三角函数的同角关系公式

合集下载

第十八讲:同角三角函数基本关系与诱导公式

第十八讲:同角三角函数基本关系与诱导公式
6.诱导公式的应用:求值、化简、证明.
共 57 页
5
考点陪练
1.α 是第四象限角,tanα=-152,则 sinα=(
)
1 A.5
B.-15
5 C.13
D.-
5 13
解析:由 tanα=csoinsαα=-152,sin2α+cos2α=1,及 α 是第四象
限角,解得csionsαα==-11231.53,
)
A.1
B.0
C.-1
1 D.2
解析:原式=cotαta-nαco-sαco-sαs3inα2=ctaontααtan2α=1.
❖ 答案:A
共 57 页
9
4.cos-769π的值为(
A.-12
1 B.2
)
C.-
3 2
3 D. 2
解析:cos-769π=cos769π=cos13π+π6=-cosπ6=- 23,故 选 C.

tanα=2 知
sinα=
2 ,又 5
cosα=13,
∵sin2α+cos2α≠1,∴B 错.
由 sinα=12得 cosα=± 23,∴tanα=± 33,
当 α 为第一象限角时有 tanα= 33,故选 C.
❖ 答案:C
共 57 页
8
3.化简cotα- tan4ππ+·cαos·cαo+s3π-·sαin-2πα-3π的结果是(
共 57 页
27
❖ [点评] (1)掌握诱导公式,关键掌握函数名及 符号,口诀“奇变偶不变,符号看象限”.
❖ (2)k是奇数还是偶数,直接影响到用哪组诱导公 式.
共 57 页
28
❖ 类型四 同角三角函数基本关系式与诱导公式 的综合应用

同角三角函数的基本关系

同角三角函数的基本关系

1.2.2 同角三角函数的基本关系 学习目标 1.能通过三角函数的定义推导出同角三角函数的基本关系式.2.理解同角三角函数的基本关系式.3.能运用同角三角函数的基本关系式进行三角函数式的化简、求值和证明.知识点 同角三角函数的基本关系式1.同角三角函数的基本关系式(1)平方关系:sin 2α+cos 2α=1.(2)商数关系:tan α=sin αcos α ⎝⎛⎭⎫α≠k π+π2,k ∈Z . 2.同角三角函数基本关系式的变形(1)sin 2α+cos 2α=1的变形公式sin 2α=1-cos 2α;cos 2α=1-sin 2α.(2)tan α=sin αcos α⎝⎛⎭⎫α≠k π+π2,k ∈Z 的变形公式 sin α=cos αtan α;cos α=sin αtan α.1.sin 2α+cos 2β=1.( × )提示 在同角三角函数的基本关系式中要注意是“同角”才成立,即sin 2α+cos 2α=1.2.sin 2θ2+cos 2θ2=1.( √ ) 提示 在sin 2α+cos 2α=1中,令α=θ2可得sin 2θ2+cos 2θ2=1. 3.对任意的角α,都有tan α=sin αcos α成立.( × ) 提示 当α=π2+k π,k ∈Z 时就不成立. 4.若cos α=0,则sin α=1.( × )题型一 利用同角三角函数的关系式求值命题角度1 已知角α的某一三角函数值及α所在象限,求角α的其余三角函数值例1 (1)若sin α=-513,且α为第四象限角,则tan α的值为( ) A.125 B .-125 C.512 D .-512考点 运用基本关系式求三角函数值题点 运用基本关系式求三角函数值答案 D解析 ∵sin α=-513,且α为第四象限角,∴cos α=1213, ∴tan α=sin αcos α=-512,故选D. (2)已知sin α+cos α=713,α∈(0,π),则tan α= . 考点 运用基本关系式求三角函数值题点 运用基本关系式求三角函数值答案 -125解析 ∵sin α+cos α=713, ∴(sin α+cos α)2=49169, 即2sin αcos α=-120169<0, 又α∈(0,π),则sin α>0,cos α<0,∴α∈⎝⎛⎭⎫π2,π,故sin α-cos α=(sin α+cos α)2-4sin αcos α=1713, 可得sin α=1213,cos α=-513,tan α=-125. 反思感悟 (1)同角三角函数的关系揭示了同角三角函数之间的基本关系,其常用的用途是“知一求二”,即在sin α,cos α,tan α三个值之间,知道其中一个可以求其余两个.解题时要注意角α的象限,从而判断三角函数值的正负.(2)已知三角函数值之间的关系式求其它三角函数值的问题,我们可利用平方关系或商数关系求解,其关键在于运用方程的思想及(sin α±cos α)2=1±2sin αcos α的等价转化,找到解决问题的突破口.跟踪训练1 已知tan α=43,且α是第三象限角,求sin α,cos α的值. 考点 运用基本关系式求三角函数值题点 运用基本关系式求三角函数值解 由tan α=sin αcos α=43,得sin α=43cos α.① 又sin 2α+cos 2α=1,②由①②得169cos 2α+cos 2α=1,即cos 2α=925. 又α是第三象限角,∴cos α=-35,sin α=43cos α=-45. 命题角度2 已知角α的某一三角函数值,未给出α所在象限,求角α的其余三角函数值例2 已知cos α=-817,求sin α,tan α的值. 考点 运用基本关系式求三角函数值题点 运用基本关系式求三角函数值解 ∵cos α=-817<0,且cos α≠-1, ∴α是第二或第三象限角.(1)当α是第二象限角时,则sin α=1-cos 2α=1-⎝⎛⎭⎫-8172=1517, tan α=sin αcos α=1517-817=-158. (2)当α是第三象限角时,则sin α=-1-cos 2α=-1517,tan α=158. 反思感悟 利用同角三角函数关系式求值时,若没有给出角α是第几象限角,则应分类讨论,先由已知三角函数的值推出α的终边可能在的象限,再分类求解.跟踪训练2 已知cos α=-45,求sin α和tan α. 考点 运用基本关系式求三角函数值题点 运用基本关系式求三角函数值解 sin 2α=1-cos 2α=1-⎝⎛⎭⎫-452=925, 因为cos α=-45<0, 所以α是第二或第三象限角,当α是第二象限角时,sin α=35, tan α=sin αcos α=-34; 当α是第三象限角时,sin α=-35, tan α=sin αcos α=34. 题型二 齐次式求值问题例3 已知tan α=2,求下列代数式的值.(1)4sin α-2cos α5cos α+3sin α;(2)14sin 2α+13sin αcos α+12cos 2α. 考点 运用基本关系式化简和证明题点 运用基本关系式化简、求值解 (1)原式=4tan α-25+3tan α=611. (2)原式=14sin 2α+13sin αcos α+12cos 2αsin 2α+cos 2α=14tan 2α+13tan α+12tan 2α+1=14×4+13×2+125=1330. 反思感悟 (1)关于sin α,cos α的齐次式,可以通过分子、分母同除以cos α或cos 2α转化为关于tan α的式子后再求值.(2)假如代数式中不含分母,可以视分母为1,灵活地进行“1”的代换,由1=sin 2α+cos 2α代换后,再同除以cos 2α,构造出关于tan α的代数式.跟踪训练3 已知sin α+cos αsin α-cos α=2,计算下列各式的值. (1)3sin α-cos α2sin α+3cos α; (2)sin 2α-2sin αcos α+1.考点 运用基本关系式化简和证明题点 运用基本关系式化简、求三角函数值解 由sin α+cos αsin α-cos α=2,化简,得sin α=3cos α, 所以tan α=3.(1)原式=3×3cos α-cos α2×3cos α+3cos α=8cos α9cos α=89. (2)原式=sin 2α-2sin αcos αsin 2α+cos 2α+1 =tan 2α-2tan αtan 2α+1+1=32-2×332+1+1=1310. 三角函数式的化简与证明典例 (1)化简:sin 2αtan α+cos 2αtan α+2sin αcos α. 考点 运用基本关系式化简和证明题点 运用基本关系式化简解 原式=sin 2α·sin αcos α+cos 2α·cos αsin α+2sin αcos α =sin 4α+cos 4α+2sin 2αcos 2αsin αcos α=(sin 2α+cos 2α)2sin αcos α=1sin αcos α. (2)求证:tan αsin αtan α-sin α=tan α+sin αtan αsin α. 考点 运用基本关系式化简和证明题点 运用基本关系式证明证明 ∵右边=tan 2α-sin 2α(tan α-sin α)tan αsin α=tan 2α-tan 2αcos 2α(tan α-sin α)tan αsin α=tan 2α(1-cos 2α)(tan α-sin α)tan αsin α =tan 2αsin 2α(tan α-sin α)tan αsin α=tan αsin αtan α-sin α=左边, ∴原等式成立.[素养评析] (1)三角函数式的化简技巧①化切为弦,即把正切函数都化为正弦、余弦函数,从而减少函数名称,达到化繁为简的目的.②对于含有根号的,常把根号里面的部分化成完全平方式,然后去根号达到化简的目的. ③对于化简含高次的三角函数式,往往借助于因式分解,或构造sin 2α+cos 2α=1,以降低函数次数,达到化简的目的.(2)证明三角恒等式的过程,实质上是化异为同的过程,证明恒等式常用以下方法: ①证明一边等于另一边,一般是由繁到简.②证明左、右两边等于同一个式子(左、右归一).③比较法:即证左边-右边=0或左边右边=1(右边≠0). ④证明与已知等式等价的另一个式子成立,从而推出原式成立.(3)掌握逻辑推理的基本形式,学会有逻辑地思考问题;形成重论据、有条理、合乎逻辑的思维品质,提升逻辑推理的数学核心素养.1.若sin α=45,且α是第二象限角,则tan α的值为( ) A .-43 B.34 C .±34 D .±43考点 运用基本关系式求三角函数值题点 运用基本关系式求三角函数值答案 A解析 ∵α为第二象限角,sin α=45, ∴cos α=-35,tan α=-43. 2.已知sin α=55,则sin 4α-cos 4α的值为( ) A .-35 B .-15 C.15 D.35考点 运用基本关系式求三角函数值题点 运用基本关系式化简、求三角函数值答案 A解析 sin 4α-cos 4α=(sin 2α+cos 2α)(sin 2α-cos 2α)=sin 2α-(1-sin 2α)=2sin 2α-1=2×⎝⎛⎭⎫552-1=-35. 3.(2018·江西上高第二中学高二期末)若α为第三象限角,则cos α1-sin 2α+2sin α1-cos 2α的值为( )A .3B .-3C .1D .-1考点 运用基本关系式化简和证明题点 运用基本关系式化简答案 B解析 ∵α为第三象限角,∴cos α<0,sin α<0,∴原式=-cos αcos α-2sin αsin α=-3. 4.已知tan x =-12,则sin 2x +3sin x cos x -1的值为( ) A.13B .2C .-2或2D .-2考点 运用基本关系式求三角函数值题点 运用基本关系式求三角函数值答案 D5.已知:tan αtan α-1=-1,则sin α-3cos αsin α+cos α= . 答案 -53解析 由已知得:tan α=12, ∴sin α-3cos αsin α+cos α=tan α-3tan α+1=-53.1.利用同角三角函数的基本关系式,可以由一个角的一个三角函数值,求出这个角的其他三角函数值.2.利用同角三角函数的关系式可以进行三角函数式的化简,结果要求:(1)项数尽量少;(2)次数尽量低;(3)分母、根式中尽量不含三角函数;(4)能求值的尽可能求值.3.在三角函数的变换求值中,已知sin α+cos α,sin αcos α,sin α-cos α中的一个,可以利用方程思想,求出另外两个的值.4.在进行三角函数式的化简或求值时,细心观察题目的特征,灵活、恰当地选用公式,统一角、统一函数、降低次数是三角函数关系式变形的出发点.利用同角三角函数的基本关系主要是统一函数,要掌握“切化弦”和“弦化切”的方法.5.在化简或恒等式证明时,注意方法的灵活运用,常用技巧:(1)“1”的代换;(2)减少三角函数名的个数(化切为弦、化弦为切等);(3)多项式运算技巧的应用(如因式分解、整体思想等);(4)对条件或结论的重新整理、变形,以便于应用同角三角函数关系来求解.一、选择题1.已知α是第二象限角,tan α=-12,则cos α等于( ) A .-55 B .-15C .-255D .-45考点 运用基本关系式求三角函数值题点 运用基本关系式求三角函数值答案 C解析 ∵α是第二象限角,∴cos α<0.又sin 2α+cos 2α=1,tan α=sin αcos α=-12,∴cos α=-255.2.下列四个结论中可能成立的是( )A .sin α=12且cos α=12B .sin α=0且cos α=-1C .tan α=1且cos α=-1D .α是第二象限角时,tan α=-sin αcos α考点 同角三角函数基本关系题点 运用基本关系式求值答案 B3.已知cos ⎝⎛⎭⎫α+π4=13,0<α<π2,则sin ⎝⎛⎭⎫α+π4等于( )A .-223 B .-23 C.23 D.223考点 运用基本关系式求值题点 运用基本关系式求值答案 D解析 ∵0<α<π2,∴π4<α+π4<3π4,∴sin ⎝⎛⎭⎫α+π4= 1-⎝⎛⎭⎫132=223.4.已知α是锐角,且tan α是方程4x 2+x -3=0的根,则sin α等于() A.45 B.35 C.25 D.15考点 同角三角函数基本关系题点 运用基本关系式求值答案 B解析 由4x 2+x -3=0得x =-1或x =34.又∵α是锐角,∴tan α>0,sin α>0, ∴tan α=34.又∵tan α=sin αcos α=34,且sin 2α+cos 2α=1,∴sin 2α+⎝⎛⎭⎫43sin α2=1,解得sin α=35.5.已知θ是第三象限角,且sin 4θ+cos 4θ=59,则sin θcos θ的值为() A.23 B .-23 C.13 D .-13考点 运用基本关系式化简、求值题点 运用基本关系式化简、求值答案 A解析 由sin 4θ+cos 4θ=59,得(sin 2θ+cos 2θ)2-2sin 2θcos 2θ=59,∴sin 2θcos 2θ=29,∵θ是第三象限角,∴sin θ<0,cos θ<0, ∴sin θcos θ=23.6.已知sin θ+cos θsin θ-cos θ=2,则sin θcos θ的值是( ) A.34 B .±310 C.310 D .-310考点 运用基本关系式化简、求值题点 运用基本关系式化简、求值答案 C解析 由条件得sin θ+cos θ=2sin θ-2cos θ, 即3cos θ=sin θ,tan θ=3,∴sin θcos θ=sin θcos θsin 2θ+cos 2θ=tan θ1+tan 2θ=31+32=310. 7.若α为第二象限角,化简tan α·1sin 2α-1等于( ) A .1 B .2 C .-1 D.12考点 运用基本关系式化简题点 运用基本关系式化简答案 C解析 tan α·1sin 2α-1=tan α·1-sin 2αsin 2α=sin αcos α·|cos α||sin α|. 因为α为第二象限的角,所以cos α<0,sin α>0,原式=sin αcos α·-cos αsin α=-1. 二、填空题8.已知tan α=-12,则1+2sin αcos αsin 2α-cos 2α= . 考点 运用基本关系式化简、求值 题点 运用基本关系式化简、求值答案 -13解析 1+2sin αcos αsin 2α-cos 2α=(sin α+cos α)2sin 2α-cos 2α=sin α+cos αsin α-cos α=tan α+1tan α-1=-12+1-12-1=12-32=-13. 9.已知α为第二象限角,则cos α·1+tan 2α+sin α·1+1tan 2α= . 考点 运用基本关系式化简题点 运用基本关系式化简答案 0解析 原式=cos αsin 2α+cos 2αcos 2α+sin αsin 2α+cos 2αsin 2α=cos α·1|cos α|+sin α·1|sin α|. 因为α是第二象限角,所以sin α>0,cos α<0,所以cos α·1|cos α|+sin α·1|sin α|=-1+1=0,即原式=0.10.(2018·九江高一检测)若sin α+cos α=2,则tan α+1tan α的值为 . 考点 运用基本关系式化简、求值题点 运用基本关系式化简、求值答案 2 11.在△ABC 中,2sin A = 3cos A ,则角A = .考点 运用基本关系式求三角函数值题点 运用基本关系式求三角函数值答案 π3解析 由题意知cos A >0,即A 为锐角.将2sin A =3cos A 两边平方得2sin 2A =3cos A .∴2cos 2A +3cos A -2=0,解得cos A =12或cos A =-2(舍去), ∴A =π3. 三、解答题12.化简:1-2sin α2cos α2+1+2sin α2cos α2⎝⎛⎭⎫0<α<π2. 考点 运用基本关系式化简和证明题点 运用基本关系式化简解 原式=sin 2α2-2sin α2cos α2+cos 2α2+sin 2α2+2sin α2cos α2+cos 2α2 =⎝⎛⎭⎫cos α2-sin α22+⎝⎛⎭⎫cos α2+sin α22=⎪⎪⎪⎪cos α2-sin α2+⎪⎪⎪⎪cos α2+sin α2. ∵α∈⎝⎛⎭⎫0,π2,∴α2∈⎝⎛⎭⎫0,π4, ∴cos α2-sin α2>0,cos α2+sin α2>0, ∴原式=cos α2-sin α2+cos α2+sin α2=2cos α2. 13.已知tan 2α=2tan 2β+1,求证:sin 2β=2sin 2α-1.考点 运用基本关系式化简和证明题点 运用基本关系式化简证明 因为tan 2α=2tan 2β+1,所以tan 2α+1=2tan 2β+2,所以sin 2αcos 2α+1=2⎝⎛⎭⎫sin 2βcos 2β+1, 所以1cos 2α=2cos 2β,即cos 2β=2cos 2α, 所以1-sin 2β=2(1-sin 2α),即sin 2β=2sin 2α-1.14.若sin α+cos α=1,则sin n α+cos n α(n ∈N *)的值为 . 考点 运用基本关系式求三角函数值题点 运用基本关系式求三角函数值答案 1解析 ∵sin α+cos α=1,∴(sin α+cos α)2=1,又sin 2α+cos 2α=1,∴sin αcos α=0,∴sin α=0或cos α=0.当sin α=0时,cos α=1,此时有sin n α+cos n α=1;当cos α=0时,sin α=1,也有sin n α+cos n α=1,∴sin n α+cos n α=1.15.已知sin α,cos α为方程4x 2-4mx +2m -1=0的两个实根,α∈⎝⎛⎭⎫-π2,0,求m 及α的值.考点 运用基本关系式求三角函数值 题点 运用基本关系式求三角函数值 解 因为sin α,cos α为方程4x 2-4mx +2m -1=0的两个实根, 所以Δ=16(m 2-2m +1)≥0且sin α+cos α=m ,sin αcos α=2m -14. 代入(sin α+cos α)2=1+2sin αcos α,解得m =1±32. 又因为α∈⎝⎛⎭⎫-π2,0, 所以sin α·cos α=2m -14<0,m <12, 所以sin α+cos α=m =1-32, 所以sin α=-32,cos α=12. 又因为α∈⎝⎛⎭⎫-π2,0,所以α=-π3. 所以m =1-32,α=-π3.。

同角三角函数的基本关系

同角三角函数的基本关系
1.2.2同角三角函 同角三角函 数的基本关系
复习引入
y 你能根据圆的几何性质,讨论一下 你能根据圆的几何性质, x
ห้องสมุดไป่ตู้
同一个角的不同三角函数关系。 同一个角的不同三角函数关系。
y ? sinα=MP x Cosα=OM Tan α =AT
y
α
T α的终边
P(x , y)
A(1,0)
M
O
x
复习引入
想一想
你能根据三角函数的定义推导 出同一个角α的三个三角函数之间 有一些什么关系? 有一些什么关系
讲授新课
同角三角函数基本关系式: 同角三角函数基本关系式 (1) 平方关系: 平方关系:
sin α + cos α =1
2 2
讲授新课
同角三角函数基本关系式: 同角三角函数基本关系式 (2) 商数关系: 商数关系:
sinα tanα = cosα
注意
注意“同角” 至于角的形式无关重要, ⑴ 注意“同角”,至于角的形式无关重要, 如sin24α+cos24α=1等. 等 ⑵注意这些关系式都是对于使它们有意义 的角而言的. 的角而言的 对这些关系式不仅要牢固掌握, ⑶ 对这些关系式不仅要牢固掌握,还要 能灵活运用(正用、反用、变形用), 能灵活运用(正用、反用、变形用),
方法小结: 方法小结: (3) 比较法 比较法:
左边 即 明: 左 −右 = 0 或 证 边 边 =1. 右边
将原等式转化为与其等价的式子加以 证明. 证明.
(4) 变式证明法: 变式证明法:
(5) 分析法. 分析法.
练习
小 结:
1. 整体代换 整体代换; 2. “1”的活用 的活用; 的活用 3. 正切化弦 正切化弦.

同角三角函数间的基本关系式总结

同角三角函数间的基本关系式总结

同角三角函数间的基本关系式总结·平方关系:sin^2(α)+cos^2(α)=1tan^2(α)+1=sec^2(α)cot^2(α)+1=csc^2(α)·积的关系:sinα=tanα*cosαcosα=cotα*sinαtanα=sinα*secαcotα=cosα*cscαsecα=tanα*cscαcscα=secα*cotα·倒数关系:tanα·cotα=1sinα·cscα=1cosα·secα=1直角三角形ABC中,角A的正弦值就等于角A的对边比斜边,余弦等于角A的邻边比斜边正切等于对边比邻边,·三角函数恒等变形公式·两角和与差的三角函数:cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·ta nβ)·三角和的三角函数:sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·ta nγ-tanγ·tanα)·辅助角公式:Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)tant=B/AAsinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B·倍角公式:sin(2α)=2sinα·cosα=2/(tanα+cotα)cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)tan(2α)=2tanα/[1-tan^2(α)]·三倍角公式:sin(3α)=3sinα-4sin^3(α)cos(3α)=4cos^3(α)-3cosα·半角公式:sin(α/2)=±√((1-cosα)/2)cos(α/2)=±√((1+cosα)/2)tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα·降幂公式sin^2(α)=(1-cos(2α))/2=versin(2α)/2cos^2(α)=(1+cos(2α))/2=covers(2α)/2tan^2(α)=(1-cos(2α))/(1+cos(2α))·万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]·积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]·和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]·推导公式tanα+cotα=2/sin2αtanα-cotα=-2cot2α1+cos2α=2cos^2α1-cos2α=2sin^2α1+sinα=(sinα/2+cosα/2)^2·其他:sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0cosx+cos2x+...+cosnx= [sin(n+1)x+sinnx-sinx]/2sinx证明:左边=2sinx(cosx+cos2x+...+cosnx)/2sinx=[sin2x-0+sin3x-sinx+sin4x-sin2x+...+sinnx-sin(n-2)x+sin(n+1)x-sin(n-1)x]/2sinx (积化和差)=[sin(n+1)x+sinnx-sinx]/2sinx=右边等式得证sinx+sin2x+...+sinnx= - [cos(n+1)x+cosnx-cosx-1]/2sinx证明:左边=-2sinx[sinx+sin2x+...+sinnx]/(-2sinx)=[cos2x-cos0+cos3x-cosx+...+cosnx-cos(n-2)x+cos(n+1)x-cos(n-1)x]/(-2sinx) =- [cos(n+1)x+cosnx-cosx-1]/2sinx=右边等式得证三角函数角度换算公式总结公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)高二数学公式总结向量公式:1.单位向量:单位向量a0=向量a/|向量a|2.P(x,y) 那么向量OP=x向量i+y向量j|向量OP|=根号(x平方+y平方)3.P1(x1,y1) P2(x2,y2)那么向量P1P2={x2-x1,y2-y1}|向量P1P2|=根号[(x2-x1)平方+(y2-y1)平方]4.向量a={x1,x2}向量b={x2,y2}向量a*向量b=|向量a|*|向量b|*Cosα=x1x2+y1y2Cosα=向量a*向量b/|向量a|*|向量b|(x1x2+y1y2)= ————————————————————根号(x1平方+y1平方)*根号(x2平方+y2平方)5.空间向量:同上推论(提示:向量a={x,y,z})6.充要条件:如果向量a⊥向量b那么向量a*向量b=0如果向量a//向量b那么向量a*向量b=±|向量a|*|向量b|或者x1/x2=y1/y27.|向量a±向量b|平方=|向量a|平方+|向量b|平方±2向量a*向量b=(向量a±向量b)平方三角函数公式:1.万能公式令tan(a/2)=tsina=2t/(1+t^2)cosa=(1-t^2)/(1+t^2)tana=2t/(1-t^2)2.辅助角公式asint+bcost=(a^2+b^2)^(1/2)sin(t+r) cosr=a/[(a^2+b^2)^(1/2)]sinr=b/[(a^2+b^2)^(1/2)]tanr=b/a3.三倍角公式sin(3a)=3sina-4(sina)^3cos(3a)=4(cosa)^3-3cosatan(3a)=[3tana-(tana)^3]/[1-3(tana^2)]4.积化和差sina*cosb=[sin(a+b)+sin(a-b)]/2cosa*sinb=[sin(a+b)-sin(a-b)]/2cosa*cosb=[cos(a+b)+cos(a-b)]/2sina*sinb=-[cos(a+b)-cos(a-b)]/25.积化和差sina+sinb=2sin[(a+b)/2]cos[(a-b)/2] sina-sinb=2sin[(a-b)/2]cos[(a+b)/2] cosa+cosb=2cos[(a+b)/2]cos[(a-b)/2] cosa-cosb=-2sin[(a+b)/2]sin[(a-b)/2]。

同角三角函数的基本关系式

同角三角函数的基本关系式

同角三角函数的基本关系式 倒数关系: 商的关系: 平方关系:

tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1 sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα sin2α+cos2α=1 1+tan2α=sec2α 1+cot2α=csc2α

诱导公式 sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα

sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα

sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα

sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα

sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα (其中k∈Z)

两角和与差的三角函数公式 万能公式 sin(α+β)=sinαcosβ+cosαsinβ sin(α-β)=sinαcosβ-cosαsinβ cos(α+β)=cosαcosβ-sinαsinβ cos(α-β)=cosαcosβ+sinαsinβ

§1 同角三角函数的基本关系

§1  同角三角函数的基本关系

1.同角三角函数之间的基本关系式sin2α+cos2α= ,tan α= .同角三角函数之间的基本关系式 + = 1 = 2.三角函数的诱导公式 . 组数 角 正弦 余弦 正切 口诀 一 2kπ+α(k∈Z) k + k sin α cosα tanα 二 π+α + -sinα -cosα tanα 三 -α -sinα cosα -tanα 四 π-α - sinα -cosα -tanα 五 -α cosα sinα cotα
4.证明三角恒等式的常用方法为:(1)从一边开始证得它等于另一边,一般 .证明三角恒等式的常用方法为: 从一边开始证得它等于另一边, 从一边开始证得它等于另一边 由繁到简; 证明左 右两边都等于同一个式子或值. 证明左、 由繁到简;(2)证明左、右两边都等于同一个式子或值. 5.学会利用方程思想解三角函数题,对sin α+cos α,sin α·cos α, .学会利用方程思想解三角函数题, + , , sin α-cos α这三个式子,已知其中一个式子的值,其余两式的值都可以求出. 这三个式子, - 这三个式子 已知其中一个式子的值,其余两式的值都可以求出. 设sin α+cos α=t,t∈[ + =,∈ sin αcos α= = ],两边平方,得1+2sin αcos α=t2⇒ ,两边平方, + = .
(3)sin α + 2sinα cosα − cos α
2 2
提示:sin α + cos α = 1
2 2
3.范例分析
例7.化简 1 − cos 620
2
o
3.范例分析
cos α 1 + sin α 例 8.求 证 = 1 − s in α cos α
【规律方法总结】 规律方法总结】

同角三角函数的基本关系与诱导公式

同角三角函数的基本关系与诱导公式

第二节 同角三角函数的基本关系与诱导公式1.理解同角三角函数的基本关系式:sin 2x +cos 2x =1,sin xcos x =tan x .2.能利用单位圆中的三角函数线推导出π2±α,π±α的正弦、余弦、正切的诱导公式.突破点一 同角三角函数的基本关系[基本知识]1.同角三角函数的基本关系(1)平方关系:sin 2α+cos 2α=1(α∈R). (2)商数关系:tan α=sin αcos α⎝⎛⎭⎫α≠k π+π2,k ∈Z .2.同角三角函数基本关系式的应用技巧一、判断题(对的打“√”,错的打“×”) (1)若α,β为锐角,则sin 2α+cos 2β=1.( ) (2)若α∈R ,则tan α=sin αcos α恒成立.( )答案:(1)× (2)× 二、填空题1.已知α∈⎝⎛⎭⎫π2,π,sin α=35,则tan α=________. 解析:∵α∈⎝⎛⎭⎫π2,π,sin α=35,∴cos α=-45,于是tan α=-34. 答案:-342.已知tan α=2,则sin α+cos αsin α-cos α的值为________.解析:原式=tan α+1tan α-1=2+12-1=3.答案:3[全析考法]考法一 知弦求弦、切或知切求弦利用同角三角函数的基本关系求解问题的关键是熟练掌握同角三角函数的基本关系的正用、逆用、变形.同角三角函数的基本关系本身是恒等式,也可以看作是方程,对于一些题,可利用已知条件,结合同角三角函数的基本关系列方程组,通过解方程组达到解决问题的目的.[例1] (1)(2019·成都龙泉中学月考)设cos(-80°)=k ,那么tan 100°等于( ) A.1-k 2k B .-1-k 2k C.k1-k 2D .-k1-k 2(2)(2019·甘肃诊断)已知tan x =43,且角x 的终边落在第三象限,则cos x =( )A.45 B .-45C.35D .-35[解析] (1)∵cos(-80°)=cos 80°=k ,∴sin 80°=1-cos 280°=1-k 2, ∴tan 100°=-tan 80°=-1-k 2k .故选B. (2)因为角x 的终边落在第三象限,所以cos x <0,因为tan x =43,所以⎩⎪⎨⎪⎧sin 2x +cos 2x =1,sin x cos x =43,cos x <0,解得cos x =-35,故选D.[答案] (1)B (2)D [易错提醒]知弦求弦、切或知切求弦时要注意判断角所在的象限,不要弄错切、弦的符号.考法二 知切求f (sin α、cos α)的值[例2] (2019·保定三校联考)已知tan(3π+α)=3,则3sin α-cos α2sin α+3cos α=( )A.13B.89C.23D .2[解析] ∵tan(3π+α)=3,∴tan α=3,∴3sin α-cos α2sin α+3cos α=3tan α-12tan α+3=3×3-12×3+3=89.故选B.[答案] B [方法技巧]利用“切弦互化”的技巧 (1)弦化切:把正弦、余弦化成切的结构形式,统一为“切”的表达式,进行求值.常见的结构有: ①sin α,cos α的二次齐次式(如a sin 2α+b sin αcos α+c cos 2α)的问题常采用“切”代换法求解; ②sin α,cos α的齐次分式⎝ ⎛⎭⎪⎫如a sin α+b cos αc sin α+d cos α的问题常采用分式的基本性质进行变形.(2)切化弦:利用公式tan α=sin αcos α,把式子中的切化成弦.一般单独出现正切、余切的时候,采用此技巧.考法三 sin α±cos α与sin αcos α关系的应用[例3] (1)已知sin αcos α=38,且π4<α<π2,则cos α-sin α的值为( )A.12 B .±12C .-14D .-12(2)已知-π2<α<0,sin α+cos α=15,则1cos 2α-sin 2α=( )A.75 B.257 C.725D.2425[解析] (1)因为sin αcos α=38,所以(cos α-sin α)2=cos 2α-2sin αcos α+sin 2α =1-2sin αcos α=1-2×38=14,因为π4<α<π2,所以cos α<sin α,即cos α-sin α<0, 所以cos α-sin α=-12.(2)∵sin α+cos α=15,∴1+2sin αcos α=125, ∴2sin αcos α=-2425,(cos α-sin α)2=1+2425=4925. 又∵-π2<α<0,∴cos α>0>sin α,∴cos α-sin α=75,∴1cos 2α-sin 2α=1(cos α+sin α)(cos α-sin α)=115×75=257. [答案] (1)D (2)B [方法技巧]正弦、余弦“sin α±cos α,sin α·cos α”的应用sin α±cos α与sin α·cos α通过平方关系联系到一起,即(sin α±cos α)2=1±2sin αcos α,sin αcos α=(sin α+cos α)2-12,sin αcos α=1-(sin α-cos α)22.因此在解题中已知1个可求另外2个.[集训冲关]1.[考法一]已知α∈(0,π),cos α=-35,则tan α=( )A.34 B .-34C.43D .-43解析:选D ∵cos α=-35且α∈(0,π),∴sin α=1-cos 2α=45,∴tan α=sin αcos α=-43.故选D. 2.[考法三]已知sin α+cos α=13,则sin αcos α的值为________.解析:∵sin α+cos α=13,∴(sin α+cos α)2=sin 2α+cos 2α+2sin αcos α=1+2sin αcos α=19,解得sin αcos α=-49.答案:-493.[考法二]已知tan α=-43,求:(1)sin α-4cos α5sin α+2cos α的值; (2)1cos 2α-sin 2α的值; (3)sin 2α+2sin αcos α的值.解:(1)sin α-4cos α5sin α+2cos α=tan α-45tan α+2=-43-45×⎝⎛⎭⎫-43+2=87.(2)1cos 2α-sin 2α=sin 2α+cos 2αcos 2α-sin 2α=sin 2α+cos 2αcos 2αcos 2α-sin 2αcos 2α=tan 2α+11-tan 2α=⎝⎛⎭⎫-432+11-⎝⎛⎭⎫-432=-257.(3)sin 2α+2sin αcos α=sin 2α+2sin αcos αsin 2α+cos 2α=tan 2α+2tan αtan 2α+1=169-83169+1=-825.突破点二 三角函数的诱导公式[基本知识]一、判断题(对的打“√”,错的打“×”)(1)sin(π+α)=-sin α成立的条件是α为锐角.( )(2)诱导公式的记忆口诀中“奇变偶不变,符号看象限”,其中的奇、偶是指π2的奇数倍、偶数倍,变与不变指函数名称是否变化.( ) 答案:(1)× (2)√ 二、填空题1.已知cos(π+α)=-35,则sin ⎝⎛⎭⎫3π2+α等于________. 解析:cos(π+α)=-cos α=-35,则cos α=35,sin ⎝⎛⎭⎫3π2+α=-sin ⎝⎛⎭⎫π2+α=-cos α=-35. 答案:-352.已知sin ⎝⎛⎭⎫α+π6=45,则sin ⎝⎛⎭⎫α+7π6等于________. 解析:sin ⎝⎛⎭⎫α+7π6=sin ⎣⎡⎦⎤⎝⎛⎭⎫α+π6+π=-sin ⎝⎛⎭⎫α+π6=-45. 答案:-453.已知tan ⎝⎛⎭⎫π6-α=33,则tan ⎝⎛⎭⎫5π6+α=________. 解析:tan ⎝⎛⎭⎫5π6+α=tan ⎝⎛⎭⎫π-π6+α=tan [ π-( π6-α ) ] =-tan ⎝⎛⎭⎫π6-α=-33. 答案:-331.利用诱导公式把任意角的三角函数转化为锐角三角函数的步骤也就是:“负化正,大化小,化到锐角为终了.” 2.利用诱导公式化简三角函数的要求 (1)化简过程是恒等变形;(2)结果要求项数尽可能少,次数尽可能低,结构尽可能简单,能求值的要求出值.[典例感悟](2019·武威六中第一次阶段性检测)已知f (α)=⎣⎡⎦⎤sin ⎝⎛⎭⎫π2-αtan (π+α)-cos (π-α)2-14sin ⎝⎛⎭⎫3π2+α+cos (π-α)+cos (2π-α).(1)化简f (α);(2)若-π3<α<π3,且f (α)<14,求α的取值范围.解:(1)f (α)=(cos αtan α+cos α)2-1-4cos α-cos α+cos α=(sin α+cos α)2-1-4cos α=2sin αcos α-4cos α=-12sin α.(2)由已知得-12sin α<14,∴sin α>-12,∴2k π-π6<α<2k π+7π6,k ∈Z.∵-π3<α<π3,∴-π6<α<π3.故α的取值范围为⎝⎛⎭⎫-π6,π3. [方法技巧]应用诱导公式化简求值的常见问题及注意事项(1)已知角求值问题.关键是利用诱导公式把任意角的三角函数值转化为锐角的三角函数值求解.转化过程中注意口诀“奇变偶不变,符号看象限”的应用.(2)对给定的式子进行化简或求值问题.要注意给定的角之间存在的特定关系,充分利用给定的关系结合诱导公式将角进行转化.特别要注意每一个角所在的象限,防止符号及三角函数名出错.[针对训练]1.(2018·玉林陆川中学期中)sin 570°的值是( ) A .-12B.12C.32D .-32解析:选A sin 570°=sin(720°-150°)=-sin 150°=-12.故选A.2.(2019·湖北八校联考)已知sin(π+α)=-13,则tan ⎝⎛⎭⎫π2-α=( ) A .2 2 B .-2 2 C.24D .±2 2解析:选D ∵sin(π+α)=-13,∴sin α=13,∴tan ⎝⎛⎭⎫π2-α=cos αsin α=±22,故选D. 3.(2019·南充模拟)设f (x )=a sin(πx +α)+b cos(πx +β),其中a ,b ,α,β都是非零实数.若f (2 019)=-1, 则f (2 020)=( ) A .1 B .2 C .0D .-1解析:选A ∵f (2 019)=a sin(2 019π+α)+b cos(2 019π+β)=-a sin α-b cos β=-1,∴a sin α+b cos β=1,∴f (2 020)=a sin(2 020π+α)+b cos(2 020π+β)=a sin α+b cos β=1.故选A. 4.化简:sin 2(α+π)·cos (π+α)·cos (-α-2π)tan (π+α)·sin 3⎝⎛⎭⎫π2+α·sin (-α-2π)=________.解析:原式=sin 2α·(-cos α)·cos αtan α·cos 3α·(-sin α)=sin 2αcos 2αsin 2αcos 2α=1.答案:1 [课时跟踪检测][A 级 基础题——基稳才能楼高]1.(2019·新疆普通高中学业水平考试)已知x ∈⎝⎛⎭⎫-π2,0,cos x =45,则tan x 的值为( ) A.34 B .-34C.43D .-43解析:选B 因为x ∈⎝⎛⎭⎫-π2,0,所以sin x =-1-cos 2x =-35, 所以tan x =sin x cos x =-34.故选B.2.(2019·淮南十校联考)已知sin ⎝⎛⎭⎫α-π3=13,则cos ⎝⎛⎭⎫α+π6的值是( ) A .-13B.13C.223D .-223解析:选A ∵sin ⎝⎛⎭⎫α-π3=13,∴cos ⎝⎛⎭⎫α+π6=cos ⎣⎡⎦⎤π2+⎝⎛⎭⎫α-π3=-sin ⎝⎛⎭⎫α-π3=-13,故选A. 3.(2019·重庆一模)log 2⎝⎛⎭⎫cos 7π4的值为( ) A .-1 B .-12C.12D.22解析:选B log 2⎝⎛⎭⎫cos 7π4=log 2⎝⎛⎭⎫cos π4=log 222=-12.故选B. 4.(2019·遵义模拟)若sin ⎝⎛⎭⎫π2+α=-35,且α∈( π2,π ),则sin(π-2α)=( ) A .-2425B .-1225C.1225D.2425解析:选A ∵sin ⎝⎛⎭⎫π2+α=cos α=-35,α∈⎝⎛⎭⎫π2,π,∴sin α=45,∴sin(π-2α)=sin 2α=2sin αcos α=2×45×⎝⎛⎭⎫-35=-2425.故选A. 5.(2019·沈阳模拟)若1+cos αsin α=2,则cos α-3sin α=( )A .-3B .3C .-95D.95解析:选C ∵1+cos αsin α=2,∴cos α=2sin α-1,又sin 2α+cos 2α=1,∴sin 2α+(2sin α-1)2=1,5sin 2α-4sin α=0,解得sin α=45或sin α=0(舍去),∴cos α-3sin α=-sin α-1=-95.故选C.6.(2019·庄河高中期中)已知sin ⎝⎛⎭⎫α-π12=13,则cos ⎝⎛⎭⎫α+17π12等于( ) A.13 B.223 C .-13D .-223解析:选A cos ⎝⎛⎭⎫α+17π12=cos ⎣⎡⎦⎤3π2+⎝⎛⎭⎫α-π12=sin ⎝⎛⎭⎫α-π12=13.故选A. [B 级 保分题——准做快做达标]1.(2019·宝鸡金台区质检)已知sin 2α=23,则tan α+1tan α=( )A. 3B. 2 C .3D .2解析:选C tan α+1tan α=sin αcos α+cos αsin α=1sin αcos α=2sin 2α=223=3.故选C.2.(2019·常德一中月考)已知α∈R ,sin α+2cos α=102,则tan 2α=( ) A.43 B.34 C .-34D .-43解析:选C 因为sin α+2cos α=102,sin 2α+cos 2α=1,解得⎩⎨⎧sin α=31010,cos α=1010或⎩⎨⎧sin α=-1010,cos α=31010.所以tan α=3或-13.所以tan 2α=2tan α1-tan 2α=2×31-32=-34或tan 2α=2tan α1-tan 2α=2×⎝⎛⎭⎫-131-⎝⎛⎭⎫-132=-34.故选C.3.(2019·株洲醴陵二中、四中期中联考)已知2sin α-cos α=0,则sin 2α-2sin αcos α的值为( ) A .-35B .-125C.35D.125解析:选A 由已知2sin α-cos α=0得tan α=12,所以sin 2α-2sin αcos α=sin 2α-2sin αcos αsin 2α+cos 2α=tan 2α-2tan αtan 2α+1=-35.故选A.4.(2019·大庆四地六校调研)若α是三角形的一个内角,且sin ⎝⎛⎭⎫π2+α+cos ⎝⎛⎭⎫3π2+α=15,则tan α的值是( ) A .-43B .-34C .-43或-34D .不存在解析:选A 由sin ⎝⎛⎭⎫π2+α+cos ⎝⎛⎭⎫3π2+α=15,得cos α+sin α=15,∴2sin αcos α=-2425<0.∵α∈(0,π), ∴α∈⎝⎛⎭⎫π2,π,∴sin α-cos α=1-2sin αcos α=75,∴sin α=45,cos α=-35,∴tan α=-43,故选A.115.(2019·平顶山、许昌联考)已知sin α+3cos α3cos α-sin α=5,则cos 2α+12sin 2α的值是( )A.35 B .-35C .-3D .3解析:选A 由sin α+3cos α3cos α-sin α=5,得tan α+33-tan α=5,解得tan α=2,∴cos 2α+12sin 2α=cos 2α+sin αcos αsin 2α+cos 2α=1+tan αtan 2α+1=1+222+1=35. 6.(2019·河南中原名校联考)已知θ为第二象限角,sin θ,cos θ是关于x 的方程2x 2+(3-1)x +m =0(m ∈R)的两根,则sin θ-cos θ=( ) A.1-32B.1+32C. 3D .- 3解析:选B ∵sin θ,cos θ是方程2x 2+(3-1)x +m =0(m ∈R)的两根,∴sin θ+cos θ=1-32,sin θ·cos θ=m 2,可得(sin θ+cos θ)2=1+2sin θ·cos θ=1+m =2-32,解得m =-32.∵θ为第二象限角,∴sin θ>0,cos θ<0,即sin θ-cos θ>0,∵(sin θ-cos θ)2=1-2sin θ·cos θ=1-m =1+32,∴sin θ-cos θ=1+32=1+32,故选B.7.(2018·全国卷Ⅰ)已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点A (1,a ), B (2,b ),且cos 2α=23,则|a -b |=( )A.15B.55C.255D .1解析:选B 由cos 2α=23,得cos 2α-sin 2α=23,∴cos 2α-sin 2αcos 2α+sin 2α=23,即1-tan 2α1+tan 2α=23,∴tan α=±55,即b -a 2-1=±55,∴|a -b |=55.故选B.8.(2019·武邑中学调研)已知sin α=13,0<α<π,则sin α2+cos α2=________.解析:⎝⎛⎭⎫sin α2+cos α22=1+sin α=43,又0<α<π,∴sin α2+cos α2>0,∴sin α2+cos α2=233. 答案:2339.(2019·广西桂林等五市联考)已知sin θ+cos θ=15,θ∈⎝⎛⎭⎫π2,π,则tan θ=________.解析:∵sin θ+cos θ=15,∴(sin θ+cos θ)2=sin 2θ+cos 2θ+2sin θcos θ=1+2sin θcos θ=125,∴sin θcos θ=-1225,又π2<θ<π,∴sin θ-cos θ>0,∴(sin θ-cos θ)2=sin 2θ+cos 2θ-2sin θcos θ=1-2sin θcos θ=4925,∴sin θ-cos θ=75, 由⎩⎨⎧sin θ+cos θ=15,sin θ-cos θ=75,解得⎩⎨⎧sin θ=45,cos θ=-35.∴tan θ=sin θcos θ=-43. 答案:-4310.(2019·浙江名校协作体检测)已知sin ⎝⎛⎭⎫-π2-α·cos ⎝⎛⎭⎫-7π2+α=1225,且0<α<π4,则sin α=________, cos α=________.解析:sin ⎝⎛⎭⎫-π2-αcos ⎝⎛⎭⎫-7π2+α=-cos α(-sin α)=sin αcos α=1225.又∵0<α<π4, ∴0<sin α<cos α.解⎩⎪⎨⎪⎧sin αcos α=1225,sin 2α+cos 2α=1,得sin α=35,cos α=45.答案:35 4511.(2019·惠安惠南中学月考)已知cos α-sin α=5213,α∈⎝⎛⎭⎫0,π4. (1)求sin αcos α的值;(2)求sin ⎝⎛⎭⎫π2-2αcos ⎝⎛⎭⎫π4+α的值.解:(1)∵cos α-sin α=5213,α∈⎝⎛⎭⎫0,π4, 平方可得1-2sin αcos α=50169,∴sin αcos α=119338. (2)sin α+cos α=(sin α+cos α)2=1+2sin αcos α=12213, ∴原式=cos 2αcos ⎝⎛⎭⎫π4+α=(cos α-sin α)·(cos α+sin α)22(cos α-sin α)=2(cos α+sin α)=2413.12.在△ABC 中,(1)求证:cos 2A +B 2+cos 2C2=1;(2)若cos ⎝⎛⎭⎫π2+A sin ⎝⎛⎭⎫3π2+B tan(C -π)<0,求证:△ABC 为钝角三角形.证明:(1)在△ABC 中,A +B =π-C ,所以A +B 2=π2-C2, 所以cos A +B 2=cos ⎝⎛⎭⎫π2-C 2=sin C2, 所以cos 2A +B 2+cos 2C2=1.(2)因为cos ⎝⎛⎭⎫π2+A sin ⎝⎛⎭⎫3π2+B tan(C -π)<0, 所以(-sin A )(-cos B )tan C <0, 即sin A cos B tan C <0.因为在△ABC 中,0<A <π,0<B <π,0<C <π且sin A >0,所以⎩⎪⎨⎪⎧ cos B <0,tan C >0或⎩⎪⎨⎪⎧cos B >0,tan C <0,所以B 为钝角或C 为钝角,所以△ABC 为钝角三角形.。

三角函数的基本关系式

三角函数的基本关系式

同角三角函数的基本关系式倒数关系: 商的关系:平方关系:tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1 sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secαsin2α+cos2α=11+tan2α=sec2α1+cot2α=csc2α诱导公式sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotαsin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotαsin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα(其中k∈Z)两角和与差的三角函数公式万能公式sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβtanα+tanβtan(α+β)=——————1-tanα ·tanβtanα-tanβtan(α-β)=——————1+tanα ·tanβ 2tan(α/2) sinα=—————— 1+tan2(α/2)1-tan2(α/2) cosα=—————— 1+tan2(α/2)2tan(α/2) tanα=—————— 1-tan2(α/2)半角的正弦、余弦和正切公式三角函数的降幂公式二倍角的正弦、余弦和正切公式三倍角的正弦、余弦和正切公式sin2α=2sinαcosαcos2α=cos2α-sin2α=2cos2α-1=1-2sin2α2tanαtan2α=—————1-tan2αsin3α=3sinα-4sin3αcos3α=4cos3α-3cosα3tanα-tan3αtan3α=—————— 1-3tan2α三角函数的和差化积公式三角函数的积化和差公式α+βα-βsinα+sinβ=2sin—--·cos—-— 2 2α+βα-βsinα-sinβ=2cos—--·sin—-— 2 2α+βα-βcosα+cosβ=2cos—--·cos—-— 2 2α+βα-βcosα-cosβ=-2sin—--·sin—-— 2 2 1sinα ·cosβ=-[sin(α+β)+sin(α-β)]21cosα ·sinβ=-[sin(α+β)-sin(α-β)]21cosα ·cosβ=-[cos(α+β)+cos(α-β)]21sinα ·sinβ=- -[cos(α+β)-cos(α-β)] 2化asinα ±bcosα为一个角的一个三角函数的形式(辅助角的三角函数的公式)三角形全等的判定1.SSS 两个三角形三边对应相等(边边边)2.AAS 就是两个三角形的两个角对应相等,其中一角所对的边对应相等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角函数的同角关系公式
引言
三角函数是数学中非常重要的一组函数,它们描述了角度和三角形之间的关系。

在三角函数中,同角关系公式是一条非常重要的公式,它能够将不同的三角函数互相转化,为求解各种三角函数的值提供了便利。

本文将围绕同角关系公式展开讨论,并深入探究其应用。

同角关系公式的定义
在三角函数中,同角关系公式是指一组将不同的三角函数相互表示的公式。

在解决实际问题时,我们常常会遇到需要求解不同三角函数的值的情况,而同角关系公式能够帮助我们将一个三角函数的值转化为另一个三角函数的值,从而简化计算。

同角关系公式的基本形式如下:
1.正弦函数的同角关系公式:
s i n(-θ)=-s in(θ)
2.余弦函数的同角关系公式:
c o s(-θ)=co s(θ)
3.正切函数的同角关系公式:
t a n(-θ)=-t an(θ)
4.余切函数的同角关系公式:
c o t(-θ)=-c ot(θ)
5.正割函数的同角关系公式:
s e c(-θ)=se c(θ)
6.余割函数的同角关系公式:
c s c(-θ)=-c sc(θ)
同角关系公式的推导和证明
同角关系公式可以通过单位圆的性质和三角函数的定义来推导和证明。

这里我们以正弦函数的同角关系公式为例进行说明。

考虑一个半径为1的单位圆,以原点为圆心。

取一个顺时针旋转的角
度θ(弧度制),则θ所对应的弧长为θ,并且在单位圆上取得了一个
点P(x,y)。

根据正弦函数的定义,我们有:
s i n(θ)=y
接下来,我们考虑一个逆时针旋转的角度-θ,则其对应的弧长也为
θ,并且在单位圆上取得了一个点Q(-x,y)。

根据正弦函数的定义,我
们有:
s i n(-θ)=y
由于点P和点Q的纵坐标相同,所以有s in(-θ)=s in(θ)。

根据同
理可得证明余弦函数、正切函数、余切函数、正割函数和余割函数的同角
关系公式。

同角关系公式的应用
同角关系公式在解决实际问题中具有广泛的应用。

以正弦函数的同角
关系公式为例,我们可以利用该公式来简化计算、求解未知数等。

例如,我们需要计算s in(-π/3)的值。

通过同角关系公式,我们可
以将该问题转化为si n(π/3)的计算,由于π/3所对应的角度在单位圆
上对应的点恰好是一个等边三角形的顶点,因此s in(π/3)的值是√3/2。

又根据正弦函数的同角关系公式,我们知道si n(-π/3)的值也是√3/2。

同样地,利用同角关系公式,我们可以在解决三角函数的值、方程、
不等式等问题时,将复杂的计算转化为简单而直观的计算,大大提高了计
算的效率和准确性。

结论
同角关系公式是描述三角函数之间互相转化的重要工具,它能够帮助
我们将不同三角函数的值互相转化,简化计算并提高解题效率。

通过深入
理解同角关系公式的定义、推导和应用,我们可以更好地应用三角函数解
决实际问题,并进一步扩展和应用数学的相关知识。

以上就是关于三角函数的同角关系公式的详细介绍,希望能对读者有所帮助。

参考文献
-[1]王恺.(2011).《高等数学》.北京:高等教育出版社.
-
[2]S te wa rt,J.(2007).Ca lc ul us:E arl y Tr an sc en de nt als.(6th ed. ).Be lm on t,CA:T hom s on Hi gh er Ed uc ati o n.。

相关文档
最新文档