空间几何体的表面积与体积教案
高考数学一轮复习-81-空间几何体的三视图-直观图-表面积与体积课件-新人教A

=172a2.所以 S 球=4πR2=4π×172a2=73πa2.
(2)这个几何体是一个圆台被轴截面割出来的一半.
根据图中数据可知圆台的上底面半径为 1,下底面半径为 2,高为 3,母线长为 2,几何体的表面积是两个半圆的面 积、圆台侧面积的一半和轴截面的面积之和,故这个几何 体的表面积为 S=12π×12+12π×22+12π×(1+2)×2+12 ×(2+4)× 3=112π+3 3. 答案 (1)B (2)112π+3 3
可能是圆柱,排除选项C;又由俯视图可知,该几何体
不可能是棱柱或棱台,排除选项A,B,故选D.
(2)如图,在原图形OABC中, 应有 OD=2O′D′=2×2 2 =4 2(cm), CD=C′D′=2 cm. ∴OC= OD2+CD2 = (4 2)2+22=6(cm), ∴OA=OC, 故四边形 OABC 是菱形. 答案 (1)D (2)C
诊断自测
1.判断正误(在括号内打“√”或“×”) 精彩PPT展示
(1)有两个面平行,其余各面都是平行四边形的几何体是
棱柱.
(×)
(2)有一个面是多边形,其余各面都是三角形的几何体是
棱锥.
( ×)
(3)正方体、球、圆锥各自的三视图中,三视图均相同.
(×)
(4)圆柱的侧面展开图是矩形.
(√)
2.(2014·福建卷)某空间几何体的正视图是三角形,则该几
(2)画出坐标系 x′O′y′,作出△OAB 的 直观图 O′A′B′(如图).D′为 O′A′的中 点.易知 D′B′=12DB(D 为 OA 的中点), ∴S△O′A′B′=12× 22S△OAB= 42× 43a2= 166a2.
球的体积与表面积教案设计

球的体积和表面积一、教材分析本节内容是数学2第一章空间几何体第3节空间几何体的表面积与体积的第2课时球的体积和表面积,是在学习了柱体、锥体、台体等基本几何体的基础上,通过空间度量形式了解另一种基本几何体的结构特征.从知识上讲,球是一种高度对称的基本空间几何体,同时它也是进一步研究空间组合体结构特征的基础;从方法上讲,它为我们提供了另外一种求空间几何体体积和表面积的思想方法;从教材编排上,更重视学生的直观感知和操作确认,为螺旋式上升的学习奠定了基础.课时分配本节内容用1课时的时间完成,主要讲解球的体积公式和表面积公式及公式的应用.二、教学目标? 知识与技能(1)通过对球的体积和面积公式的推导,了解推导过程中所用的基本数学思想方法:“分割——求和——化为准确和”,有利于同学们进一步学习微积分和近代数学知识.(2)能运用球的面积和体积公式灵活解决实际问题. (3)培养学生的空间思维能力和空间想象能力. 过程与方法通过球的体积和面积公式的推导,从而得到一种推导球体积公式334=R V π和面积公式24=R S π的方法,即“分割求近似值,再由近似和转化为球的体积和面积”的方法,体现了极限思想.情感与价值观通过学习,使我们对球的体积和面积公式的推导方法有了一定的了解,提高了空间思维能力和空间想象能力,增强了我们探索问题和解决问题的信心.三、教学重点、难点重点:引导学生了解推导球的体积和面积公式所运用的基本思想方法. 难点:推导体积和面积公式中空间想象能力的形成,以及与球有关的组合体的表面积和体积的计算.四、学法和教学用具?学法:学生思考老师提出的问题,通过阅读教材,发挥空间想象能力,了解并初步掌握“分割、求近似值、再由近似值的和转化为球的体积和面积”的解题方法和步骤.教学用具:投影仪,旨在通过动态图形使得学生对球这一立体图形有一个直观的认识.五、教学设计 创设情景⑴教师提出问题:乌鸦喝水的问题我们都知道,只有一颗一颗的小圆石头往水瓶里投乌鸦才能喝到水,那么我们是不是可以用数学方法精确的计算出乌鸦具体需要投入几颗小圆石头呢?这里就涉及到了小石子的体积了,假设小石子都是均匀的球体,我们知道球既没有底面,也无法像在柱体、锥体和台体那样展开成平面图形,那么怎样来求球的表面积与体积呢?引导学生进行思考.⑵教师设疑:球的大小是与球的半径有关,如何用球半径来表示球的体积和面积?激发学生推导球的体积和面积公式.探究新知 1.球的体积:如果用一组等距离的平面去切割球,当距离很小之时得到很多“小圆片”,“小圆片”的体积的体积之和正好是球的体积,由于“小圆片”近似于圆柱形状,所以它的体积也近似于圆柱形状,所以它的体积有也近似于相应的圆柱和体积,因此求球的体积可以按“分割——求和——化为准确和”的方法来进行.步骤:第一步:分割 首先,把半球的垂直于底面的半径OA 作n 等分,过这些等分点,用一组平行于底面的平面把半球切割成n 个“小圆片”,“小圆片”厚度近似为n R,底面是“小圆片”的底面,如下图【设计意图】通过大家所熟知的寓言小故事引出教学内容,提高学生学习兴趣.【设计意图】利用分割原理,通过对小圆片体积的计算,推导出球的体积公式,使学生知道知识的来龙去脉,提升学生的学习兴趣与信心,以及对新知识的探索发现能力. 【注意】由于学生的学习水平不一致,所以在实际教学中,需根据学生的具体学习能力而确定是否适合公式推到过程的学习【设计意图】透过教师的讲解,让学生初步感受“分割”、“近似替代”、“取极限”等思想,渗透微积分思想.【思考】:球的表面积推导过程是以什么量作为等量变换的? 【设计意图】本题较易,主要考查有关球的组合体的表面所以,第i层“小圆片”下底面的半径和体积:第二步:求和第三步:化为准确的和?当∞→n时,即时, ?得到定理:半径是R的球的体积练习:一种空心钢球的质量是142g,外径是5cm,求它的内径(钢的密度是7.9g/cm3).2.球的表面积:球的表面积是球的表面大小的度量,它也是球半径R的函数,由于球面是不可展的曲面,所以不能像推导圆柱、圆锥的表面积公式那样推导球的表面积公式,所以仍然用“分割、求近似和,再由近似和转化为准确和”方法推导。
8.2空间几何体的表面积与体积

1.多面体的表(侧)面积因为多面体的各个面都是平面,所以多面体的侧面积就是所有侧面的面积之和,表面积是侧面积与底面面积之和.2.柱、锥、台和球的表面积和体积名称 几何体 表面积 体积 柱体(棱柱和圆柱) S 表面积=S 侧+2S 底 V =Sh 锥体(棱锥和圆锥) S 表面积=S 侧+S 底 V =13Sh台体(棱台和圆台)S 表面积=S 侧+S 上+S 下V =13(S 上+S 下+S 上S 下)h球S =4πR 2V =43πR 33.常用结论(1)与体积有关的几个结论①一个组合体的体积等于它的各部分体积的和或差. ②底面面积及高都相等的两个同类几何体的体积相等. (2)几个与球有关的切、接常用结论 a.正方体的棱长为a ,球的半径为R , ①若球为正方体的外接球,则2R =3a ; ②若球为正方体的内切球,则2R =a ; ③若球与正方体的各棱相切,则2R =2a .b.若长方体的同一顶点的三条棱长分别为a ,b ,c ,外接球的半径为R ,则2R =a 2+b 2+c 2.c.正四面体的外接球与内切球的半径之比为3∶1. 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”) (1)多面体的表面积等于各个面的面积之和.( √ ) (2)锥体的体积等于底面积与高之积.( × ) (3)球的体积之比等于半径比的平方.( × )(4)简单组合体的体积等于组成它的简单几何体体积的和或差.( √ ) (5)长方体既有外接球又有内切球.( × )(6)台体的体积可转化为两个锥体的体积之差来计算.( √ )1.将边长为1的正方形以其一边所在直线为旋转轴旋转一周,所得几何体的侧面积是( ) A.4π B.3π C.2π D.π 答案 C解析 底面圆半径为1,高为1,侧面积S =2πrh =2π×1×1=2π.故选C. 2.(2014·重庆)某几何体的三视图如图所示,则该几何体的体积为( )A.12B.18C.24D.30答案 C解析 由俯视图可以判断该几何体的底面为直角三角形,由主视图和左视图可以判断该几何体是由直三棱柱(侧棱与底面垂直的棱柱)截取得到的.在长方体中分析还原,如图(1)所示,故该几何体的直观图如图(2)所示.在图(1)中,V 111ABC A B C -棱柱=S △ABC ·AA 1=12×4×3×5=30,V 111P A B C 锥-棱=13S111A B C ·PB 1=13×12×4×3×3=6.故几何体ABC -P A 1C 1的体积为30-6=24.故选C.3.(2015·陕西)一个几何体的三视图如图所示,则该几何体的表面积为( )A.3πB.4πC.2π+4D.3π+4答案 D解析 由三视图可知原几何体为半圆柱,底面半径为1,高为2,则表面积为: S =2×12π×12+12×2π×1×2+2×2=π+2π+4=3π+4.4.(教材改编)一个棱长为2 cm 的正方体的顶点都在球面上,则球的体积为________ cm 3. 答案 43π解析 由题意知正方体的体对角线为其外接球的直径, 所以其外接球的半径r =12×23=3(cm),所以V 球=43π×r 3=43π×33=43π(cm 3).5.(2015·天津)一个几何体的三视图如图所示(单位:m),则该几何体的体积为________m 3.答案 83π解析 由三视图可知,该几何体由相同底面的两圆锥和圆柱组成,底面半径为1 m ,圆锥的高为1 m ,圆柱的高为2 m ,所以该几何体的体积V =2×13π×12×1+π×12×2=83π (m 3).题型一 求空间几何体的表面积例1 (1)(2015·安徽)一个四面体的三视图如图所示,则该四面体的表面积是( )A.1+ 3B.1+2 2C.2+ 3D.2 2(2)(2015·课标全国Ⅰ)圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的主视图和俯视图如图所示.若该几何体的表面积为16+20π,则r 等于( )A.1B.2C.4D.8(3)(2014·山东)一个六棱锥的体积为23,其底面是边长为2的正六边形,侧棱长都相等,则该六棱锥的侧面积为________. 答案 (1)C (2)B (3)12解析 (1)由几何体的三视图可知空间几何体的直观图如图所示. ∴其表面积S 表=2×12×2×1+2×34×(2)2=2+3,故选C.(2)由主视图与俯视图想象出其直观图,然后进行运算求解.如图,该几何体是一个半球与一个半圆柱的组合体,球的半径为r ,圆柱的底面半径为r ,高为2r ,则表面积S =12×4πr 2+πr 2+4r 2+πr ·2r =(5π+4)r 2.又S =16+20π,∴(5π+4)r 2=16+20π,∴r 2=4,r =2,故选B. (3)设正六棱锥的高为h ,侧面的斜高为h ′. 由题意,得13×6×12×2×3×h =23,∴h =1,∴斜高h ′=12+(3)2=2, ∴S 侧=6×12×2×2=12.思维升华 空间几何体表面积的求法(1)以三视图为载体的几何体的表面积问题,关键是分析三视图确定几何体中各元素之间的位置关系及数量.(2)多面体的表面积是各个面的面积之和;组合体的表面积注意衔接部分的处理. (3)旋转体的表面积问题注意其侧面展开图的应用.(2014·安徽)一个多面体的三视图如图所示,则该多面体的表面积为( )A.21+ 3B.18+ 3C.21D.18答案 A解析 由几何体的三视图可知,该几何体的直观图如图所示. 因此该几何体的表面积为6×(4-12)+2×34×(2)2=21+ 3.故选A.题型二 求空间几何体的体积命题点1 求以三视图为背景的几何体的体积例2 (2015·课标全国Ⅱ)一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为( )A.18 B.17 C.16 D.15答案 D解析 如图,由题意知,该几何体是正方体ABCD-A 1B 1C 1D 1被过三点A 、B 1、D 1的平面所截剩余部分,截去的部分为三棱锥A-A 1B 1D 1,设正方体的棱长为1,则截去部分体积与剩余部分体积的比值为V 111A A B D -V 111B C D ABCD -=V 111A AB D -V 1111A BCD ABCD --V 111A A B D -=13×12×12×113-13×12×12×1=15.选D.命题点2 求简单几何体的体积例3 (2015·山东)在梯形ABCD 中,∠ABC =π2,AD ∥BC ,BC =2AD =2AB =2.将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( ) A.2π3 B.4π3 C.5π3 D.2π 答案 C解析 过点C 作CE 垂直AD 所在直线于点E ,梯形ABCD 绕AD 所在直线旋转一周而形成的旋转体是由以线段AB 的长为底面圆半径,线段BC 为母线的圆柱挖去以线段CE 的长为底面圆半径,ED 为高的圆锥,如图所示,该几何体的体积为V =V 圆柱-V 圆锥=π·AB 2·BC -13·π·CE 2·DE =π×12×2-13π×12×1=5π3,故选C.(1)一块石材表示的几何体的三视图如图所示,将该石材切削、打磨,加工成球,则能得到的最大球的体积等于( )A.4π3 B.32π3 C.36πD.256π3(2)如图,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且△ADE ,△BCF 均为正三角形,EF ∥AB ,EF =2,则该多面体的体积为( ) A.23B.33C.43D.32答案 (1)B (2)A解析 (1)由三视图可知该几何体是一个直三棱柱,底面为直角三角形,高为12,如图所示,其中AC =6,BC =8,∠ACB =90°,则AB =10.由题意知,当打磨成的球的大圆恰好与三棱柱底面直角三角形的内切圆相同时,该球的半径最大.即r =6+8-102=2,故能得到的最大球的体积为43πr 3=4π3×8=32π3,故选B.(2)如图,分别过点A ,B 作EF 的垂线,垂足分别为G ,H ,连接DG ,CH ,容易求得EG =HF =12,AG =GD =BH =HC =32,∴S △AGD =S △BHC =12×22×1=24,∴V =V E -ADG +V F -BCH +V AGD -BHC =2V E -ADG +V AGD -BHC =13×24×12×2+24×1=23.故选A.思维升华 空间几何体体积问题的常见类型及解题策略(1)若所给定的几何体是可直接用公式求解的柱体、锥体或台体,则可直接利用公式进行求解. (2)若所给定的几何体的体积不能直接利用公式得出,则常用转换法、分割法、补形法等方法进行求解. (3)若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观图,然后根据条件求解. 题型三 与球有关的切、接问题例4 已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的球面上,若AB =3,AC =4,AB ⊥AC ,AA 1=12,则球O 的半径为( )A.3172B.210C.132 D.310答案 C解析 如图所示,由球心作平面ABC 的垂线, 则垂足为BC 的中点M . 又AM =12BC =52,OM =12AA 1=6,所以球O 的半径R =OA =(52)2+62=132. 引申探究1.本例若将直三棱柱改为“棱长为4的正方体”,则此正方体外接球和内切球的体积各是多少? 解 由题意可知,此正方体的体对角线长即为其外接球的直径,正方体的棱长即为其内切球的直径.设该正方体外接球的半径为R ,内切球的半径为r . 又正方体的棱长为4,故其体对角线长为43, 从而V 外接球=43πR 3=43π×(23)3=323π,V 内切球=43πr 3=43π×23=32π3.2.本例若将直三棱柱改为“正四面体”,则此正四面体的表面积S 1与其内切球的表面积S 2的比值为多少? 解 设正四面体棱长为a ,则正四面体表面积为S 1=4·34·a 2=3a 2,其内切球半径r 为正四面体高的14,即r =14·63a =612a ,因此内切球表面积为S 2=4πr 2=πa 26,则S 1S 2=3a 2πa 26=63π.3.本例中若将直三棱柱改为“侧棱和底面边长都是32的正四棱锥”,则其外接球的半径是多少? 解 依题意得,该正四棱锥的底面对角线的长为32×2=6,高为(32)2-(12×6)2=3,因此底面中心到各顶点的距离均等于3,所以该正四棱锥的外接球的球心即为底面正方形的中心,其外接球的半径为3.思维升华 空间几何体与球接、切问题的求解方法(1)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.(2)若球面上四点P ,A ,B ,C 构成的三条线段P A ,PB ,PC 两两互相垂直,且P A =a ,PB =b ,PC =c ,一般把有关元素“补形”成为一个球内接长方体,利用4R 2=a 2+b 2+c 2求解.如图,直三棱柱ABC -A 1B 1C 1的六个顶点都在半径为1的半球面上,AB=AC ,侧面BCC 1B 1是半球底面圆的内接正方形,则侧面ABB 1A 1的面积为( ) A.22B.1C. 2D. 3答案 C解析 由题意知,球心在侧面BCC 1B 1的中心O 上,BC 为△ABC 所在圆面的直径,∴∠BAC =90°,△ABC 的外接圆圆心N 是BC 的中点,同理△A 1B 1C 1的外心M 是B 1C 1的中点.设正方形BCC 1B 1的边长为x ,Rt △OMC 1中,OM =x 2,MC 1=x2,OC 1=R =1(R为球的半径),∴(x 2)2+(x2)2=1,即x =2,则AB =AC =1, ∴S 11ABB A 矩形=2×1= 2.14.巧用补形法解决立体几何问题典例 如图:△ABC 中,AB =8,BC =10,AC =6,DB ⊥平面ABC ,且AE ∥FC ∥BD ,BD =3,FC =4,AE =5. 则此几何体的体积为________.思维点拨 将所求几何体补成一个直三棱柱,利用棱柱的体积公式即可求得该几何体的体积.解析 用“补形法”把原几何体补成一个直三棱柱,使AA ′=BB ′=CC ′=8,所以V 几何体=12V 三棱柱=12×S △ABC ·AA ′=12×24×8=96.答案 96温馨提醒 (1)补形法的应用思路:“补形法”是立体几何中一种常见的重要方法,在解题时,把几何体通过“补形”补成一个完整的几何体或置于一个更熟悉的几何体中,巧妙地破解空间几何体的体积等问题,常见的补形法有对称补形、联系补形与还原补形,对于还原补形,主要涉及台体中“还台为锥”. (2)补形法的应用条件:当某些空间几何体是某一个几何体的一部分,且求解的问题直接求解较难入手时,常用该法.[方法与技巧]求空间几何体的侧面积、体积的思想与方法(1)转化与化归思想:计算旋转体的侧面积时,一般采用转化的方法来进行,即将侧面展开化为平面图形,“化曲为直”来解决,因此要熟悉常见旋转体的侧面展开图的形状及平面图形面积的求法.(2)求体积的两种方法:①割补法:求一些不规则几何体的体积时,常用割补法转化成已知体积公式的几何体进行解决.②等积法:等积法包括等面积法和等体积法.等积法的前提是几何图形(或几何体)的面积(或体积)通过已知条件可以得到,利用等积法可以用来求解几何图形的高或几何体的高,特别是在求三角形的高和三棱锥的高时,这一方法回避了通过具体作图得到三角形(或三棱锥)的高,而通过直接计算得到高的数值.[失误与防范]求空间几何体的表面积应注意的问题(1)求组合体的表面积时,要注意各几何体重叠部分的处理.(2)底面是梯形的四棱柱侧放时,容易和四棱台混淆,在识别时要紧扣定义,以防出错.A 组 专项基础训练 (时间:35分钟)1.(2015·浙江)某几何体的三视图如图所示(单位:cm),则该几何体的体积是( )A.8 cm 3B.12 cm 3C.323 cm 3D.403 cm 3答案 C解析 由三视图可知该几何体是由棱长为2 cm 的正方体与底面为边长为2 cm 正方形、高为2 cm 的四棱锥组成,V =V 正方体+V 四棱锥=8 cm 3+83 cm 3=323cm 3.故选C.2.用平面α截球O 所得截面圆的半径为3,球心O 到平面α的距离为4,则此球的表面积为( ) A.100π3B.500π3C.75πD.100π答案 D解析 依题意,设球半径为R ,满足R 2=32+42=25, ∴S 球=4πR 2=100π.3.(2015·课标全国Ⅰ)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( ) A.14斛 B.22斛 C.36斛 D.66斛 答案 B解析 由题意知:米堆的底面半径为163(尺),体积V =13×14πR 2·h ≈3209(立方尺).所以堆放的米大约为3209×1.62≈22(斛).4.一个几何体的三视图如图所示,其中俯视图是菱形,则该几何体的侧面积为( )A.3+ 6B.3+ 5C.2+ 6D.2+ 5答案 C解析 由三视图还原为空间几何体,如图所示, 则有OA =OB =1,AB = 2. 又PB ⊥平面ABCD , ∴PB ⊥BD ,PB ⊥AB ,∴PD =22+1=5,P A =2+12=3,从而有P A 2+DA 2=PD 2,∴P A ⊥DA ,∴该几何体的侧面积S =2×12×2×1+2×12×2×3=2+ 6. 5.(2015·课标全国Ⅱ)已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点.若三棱锥O-ABC 体积的最大值为36,则球O 的表面积为( )A.36πB.64πC.144πD.256π答案 C解析 如图,要使三棱锥O-ABC 即C-OAB 的体积最大,当且仅当点C到平面OAB 的距离,即三棱锥C-OAB 底面OAB 上的高最大,其最大值为球O 的半径R ,则V O-ABC 最大=V C-OAB 最大=13×S △OAB ×R =13×12×R 2×R =16R 3=36,所以R =6,得S 球O =4πR 2=4π×62=144π.选C.6.(2014·山东)三棱锥P -ABC 中,D ,E 分别为PB ,PC 的中点,记三棱锥D -ABE 的体积为V 1,P -ABC的体积为V 2,则V 1V 2=________. 答案 14解析 设点A 到平面PBC 的距离为h .∵D ,E 分别为PB ,PC 的中点,∴S △BDE =14S △PBC , ∴V 1V 2=V A -DBE V A -PBC =13S △BDE ·h 13S △PBC ·h =14. 7.(2015·江苏)现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2、高为8的圆柱各一个.若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为________.答案 7 解析 设新的底面半径为r ,由题意得13πr 2·4+πr 2·8=13π×52×4+π×22×8,解得r =7. 8.一个圆锥过轴的截面为等边三角形,它的顶点和底面圆周在球O 的球面上,则该圆锥的体积与球O 的体积的比值为________.答案 932解析 设等边三角形的边长为2a ,球O 的半径为R ,则V 圆锥=13·πa 2·3a =33πa 3.又R 2=a 2+(3a -R )2,所以R =233a , 故V 球=4π3·(233a )3=323π27a 3, 则其体积比为932. 9.如图所示的三个几何体,一个是长方体,一个是直三棱柱,一个是过圆柱上、下底面圆心切下圆柱的四分之一部分,若这三个几何体的主视图和俯视图是相同的正方形,求它们的表面积之比.解 由题意可知这三个几何体的高都相等,设长方体的底面正方形的边长为a ,高也等于a ,故其表面积为S 1=6a 2.直三棱柱的底面是腰长为a 的等腰直角三角形,高为a ,故其表面积为S 2=12×a ×a +12×a ×a +(a +a +2a )×a =(3+2)a 2.14圆柱的底面是半径为a 的圆的14,高为a ,故其表面积为S 3=14πa 2+14πa 2+a 2+a 2+14×2πa ×a =(π+2)a 2.所以它们的表面积之比为S 1∶S 2∶S 3=6a 2∶(3+2)a 2∶(π+2)a 2=6∶(3+2)∶(π+2).10.(教材改编)已知一个上、下底面为正三角形且两底面中心连线垂直于底面的三棱台的两底面边长分别为20 cm 和30 cm ,且其侧面积等于两底面面积之和,求棱台的高.解 如图所示,三棱台ABC —A 1B 1C 1中,O 、O 1分别为两底面中心,D 、D 1分别为BC 和B 1C 1的中点,则DD 1为棱台的斜高.由题意知A 1B 1=20,AB =30,则OD =53,O 1D 1=1033, 由S 侧=S 上+S 下,得3×12×(20+30)×DD 1=34×(202+302), 解得DD 1=1333,在直角梯形O 1ODD 1中, O 1O =DD 21-(OD -O 1D 1)2=43, 所以棱台的高为4 3 cm.B 组 专项能力提升(时间:25分钟)11.已知球的直径SC =4,A ,B 是该球球面上的两点,AB =3,∠ASC =∠BSC =30°,则棱锥S —ABC 的体积为( )A.3 3B.2 3C. 3D.1答案 C解析 如图,过A 作AD 垂直SC 于D ,连接BD .由于SC 是球的直径,所以∠SAC =∠SBC =90°,又∠ASC =∠BSC =30°,又SC 为公共边, 所以△SAC ≌△SBC .由于AD ⊥SC ,所以BD ⊥SC .由此得SC ⊥平面ABD .所以V S —ABC =V S —ABD +V C —ABD =13S △ABD ·SC . 由于在Rt △SAC 中,∠ASC =30°,SC =4,所以AC =2,SA =23,由于AD =SA ·CASC = 3.同理在Rt △BSC 中也有BD =SB ·CBSC = 3.又AB =3,所以△ABD 为正三角形,所以V S —ABC =13S △ABD ·SC=13×12×(3)2·sin 60°×4=3,所以选C.12.某三棱锥的三视图如图所示,该三棱锥的表面积是( )A.28+6 5B.30+6 5C.56+12 5D.60+12 5答案 B解析 由几何体的三视图可知,该三棱锥的直观图如图所示,其中AE ⊥平面BCD ,CD ⊥BD ,且CD =4,BD =5,BE =2,ED =3,AE =4.∵AE =4,ED =3,∴AD =5.又CD ⊥BD ,CD ⊥AE ,则CD ⊥平面ABD ,故CD ⊥AD ,所以AC =41且S △ACD =10.在Rt △ABE 中,AE =4,BE =2,故AB =2 5.在Rt △BCD 中,BD =5,CD =4,故S △BCD =10,且BC =41.在△ABD 中,AE =4,BD =5,故S △ABD =10.在△ABC 中,AB =25,BC =AC =41,则AB 边上的高h =6,故S △ABC =12×25×6=6 5. 因此,该三棱锥的表面积为S =30+6 5.13.(2015·四川)在三棱柱ABC —A 1B 1C 1中,∠BAC =90°,其主视图和左视图都是边长为1的正方形,俯视图是直角边的长为1的等腰直角三角形,设点M ,N ,P 分别是AB ,BC ,B 1C 1的中点,则三棱锥P —A 1MN 的体积是________.答案 124解析 由题意知还原后的几何体是一个直放的三棱柱,三棱柱的底面是直角边长为1的等腰直角三角形,高为1的直三棱柱,∵V 1—P A MN =V 1—A PMN ,又∵AA 1∥平面PMN ,∴V 1—A PMN =V A —PMN ,∴V A —PMN =13×12×1×12×12=124, 故V 1—P A MN =124. 14.(2015·课标全国Ⅰ)如图,四边形ABCD 为菱形,G 为AC 与BD 的交点,BE ⊥平面ABCD .(1)证明:平面AEC ⊥平面BED ;(2)若∠ABC =120°,AE ⊥EC ,三棱锥E —ACD 的体积为63,求该三棱锥的侧面积. (1)证明 因为四边形ABCD 为菱形,所以AC ⊥BD .因为BE ⊥平面ABCD ,所以AC ⊥BE .故AC ⊥平面BED .又AC ⊂平面AEC ,所以平面AEC ⊥平面BED .(2)解 设AB =x ,在菱形ABCD 中,由∠ABC =120°,可得AG =GC =32x ,GB =GD =x 2. 因为AE ⊥EC ,所以在Rt △AEC 中,可得EG =32x . 由BE ⊥平面ABCD ,知△EBG 为直角三角形,可得BE =22x . 由已知得,三棱锥E —ACD 的体积V E —ACD =13×12AC ·GD ·BE =624x 3=63. 故x =2.从而可得AE =EC =ED = 6.所以△EAC 的面积为3,△EAD 的面积与△ECD 的面积均为 5.故三棱锥E —ACD 的侧面积为3+2 5.15.如图,△ABC 内接于圆O ,AB 是圆O 的直径,四边形DCBE 为平行四边形,DC ⊥平面ABC ,AB =2,EB = 3.(1)求证:DE ⊥平面ACD ;(2)设AC =x ,V (x )表示三棱锥B -ACE 的体积,求函数V (x )的解析式及最大值.(1)证明 ∵四边形DCBE 为平行四边形,∴CD ∥BE ,BC ∥DE .∵DC ⊥平面ABC ,BC ⊂平面ABC ,∴DC ⊥BC .∵AB 是圆O 的直径,∴BC ⊥AC ,且DC ∩AC =C ,∴BC ⊥平面ADC .∵DE ∥BC ,∴DE ⊥平面ADC .(2)解 ∵DC ⊥平面ABC ,∴BE ⊥平面ABC .在Rt △ABE 中,AB =2,EB = 3.在Rt △ABC 中,∵AC =x ,BC =4-x 2(0<x <2),∴S △ABC =12AC ·BC =12x ·4-x 2, ∴V (x )=V E -ABC =36x ·4-x 2(0<x <2). ∵x 2(4-x 2)≤(x 2+4-x 22)2=4,当且仅当x 2=4-x 2,即x =2时,取等号, ∴x =2时,体积有最大值33.。
高三数学 7.1空间几何体教案

7.1空间几何体【高考目标定位】一、空间几何体的结构及其三视图和直观图1、考纲点击(1)认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构;(2)能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二测法画出它们的直观图;(3)会用平行投影与中心投影两种方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式;(4)会画某些建筑物的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求)。
2、热点提示1、高考考查的热点是三视图和几何体的结构特征,借以考查空间想象能力;2、以选择、填空的形式考查,有时也出现在解答题中。
二、空间几何体的表面积与体积1、考纲点击了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式);2、热点提示(1)通过考查几何体的表面积和体积,借以考查空间想象能力和计算能力;(2)多与三视图、简单组合体相联系;(3)以选择、填空的形式考查,属容易题。
【考纲知识梳理】一、空间几何体的结构及其三视图和直观图1、多面体的结构特征(1)棱柱(以三棱柱为例)如图:平面ABC与平面A1B1C1间的关系是平行,ΔABC与ΔA1B1C1的关系是全等。
各侧棱之间的关系是:A1A∥B1B∥C1C,且A1A=B1B=C1C。
(2)棱锥(以四棱锥为例)如图:一个面是四边形,四个侧面是有一个公共顶点的三角形。
(3)棱台棱台可以由棱锥截得,其方法是用平行于棱锥底面的平面截棱锥,截面和底面之间的部分为棱台。
2、旋转体的结构特征旋转体都可以由平面图形旋转得到,画出旋转出下列几何体的平面图形及旋转轴。
3、空间几何体的三视图空间几何体的三视图是用正投影得到,在这种投影下,与投影面平行的平面图形留下的影子与平面图形的开关和大小是完全相同的,三视图包括正视图、侧视图、俯视图。
4、空间几何体的直观图空间几何体的直观图常用斜二测画法来画,其规则是:(1)原图形中x轴、y轴、z轴两两垂直,直观图中,x’轴、y’轴的夹角为45o(或135o),z’轴与x’轴和y’轴所在平面垂直;(2)原图形中平行于坐标轴的线段,直观图中仍平行。
2021高考数学一轮复习统考第8章立体几何第2讲空间几何体的表面积和体积学案(含解析)北师大版

第2讲空间几何体的表面积和体积基础知识整合1.多面体的表面积、侧面积因为多面体的各个面都是平面,所以多面体的侧面积就是01侧面展开图的面积,表面积是侧面积与底面面积之和.2.圆柱、圆锥、圆台的侧面展开图及侧面积公式圆柱圆锥圆台侧面展开图侧面积公式S圆柱侧=022πrlS圆锥侧=03πrlS圆台侧=04π(r1+r2)l3.柱、锥、台和球的表面积和体积名称几何体表面积体积柱体(棱柱和圆柱)S表面积=S侧+2S底V=05Sh锥体(棱锥和圆锥)S表面积=S侧+S底V=0613Sh台体(棱台和圆台)S表面积=S侧+S上+S下V=13(S上+S下+S上S下)h球S=074πr2V=0843πr31.与体积有关的几个结论(1)一个组合体的体积等于它的各部分体积的和或差.(2)底面面积及高都相等的两个同类几何体的体积相等.2.几个与球有关的切、接常用结论 (1)正方体的棱长为a ,球的半径为R , ①若球为正方体的外接球,则2R =3a ; ②若球为正方体的内切球,则2R =a ; ③若球与正方体的各棱相切,则2R =2a .(2)若长方体的同一顶点的三条棱长分别为a ,b ,c ,外接球的半径为R ,则2R =a 2+b 2+c 2.(3)直棱柱的外接球半径可利用棱柱的上下底面平行,借助球的对称性,可知球心为上下底面外接圆圆心连线的中点,再根据勾股定理求球的半径.(4)设正四面体的棱长为a ,则它的高为63a ,内切球半径r =612a ,外接球半径R =64a .正四面体的外接球与内切球的半径之比为3∶1.1.(2019·福州二模)设一个球形西瓜,切下一刀后所得切面圆的半径为4,球心到切面圆心的距离为3,则该西瓜的体积为( )A .100π B.256π3 C.400π3 D.500π3答案 D解析 由题意知切面圆的半径r =4,球心到切面的距离d =3,所以球的半径R =r 2+d 2=42+32=5,故球的体积V =43πR 3=43π×53=500π3,即该西瓜的体积为500π3.2.(2019·安徽蚌埠质检)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则它的体积为( )A .π+43B .π+2C .2π+43D .2π+2答案 A解析由三视图可知,该几何体由半个圆柱和一个三棱锥组合而成.故该几何体的体积为12×π×12×2+13×12×2×2×2=π+43.3.(2018·浙江高考)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是( )A.2 B.4C.6 D.8答案 C解析由三视图知该几何体是底面为直角梯形的直四棱柱,即如图所示四棱柱A1B1C1D1-ABCD.由三视图中的数据可知底面梯形的两底分别为1和2,高为2,所以S底面=12×(1+2)×2=3.因为直四棱柱的高为2,所以体积V=3×2=6.故选C.4.(2019·北京东城区模拟)某三棱锥的三视图如图所示,则该三棱锥的表面积是( )A.2+ 5 B.4+ 5C.2+2 5 D.5答案 C解析该三棱锥的直观图如图所示,过点D作DE⊥BC,交BC于点E,连接AE,则BC=2,EC=1,AD=1,ED=2,S 表=S △BCD +S △ACD +S △ABD +S △ABC =12×2×2+12×5×1+12×5×1+12×2×5=2+2 5.故选C.5.如图,半球内有一个内接正方体,正方体的一个面在半球的底面圆内,若正方体的棱长为6,则球的表面积和体积分别为________,________.答案 36π 36π解析 底面中心与C ′的连线即为半径,设球的半径为R ,则R 2=(6)2+(3)2=9.所以R =3,所以S 球=4πR 2=36π,V 球=43πR 3=36π.6.如图所示,已知球O 的球面上有四点A ,B ,C ,D ,DA ⊥平面ABC ,AB ⊥BC ,DA =AB =BC =3,则球O 的体积等于________.答案9π2解析 由题意知,DC 边的中点就是球心O , ∵它到D ,A ,C ,B 四点的距离相等, ∴球的半径R =12CD ,又AB =BC =3,∴AC =6,∴CD =AC 2+AD 2=3, ∴R =32,∴V 球O =4π3⎝ ⎛⎭⎪⎫323=9π2.核心考向突破考向一 几何体的表面积例 1 (1)(2019·衡水模拟)如图是某个几何体的三视图,则这个几何体的表面积是( )A .π+42+4B .2π+42+4C .2π+42+2D .2π+22+4答案 B解析 由几何体的三视图可知,该几何体是由半圆柱与三棱柱组成的几何体,其直观图如图所示,其表面积S =2×12π×12+π×1×1+2×12×2×1+(2+2+2)×2-2×1=2π+42+4.故选B.(2)(2019·郑州二模)如图是某几何体的三视图,图中方格的单位长度为1,则该几何体的表面积为________.答案 8+4 5解析 由三视图,知该几何体为三棱锥,将该几何体放在长方体中如图所示,由题意可知长方体的长、宽、高分别为2,2,4,由BC =2,CD =2计算,得BD =22,AD =25,AB =25,所以S △BCD =12×2×2=2,S △ADC =12×2×25=25, S △ABC =12×2×25=25,因为△ABD 为等腰三角形,高为252-22=32,所以S △ABD =12×22×32=6,所以该几何体的表面积为2+25+25+6=8+4 5.几类空间几何体表面积的求法(1)多面体:其表面积是各个面的面积之和.(2)旋转体:其表面积等于侧面面积与底面面积的和.(3)简单组合体:应弄清各构成部分,并注意重合部分的删、补.(4)若以三视图形式给出,解题的关键是根据三视图,想象出原几何体及几何体中各元素间的位置关系及数量关系.[即时训练] 1.(2019·山东潍坊模拟)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的表面积为( )A .20πB .24πC .28πD .32π答案 C解析 由三视图可知该几何体为组合体,上半部分为圆柱,下半部分为圆锥,圆柱的底面半径为1,高为2,圆锥的底面半径为3,高为4,则该几何体的表面积S =π×32+π×3×5+2π×1×2=28π.故选C.2.(2019·河北承德模拟)某几何体的三视图如图所示,网格纸上小正方形的边长为1,则该几何体的表面积为( )A.8+42+2 5 B.6+42+4 5C.6+22+2 5 D.8+22+2 5答案 C解析由三视图可知,该几何体为放在正方体内的四棱锥E-ABCD,如图,正方体的棱长为2,该四棱锥底面为正方形,面积为4,前后两个侧面为等腰三角形,面积分别为22,2,左右两个侧面为直角三角形,面积都为5,可得这个几何体的表面积为6+22+25,故选C.精准设计考向,多角度探究突破考向二几何体的体积角度1 补形法求体积例2 (1)(2017·全国卷Ⅱ)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( )A.90π B.63πC.42π D.36π答案 B解析(割补法)由几何体的三视图可知,该几何体是一个圆柱截去上面虚线部分所得,如图所示.将圆柱补全,并将圆柱从点A处水平分成上下两部分.由图可知,该几何体的体积等于下部分圆柱的体积加上上部分圆柱体积的12,所以该几何体的体积V =π×32×4+π×32×6×12=63π.故选B.(2)(2019·北京高考)某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积为________.答案 40解析 由题意知去掉的四棱柱的底面为直角梯形,底面积S =(2+4)×2÷2=6,高为正方体的棱长4,所以去掉的四棱柱的体积为6×4=24.又正方体的体积为43=64,所以该几何体的体积为64-24=40.角度2 分割法求体积例3 (1)(2019·山西五校联考)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有刍甍,下广三丈,袤四丈;上袤二丈,无广;高一丈,问:积几何?”其意思为:“今有底面为矩形的屋脊柱的楔体,下底面宽3丈,长4丈;上棱长2丈,高1丈,问它的体积是多少?”已知1丈为10尺,现将该楔体的三视图给出,其中网格纸上小正方形的边长为1丈,则该楔体的体积为( )A .5000立方尺B .5500立方尺C .6000立方尺D .6500立方尺答案 A解析 该楔体的直观图如图中的几何体ABCDEF .取AB 的中点G ,CD 的中点H ,连接FG ,GH ,HF ,则该几何体的体积为四棱锥F -GBCH 与三棱柱ADE -GHF 的体积之和.又可以将三棱柱ADE -GHF 割补成高为EF ,底面积为S =12×3×1=32(平方丈)的一个直棱柱,故该楔体的体积V =32×2+13×2×3×1=5(立方丈)=5000(立方尺).故选A.(2)(2019·浙江高考)祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V柱体=Sh ,其中S 是柱体的底面积,h 是柱体的高.若某柱体的三视图如图所示(单位:cm),则该柱体的体积(单位:cm 3)是( )A .158B .162C .182D .324答案 B解析 如图,该柱体是一个五棱柱,棱柱的高为6,底面可以看作由两个直角梯形组合而成,其中一个上底为4,下底为6,高为3,另一个的上底为2,下底为6,高为3.则底面面积S =2+62×3+4+62×3=27,因此,该柱体的体积V =27×6=162.故选B.角度3 转化法求体积例4 (1)如图所示,在正三棱柱ABC -A 1B 1C 1中,AB =4,AA 1=6.若E ,F 分别是棱BB 1,CC 1上的点,则三棱锥A -A 1EF 的体积是________.答案 8 3解析 由正三棱柱的底面边长为4,得点F 到平面A 1AE 的距离(等于点C 到平面A 1ABB 1的距离)为32×4=23,则V 三棱锥A -A 1EF =V 三棱锥F -A 1AE =13S △A 1AE ×23=13×12×6×4×23=8 3.(2)在三棱锥P -ABC 中,D ,E 分别为PB ,PC 的中点,记三棱锥D -ABE 的体积为V 1,三棱锥P -ABC 的体积为V 2,则V 1V 2=________.答案1 4解析如图所示,由于D,E分别是边PB与PC的中点,所以S△BDE=14S△PBC.又因为三棱锥A-BDE与三棱锥A-PBC的高相等,所以V1V2=14.(1)处理体积问题的思路(2)求体积的常用方法直接法对于规则的几何体,利用相关公式直接计算割补法首先把不规则的几何体分割成规则的几何体,然后进行体积计算;或者把不规则的几何体补成规则的几何体、不熟悉的几何体补成熟悉的几何体,便于计算等体积法选择合适的底面来求几何体的体积,常用于求三棱锥的体积,即利用三棱锥的任何一个面可作为三棱锥的底面进行等体积变换[即时训练] 3.(2019·河北沧州质检)《九章算术》是中国古代第一部数学专著,书中有关于“堑堵”的记载,“堑堵”即底面是直角三角形的直三棱柱.已知某“堑堵”被一个平面截去一部分后,剩下部分的三视图如图所示,则剩下部分的体积是( ) A.50 B.75C.25.5 D.37.5答案 D解析如图,由题意及给定的三视图可知,剩余部分是在直三棱柱的基础上,截去一个四棱锥C 1-MNB 1A 1所得的,且直三棱柱的底面是腰长为5的等腰直角三角形,高为5.图中几何体ABCC 1MN 为剩余部分,因为AM =2,B 1C 1⊥平面MNB 1A 1,所以剩余部分的体积V =V 三棱柱A 1B 1C 1-ABC -V 四棱锥C 1-A 1B 1NM =12×5×5×5-13×3×5×5=37.5,故选D.4.如图所示,正方体ABCD -A 1B 1C 1D 1的棱长为1,E ,F 分别为线段AA 1,B 1C 上的点,则三棱锥D 1-EDF 的体积为________.答案 16解析 三棱锥D 1-EDF 的体积即为三棱锥F -DD 1E 的体积.因为E ,F 分别为线段AA 1,B 1C 上的点,所以在正方体ABCD -A 1B 1C 1D 1中,△EDD 1的面积为定值12,F 到平面AA 1D 1D 的距离为定值1,所以V 三棱锥F -DD 1E =13×12×1=16.考向三 与球有关的切、接问题例5 (1)(2019·全国卷Ⅰ)已知三棱锥P -ABC 的四个顶点在球O 的球面上,PA =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是PA ,AB 的中点,∠CEF =90°,则球O 的体积为( )A .86πB .46πC .26π D.6π 答案D 解析设PA =PB =PC =2a ,则EF =a ,FC =3,∴EC 2=3-a 2. 在△PEC 中,cos ∠PEC =a 2+3-a 2-2a22a 3-a2.在△AEC 中,cos ∠AEC =a 2+3-a 2-42a 3-a2. ∵∠PEC 与∠AEC 互补,∴3-4a 2=1,a =22, 故PA =PB =PC = 2.又AB =BC =AC =2,∴PA ⊥PB ⊥PC , ∴外接球的直径2R =22+22+22=6,∴R =62,∴V =43πR 3=43π×⎝ ⎛⎭⎪⎫623=6π.故选D. (2)(2019·沈阳市东北育才学校模拟)将半径为3,圆心角为2π3的扇形围成一个圆锥,则该圆锥的内切球的表面积为( )A .πB .2πC .3πD .4π答案 B解析 将半径为3,圆心角为2π3的扇形围成一个圆锥,设圆锥的底面圆的半径为R ,则有2πR =3×2π3,所以R =1,设圆锥的内切球的半径为r ,结合圆锥和球的特征,可知内切球的球心必在圆锥的高线上,设圆锥的高为h ,因为圆锥的母线长为3,所以h =9-1=22,所以rh -r =R 3,解得r =22,因此内切球的表面积S =4πr 2=2π.故选B.“切”“接”问题的处理规律(1)“切”的处理解决与球有关的内切问题主要是指球内切于多面体与旋转体,解答时首先要找准切点,通过作截面来解决.如果内切的是多面体,则作截面时主要抓住多面体过球心的对角面.(2)“接”的处理把一个多面体的几个顶点放在球面上即为球的外接问题.解决这类问题的关键是抓住外接的特点,即球心到多面体的顶点的距离等于球的半径.[即时训练] 5.(2018·全国卷Ⅲ)设A ,B ,C ,D 是同一个半径为4的球的球面上四点,△ABC 为等边三角形且其面积为93,则三棱锥D -ABC 体积的最大值为( )A .12 3B .18 3C .24 3D .54 3答案 B解析 如图所示,点M 为三角形ABC 的重心,E 为AC 的中点,当DM ⊥平面ABC 时,三棱锥D -ABC 体积最大,此时,OD =OB =R =4.∵S △ABC =34AB 2=93, ∴AB =6,∵点M 为三角形ABC 的重心, ∴BM =23BE =23,∴在Rt △OMB 中,有OM =OB 2-BM 2=2. ∴DM =OD +OM =4+2=6,∴(V 三棱锥D -ABC )max =13×93×6=18 3.故选B.6.(2019·漳州模拟)在直三棱柱A 1B 1C 1-ABC 中,A 1B 1=3,B 1C 1=4,A 1C 1=5,AA 1=2,则其外接球与内切球的表面积之比为( )A.294B.192C.292D .29答案 A解析 由底面三角形的三边长可知,底面三角形为直角三角形,内切球半径r =AA 12=1,取AC ,A 1C 1的中点D ,E ,则外接球球心是DE 的中点O ,由A 1C 1=5,AA 1=2,得AC 1=29,所以外接球半径R =OA =292,所以S 外S 内=4πR 24πr 2=294,故选A.1.(2019·郑州二模)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的外接球的体积为( )A.455π2B.1355π2C .1805πD .905π答案 A解析 构造底面边长为3,6,高为3的长方体,由三视图可知,该几何体是如图1中所示的三棱锥P -ABC .所以在该三棱锥中,PA ⊥底面ABC ,并且AB ⊥AC ,把该三棱锥放在如图2所示的底面边长为32,高为3的长方体中,则该三棱锥的外接球就是该长方体的外接球,设该三棱锥的外接球的半径为R ,则有(2R )2=32+(32)2+(32)2=45,解得R =352,所以该三棱锥的外接球的体积V =43πR 3=43π⎝ ⎛⎭⎪⎫3523=455π2,故选A.2.(2019·宝鸡中学高三第一次模拟)已知一个四面体ABCD 的每个顶点都在表面积为9π的球O 的表面上,且AB =CD =a ,AC =AD =BC =BD =5,则a =________.答案 2 2解析 由题意,知四面体ABCD 的对棱都相等,故该四面体可以通过补形补成一个长方体,如图所示.设AF =x ,BF =y ,CF =z ,则x 2+z 2=y 2+z 2=5,又4π·⎝ ⎛⎭⎪⎫x 2+y 2+z 222=9π,解得x =y =2,∴a =x 2+y 2=2 2. 答题启示1.若四面体中有三条棱两两垂直,则方法是找到三条两两互相垂直的棱,借助墙角模型补成长方体(如图),用公式 a 2+b 2+c 2=2R 求解.2.若四面体的对棱相等,则解题步骤为第一步:画出一个长方形,标出三组互为异面直线的对棱;第二步:设长方体的长宽高分别为a ,b ,c ,列出方程⎩⎪⎨⎪⎧a 2+b 2=BC 2=α2,b 2+c 2=AC 2=β2,c 2+a 2=AB 2=γ2(其中α,β,γ为常数)⇒a 2+b 2+c 2=α2+β2+γ22;第三步:根据墙角模型,a 2+b 2+c 2=2R ⇒R =a 2+b 2+c 22.对点训练1.在△ABC 中,AB =AC =2,∠BAC =90°,将△ABC 沿BC 上的高AD 折成直二面角B ′-AD -C ,则三棱锥B ′-ACD 的外接球的表面积为( )A .π B.2π C .3πD .2π答案 C解析 如图,∵AB =AC =2,∠BAC =90°,∴BC =2,则BD =DC =AD =1,由题意,得AD ⊥底面B ′DC ,又二面角B ′-AD -C 为直二面角,∴B ′D ⊥DC ,把三棱锥B ′-ACD 补形为正方体,则正方体的体对角线长为3,则三棱锥B ′-ACD 的外接球的半径为32,则其外接球的表面积为S =4π×⎝⎛⎭⎪⎫322=3π.故选C. 2.(2019·漳州质量监测)已知正四面体ABCD 的外接球的体积为86π,则这个四面体的表面积为________.答案 16 3解析 将正四面体ABCD 放在一个正方体内,设正方体的棱长为a ,如图所示,设正四面体ABCD 的外接球的半径为R ,则43πR 3=86π,解得R = 6.因为正四面体ABCD 的外接球和正方体的外接球是同一个球,则有3a =2R =26,所以a =2 2.而正四面体ABCD 的每条棱长均为正方体的面对角线长,所以正四面体ABCD 的棱长为2a =4,因此,这个正四面体的表面积为4×12×42×sin π3=16 3.。
2023高考数学基础知识综合复习第18讲简单几何体的表面积与体积 课件(共24张PPT)

(2)旋转体的形成
几何体
旋转图形
圆柱
矩形
旋转轴
矩形一边所在的直线
圆锥
直角三角形
一直角边所在的直线
圆台
直角梯形或等腰梯形
球
半圆或圆
直角腰所在的直线或等腰梯形
上下底中点连线所在的直线
直径所在的直线
2.空间几何体的直观图
空间几何体的直观图常用斜二测画法来画,其画法步骤为:
①画轴:在平面图形上取互相垂直的x轴和y轴,作出与之对应的x'轴
3
4
3 = .故选 D.
考点一
考点二
考点三
本题考查四面体的体积的最大值的求法,涉及空间中线线、线面、
面面间的位置关系等基础知识,考查运算求解能力,属于难题.处理
此类问题时,往往先去找到不变的量,再根据题中的所给条件的变
化规律找到最值,从而得到体积的最值.
和y'轴,使得它们正方向的夹角为45°(或135°);
②画线(取长度):平面图形中与x轴平行(或重合)的线段画出与x'轴
平行(或重合)的线段,且长度不变,平面图形中与y轴平行(或重合)的
线段画出与y'轴平行(或重合)的线段,且长度为原来长度的一半;
③连线(去辅助线):连接有关线段,擦去作图过程中的辅助线.
径,从而进一步求解.
考点一
考点二
考点三
◆角度3.体积最值问题
例5(1)(2019年1月浙江学考)如图,线段AB是圆的直径,圆内一条动
弦CD与AB交于点M,且MB=2AM=2,现将半圆沿直径AB翻折,则三
棱锥C-ABD体积的最大值是(
)
2
3
1
3
A.
1.3空间几何体的表面积和体积(第一课时)
第二步:求近似和
S i
hi
O O
Vi
1 Vi S i hi 3
由第一步得: V V1 V2 V3 ... Vn
1 1 1 1 V S1h1 S 2 h2 S3h3 ... S n hn 3 3 3 3
第三步:转化为球的表面积
A1 C1 B1
P
A1 A
C1 B1 D1 C O B D
C A
C
B O A D
B
2、分别作出一个圆柱、圆锥、圆台,并找出旋转轴 A
A
B
A B
C
D
B
C C
D
分别经过旋转轴作一个平面,观察得到的轴截面是 什么形状的图形.
矩 形
等腰三角形
等腰梯形
知识点一:柱、锥、台、球的表面积与侧面积
(1)柱体的侧面积
例 从一个正方体中,如图那样截去4个三棱锥后,得 到一个正三棱锥A-BCD,求它的体积是正方体体积的 几分之几?
几何体的体积小结 1.求空间几何体的体积除利用公式法外,还常用 分割法、补体法、转化法等,它们是解决一些丌 规则几何体体积计算问题的常用方法. 2.计算柱体、锥体、台体的体积关键是根据 条件找出相应的底面面积和高,要充分利用多面体 的截面及旋转体的轴截面,将空间问题转化为平面 问题.
h'
h'
1 S正 棱 锥 侧 = ch' 2
思考:把圆柱、圆锥、圆台的侧面分别沿着一条母线 展开,分别得到什么图形?展开的图形与原图 有什么关系?
扇形
n l l扇= 180
2
R扇=l
l
r
nl 1 S圆 锥 侧 S扇= = l扇l rl 360 2
2014年人教A版必修二课件 1.3 空间几何体的表面积与体积
6 25 5 12
= 2[6 3 (24 + 12)]+ 612 5 + 6p 25 ≈1579.485 (mm2), 10000个零件的表面积约为15794850 mm2, 约合15.795平方米.
2. 如图是一种机器零件, 零件 下面是六棱柱 (底面是正六边形, 侧 面是全等的矩形) 形, 上面是圆柱 (尺寸如图, 单位: mm) 形, 电镀这 种零件需要用锌, 已知每平方米用 锌 0.11 kg, 问电镀 10000个零件需 要锌多少千克? (结果精确到 0.01 kg) 解: 这个零件的表面积为 S = S棱柱表+S圆柱侧
2. 柱体、锥体与台体的体积 问题 1. 还记得正方体、长方体、圆柱和圆锥的 体积公式吗? 由此类推柱体和锥体的体积公式如何? 你想想台体的体积怎样求? 柱体体积: V柱 = Sh (S 为底面面积, h为柱体高). 锥体体积: V锥 = 1 Sh (S 为底面面积, h为柱体高). 3 台体体积: V台 = V大锥体-V小锥体 (S为下底面积, S为上底面积, = 1 ( Sh大 - Sh小 ), 3 h 为台高). h S = ( 小 )2 , h大 - h小 = h, S h大 1 V台 = h( S + SS + S). 3
例 1. 已知棱长为 a, 各面均为等边三角形的四面 体 S-ABC, 求它的表面积. 解: 这四面体的表面是由 4 个全等 的等边三角形组成, A 所以它的表面积 S = 4S△SBC B D 在△SBC中, 边长为 a, SD为BC边上的高. a 2 2 = 3 a, 2 2 则 SD = SB - BD = a - ( ) 2 2 3 a2, 1 3 于是得 S△SBC= 1 BC SD = a a = 4 2 2 2 所以, 这个四面体的表面积为 3 S = 4 a 2= 3a 2 . 4
空间几何体的表面积和体积(第二课时)
把圆柱沿这条母线展开,将问题转
化为平面上两点间的最短距离.
解
把圆柱侧面及缠绕其上
的铁丝展开,在平面上得到 矩形ABCD(如图所示), 由题意知BC=3π cm,
AB=4π cm,点A与点C分别是铁丝的起、止位
置,故线段AC的长度即为铁丝的最短长度.
AC AB 2 BC 2 5 π cm, 故铁丝的最短长度为5π cm.
1.3 简单几何体的表面积和体积(二)
题型一
多面体的表面积及其体积
【例3】 一个正三棱锥的底面边长为6,侧棱长 为 15,求这个三棱锥的体积.
思维启迪
本题为求棱锥的体积问题.已知底面
边长和侧棱长,可先求出三棱锥的底面面积
和高,再根据体积公式求出其体积. 解 如图所示, 正三棱锥S—ABC. 设H为正△ABC的中心,
(1)几何体的“分割” 几何体的分割即将已知的几何体按照结论的要 求,分割成若干个易求体积的几何体,进而求之. (2)几何体的“补形”
与分割一样,有时为了计算方便,可将几何体补
成易求体积的几何体,如长方体、正方体等.另外 补台成锥是常见的解决台体侧面积与体积的方法, 由台体的定义,我们在有些情况下,可以将台体 补成锥体研究体积. (3)有关柱、锥、台、球的面积和体积的计算, 应以公式为基础,充分利用几何体中的直角三角 形、直角梯形求有关的几何元素.
2
11 3 旋转所得到的几何体的表面积为 π R2. 2
4 1 1 又V球 π R 3 ,V圆锥AO1 AO1 π CO 2 π R 2 AO1 1 3 3 4 1 1 2 V圆锥BO1 BO1 π CO 1 π R 2 BO1 3 4 V几何体 V球 (V圆锥AO1 V圆锥BO1 ) 4 1 5 3 3 π R π R π R3. 3 2 6
7.1空间几何体教案-2023-2024学年中职数学(语文版·2021)基础模块下册
1. 教学重点
本节课的核心内容是空间几何体的认识和性质。具体重点包括:
- 常见空间几何体的名称和形状,如正方体、长方体、球体等。
- 空间几何体的基本性质,如表面积、体积等。
- 使用立体几何图形进行空间想象和解决问题的方法。
2. 教学难点
本节课的难点内容主要是空间几何体的理解和运用。具体难点包括:
4. 师生互动环节(10分钟)
教师组织学生进行小组讨论,让学生分享自己的学习心得和疑问。教师参与讨论,解答学生的疑问,并给予指导和鼓励。同时,教师可以提出一些拓展性问题,如“空间几何体在生活中有哪些应用?”、“如何计算不规则几何体的体积?”等,激发学生的思考和探索欲望。
5. 课堂小结(5分钟)
教师对本节课的主要内容进行简要回顾,强调空间几何体的认识和性质。然后,提出课后作业,要求学生复习本节课的内容,并完成相关练习题。
- 球体是一种所有点到球心的距离都相等的空间几何体。
- 空间几何体的表面积是指围成几何体的面的总面积。
- 空间几何体的体积是指几何体所占空间的大小。
板书设计应具有艺术性和趣味性,可以通过使用颜色、图标、图片等元素,使得板书更加生动和吸引人。例如,可以使用不同颜色的粉笔来突出不同的知识点,或者在板书中加入一些简单的几何图形和符号,以帮助学生更好地理解和记忆。同时,教师可以尝试将板书设计成一个小游戏或者谜题,让学生在解答的过程中学习和掌握知识。这样的设计不仅能够激发学生的学习兴趣,还能够提高他们的主动性和参与度。
当堂检测:
1. 判断题:请判断以下陈述是否正确。
- 正方体是一种六个面都是正方形的空间几何体。()
- 球体是一种所有点到球心的距离都相等的空间几何体。()
- 长方体的体积大于正方体的体积。()
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
空间几何体的表面积与体积一、柱体、锥体、台体的表面积A .多面体的表面积1.多面体的表面积求法:求平面展开图的面积注:把多面体的各个面平铺在平面上,所得图形称之为多面体的平面积展开图.2.直棱柱的侧面积与全面积 (1)侧面积①求法:侧面展开(如图);②公式:S cl =(其中c 为底面周长,l 为侧棱长); (2)表面积:侧面积+两底面积. (3)推论:①正棱柱的侧面积:S cl =(其中c 为底面周长,l 为侧棱长).②长方体的表面积:2()S ab bc ca =++.(其中,,a b c 分别为长方体的长宽高) ③正方体的表面积:26S a =(a 为正方体的棱长). 3.斜棱柱侧面积与全面积 (1)侧面积:①求法:作出直截面(如图);注:这种处理方法蕴含着割补思想.②公式:S cl =(其中c 为直截面周长,l 为侧棱长); (2)表面积:侧面积+两底面积. 4.正棱锥的侧面积与全面积 (1)侧面积①求法:侧面展开(如图); ②公式:12S ch '=(其中c 为底面周长,h '为斜高); (2)表面积:侧面积+底面积.5.正棱台的侧面积与全面积 (1)侧面积①求法:侧面展开(如图);②公式:1()2S c c h ''=+(其中c 、c '为底面周长,h '为斜高); (2)表面积:侧面积+两底面积.6.正棱柱、正棱锥、正棱台的侧面积公式间的内在联系:B .旋转体的表面积1.圆柱的侧面积与全面积 (1)侧面积:①求法:侧面展开(如图);②公式:2S rl π=(r 为两底半径,l 为母线长); (2)表面积:2()S r r l π=+.2.圆锥的侧面积与表面积 (1)侧面积①求法:侧面展开(如图); ②公式:S rl π=;(2)表面积:()S r r l π=+(r 为两底半径,l 为母线长).事实上:圆锥侧面展开图为扇形,扇形弧长为2r π,半径为圆锥母线l ,故面积为122r l rl ππ⨯⨯=.3.圆台的侧面积与表面积 (1)侧面积①求法:侧面展开(如图); ②公式:()S r R l π=+;事实上:圆台侧面展开图为扇环,扇环的弧长分别为2r π、2R π,半径分别为x 、x l +,故圆台侧面积为112()2()22S R x l r x R r x Rl ππππ=⨯⨯+-⨯⨯=-+,∵()x l R r x rl r R r=⇒-=-,∴()S r R l π=+.(2)表面积:22()r R r R l πππ+++.(r 、R 分别为上、下底面半径,l 为母线长) 4.圆柱、圆锥、圆台的侧面积公式间的内在联系:二、柱体、锥体、台体的体积A .棱柱、棱锥、棱台的体积1.棱柱体积公式:V Sh =(h 为高,S 为底面面积);2.棱锥体积公式:13V Sh =(h 为高,S 为底面面积);3.棱台体积公式:121()3V S S h =棱台 (h 为高,1S 、2S 分别为两底面面积).事实上,设小棱锥高为x ,则大棱锥高为x h +.于是212211111()()3333V S x h S x S h S S x =+-=+-.∵x x x x h h +, 2r πlr2r πllrh2Sx1S2R π2rπ xRrxl∴221211111()33333V S h x S h S S h =+=+=.4.棱柱、棱锥、棱台体积公式间的内在联系:B .圆柱、圆锥、圆台的体积1.圆柱的体积:2V r h π=(h 为高,r 为底面半径).2.圆锥的体积:213V R h π=(h 为高,R 为底面半径).3.圆台的体积:221()3V r rR R h π=++(r 、R 分别为上、下底半径,h 为高).事实上,设小圆锥高为x ,则大圆锥高为x h +(如图).于是2221111()()()3333V R x h r h R r R r x R h ππππ=+-=+-+.∵()x r x r R r x rh x h R h R r =⇒=⇒-=+-,∴222111()()333V R r rh R h r rR R h πππ=++=++. 4.圆柱、圆锥、圆台体积公式间的内在联系:三、球的体积与表面积1.球的体积 343V R π=.2.球的表面积 24S R π=.四、题型示例A.直用公式求面积、求体积例1 (1)一个正三棱柱的底面边长为4,侧棱长为10,求其侧面积、表面积和体积;侧面积:120;表面积:120+;体积(2)一个圆台,上、下底面半径分别为10、20,母线与底面的夹角为60°,求圆台的侧面积、表面积和体积;侧面积:600π;表面积:1100π.Rrx lh(3)已知球的表面积是64π,求它的体积. 结果:2563π.(4)在长方体1111ABCD A B C D -中,用截面截下一个棱锥11C A DD -,求棱锥11C A DD -的体积与剩余部分的体积之比. 结果1:5.练习:1.已知正四棱锥底面正方形的边长为4cm ,高与斜高的夹角为30,求正四棱锥的侧面积和表面积. 结果:232cm ,248cm .2.已知平行四边形ABCD 中,8AB =,6AD =,60DAB ∠=,以AB 为轴旋转一周,得旋转体.求旋转体的表面积.结果:.3.正方体1111ABCD A B C D -的棱长为1,则沿面对角线AC 、1AB 、1CB 截得的三棱锥1B ACB -的体积为 CA .12B .13C .16D .1 4.已知正四棱台两底面均为正方形,边长分别为4cm 、8cm ,求它的侧面积和体积.结果:侧面积:33. 5.正四棱锥S ABCD -各侧面均为正三角形,侧棱长为5,求它的侧面积、表面积和体积.结果:侧面积:25(1. 6.,则以该正方体各个面的中心为顶点的凸多面体的体积为 .B.根据三视图求面积、体积例3 一空间几何体的三视图如图所示,则该几何体的体积为A.2π+ B.4π+C.2π+ D.4π结果:C.练习:1.一个底面为正三角形,侧棱于底面垂直的棱柱的三视图 如图所示,则这个棱柱的体积为 .结果:俯视图22正(主)视图2 侧(左)视图222正视图 侧视图俯视图42.下图是一个空间几何体的正视图、侧视图、俯视图,如果 直角三角形的直角边长均为1,那么这个几何体的体积为 A .1 B .12C .13D .16答案:C.3.如图是某几何体的三视图,其中正视图是腰长为3的等腰三角形, 俯视图是半径为1的半圆,该几何体的体积是 A .23π B .223π C .π D .433π 答案:A.4.已知一个组合体的三视图如图所示,请根据具体的数据, 计算该组合体的体积.提示:该组合体结构为:上部是一个圆锥,中部是一个圆柱,下部 也是一个圆柱. 结果:1763π.5.下图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是 DA .9πB .10πC .11πD .12πC.几何体表面上最短距离问题例 三棱锥P ABC -的侧棱长均为1,且侧棱间的夹角都是40︒,动点M 在PB 上移动,动点N 在PC 上移动,求AM MN NA ++的最小值. 结果:3.D.与球有关的组合问题例1(1)若棱长为3的正方体的顶点都在同一球面上,则该球的表面积为 . 结果:27π.(2)若一个球内切于棱长为3的正方体,则该球的体积为 . 结果:92π.例2 有一个倒圆锥形容器,它的轴截面是一个正三角形,在容器内放一个半径为的铁球,并注入水,使球浸没在水中并使水面正好与球相切,然后将球取出,求这时容器中水的深度.结果:315r .变式训练:1.长方体1111ABCD A B C D -中,3AB =,4AD =,15AA =,则其外接球的体积为 .2.求棱长为1的正四面体的外接球、内切球的表面积.正视图 侧视图俯视图正视图 侧视图俯视图俯视图1014 2210142注:棱长为的正四面体中常用数据:(1,中心到顶点距离:中心到面的距离=3:1.(223.(3.(4)棱面角:a,面面角:1aiccos3或.E.几个重要结论的补充及应用结论1 锥体平行截面性质锥体平行截面与锥体底面相似,且与底面积比等于两锥侧面积面积比,等于两锥全面积面积比,等于两锥对应线段(对应高、对应斜高、对应对角线、对应底边长)比的平方.结论2 若圆锥母线长为l,底面半径为r,侧面展开图扇形圆心角为θ,则2rlπθ=.结论 3 若圆台母线长为l,上、下底面半径分别为r、R,侧面展开图扇环圆心角为θ,则2R r lθπ-=⨯.证明:设小圆锥母线长为x,则有22rx rxπθπθ=⇒=.∵x r x r rlxx l R l R r R r=⇒=⇒=+--,∴22()2r r R r R rx rl lππθπ--===⨯.应用1.一个圆锥的侧面积是底面积的2倍,则圆锥侧面展开图扇形的圆心角度数为 BA.120︒B.180︒C.240︒D.300︒2.一个圆锥的高是10cm,侧面展开图是半圆,求圆锥的侧面积.解:设圆锥底面半径为r,圆锥母线长为l,则扇形弧长为222lrππ=,∴2l r=.在Rt SOA△中,22210l r=+,有此得r,l.∴圆锥侧面积为2003S rlππ==.3.露露从纸上剪下一个圆形和一个扇形的纸片(如图),用它们恰好能围成一个圆锥模型,若圆的半径为1.扇形的圆心角等于120°,则此扇形的半径为CA.13BC.3D.64.圆台的上、下底面半径分别为10cm和20cm,它的侧面展开图的扇环的圆心角是180,那么圆台的表面积是多少?结果:21100cmπ.5.圆锥母线长为1,侧面展开图的圆心角为240︒,则圆锥体积为CAB.881πCD.1081π6.若圆锥的侧面展开图是圆心角为120︒、半径为l的扇形,则这个圆锥的表面积与侧面积的比是A.3:2B.2:1C.4:3D.5:3⋅结果:C.F.空间几何体体积求法例析 A .公式法例1 四棱锥P ABCD -的顶点P 在底面中的射影恰好是A , 其三视图如图,则四棱锥P ABCD -的体积为 .解:根据三视图可已将四棱锥P ABCD -的底面是边长为a 的正方形,高为a ,利用锥体体积公式231133P ABCD V a a a -=⋅=.点评:1.计算几何体体积需要区别锥体、柱体、台体、 球体.它们的体积各自有不同的特征,注意准确运用体积公式.2.如果是只求体积,根据“长对正,宽相等,高平齐”分别求出几何体的底面积和高,直接计算体积即可,若几何体比较复杂或涉及面积等计算时,则需复原几何体(本几何体复原后的图形如图).例2 一个几何体的俯视图是一个圆,正视图和侧视图是全等的矩形,它们水平放置时(一边在水平位置上),它们的斜二测直观图是边长为6和4的平行四边形,则该几何体的体积为 .解:斜二测画法原则是“横长不变纵减半”.据此,正视图的长可能是6或4,高是8或12,而且是矩形.可见该几何体是圆柱体,底面直径可能是6或4,高是8或12.根据圆柱体体积公式,23872V ππ=⨯⨯=或221248V ππ=⨯⨯=.∴该几何体体积为72π或48π.例3 用一块长3m ,宽2m 的矩形木板,在墙面互相垂直的墙角处,围出一个直三棱柱形谷仓,在下面的四种设计中,容积最大的是 A解:略.B .分割法例4 已知一个多面体的表面积为36,它的内切球的半径为2,求该多面体的体积.解:设多面体有n 个面,每个面的面积分别为12,,,n S S S ⋅⋅⋅,则1236n S S S ++⋅⋅⋅+=.∵多面体内切球的球心到多面体个个面的距离都等于球的半径R ,运用分割法,以内切球球心为顶点,多面体的每个面为底面,将多面体分割成n 个棱锥,于是多面体的体积等于这个棱锥的体积和,即1111211111()3622433333n V S R S R S R R S S S =++⋅⋅⋅+=++⋅⋅⋅+=⨯⨯=.例5 如图3,在多面体ABCDEF 中,已知面ABCD 是边长为3的正方形,//EF AB ,32EF =,EF 与AC 面的距离为2,则该多面体的体积为 .解:取AB 、CD 边的中点M 、N ,将多 面体分割成斜三棱柱和四棱锥, 利用三棱柱体积公式及四棱锥体积公式,不难求得多面体积:13131532222322V ⎛⎫=⨯⨯⨯+⨯⨯=⎪⎝⎭. 点评:本题中的几何体是不规则的,设法将几何体分割(或补)成规则的常见的几何体,是解题的关键,由于//EF AB ,并没有说明ADE 的确切位置,因此可以将其位置特殊化,从而得到直三棱柱ADB MNF -和四棱锥F MNCB -,这是本题解法一个巧妙之处.B AC A 45︒2 2 2 23 3 3 3 30︒45︒30︒BCDFEMNABCDAFEDAPC .补形法例6 已知三棱柱的一个侧面面积为S ,相对的棱距离该侧面的距离是h ,求证:该三棱柱的体积是12V Sh =.证明:设三棱柱111ABC ABC -的侧面11ABB A 的面积为S ,侧棱1CC 到该侧面的距离为h . 以三棱柱的侧面11ABB A 为底面,将三棱柱补形得到四棱柱,如图.则四棱柱的高恰等于h .四棱 柱的体积为V Sh =,它的一半,即为三棱柱的体积12V Sh =.∴三棱柱的体积为12V Sh =.点评:本体的结论可以作为结论用.例7 已知PA 、PB 、PC 两两互相垂直,且PAB △、PAC △、PBC △的面积分别为21.5cm ,22cm ,62cm ,则过P 、A 、B 、C 四点的外接球的体积为 2cm .解:PA 、PB 、PC 两两互相垂直,则以它们为基础,补形成为一个长方体,长方体的对角线是外接球的直径.设三条棱长分别为,,x y z ,则3xy =,4xz =,12yz =,解得12xyz =,1x =,3y =,4z =.从而2222(2)134r =++,2426r =,r .∴334433V r r ππ==⎝⎭. 点评:对于三条棱两两互相垂直或者3个侧面两两互相垂直的三棱柱以及正四面体或对棱分别相等的三棱锥,都可以补形成为长方体或者正方体,它们有共同的外接球,外接球的直径正好是长方体或正方体的体对角线,这样就很容易将球体和三棱锥联系起来.D .特殊化法例8 如图,直三棱柱111ABC A B C -体积为V ,点P 、Q 分别在侧 棱1AA 、1DD 上,1AP D Q =,则四棱锥B APQD -的体积为 .解:将条件1AP DQ =特殊化,使得P 和1A 重合,Q 和D 重合,四棱锥B APQD -就 变成三棱锥1B ADA -,它和直三棱柱等底等高,∴四棱锥B APQD -的体积等于1133ABD S h V ⋅=△.E .等体积转化(变换角度)例9 如图,在长方体1111ABCD A B C D -中,如果分别过BC 、11A D 的2个平行平面将长方体分成体积相等的3部分,那么11C NND = . 解:将长方体站立放置,从而更容易观察到相关的几何体分别是直三棱柱、直四棱柱、 直三棱柱.∵长方体被分成体积相等的三部分,即D HD AGA D NCH A MBG NC C MB B V V V ---==.由于它们的等高且等体积,∴底面积也相等,就是说AGA A MBG MB B S S S ==△△△,即1112AG AA GB AA ⨯=⨯,∴2AG GB =,∴112C N ND =.例10 如图,已知E 、F 分别是棱长为a 的正方体1111ABCD A B C D -的棱1AA 、1CC 的中点,求三棱锥11C B EF -的体积.解:311312C B EF E B FCB C F V V S AB a --==⋅=△. 点评:在三棱锥求体积问题中,变换角度就是换顶点、换底面,它是计算三棱锥体积问题长见的转化策略之一,它的基本依据是变换EF 1BD1D 1C A1A BCHM1B D 1D1C A1A BCNGQP1BD1DA1ABABCD1D1C1B1A前后等体积.转换的标准是相应的底面和高是否容易求解.显然本题直接按照题中所给的角度或者转换成三棱锥都不便于求底面和高.练习:1.正六棱锥P ABCDEF -中,G 为PB 的中点,则三棱锥D GAC -与三棱锥P GAC -体积之比为 CA .1:1B .1:2C .2:1D .3:22.如图,在多面体ABCDEF 中,已知ABCD 是边长为1的正 方形,且ADE △、BCF △均为正三角形,//EF AB ,2EF =, 则该多面体的体积为 AA .23 B .33 C .43D .323.某几何体的三视图如下,根据图中标出的尺寸(单位:cm ),则这个几何体的体积是BA .34000cm 3 B .38000cm 3C .32000cmD .34000cm 4.一个棱锥的三视图如图,则该棱锥的表面积为 AA .48122+B .48242+C .36122+D .36242+5.若正方体外接球的体积是323π,则正方体的棱长为 A .22 B .233 C .423 D .433选D7.如图,已知多面体ABC DEFG -,AB ,AC ,AD 两两垂直,平面//ABC 平面DEFG ,平面//BEF 平面ADGC ,2AB AD DG ===,1AC EF ==,则该多面体的体积为A .2B .4C .6D .89.一个长方体的某3个面的面积分别是2,3,6.则这个长方体的体积是 .10.设等边三角形ABC △的边长为a ,P 是ABC △内的任意一点,且P 到三边AB ,BC ,CA 的俯视图侧视图正视图6433634620202020侧视图 10 10俯视图 正视图距离分别为1d ,2d ,3d ,则有123d d d ++面体ABCD 的棱长为a ,P 是正四面体ABCD 内的任意一点,且P 到四个面的距离分别为1d ,2d ,3d ,4d ,则有1234d d d d +++为定值是 .. 11.某球的外切圆台上下底面半径分别为r ,R ,则该球的体积是 .12.在三棱锥A BCD -中,6AB CD ==,5AC BD AD BC ====,则该三棱锥的外接球的表面积为 .解:依题意得,该三棱锥的三组对棱分别相等,因此可将该三棱锥补成长方体,设该长方体的长、宽、高分别为,,a b c ,且其外接球的半径为R ,则2222222226,5,5a b b c c a ⎧+=⎪+=⎨⎪+=⎩,得22243a b c ++=,即2222(2)43R a b c =++=.∴三棱锥外接球的表面积为2443S R ππ==.13.各顶点都在一个球面上的正四棱柱的高为4,体积为16,则球的体积是 .结果:.11.体积为8的一个正方体,其全面积与球O 的表面积相等,则球O 的体积等于 . 结14.如图是一个几何体的三视图,若它的体积是a =_____.15.三棱锥的顶点为P ,PA ,PB ,PC 为三条侧棱,PA ,PB ,PC 两两互相垂直,又2PA =,3PB =,4PC =,则三棱锥P ABC -的体积为_____. 结果:4.14.半径为R 的球的外切圆柱的表面积为 ,体积为 . 结果:26R π;32R π.16.直三棱柱111ABC A B C -的各顶点都在同一球面上,若12AB AC AA ===,120BAC ︒∠=,则此球的表面积等于 .结果:20π.17.三个球的半径123,,R R R ,满足12323R R R +=,则它们的表面积123,,S S S ,满足的关系是 .18.如图,已知底面半径为r 的圆柱被一个平面所截,剩下部分母线长 的最大值为a ,最小值为b ,那么圆柱被截后剩下部分的体积是 .解:补形(如图),结果:2()2r a b π+.侧视图正视图俯视图rbara b - b空间几何体的表面积与体积11 19.某高速公路收费站入口处的安全标识墩如图4所示.墩的上半部分是正四棱锥P EFGH -,下半部分是长方体ABCD EFGH -.图5、图6分别是该标识墩的正视图和俯视图.(1)请画出该安全标识墩的侧视图; (2)求该安全标识墩的体积.结果:(1)与正视图一样;(2)364000cm .P。