向兰提出的观点在认识氢氧化镁晶体的生长基元上是一个大的突破,但是并没有解释哪些条件是影响氢氧化镁晶体形态的主要因素以及这些因素是如何让生长基元定向排列的.任庆利[38]等研究了热液环境下氢氧化镁结晶形态形成机理,根据负离子多面体配位生长理论,构造了氢氧化镁的生长基元,计算了相应于不同维数和多重数n的水镁石生长基元稳定能,计算结果发现氢氧化镁的生长基元稳定能在1维方向(nX1X1),随着n值的增大而较快地增长,而二维方向生长基元稳定能为负值,这说明氢氧化镁晶体是在1维方向优先生长,形成氢氧化镁针状或纤维状结晶形态.该结果很好的解释了天然纤维状水镁石的形成原因,但是不能解释其它形态氢氧化镁的稳定存在,因此不具有普适性.王伟[33]等以纯度为99.5%的硫酸镁与氨水反应,在控制反应液pH值的条件下,制备了花球状氢氧化镁粉体,并对该实验条件下氢氧化镁的晶体生长动力学进行了研究,该研究只研究了反应时间对氢氧化镁回收率和晶体平均粒径的影响,得出了氢氧化镁回收率和晶体平均粒径随反应时间的延长表现出指数增长的趋势,该研究相对简单,并没有研究其它因素对氢氧化镁形貌和粒度分布的影响程度,得到的动力学方程具有一定的局限性.我国有着丰富的镁资源,氢氧化镁阻燃剂又有着广阔的市场应用前景,氢氧化镁裸粉的实验室合成已进行了广泛的研究,研究者已经通过不同的方法合成出了不同形状和不同尺寸的氢氧化镁阻燃剂,但是工业化放大研究则还相对较少,目前氢氧化镁阻燃剂产业化过程中还存在一些问题需要解决.对于氢氧化镁合成过程中结晶机理的研究,研究者也开展了研究工作,但是这些研究还不能解决和解释实验过程中的一些现象及工业化生产中的一些关键技术难题.因此,在已有工作基础上以后应深入进行工业化生产过程中的工程技术研究,重点解决产业过程中的一些关键技术难题,简化工艺降低生产成本;深入开展氢氧化镁结晶机理的研究,并对其结晶过程进行动态模拟,实现产-学-研的有力结合,达到用理论指导实践的目的,从而推动该产业的进一步发展.【相关文献】[1] 袁瑞强,程芳琴.我国盐湖资源综合利用的探讨[J].盐湖研究, 2008,16(01):67-72.[2] 郑绵平,卜令忠.盐湖资源的合理开发与综合利用[J].矿产保护与利用,2009(01):17-22.[3] 马培华.科学开发我国的盐湖资源[J].化学进展,2009,21(11): 2349-2357.[4] 王健,于文杰,等.氢氧化镁阻燃剂的研究进展[J].化学推进剂与高分子材,2009,7(04):5-9.[5] Lu,S.-Y,I.Hamerton.Recent developments in the chemistry of halogen-free flame retardant polymers[J].Progress in Polymer Sci2 ence,2002,27(8):1661-1712.[6] Hippi,U.,J.Mattila,et patibilization of polyethylene/alumi2numhydroxide(PE/ATH)and polyethylene/magnesium hydroxide (PE/MH)composites with functionalized polyethylenes.Polymer, 2003,44(4):1193-1201.[7] Haurie,L.,A.I.Fernández,et al.Thermal stability and flame retar2 dancy of LDPE/EVA blends filled with synthetic hydromagnesite/alu2 minium hydroxide/montmorillonite and magnesium hydroxide/alumin2 ium hydroxide/montmorillonite mixtures[J].Polymer Degradation and Stability,2007,92(6):1082-1087.[8] Shehata,A.B.A new cobalt chelate as flame retardant for polypropyl2 ene filled with magnesium hydroxide[J].PolymerDegradation and Sta2 bility,2004,85(1):577-582.[9] 李征征,李三喜,等.氢氧化镁阻燃剂研究进展[J].塑料科技, 2009,37(04):83-87.[10] Wu J.,H.Yan,et al.Magnesium hydroxide nanoparticles synthesized in water-in-oil microemulsions[J].Journal of Colloid and Interface Science,2008,324(1-2):167-171. [11] Shen,H.,Y.Wang,et al.Effectof compatibilizerson thermal stabili2 ty and mechanical properties of magnesium hydroxide filled polypropyl2 ene composites[J].Thermochimica Acta,2009,483(1-2):36-40.[12] 宁志强,翟玉春,等.氢氧化镁分解动力学的研究[J].分子科学学报,2009,25(01):27-30.[13] 许东阳,许丽,等.天然水镁石的综合利用与深加工[J].阻燃材料与技术,2003(1):1-4.[14] 许楠,刘家祥,等.白云石制备的纳米氢氧化镁的性能及其影响因素[J].硅酸盐学报,2009,37(12):2024-2030.[15] 马国宝,李雪,等.硫酸镁氨气法制备氢氧化镁的中试研究[J].过程工程学报,2009(04):717-721.[16] Wu,Q.L.,L.Xiang,et al.Influence of CaCl2on the hydrothermal modificationofMg(OH)2[J].Powder Technology,2006,165(2): 100-104.[17] Lv,X.,B.Hari,et al.In situ synthesis of nanolamellas of hydropho2 bic magnesium hydroxide[J].Colloids and Surfaces A:Physicochemi2 cal and EngineeringAspects,2007,296(1-3):97-103.[18] Jiang,W.,X.Hua,et al.Preparation of lamellarmagnesium hydrox2 ide nanoparticles viaprecipitation method[J].Powder Technology, 2009,191(3):227-230.[19] Wu,X.-F.,G.-S.Hu,et al.Synthesis and characterization of su2 perfine magnesium hydroxide with monodispersity.Journal of Crystal Growth,2008,310(2):457-461.[20] 詹升军,杨保俊,等.由氯化镁一步法制备阻燃氢氧化镁的工艺研究[J].合肥工业大学学报(自然科学版),2009,32(6):833-836.[21] Hsu,J.-P,A.Nacu.Preparation of submicron-sized Mg(OH)2particles through precipitation[J].Colloids and Surfaces A:Physico2 chemical and EngineeringAspects,2005,262(1-3):220-231.[22] Chakrabarti,S.,D.Ganguli,et al.Preparation of hydroxide-free magnesium oxide films by an alkoxide-free sol-gel technique[J]. MaterialsLetters,2003,57(29):4483-4492. [23] Sun,X.,L.Xiang.Hydrothermal conversion ofmagnesium oxysulfate whiskers to magnesium hydroxide nanobelts[J].Materials Chemistry and Physics,2008,109(2-3):381-385.[24] Wu,H.,M.Shao,et al.Microwave-assisted synthesisof fibre-like Mg(OH)2 nanoparticles in aqueous solution at room temperature[J]. MaterialsLetters,2004,58(16):2166-2169. [25] 吴健松,肖应凯,等.丙三醇-变频微波-水热法制备氢氧化镁晶须[J].高等学校化学学报,2009,30(12):2354-2357.[26] 戴焰林,洪玲,等.全返混均质乳化法制备纳米氢氧化镁工艺研究[J].化工矿物与加工,2003(3):8-10.[27] Genovese,A.,R.A.Shanks.Structural and thermal interpretation of the synergy and interactions between the fire retardants magnesium hy2 droxide and zincborate[J].PolymerDegradation and Stability.2007, 92(1):2-13.[28] 吴湘锋,王标兵,等.纳米氢氧化镁阻燃剂的研究进展[J].材料导报,2007(S1):17-19,23.[29] 郭笑荣,周继承,等.螺旋通道型旋转床可控制备超细氢氧化镁[J].硅酸盐学报,2009,37(12):2018-2023.[30] 孙永明,钱运华,等.超细氢氧化镁粉体的制备研究[J].应用化工, 2009,38(02):264-266.[31] Xu,H.,X.-r.Deng.Preparation and properties of superfine Mg (OH)2 flameretardant[J].Transactions of NonferrousMetals Society of China,2006,16(2):488-492.[32] 向兰,金永成,等.氢氧化镁的结晶习性研究[J].无机化学学报, 2003,19(08):837-842.[33] 王伟,顾惠敏,等.球形氢氧化镁的制备及其晶体生长动力学[J].材料研究学报,2008,22(06):585-588.[34] Lv,J.,L.Qiu,et al.Controlled growth of three morphological struc2 tures ofmagnesium hydroxide nanoparticles bywet precipitation method [J].Journal of CrystalGrowth,2004,267(3-4):676-684.[35] 胡章文,王理想,等.蛇纹石酸浸滤液提镁制备针状纳米氢氧化镁[J].非金属矿,2005,28(1):561-565.[36] He,Y.,J.Wang,et parison of different methods to prepare MgOwhiskers[J].Ceramics International,2008,34(6):1399-1403.[37] 龙旭,郭林,等.氢氧化镁纳米丝和纳米棒的合成及表征[J].北京理工大学学报,2008,28(01):81-84.[38] 任庆利,刘斌,等.热液环境下氢氧化镁结晶形态机理研究[J].稀有金属材料与工程,2004(01):47-50.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档