GB∕T 1239.6-1992 圆柱螺旋弹簧设计计算(第44页)

GB∕T 1239.6-1992 圆柱螺旋弹簧设计计算(第44页)

弹簧设计规范(全)

精心整理 弹簧设计规范 一、弹簧的功能 弹簧是一种弹性元件,由于材料的弹性和弹簧的结构特点,它具有多次重复地随外栽荷的大小而做相应的弹性变形,卸载后立即恢复原状的特性。很多机械正是利用弹簧的这一特点来满足特殊要求的。其主要功能有: ⑴、减振和缓冲,如车辆的悬挂弹簧,各种缓冲器和弹性联轴器中的弹簧等。 ⑵、测力,如测力器和弹簧秤的弹簧等。 ⑶、储存及输出能量,如钟表弹簧,枪栓弹簧,仪表和自动控制机构上的原动弹簧等。 计算方法。

三、弹簧使用的材料及其用途 弹簧钢的的主要性能要求是高强度和高屈服极限和疲劳极限,所以弹簧钢材用较高的含碳量。但是碳素钢的淬透性较差,所以在对于截面较大的弹簧必须使用合金钢。合金弹簧钢中的主要合金元素是硅和锰,他们可以增强钢的淬透性和屈强比。 弹簧材料使用最广者是弹簧钢(SUP)。碳素钢用于直径较小的弹簧,工艺多为冷拔成型,如:65#,75#,85#。直径稍大,需用热成型工艺生产的弹簧多采用60Si2Mn,如汽车板簧,铁路车辆的缓冲簧。对于高应力的重要弹簧可采用50CrV,常用于高级轿车板簧,发动机气门弹簧等。其他弹簧钢材料还有:65Mn,50CrMn,30W4Cr2V等。 a、碳钢及合金钢:制造弹簧时,常加矽、锰、铬、钒及钼等金属元素于钢中,以增加弹簧之弹性及疲劳限度,且使其耐冲击。 因此要求弹簧材料具有较高的抗拉强度极限、弹性极限和疲劳强度极限,不易松弛。同时要求有较高的冲击韧性,良好的热处理性能等。常见的弹簧材料有优质碳素钢、合金钢和铜合金。几种主要弹簧材料的使用性能和许用应力见表2。

106 D

弹簧定数不清:kTd=(Ed4)/[3667D×N+389(a1+a2)] 荷重:P=(kTd×φd)/R 弯曲应力:σ=(Ed×φd)/(360D×N) σ=(32P×R)/(πd3)×kb (安全确认):kb=(4C2–C-1)/[4C(C-1)] 弯曲应力:容许限界以下 4.1、弹簧设计使用的基本公式 4.1.2、有初始张力的拉伸弹簧 +

圆柱形密圈螺旋弹簧的应力和变形计算

圆柱形密圈螺旋弹簧的应力和变形计算 螺旋弹簧如图4-15a所示。当螺旋角时,可近似认为簧丝的横截面与弹簧轴线在同一平面内,一般将这种弹簧称为密圈螺旋弹簧。

1.弹簧丝横截面上的应力 2.如图4-15b以簧丝的任意横截面取出密圈弹簧的上部分为研究对象,根据平衡方程,横截面 上剪力,扭矩。 由引起的剪应力,而且认为均匀分布于横截面上(图4-15c);若将簧丝的受力视为直杆的纯扭转,由引起的最大剪应力(图4-15d) 所以在簧丝横截面内侧A点有 (4-20)其中 (4-21) 当,略去剪应力所引起的误差,可用近似式, (4-22) 对某些工程实际问题,如机车车辆中的重弹簧,的值并不太小,此时不仅要考虑剪力,还要考虑弹簧丝曲率的影响,进一步理论分析和修正系数k的选取可见有关参考书。 密圈弹簧丝的强度条件是 (4-23)式中:-弹簧丝材料的许用剪应力

2. 弹簧的变形 设弹簧在轴向压力(或拉力)作用下,轴线方向的总缩短(或伸长)量为,这是弹簧的整体的压缩(或拉伸)变形。如图4-16a、b,外力对弹簧做功。簧丝横截面上,距圆心为的任意点的扭转剪应力为 (a) 如认为簧丝是纯扭转,则其相应的单位体积变形能是 (b) 弹簧的变形能应为 (c) 此处,其中,弹簧丝总长为,n为弹簧有效圈数。 于是积分式(c)得 (d) 由,则得到 (4-24) 式中是弹簧圈的平均半径。若引入记号 则式(4-24)可写成 (4-25) 代表弹簧抵抗变形的能力,称为弹簧刚度。可见与成反比,越大则越小。

【例4-5】某柴油机的气阀弹簧,簧圈平均半径,簧丝直径,有效圈数,材料的。弹簧工作时受KN,求此弹簧的最大压缩量与最大剪 应力(略去弹簧曲率的影响)。 【解】:由变形公式求最大压缩量 考虑剪切力时 不考虑剪力影响时,相差5.9% 。由于,还应考虑曲率影响, 此处从略。

圆柱弹簧的设计计算.

圆柱弹簧的设计计算 (一)几何参数计算 普通圆柱螺旋弹簧的主要几何尺寸有:外径D、中径D2、内径D1、节距p、螺旋升角α及弹簧丝直径d。由下图圆柱螺旋弹簧的几何尺寸参数图可知,它们的关系为: 式中弹簧的螺旋升角α,对圆柱螺旋压缩弹簧一般应在5°~9°范围内选取。弹簧的旋向可以是右旋或左旋,但无特殊要求时,一般都用右旋。 圆柱螺旋弹簧的几何尺寸参数 普通圆柱螺旋压缩及拉伸弹簧的结构尺寸计算公式见表(普通圆柱螺旋压缩及拉伸弹簧的结构尺寸(mm)计算公式)。 普通圆柱螺旋压缩及拉伸弹簧的结构尺寸(mm)计算公式

(二)特性曲线

弹簧应具有经久不变的弹 性,且不允许产生永久变形。因 此在设计弹簧时,务必使其工作 应力在弹性极限范围内。在这个 范围内工作的压缩弹簧,当承 受轴向载荷P时,弹簧将产生 相应的弹性变形,如右图a所 示。为了表示弹簧的载荷与变形 的关系,取纵坐标表示弹簧承受 的载荷,横坐标表示弹簧的变 形,通常载荷和变形成直线关系 (右图b)。这种表示载荷与变 形的关系的曲线称为弹簧的特 性曲线。对拉伸弹簧,如图<圆 柱螺旋拉伸弹簧的特性曲线> 所示,图b为无预应力的拉伸 弹簧的特性曲线;图c为有预 应力的拉伸弹簧的特性曲线。 右图a中的H0是压缩弹簧 在没有承受外力时的自由长度。 弹簧在安装时,通常预加一个压 力 Fmin,使它可靠地稳定在安 装位置上。Fmin称为弹簧的最 小载荷(安装载荷)。在它的作 用下,弹簧的长度被压缩到H1 其压缩变形量为λmin。Fmax 为弹簧承受的最大工作载荷。在 Fmax作用下,弹簧长度减到 H2,其压缩变形量增到λmax。 圆柱螺旋压缩弹簧的特性曲线λmax与λmin的差即为弹簧的 工作行程h,h=λmax-λmin。 Flim为弹簧的极限载荷。在该 力的作用下,弹簧丝内的应力达 到了材料的弹性极限。与Flim 对应的弹簧长度为H3,压缩变 形量为λlim。

圆柱螺旋弹簧的结构制造材料及许用应力

圆柱螺旋弹簧的结构制造 材料及许用应力 The latest revision on November 22, 2020

圆柱螺旋弹簧的结构、制造、材料及许用应力 (一) 圆柱螺旋弹簧的结构形式 1. 圆柱螺旋压缩弹簧 如下左图所示,弹簧的节距为p,在自由状态下,各圈之间应有适当的间距δ,以便弹簧受压时,有产生相应变形的可能。为了使弹簧在压缩后仍能保持一定的弹性,设计时还应考虑在最大载荷作用下,各圈之间仍需保留一定的间距δ1。δ1的大小一般推荐为: δ1=≥ 式中d为弹簧丝的直径。 圆柱螺旋压缩弹簧 圆柱螺旋压缩弹簧的端面圈 弹簧的两个端面圈应与邻圈并紧(无间隙),只起支承作用,不参与变形,故称为死圈。当弹簧的工作圈数n≤7时,弹簧每端的死圈约为圈;n>7时,每端的死圈约为1~圈。这种弹簧端部的结构有多种形式(上右图)最常用的有两个端面圈均与邻圈并紧且磨平的YI型(图a)、并紧不磨平的YIII型(图c)和加热卷绕时弹簧丝两端锻扁且与邻圈并紧(端面圈可磨平,也可不磨平)的YII型(图b) 三种。在重要的场合,应采用YI型,以保证两支承端面与弹簧的轴线垂直,从而使弹簧受压时不致歪斜。弹簧丝直径d≤时,弹簧

的两支承端面可不必磨平。d>的弹簧,两支承端面则需磨平。磨平部分应不少于圆周长的3/4。端头厚度一般不小于d/8,端面粗糙度应低于。 2.圆柱螺旋拉伸弹簧 如下左图所示,圆柱螺旋拉伸弹簧空载时,各圈应相互并拢。另外,为了节省轴向工作空间,并保证弹簧在空载时各圈相互压紧,常在卷绕的过程中,同时使弹簧丝绕其本身的轴线产生扭转。这样制成的弹簧,各圈相互间即具有一定的压紧力,弹簧丝中也产生了一定的顶应力,故称为有预应力的拉伸弹簧。这种弹簧一定要在外加的拉力大于初拉力P0后,各圈才开始分离,故可较无预应力的拉伸弹簧节省轴向的工作空间。拉伸弹簧的端部制有挂钩,以便安装和加载。挂钩的形式如下右图所示。其中LI型和LII型制造方便,应用很广。但因在挂钩过渡处产生很大的弯曲应力,故只宜用于弹簧丝直径d≤l0mm的弹簧中。LVII、LVIII型挂钩不与弹簧丝联成一体,故无前述过渡处的缺点,而且这种挂钩可以转到任意方向,便于安装。在受力较大的场合,最好采用LVII型挂钩,但它的价格较贵。 圆柱螺旋拉伸弹簧

圆柱弹簧设计汇总

圆柱弹簧设计汇总

一,圆柱螺旋压缩弹簧各部分名称及尺寸关系 此图为圆柱螺旋压缩弹簧各部分尺寸,图中尺寸的意义如下 1. 簧丝直径d 弹簧的钢丝直径(俗称线径或线径) 2. 弹簧外径D 弹簧的最大直径(俗称大径,也有的公司用OD来表示外径,知道就好,不要学这种坏习惯) 3. 弹簧内径D1弹簧的最小直径(俗称小径,也有的公司用ID来表示内径,知道就好,不要学这种坏习惯) 4. 弹簧中径D2弹簧的平均直径(俗称中心径,也有的公司用Dcen来表示外径,知道就好,不要学这种坏习惯) 5. 节距t 除两端支撑圈外,弹簧上相邻两圈在相对应两之间的轴向距离 6. 弹簧圈数弹簧圈数共有三种,即有效圈数n,支撑圈n2,和总圈数n1. 7. 自由高度H0 弹簧在不受外力时的高度(或长度),H0=nt+(n2-0.5)d 当然弹簧的参数远远不只这些,像一些疲劳特性计算,有效寿命的计算, 载荷与变形屈服曲线,弹簧刚度有限元分析等,在扫盲班中就不做解释了,放在后面提高班中再介绍. 接下来简单介绍一下弹簧的加工艺: 我们常用碳素弹簧钢、合金弹簧钢、不锈弹簧钢以及铜合金、镍合金和橡胶等材料来制作弹簧。弹簧的制造方法有冷卷法和热卷法。弹簧丝直径小于8毫米的一般用冷卷法,大于8毫米的用热卷法。有些弹簧在制成后还要进行强压或喷丸处理,可提高弹簧的承载能力。 我们回到正题,讨论一下此次扫盲题的分析及计算: 首先我们要搞清楚弹簧的刚度计算公式~ 弹簧刚度值我们用K来表示,单位是N/mm2

K=G*d^4/8*d2^3*n 其中G是指材料的切变模量(俗称弹性系数),此数据一般可通过查表获得,也可以要求供应厂商提供材料物性表获得.常见的像SUS631,SUS316,SUS304,SUS302等为70000N/mm2 弹簧刚,65Mn等等约为 80000N/mm2~ 求得K值后后,我们还需获得弹簧的作用长度L值,此长度由我们设计者来设计确 定。 作用长度指弹簧的预压长度+作用行程长度之和如一个弹簧由10压缩至6,那么它的作用长度则为4.如果还有预压高度,也要一并算入作用长度。 最后弹簧作用力P值为:P=K*L 以题目为例,(此题没有标准答案,给了很大的空间让我们去设计) 1,选用材料,这要看我们的实际产品需求去自行选择,目的就是要求学会材料的切变模量的获得 2,分析装配关系,确定我们弹簧的内外径,有效圈数,及线径的取值范围,由图面分析我们可以知道,弹簧的内径不应小于8.4 外径不应大于15 自由高度不应小于10 当产品处于ACTION STATE时,还要考虑到弹簧线径d和总圈数n1的选取.如果线径过粗,总圈数过多,就会造成干涉使产品不能到达ACTION STATE. 3.自选将相关设计参数代入公式中,获得弹簧参数 首先确定K值。假如我们选取65Mn作为弹簧材料,查表得65M材料切变模量(材料

螺旋弹簧的设计计算

编制:校对:审核:

螺旋弹簧只能承受垂直载荷,在此载荷作用下钢丝产生扭转应力。螺旋弹簧的主要尺寸是平均直径D,钢丝直径d和工作圈数n。 在设计汽车悬架螺旋弹簧时,先根据平顺性的要求确定悬架的偏频 (悬架的刚度),再利用公式①计算一侧悬架的刚度C(虚拟弹簧的刚度): C=(2π?n)2 ?m s 2 ① 其中m s 是单边簧载质量转换成载荷即为: F z=m s?g②对于麦弗逊悬架有: F s=p b ?F z③ C s=C?(p b ) 弹簧在轴向力F s(静载荷)的作用下的扭转应力为: τc=8?F s?D?K‘ π?d3= 8?F s?C ′?K′ π?d2 ④ 其中, τc是工作应力;D是簧圈平均直径;d是弹簧钢丝直径;C′是旋绕比,C′=D/d;K′是考虑剪力与与簧圈曲率影响的校正系数: K′=4?C′+2 4?C′?3 ⑤ 弹簧的刚度C s为 C s=F s f cs =G?d4 8?D3?n =G?d 8?C′3?n ⑥ 其中f cs是弹簧的静挠度;G是切变模量,n是弹簧的工作圈数。选好旋绕比C′之后,可以从式⑤计算出K′,则由④可得:

d=√8?F s?C ′?K′ π?[τc] ⑦ D=C′·d 其中需用扭转应力 [τc]=材料最大应力/安全系数 从式⑥可以得到: F s=G?d?f cs 8?C?n ⑧ 最大弹簧力F smax为: F smax=G?d?(f cs+f ds) 8?C?n ⑨ 从式⑥可得: n=G?d 8?C′3?C s ⑩ 弹簧的总圈数一般比工作圈数n多~2圈。弹簧受最大压力F smax时,相邻圈之间的间隙应该保持在~,防止弹簧运动过程中产生并圈的风险。 将⑧带入④中得: τc=G?d?f cs?K′ π?D2?n 同理,动载荷下的扭转应力为 τc=G?d?f ds?K′ π?D?n 螺旋弹簧的最大应力τm为: τm=τc+τd<[τm] 在逆向设计中,弹簧的载荷和高度是已知的,需要选用相应的材料,以及合适的弹簧钢丝,可以通过式⑦计算出弹簧的钢丝直径,根据企业标准要求,弹簧要求在极限行程内,以的 频率运动,在40万次之内不允许断裂,如果安全系数选的过小,以下,那么基本上是无法保证试验通过的。

圆柱螺旋压缩(拉伸)弹簧的设计计算

圆柱螺旋压缩(拉伸)弹簧的设计计算 (一)几何参数计算普通圆柱螺旋弹簧的主要几何尺寸有:外径D、中径D2、内径D1、节距p、螺旋升角α及弹簧丝直径d。由下图圆柱螺旋弹簧的几何尺寸参数图可知,它们的关系为: 式中弹簧的螺旋升角α,对圆柱螺旋压缩弹簧一般应在5°~9°范围内选取。弹簧的旋向可以是右旋或左旋,但无特殊要求时,一般都用右旋。 圆柱螺旋弹簧的几何尺寸参数 普通圆柱螺旋压缩及拉伸弹簧的结构尺寸计算公式见表([color=#0000ff 普通圆柱螺旋压缩及拉伸弹簧的结构尺寸(mm)计算公式)。 普通圆柱螺旋压缩及拉伸弹簧的结构尺寸(mm)计算公式

参数名称及代号 计算公式 备注压缩弹簧拉伸弹簧 中径D2D2=Cd 按普通圆柱螺旋弹簧尺寸系列表取标准值 内径D1D1=D2-d 外径D D=D2+d 旋绕比C C=D2/d 压缩弹簧长细比 b b=H0/D2 b在1~5.3的范 围内选取 自由高度或长度 H0H0≈pn+(1.5~2)d (两端并紧,磨平) H0≈pn+(3~3.5)d (两端并紧,不磨 H0=nd+钩环轴向长 度

平) 工作高度或长度 H1,H2,…,H n H n=H0-λn H n=H0+λnλn--工作变形量有效圈数n根据要求变形量按式(16-11)计算n≥2 总圈数n1n1=n+(2~2.5)(冷 卷) n1=n+(1.5~2) (YII型热卷) n1=n 拉伸弹簧n1尾数 为1/4,1/2,3/4整 圈。推荐用1/2圈 节距p p=(0.28~0.5)D2p=d 轴向间距δδ=p-d 展开长度L L=πD2n1/cosα L≈πD2n+钩环展 开长度 螺旋角αα=arct g(p/πD2) 对压缩螺旋弹簧,推荐α=5°~ 9°

弹簧设计规范(常用类型)

弹簧设计规范 一、弹簧的功能 弹簧是一种弹性元件,由于材料的弹性和弹簧的结构特点,它具有多次重复地随外栽荷的大小而做相应的弹性变形,卸载后立即恢复原状的特性。很多机械正是利用弹簧的这一特点来满足特殊要求的。其主要功能有: ⑴、减振和缓冲,如车辆的悬挂弹簧,各种缓冲器和弹性联轴器中的弹簧等。 ⑵、测力,如测力器和弹簧秤的弹簧等。 ⑶、储存及输出能量,如钟表弹簧,枪栓弹簧,仪表和自动控制机构上的原动弹簧等。 ⑷、控制运动,如控制弹簧门关闭的弹簧,离合器、制动器上的弹簧,控制内燃机气缸阀门开启的弹簧等。 二、弹簧的类型、特点和应用 弹簧的分类方法很多,按照所承受的载荷的不同,弹簧可分为拉伸弹簧、压缩弹簧、扭转弹簧和弯曲弹簧等四种;按照形状的不同,弹簧可分为螺旋弹簧、碟形弹簧、环形弹簧、盘形弹簧和板弹簧等;按照使用材料的不同,弹簧可分为金属弹簧和非金属弹簧。各种弹簧的特点、应用见表1。 在一般机械中,最常用的是圆柱螺旋弹簧。故本章主要讲述这类弹簧的结构形式、设计理论和计算方法。

三、弹簧使用的材料及其用途 弹簧钢的的主要性能要求是高强度和高屈服极限和疲劳极限,所以弹簧钢材用较高的含碳量。但是碳素钢的淬透性较差,所以在对于截面较大的弹簧必须使用合金钢。合金弹簧钢中的主要合金元素是硅和锰,他们可以增强钢的淬透性和屈强比。 弹簧材料使用最广者是弹簧钢(SUP)。碳素钢用于直径较小的弹簧,工艺多为冷拔成型,如:65#,75#,85#。直径稍大,需用热成型工艺生产的弹簧多采用60Si2Mn,如汽车板簧,铁路车辆的缓冲簧。对于高应力的重要弹簧可采用50CrV,常用于高级轿车板簧,发动机气门弹簧等。其他弹簧钢材料还有:65Mn, 50CrMn, 30W4Cr2V等。 a、碳钢及合金钢:制造弹簧时,常加矽、锰、铬、钒及钼等金属元素于钢中,以增加弹簧之弹性及疲劳限度,且使其耐冲击。 b、大型弹簧多用热作加工,即弹簧材料高温轧成棒,再高温加工成形后,淬火于780度~850度左右之油或水中,再施以400度~500度的温度回火。 c、小型弹簧,先经退火,再用冷作加工,捲成后再经硬化回火,如钢丝、琴钢丝或钢带。 d、琴钢丝是属高炭钢材(0.65~0.95%)制造,杂质少,直径常小于1/4时经过轫化处理后在常温抽成线,其机械性质佳,抗拉强度及轫性大,为优良的螺旋弹簧材料。 e、不锈钢丝用于易受腐蚀处,承受高温可用高速钢及不锈钢。 f、油回火线含碳量0.6~0.7%应含锰,0.6~1.0%常用于螺圈弹簧。 g、板弹簧常用0.9~1.0%之普通钢,其较高级者则使用铬钒钢及矽锰钢。 弹簧常在变载荷和冲击载荷作用下工作,而且要求在受极大应力的情况下,不产生塑性变形,因此要求弹簧材料具有较高的抗拉强度极限、弹性极限和疲劳强度极限,不易松弛。同时要求有较高的冲击韧性,良好的热处理性能等。常见的弹簧材料有优质碳素钢、合金钢和铜合金。几种主要弹簧材料的使用性能和许用应力见表2。

螺旋弹簧设计

螺旋弹簧设计 一、 弹簧设计参数 (1)弹簧丝直径d :制造弹簧的钢丝直径。 (2)弹簧外径o D :弹簧的最大外径。 (3)弹簧内径i D :弹簧的最小外径。 (4)弹簧中径D :弹簧的平均直径。计算公式:()/2o i i D D D D d =+=+ (5)弹簧节距p :除支撑圈外,弹簧相邻两圈对应点在中径上的轴向距离。 (6)有效圈数n :弹簧能保持相同节距的圈数。 (7)支撑圈数s n :为了使弹簧在工作时受力均匀,保证轴线垂直端面、制造时,常将弹簧两端并紧。并紧的圈数仅起支撑作用,称为支撑圈。一般有 1.5T 、2T 、2.5T ,常用的是2T 。 (8)总圈数t n :有效圈数与支撑圈的和,t s n n n =+。 (9)螺旋方向:有左右旋之分,常用右旋。 二、 弹簧其它参数 (1)旋绕比C 〈弹簧指数〉 D C d = 为了使弹簧本身较为稳定,不致颤动和过软,C 值不能太大;但为避免卷绕时弹簧丝受到强烈弯曲,C 值不应过小。 常用旋绕比C 值 (2)计算补偿系数K 4144 C K C -=- (3)长细比b 弹簧自由长度与弹簧中径之比,0H b D =。

三、 弹簧正向设计流程 1. 弹簧丝直径d d ≥式中: C :旋绕比; K :计算补偿系数,4144 C K C -=-; max F :弹簧所受最大的力,max max s F k λ=; s k :弹簧的刚度。现代悬架设计过程中,弹性元件的刚度通常不等于悬架系统等效 刚度。当悬架系统存在杠杆比时,弹性元件的刚度近似等于悬架系统等效刚度与杠杆比平方的乘积,即2s k k i =?; i :悬架等效刚度作用力的力臂/弹性元件(弹簧)作用力的力臂; max λ:弹簧受力时的最大压缩量,等于弹簧处于平衡位置时的压缩量t s m g x k = 与车轮上跳至极限时的弹簧压缩量之和; []τ:弹簧材料的许用应力。 2. 弹簧工作圈数(有效圈数)n 对于压缩弹簧,弹簧的工作圈数38s Gd n C k = 。 式中: G :切变模量。 3. 弹簧节距p 选取螺旋角α,由arctan p D απ=可得节距p 。 对于压缩螺旋弹簧,推荐5~9α=??。 4. 弹簧自由长度0H 弹簧自由长度:0 1.5H np d =+。

圆柱螺旋压缩弹簧计算

圆柱螺旋压缩弹簧计算 项目单位公式及数据 原始条件 最小工作载荷P1N P1=750 最大工作载荷P n N Pn=2200 工作行程h mm h=32 端部结构端部并紧、磨平,支承圈数为1圈 弹簧中径D mm 44 弹簧直径d mm 8 弹簧材料60Si2Mn 旋绕比C 5.5 8 44 = = = d D C 曲度系数K mpa 28 .1 615 .0 4 4 1 4 = + - - = C C C K 材料极限切应力、材料切变 模量 Тi= 471 G=78500 参数计算 初算弹簧刚度P/N/mm 31 . 45 32 750 2200 1 /= - = - = h P P P n 工作极限载荷Pj N 因是I类载荷:Pj≥1.67Pn 顾Pj=1.67×2200=3674 工作极限载荷下的 单圈变形量fj mm fj= j GdK D T ? 2 π =6.16 单圈弹性刚度P'd N/mm P'd 3 4 8d Gd ==471.83 有效圈数n 圈 41 . 10 31 . 45 83 . 471 P / / d= = = P n 按照表11-2-10取标准值n=10.5 总圈数n1圈n1=10.5+2=12.5 弹簧刚度P/N/mm 22 . 24 5. 10 83 . 471 P / /= = = n P d 工作极限载荷下的变形量Fj mm Fj=nfj=10.5×6.16=64.68 节距t mm 16 . 14 8 5. 10 68 . 64 = + = + =d n Fj t 自由高度H0mm H0=nt+1.5d=10.5×14.16+1.5×8=160.68 取标准值H0=160 弹簧外径D2mm D2=D+d=44+8=52 弹簧内经D1mm D1=D-d=44-8=36

圆-钢丝圆柱螺旋弹簧设计计算例题

圆钢丝圆柱螺旋弹簧设计计算例题 三、设计计算结果汇总: 1、设计计算数据见表1 表1 设计计算参数汇总表 2、弹簧工作图样

图1弹簧工作图 技术要求 a.弹簧端部形式:YI冷卷压缩弹簧; b.总圈数:n1 = 6.0圈; c.有效圈数:n = 4.0圈; d.旋向:右旋; e.强化处理:喷丸和立定处理; f.喷丸强度0.3 A ~ 0.45A,表面覆盖率大于90%; g.表面处理:清洗上防锈油; h.制造技术条件:其余按GB/T 1239.2二级精度。 2) 圆钢丝圆柱螺旋拉伸弹簧设计计算例题 例2 :设计一拉伸弹簧,循环次数N =1.0×105次。工作负荷F =160N,工作负荷下变形量为22mm,采用LⅢ圆钩环,外径D2=21mm。 一、题解分析: a)此拉伸弹簧要求循环次数N = 1.0×107次,由此说明弹簧是按有限寿命设计; b)题设给出了最大工作负荷及对应变形量: c)端部结构采用LⅢ圆钩环,即为圆勾环扭中心; d)弹簧外径D2 = 21mm。

二、解题方法: 由以上分析可知,本题中未给出自由高度,说明自由高度可在满足其它条件下按实际计算而定,显然,本题是按表1中第一个设计计算条件及要求给出的。 方法1:严格设计法 1)材料选取,根据弹簧使用的疲劳寿命要求,我们可选重要用途的碳素弹簧钢丝E 组别的钢丝, 根据弹簧手册P345表10-16查得材料抗拉强度d b ln 3582072-=σ即本讲公式(2)中的 a = 2072;b = -358 从分析可知本弹簧按有限寿命使用,即由表3查得试验切应力的强度系 数为0.5×0.8 = 0.40即:b S στ4.0=;许用切应力系数36.08.045.0=?=κ即:b κστ=][ 2) 把题中给定的D = 21mm;F = 160N 及以上所选取的材料所查找的有关强度许用应力系数 a = 2072; b = -358; 及36.0=κ代入本讲公式(2): 0)2)(ln ()08.054.64(232222 2≤-+-+-d d D d b a d d D D F πκ 化简得: 05644808.439486.25)ln 35.849897.49185()ln 37.80938.4684(234≤+-+---d d d d d d 解得:d >2.43 mm 取:d = 2.5mm ; 此时,材料抗拉强度)5.2ln(3582072-=b σ=1744Mpa 而查标准附录7—表7.1得b σ= 1680Mpa ; 由此可见相对误差不到3.9%完全满足GB/5311标准的范围,因为标准给出的值按最低值给出。 方法2:假设试算法(此方法同标准中介绍相同) 1) 材料选取同上即选重要用途碳素弹簧钢丝E 组; 2) 假设材料直径:d = 3mm ;从标准附录7表7.1查得b σ=1610;则: 许用切应力:[τ] = 0.36×1610 = 579Mpa; 弹簧中径:D = 21–3 = 18mm 旋绕比:C = 18/3 = 6;曲度系数:K = (4C-1)/(4C-4)+0.615/C = 1.253 3) 验算修正假设的d : mm 与假设基本符合; 1、取d = 2.5mm ;根据附录F 查得材料抗拉强度为R m = 1680 Mpa ; 根据表3选取计算试验切应力:τs = 0.50R m ×0.8 = 0.40×1680 = 670 Mpa ; 许用切应力为[τ] = 1680×0.36 = 604 Mpa 。 2、计算弹簧直径: 1) 弹簧外径: D 2 = 21mm : 2)弹簧中径:D = D 2–d = 21–2.5 = 18.5mm ; 3)弹簧内径:D 1 = D –d = 18.5 - 2.5 = 16mm 。 3、弹簧旋绕比C : 2.51580 14.318160253.18][833=????=≥τπKFD d

圆柱螺旋弹簧的结构、制造、材料及许用应力

圆柱螺旋弹簧的结构、制造、材料及许用应力 (一) 圆柱螺旋弹簧的结构形式 1. 圆柱螺旋压缩弹簧 如下左图所示,弹簧的节距为p,在自由状态下,各圈之间应有适当的间距δ,以便弹 簧受压时,有产生相应变形的可能。为了使弹簧在压缩后仍能保持一定的弹性,设计时还 应考虑在最大载荷作用下,各圈之间仍需保留一定的间距δ1。δ1的大小一般推荐为:δ 1=0.1d≥0.2mm 式中d为弹簧丝的直径。 圆柱螺旋压缩弹簧 圆柱螺旋压缩弹簧的端面圈 弹簧的两个端面圈应与邻圈并紧(无间隙),只起支承作用,不参与变形,故称为死圈。当弹簧的工作圈数n≤7时,弹簧每端的死圈约为0.75圈;n>7时,每端的死圈约为1~1.75圈。这种弹簧端部的结构有多种形式(上右图)最常用的有两个端面圈均与邻圈并紧 且磨平的YI型(图a)、并紧不磨平的YIII型(图c)和加热卷绕时弹簧丝两端锻扁且与 邻圈并紧(端面圈可磨平,也可不磨平)的YII型(图b) 三种。在重要的场合,应采用Y I型,以保证两支承端面与弹簧的轴线垂直,从而使弹簧受压时不致歪斜。弹簧丝直径d≤0.5mm时,弹簧的两支承端面可不必磨平。d>0.5mm的弹簧,两支承端面则需磨平。磨 平部分应不少于圆周长的3/4。端头厚度一般不小于d/8,端面粗糙度应低于。

2.圆柱螺旋拉伸弹簧 如下左图所示,圆柱螺旋拉伸弹簧空载时,各圈应相互并拢。另外,为了节省轴向工作空间,并保证弹簧在空载时各圈相互压紧,常在卷绕的过程中,同时使弹簧丝绕其本身的轴线产生扭转。这样制成的弹簧,各圈相互间即具有一定的压紧力,弹簧丝中也产生了一定的顶应力,故称为有预应力的拉伸弹簧。这种弹簧一定要在外加的拉力大于初拉力P0后,各圈才开始分离,故可较无预应力的拉伸弹簧节省轴向的工作空间。拉伸弹簧的端部制有挂钩,以便安装和加载。挂钩的形式如下右图所示。其中LI型和LII型制造方便,应用很广。但因在挂钩过渡处产生很大的弯曲应力,故只宜用于弹簧丝直径d≤l0mm的弹簧中。LVII、LVIII型挂钩不与弹簧丝联成一体,故无前述过渡处的缺点,而且这种挂钩可以转到任意方向,便于安装。在受力较大的场合,最好采用LVII型挂钩,但它的价格较贵。 圆柱螺旋拉伸弹簧

弹簧设计计算过程

弹簧设计计算 已知条件: 弹簧自由长度H0=796.8mm 弹簧安装长度L1=411mm 弹簧工作长度L2=227mm 弹簧中径D=22.3mm 弹簧直径d=3.2mm 弹簧螺距P=12mm 弹簧有效圈数n=66 弹簧实际圈数n1=68 计算步骤: (1)初步考虑采用油淬火-回火硅锰弹簧钢丝60Si2MnA C 类,抗拉强度1716-1863MPa ,切变模量G=79GPa ,弹性模量E=206GPa 。 取b σ=1716MPa 。 (2)压缩弹簧许用切应力 p τ=(0.4~0.47) b σ=(0.4~0.47)*1716MPa=686.4~806.52MPa 取p τ=686.4MPa 。 (3)由于弹簧刚度尚未可知,但是弹簧的中径、直径、有效圈数都已知。 2 .33.22==d D C =6.9688(计算值在5~8之间) 6.9688 615.046.9688416.96884615.04414+-?-?=+--=C C C K =1.2139 弹簧的最大工作压缩量Fn=795-227=568mm 由公式348D P F Gd n n n =可得最大工作载荷34343.226685682.3798????==nD F Gd P n n = 803.5758N 弹簧刚度663.2282.379834 34' ???==n D Gd P =1.4147N/mm 节距t= 66 2.35.1795)2~1(0?-=-n d H =11.9727≈12 计算出来的自由高度H0=nt+1.5d=66*12+1.5* 3.2=796.8mm 压并高度Hb=(n+1.5)d=(66+1.5)*3.2=216mm

(完整word版)弹簧设计技术条件

小型圆柱螺旋弹簧技术条件 GB 1973.1-89 中华人民共和国机械电子工业部1989-03-02批准1990-01-01实施 1 主题内容与适用范围 木标准规定丁小型圆柱螺旋弹簧的技术要求、试验方法和检验规则。 本标准适用于圆截面圆柱螺旋压缩、拉伸和扭转弹簧(以下简称弹簧)。弹簧材料的截面直径小于0.5 mm。 本标准不适用于特殊性能的弹簧。 2 引用标准 GB 191 包装储运图示标志 GB 1239.5 圆柱螺旋弹簧抽样检查 GB 1805 弹簧术语 GB 2828 逐批检查计数抽样程序及抽样表(适用于连续批的检查) GB 3123 硅青铜线 GB 3124 锡青铜线 GB 3134 铍青铜线 GB 4357 碳素弹簧钢丝 GB 4358 琴钢丝 GB 4459.4 机械制图弹簧画法 GB 4879 防锈包装 GB 6543 瓦楞纸箱 YB(T) 11 弹簧用不锈钢丝 3 技术要求 3.1 产品应符合本标准的要求,并按经规定程序批准的产品图样及技术文件制造。 3.2 极限偏差的等级 弹簧特性与尺寸的极限偏差分为1、2、3三个等级。各项目的等级应根据使用需要分别独立选定,并在图样上注明,未注明的则由制造厂从标准中选定。 3.3 压缩和拉伸弹簧的弹簧特性及其极限偏差 3.3.1 弹簧特性 压缩(或拉伸)弹簧的弹簧特性为指定高度(或长度)的负荷或刚度。 3.3.1.1 在指定高度(或长度)的负荷下,弹簧的变形量应在试验负荷时变形量的20%~80%之间。 试验负荷Ps:测定弹簧特性时在弹簧上允许承载的最大负荷。 试验应力τs:测定弹簧特性时在弹簧上允许承载的最大应力。 3.3.1.2 弹簧刚度在特殊需要时采用,其变形量应在试验负荷下变形量的30%~70%之间。 3.3.1.3 指定高度(或长度)时的负荷和刚度不得同时考核。 3.3.2 弹簧特性的极限偏差 3.3.2.1 指定高度(或长度)时负荷的极限偏差见表1。 3.3.2.2 刚度的极限偏差见表2。 3.4 尺寸及其极限偏差 3.4.1 弹簧外径(或内径) 弹簧的外径和内径不得同时考核,其极限偏差均按表3规定(弹簧的外径为D2,中径为D,内径为D1)。

普通圆柱螺旋弹簧的最优化设计

设计弹簧时,除选择材料及规定热处理要求外,主要是根据最大工作载荷、最大变形以及结构要求等来确定弹簧的钢丝直径d 、中径D 、工作圈数n 、节距t 或螺旋升角α和高度H 等,通常取弹簧钢丝直径d 、中径D 、工作圈数n 为最优化设计的设计变量,即 123x d X x D n x ????????==??????? ????? (1) 目标函数可根据弹簧的工作特点和对它的专门要求来建立。例如,由于因工作特点极易导致疲劳损坏的弹簧,则应以疲劳安全系数最大作为最优化设计的目标;对于受到高速运转机构变载作用的弹簧,则应以其一阶自振频率最大或最小作为最优化设计的目标,使自振频率值远离载荷变化频率值,以避免共振;对于安装空间很紧、要求尽量减少轮廓尺寸的弹簧,则应以其外径或高度最小,从而得到最小安装尺寸作为最优化设计的目标;当价格成为主要问题时,也可以以弹簧的成本最小作为目标;还有按满应力原则建立目标函数的。对于一般弹簧,通常以质量或钢丝的体积最小作为最优化设计的目标,这时目标函数可表达为: 2 2()4f X d Dn πρ= (2) 式中,ρ为弹簧钢丝材料的密度,67.6410ρ-=?kg/mm 3 将ρ值及式(1)代入式(2),得以弹簧工作部分(除支撑圈外)的质量为目标的函数表达式: 42123()0.1885110f X x x x -=? (3) 约束条件可根据对弹簧功能的要求和结构限制列出: (1)根据对弹簧刚度的要求范围:min max k k k ≤≤(438Gd k D n =),得约束条件 411min 323 ()08Gx g X k x x =-≤ (4) 412max 323 ()08Gx g X k x x =-≤ (5) 式中G 为弹簧材料的剪切弹性模量。 (2)根据弹簧钢丝的产品尺寸规格,给出弹簧钢丝直径d 的限制范围: min max d d d ≤≤,从而得约束条件 3min 1()0g X d x =-≤ (6) 41max ()0g X x d =-≤ (7) (3)根据弹簧安装空间对其中径D 的限制而有 5min 2()0g X D x =-≤ (8)

圆柱螺旋拉伸弹簧的设计计算

15.3 圆柱螺旋压缩(拉伸)弹簧的设计计算 (三) 圆柱螺旋压缩(拉伸)弹簧受载时的应力及变形 圆柱螺旋弹簧受压或受拉时,弹簧丝的受力情况是完全一样的。现就下图<圆柱螺旋压缩弹簧的受力及应力分析>所示的圆形截面弹簧丝的压缩弹簧承受轴向载荷P的情况进行分析。 由图<圆柱螺旋压缩弹簧的受力及应力分析a>(图中弹簧下部断去,末示出)可知,由于弹簧丝具有升角α,故在通过弹簧轴线的截面上,弹簧丝的截面A-A呈椭圆形,该截面上作用着力F及扭矩。因而在弹簧丝的法向截面B-B上则作用有横向力Fcosα、轴向力Fsinα、弯矩M=Tsinα及扭矩Tˊ= T cosα。由于弹簧的螺旋升角一般取为α=5°~9°,故sinα≈0;cosα≈1(下图<圆柱螺旋压缩弹簧的受力及应力分析b>),则截面B-B上的应力(下图<圆柱螺旋压缩弹簧的受力及应力分析c>)可近似地取为 式中C=D2/d称为旋绕比(或弹簧指数)。为了使弹簧本身较为稳定,不致颤动和过软,C值不能太大; 但为避免卷绕时弹簧丝受到强烈弯曲,C值又不应太小。C值的范围为4~16(表<常用旋绕比C值>), 常用值为5~8。 圆柱螺旋压缩弹簧的受力及应力分析 常用旋绕比C值 为了简化计算,通常在上式中取1+2C≈2C(因为当C=4~16时,2C>>l,实质上即为略去了τp),由 于弹簧丝升角和曲率的影响,弹簧丝截面中的应力分布将如图<圆柱螺旋压缩弹簧的受力及应力分析>c 中的粗实线所示。由图可知,最大应力产生在弹簧丝截面内侧的m点。实践证明,弹簧的破坏也大多由这点开始。为了考虑弹簧丝的升角和曲率对弹簧丝中应力的影响,现引进一个补偿系数K(或称曲度系数),则弹簧丝内侧的最大应力及强度条件可表示为

汽车螺旋弹簧离合器的设计

摘要 以内燃机在作为动力的机械传动汽车中,离合器是作为一个独立的总成而存在的。离合器通常装在发动机与变速器之间,其主动部分与发动机飞轮相连,从动部分与变速器相连。为各类型汽车所广泛采用的摩擦离合器,实际上是一种依靠其主、从动部分间的摩擦来传递动力且能分离的机构。离合器的主要功用是切断和实现发动机与传动系平顺的接合,确保汽车平稳起步;在换挡时将发动机与传动系分离,减少变速器中换档齿轮间的冲击;在工作中受到较大的动载荷时,能限制传动系所承受的最大转矩,以防止传动系个零部件因过载而损坏;有效地降低传动系中的振动和噪音。 本车设计采用单片螺旋弹簧离合器。本车采用的摩擦式离合器是因为其结构简单,可靠性强,维修方便,目前大多数汽车都采用这种形式的离合器。而采用干式离合器是因为湿式离合器大多是多盘式离合器,用于需要传递较大转矩的离合器,而该车型不在此列。采用螺旋弹簧离合器是因为螺旋弹簧离合器具有很多优点:首先,由于螺旋弹簧具有非线性特性,因此可设计成当摩擦片磨损后,弹簧压力几乎可以保持不变,且可减轻分离离合器时的踏板力,使操纵轻便;其次,螺旋弹簧的安装位置对离合器轴的中心线是对的,因此其压力实际上不受离心力的影响,性能稳定,平衡性也好;再者,螺旋弹簧本身兼起压紧弹簧和分离杠杆的作用,使离合器的结构大为简化,零件数目减少,质量减小并显著地缩短了其轴向尺寸;另外,由于螺旋弹簧与压盘是以整个圆周接触,使压力分布均匀,摩擦片的接触良好,磨损均匀,也易于实现良好的散热通风等。由于螺旋弹簧离合器具有上述一系列的优点,并且制造螺旋弹簧的工艺水平也在不断地提高,因而这种离合器在轿车及微型、轻型客车上已得到广泛的采用,而且逐渐扩展到载货汽车上。从动盘选择单片式从动盘是一位其结构简单,调整方便。压盘驱动方式采用传动片式是因为其没有太明显的缺点且简化了结构,降低了装配要求又有利于压盘定中。选择拉式离合器是因为其较拉式离合器零件数目更少,结构更简化,轴向尺寸更小,质量更小;并且分离杠杆较大,使其踏板操纵力较轻。 关键字:螺旋弹簧离合器螺旋弹簧离合器摩擦片减振盘

圆柱螺旋弹簧设计计算

圆柱螺旋弹簧设计计算 一.弹簧的参数名称及代号 GB/T 1239.6-93 二.基本计算公式 弹簧的强度和变形的基本计算公式 1.材料切应力:P d c k P d D 2388ππτ==. 2.弹簧变形量:P Gd n c P Gd n D F 34 388==

3.弹簧的刚度:n c GD n D Gd F P P 434' 88=== 4.弹簧变形量:2 22 'F D PF U == 5.弹簧材料直径:] [6 .1τKPC d = 6.弹簧的中径:D=Cd 7.弹簧的有效圈数:P c GD P D F Gd n 4 3488== 8.曲度系数:c c c K 615.04414+--= 9.弹簧特性:为了保证指定的负荷,弹簧变形量应在试验负荷下变形量Fs 的 20%~80%之间: 0.2Fs ≤F 1,2,3~n ≤0.8Fs 10.在特殊需要保证刚度时,其刚度按试验负荷下变形量Fs 的30%~70%之间,由两负荷点的负荷差之比来确定:1 21 2F F P P P ,--= 11.试验负荷Ps 为测定弹簧特性时,弹簧允许承受的最大负荷,其值可按其曲度系数K=1,导出: s D d Ps τπ83 = 式中τs 为试验切应力,其最大值取表3和 表4中的Ⅲ类负荷下的许用切应力值。 12.压并负荷Pb 为弹簧压并时的理论负荷,对应的压并变量为Fb 。切变模量G 值按弹簧常用材料表查取,当工作温度超过60度时,就对常温下的G 值进行修正:Gt=KtG 。 Kt 温度修正系数表 13.弹簧中径:2)(21D D D += 14弹簧内径:D 1=D -d 15.弹簧外径:D 2=D+d a .当弹簧两端固定时,从自由高度到并紧时,中径增大为: D D d t D )05.0(2 2 2-=?

最新圆柱螺旋压缩(拉伸)弹簧的设计计算

圆柱螺旋压缩(拉伸)弹簧的设计计算

圆柱螺旋压缩(拉伸)弹簧的设计计算 (一)几何参数计算普通圆柱螺旋弹簧的主要几何尺寸有:外径D、中径D2、内径D1、节距p、螺旋升角α及弹簧丝直径d。由下图圆柱螺旋弹簧的几何尺寸参数图可知,它们的关系为: 式中弹簧的螺旋升角α,对圆柱螺旋压缩弹簧一般应在5°~9°范围内选取。弹簧的旋向可以是右旋或左旋,但无特殊要求时,一般都用右旋。 圆柱螺旋弹簧的几何尺寸参数 普通圆柱螺旋压缩及拉伸弹簧的结构尺寸计算公式见表([color=#0000ff 普通圆柱螺旋压缩及拉伸弹簧的结构尺寸(mm)计算公式)。

普通圆柱螺旋压缩及拉伸弹簧的结构尺寸(mm)计算公式 参数名称及代号 计算公式 备注压缩弹簧拉伸弹簧 中径D2D2=Cd 按普通圆柱螺旋弹簧尺寸系列表取标准值 内径D1D1=D2-d 外径D D=D2+d 旋绕比C C=D2/d 压缩弹簧长细比 b b=H0/D2 b在1~5.3的范 围内选取 自由高度或长度 H0H0≈pn+(1.5~2)d (两端并紧,磨 平) H0≈pn+(3~3.5)d H0=nd+钩环轴向长 度

质量m s m s= γ为材料的密度,对各种钢,γ=7700kg/; 对铍青 ?(二)特性曲线 弹簧应具有经久不变的弹性, 且不允许产生永久变形。因此在设 计弹簧时,务必使其工作应力在弹 性极限范围内。在这个范围内工作 的压缩弹簧,当承受轴向载荷P 时,弹簧将产生相应的弹性变 形,如右图a所示。为了表示弹簧 的载荷与变形的关系,取纵坐标表 示弹簧承受的载荷,横坐标表示弹 簧的变形,通常载荷和变形成直线 关系(右图b)。这种表示载荷与变 形的关系的曲线称为弹簧的特性曲 线。对拉伸弹簧,如图<圆柱螺旋 拉伸弹簧的特性曲线>所示,图b 为无预应力的拉伸弹簧的特性曲 线;图c为有预应力的拉伸弹簧的 特性曲线。 右图a中的H0是压缩弹簧在 没有承受外力时的自由长度。弹簧 在安装时,通常预加一个压力 F min,使它可靠地稳定在安装位置 上。F min称为弹簧的最小载荷(安 装载荷)。在它的作用下,弹簧的 长度被压缩到H1其压缩变形量为 λmin。F max为弹簧承受的最大工 作载荷。在F max作用下,弹簧长 度减到H2,其压缩变形量增到 λmax。λmax与λmin的差即为 弹簧的工作行程h,h=λmax- λmin。F lim为弹簧的极限载荷。 在该力的作用下,弹簧丝内的应力 达到了材料的弹性极限。与F lim 圆柱螺旋压缩弹簧的特性曲线

相关文档
最新文档