毕业设计浮钳盘式制动器
某轿车浮动钳盘式制动器的设计与分析PPT

指导老师: 答辩人:
论 文 摘 要
摘要
汽车制动系统与行车安全和停车安全息息相关,是汽车底盘的重要组成部分。尤其是盘式制动器,在现在的轿车上 应用越来越广泛,以前受制于制造成本,影响了盘式制动器的广泛应用,随着轿车需求量的大幅增加,盘式制动器的需 求量更大,所以本文的选题及设计与市场实际相结合,并结合工程实际,这对于设计轿车盘式制动器非常重要。这次毕 业设计是以轿车的盘式制动器为研究对象,概括了轿车制动器的国内外现状,指出了研究的目的和意义。本文设计的是 浮动钳盘式制动器。然后,对盘式制动器的主要参数进行了优选,最后对制动器进行了校核计算。
ABSTRACT
The car brake system is related to the safety of driving and parking, is an important part of the car chassis. In particular, disc brakes, in the current application of the car more and more widely, previously subject to manufacturing costs, affecting the wide range of disc brakes, with a substantial increase in the demand for cars, disc brakes greater demand, This is an urgent need for disc brakes better design and optimization design, so this topic and design combined with the actual market, combined with engineering needs, how to design a good car disc brake is very important.
盘式制动器毕业设计说明书

盘式制动器毕业设计说明书目录摘要 (I)Abstract (II)1 绪论 (1)1.1 制动器的作用 (1)1.2 制动器的种类 (1)1.3 制动器的组成 (1)1.4 对制动器的要求 (3)1.5 制动器的新发展 (4)2 制动器的结构形式及选择 (4)2.1 制动器的种类 (4)2.2 盘式制动器的结构型式及选择 (6)3 汽车整车基本参数计算 (8)4 制动系的主要参数及其选择 (9)4.1 制动力与制动力分配系数 (9)4.2 同步附着系数 (9)4.3 制动强度和附着系数利用率 (10)4.4 制动器最大制动力矩 (10)4.5 制动器因数 (11)5 盘式制动器的设计 (11)5.1 盘式制动器的结构参数与摩擦系数的确定 (11)5.2 制动衬块的设计计算 (12)5.3 摩擦衬块磨损特性的计算 (13)5.4 制动器主要零件的结构设计 (14)6 制动驱动机构的结构型式选择与设计计算 (15)6.1 制动驱动机构的结构型式选择 (15)6.2制动管路的选择 (15)6.3 液压制动驱动机构的设计计算 (16)7 盘式制动器的优化设计 (18)7.2 解决优化设计问题的一般步骤及几何解释 (18)7.3 常用优化方法 (19)7.4 制动系参数的优化 (19)8 结论 (21)致谢 (22)参考文献 (23)附录 (24)摘要汽车的制动系是汽车行车安全的保证,许多制动法规对制动系提出了许多详细而具体的要求,这是我们设计的出发点。
从制动器的功用及设计的要求出发,依据给定的设计参数,进行了方案论证。
对各种形式的制动器的优缺点进行了比较后,选择了前盘的形式。
这样,制动系有较高的制动效能和较高的效能因素稳定性。
随后,对盘式制动器的具体结构的设计过程进行了详尽的阐述。
选择了简单液压驱动机构和双管路系统,选用了间隙自动调节装置。
在设计计算部分,选择了几个结构参数,计算了制动系的主要参数,盘式制动器相关零件以及驱动机构的设计计算。
盘式制动器_毕业设计说明书参考

盘式制动器_毕业设计说明书参考(以下是机械设计专业的毕业设计说明书范例,供参考)毕业设计题目:盘式制动器设计一、题目来源及背景盘式制动器是用于汽车、摩托车等机动车辆的制动装置之一,具有制动力矩大、耐磨损、散热快等优点。
本毕业设计项目充分利用机械设计、材料学等方面知识,对盘式制动器的制动器件进行设计。
二、设计要求1. 主要技术指标:(1)制动力矩:大于100 N·m(2)使用寿命:大于2×10⁴次(3)材料:盘式制动器盘采用GCr15;制动蹄采用40Cr;制动片采用半金属材料。
2. 设计思路(1)整体结构设计:盘式制动器的整体结构以制动盘、制动蹄、制动片、制动器液压缸等组成。
其中,制动盘为主动件,制动蹄和制动片为被动件,液压缸提供制动力。
(2)制动盘设计:制动盘是盘式制动器的核心部件,由于需要承受制动力矩,因此采用GCr15高强度材料。
制动盘的直径和厚度由制动力矩、车辆重量等因素决定。
(3)制动片设计:制动片采用半金属材料,能够在制动过程中承受高温、高压。
制动片的表面采用刻花纹路,以增加摩擦面积和摩擦系数。
(4)制动蹄设计:制动蹄采用40Cr合金钢,具有足够的强度和硬度。
制动蹄的设计应考虑制动片与制动盘之间的间隙,以确保能够实现完整制动。
(5)液压缸设计:液压缸的设计应考虑到制动盘的直径和轮轴间隙,能够提供足够的制动力矩。
液压缸的设计也应考虑到防泄漏、稳定等因素。
三、设计过程1. 制动盘设计(1)根据制动力矩、车辆重量等因素确定制动盘的直径和厚度。
(2)采用CAD软件进行3D建模,并进行有限元分析,得出制动盘在制动力矩作用下的应力分布情况和变形情况。
(3)结合分析结果,调整制动盘的厚度和结构。
(4)根据制动盘的设计尺寸和结构参数,进行加工和表面处理,确保制动片和制动盘之间具有充分的接触面积和摩擦力。
2. 制动片设计(1)选择半金属材料作为制动片材料。
根据制动盘的直径和表面处理情况,设计制动片的形状和尺寸。
浮钳盘式制动器结构三维图

一、浮钳盘式制动器结构:
二、浮钳盘式制动器工作原理:
1.制动的实现
制动时,油路系统向钳体输入油压,以制动盘工作面为参照物,油压推动活塞向内侧制动块加压,顶压在制动盘右侧面,由反作用力将制动钳体向相反方向推,拉动外制动块压向制动盘左侧面,内外制动块形成对制动盘的夹紧力。
通过制动盘与轮毂的固连(车轮与轮毂连接),从而实现车辆的制动,如图所示:
2.解除制动
解除制动时,油路系统卸压,“绷紧”的制动系统都向恢复到初始原位而回弹,恢复原位的动力来源是受压缩、拉伸和弯曲变形零部件的恢复回弹力。
首先是刚性值大的零部件进行回弹,如活塞、内外制动块背板、制动钳体和制动盘。
其次是在回弹刚度降至与内外制动块摩擦材料层相等时,内外制动块摩擦材料层也开始进行回弹。
与此同时,活塞密封圈与活塞同步恢复到原始状态,移动量为制动时变形量值Δ。
由于制动盘工作面与旋转轴线不垂直,端面全跳动值不等于零,造成制动盘的局部工作扇区与制动块的“碰撞”,迫使制动块退离原位而躲避制动盘,完成制动解除过程。
盘式制动器设计

盘式制动器设计(总20页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--目录绪论 (2)一、设计任务书 (2)二、盘式制动器结构形式简介 ........................................ 错误!未定义书签。
、盘式制动器的分类.................................................. 错误!未定义书签。
、盘式制动器的优缺点.............................................. 错误!未定义书签。
、该车制动器结构的最终选择 .................................. 错误!未定义书签。
三、制动器的参数和设计 ................................................ 错误!未定义书签。
、制动盘直径 ............................................................. 错误!未定义书签。
、制动盘厚度 ............................................................. 错误!未定义书签。
、摩擦衬块的内半径和外半径 .................................. 错误!未定义书签。
、摩擦衬块面积 ......................................................... 错误!未定义书签。
、制动轮缸压强 ......................................................... 错误!未定义书签。
、摩擦力的计算和摩擦系数的验算 .......................... 错误!未定义书签。
盘式制动器设计毕业设计

盘式制动器设计毕业设计目录摘要 .............................................................................................................. 错误!未定义书签。
ABSTRACT ...................................................................................................... 错误!未定义书签。
第一章绪论 (3)1.1制动系统概述 (3)1.1.1 汽车制动系统的功用及其组成: (3)1.1.2 制动系的一般工作原理 (3)1.1.3 制动系的类型 (5)1.1.4 汽车制动器设计要求 (6)1.2 汽车制动系统的研究现状及发展趋势 (9)第二章制动器的结构型式方案分析与选择 (11)2.1 汽车制动器形式方案分析 (11)2.1.1 盘式制动器 (11)2.1.2 鼓式制动器 (15)2.2 制动驱动机构的结构型式选择 (16)2.2.1 简单制动系 (16)2.2.2 动力制动系 (16)2.2.3 伺服制动系 (17)2.3 制动主缸型式 (18)2.4 制动管路型式选择 (19)2.4 .1 II型回路 (20)2.4 .2 X型回路 (20)2.4 .3其他类型回路 (21)2.5 制动系统布置型式 (21)第三章制动系统主要参数及其设计计算 (22)3.1 参考车型制动系相关主要参数数值 (22)3.2 同步附着系数分析 (22)3.3 法向力及制动力矩分配系数 (23)3.4 制动强度和附着系数利用率 (26)3.5附着力的计算 (27)3.6 制动器制动力及制动力矩的计算 (28)3.7 前轮盘式制动器制动因数 (28)3.8 前轮盘式制动器参数设计计算 (29)3.9 制动器磨损特性热容量及温升计算 (30)3.9.1盘式制动器磨损特性计算 (30)3.9.2 制动器的热容量和温升的核算 (31)3.9.3 盘式制动器制动力矩的校 (32)第四章 制动器主要零部件的结构设计 (35)4.1 制动盘 (35)4.2 制动钳 (35)4.3 制动块 (36)4.4 摩擦材料 (36)第五章 液压制动驱动机构的设计计算 (38)5.1前轮制动轮缸直径与工作容积的设计计算 (38)5.2制动主缸与工作容积设计计算: (39)5.3制动踏板力与踏板行程 (40)5.3.1制动踏板力p F (40)5.3.2制动踏板工作行程x p (40)第六章 制动性能分析计算 (42)6.1 制动性能评价指标 (42)6.2制动器制动力分配曲线分析 (43)6.3制动减速度的计算 (44)6.4驻车制动计算 (45)结 论 (47)致 谢 (48)参考文献 (49)附录 (50)第一章绪论1.1制动系统概述汽车制动器是用以强制行驶中的汽车减速或停车、使下坡行驶的汽车的车速保持稳定以及使已停止的汽车在原地(包括在斜坡上)驻留不动的机构。
浮钳盘式制动器工作原理
浮钳盘式制动器工作原理一、引言浮钳盘式制动器是一种常见的汽车制动系统,它通过夹紧旋转的刹车盘来减速或停止车辆。
本文将详细介绍浮钳盘式制动器的工作原理。
二、构成浮钳盘式制动器由以下几个部分组成:1. 刹车盘:旋转的金属圆盘,连接到车轮上。
2. 刹车垫:与刹车盘接触以减速或停止车辆。
3. 制动钳:夹紧刹车盘并施加压力的机械装置。
4. 活塞:推动制动垫靠近刹车盘的部件。
5. 浮钳:允许制动垫在刹车盘上移动以保持均匀接触的机械装置。
6. 制动油管和油泵:将液压油从主缸传输到活塞以推动制动垫。
三、工作原理当驾驶员踩下制动踏板时,主缸会将液压油推送到活塞中,使其向外移动。
活塞向外移动时,它会推动制动垫靠近刹车盘。
此时,制动钳会夹紧刹车盘并施加压力,从而减速或停止车辆。
在浮钳盘式制动器中,制动钳被分为两个部分:一个固定的部分和一个浮动的部分。
固定的制动钳位于车轮上方,并与车轮连接。
浮动制动钳位于车轮下方,并可以在导向销的帮助下沿着导向槽移动。
当活塞推动制动垫靠近刹车盘时,浮钳也会向前移动,直到它的制动垫与刹车盘接触。
由于浮钳可以沿着导向槽移动,因此它可以自由地适应刹车盘的轻微变形和偏差,从而保持均匀接触。
四、优点1. 均匀接触:由于浮钳可以自由移动以适应刹车盘的变形和偏差,因此它能够保持均匀接触。
2. 减少热量:由于浮钳不会对刹车盘施加过多压力,因此减少了热量的产生。
3. 更好的散热性能:由于浮钳不会对刹车盘施加过多压力,因此能够提高散热性能。
五、总结浮钳盘式制动器是一种常见的汽车制动系统,它通过夹紧旋转的刹车盘来减速或停止车辆。
它由刹车盘、刹车垫、制动钳、活塞、浮钳和制动油管和油泵组成。
当驾驶员踩下制动踏板时,主缸会将液压油推送到活塞中,使其向外移动。
活塞向外移动时,它会推动制动垫靠近刹车盘。
此时,制动钳会夹紧刹车盘并施加压力,从而减速或停止车辆。
浮钳盘式制动器具有均匀接触、减少热量和更好的散热性能等优点。
毕业设计论文轿车盘式制动器设计及优化
轿车盘式制动器设计及优化摘要盘式制动器主要用于行车制动,其制动效能稳定,在汽车中得到广泛的应用。
首先通过了解制动器的设计要求,对盘式制动器进展初始设计;然后再对盘式制动器进展优化设计。
本设计通过对摩擦片的中心圆半径、摩擦片直径、制动盘的直径、活塞直径、制动盘厚度、油缸的油压等参数的优化设计,以制动时间、制动盘的厚度、制动盘的温升作为优化设计目标,建立盘式制动器的优化设计数学模型。
选用合理的优化设计方法,编写MATALB程序,通过优化程序的运行,得到最终优化结果,从而得出盘式制动器较合理的尺寸。
关键词:盘式制动器;轿车;设计;优化Design and Optimization of Disk Brake on CarABSTRACTDisc brakesare mainly used to brake when vehicle is steering.Due to stability of disk brakes, they are widely used on vehicles. First through understanding the design requirements of brake, do the initial design of disk brake;second doing the optimal design for disk brake. In this design, it optimizes the design through the optimal design of the radius of center circle of friction sheet, the diameter of friction sheet, the diameter of disc drake, the diameter of piston, the deep of dish brake, the oil pressure in oil jar and so on, andtaking the time of braking, the deep of disc brake,the temperature of disk brake as the aim of optimization, then establish the disk brake optimal design’s mathematical function model. selectinga reasonable optimal design’s tools and raddle program by MATLAB.Passing the optimal program’s operation, get the eventually optimal result, so we can conclude the reasonable dimension of disc brake.Keyboard:Disc brake; Car; Design; Optimization目录前言11 汽车制动系概述21.1 汽车制动器21.2 浮动钳式盘式制动器31.3 盘式制动器的优缺点及应用42 盘式制动器的设计52.1 制动器主要零部件的设计52.2 盘式制动器工作间隙的调整62.3 摩擦衬片〔衬块〕的磨损特性计算73 钳盘式制动器的优化设计83.1 概述83.2 建立盘式制动器优化设计的数学模型9 3.2.1 选取设计变量113.2.2 确立目标函数113.2.3 确立约束条件113.3选用适宜的算法求解123.4优化结果比拟124 完毕语125 辞13参考文献13附录A外文翻译—原文局部14附录B外文翻译—译文局部17附录C优化设计程序20前言2006年我国汽车产销量双双突破700万辆,分别到达727.97万辆和721.6万辆,同比增长27.32%和25.13%。
浮钳盘
M 1 F1re F re ma g (b 0 hg ) re L 2495 9.8 0.7 (0.806 0.772 0.65 ) 0.269 2.515 2394 N m
M 2 2593 N m
均满足
摩擦衬块的磨损特性计算
2 1 2495 22.2 e1 0.52 4.2 w / mm 2 6 w / mm 2 2 2 3.8 10000
轿车盘式制动器的比能量耗散率应不大于 6.0W/mm2。比能量耗散率过高,不仅会 加速制动衬片(衬块)的磨损,而且可能引起 制动鼓或盘的龟裂。这个结果符合要求。
谢 谢
β=0.52
β=0.4 5
β=0.50
β=0.55
β=0.6
二、 结构设计
制动盘直径280mm厚度25mm
制动钳
制动块厚度12mm制动盘上所占角度45
o
内外半径170mm230mm工作 2 面积100 cm
三、 校核计算 制动器制动力矩
M 2fF N m 0 R 2749
前、后轮最大地面制动力矩
浮动钳通风盘式前制动器设计
学院: 班级:Leabharlann 学号:姓名:设计过程
一、制动力分配 二、结构设计 三、计算校核
一、制动力分配
同步附着系数系数和制动力分配系数关系公式:
轿车盘式制动器结构设计毕业设计 精品
摘要汽车的设计与生产涉及到许多的领域,其独有的安全性、经济性、舒适性等众多指标,也对设计提出了更高的要求。
汽车制动系统是汽车行驶的一个重要主动安全系统,其性能的好坏对汽车的行驶安全有着重要影响。
随着汽车的行驶速度和路面情况复杂程度的提高,更加需要高性能,长寿命的制动系统。
鉴于制动系统的重要性,本次设计的主要内容是轿车制动器结构设计。
本文从制动系的功用及设计的要求出发,依据给定的设计参数,进行了方案论证,对各种形式制动器的优缺点进行了比较后,在前盘后鼓的基础上改为前后均为盘式制动器。
在此基础上选择了简单液压驱动机构和双管路系统,选用了间隙自动调节装置,采用比例阀作为制动力的调节装置。
仿真结果表明,轿车制动器结构的设计保持了制动力分配系数的稳定,改善了汽车的制动稳定性,简化了汽车的制动装置,减轻了整车质量,从而提高了汽车在行驶过程中的安全性与稳定性。
关键词:制动钳,制动盘,制动轮缸,制动衬片ABSTRACTAutomobile design and production are involved in many fields, its unique safety, economy, comfort and so many indicators, also raised taller requirement to the design. Automobile braking system is an important vehicle active safety system, and its performance depends on car has an important influence on road safety. As the vehicle of the speed and pavement situation was complex degree rise, more require high-performance, long life of brake system.In view of the importance of brake system, the design of the main content is a transport vehicles, the brake from brake system function and design, according to the requirement of design parameters, given the scheme comparison. On all forms of brake their advantages and disadvantages are discussed, based on HouGu have in QianPan instead of before and after are disc brakes, maintain braking force distribution coefficient, improves the stability of the braking stability and simplify the automobile braking device, reduce the vehicle quality, thereby improving the car while driving in the process of security and stability. Choose a simple hydraulic driving mechanism and double pipeline system, chose clearance automatic adjusting device, proportional valve as brake force adjusting deviceKeywords: brake disc, Brake wheel cylinder, Brake caliper, Braking facings formulations轿车盘式制动器结构设计1、引言1.1 汽车制动系概述使行驶中的汽车减速甚至停车,使下坡行驶的汽车的速度保持稳定,以及使已经停驶的汽车保持不动,这些作用统称为汽车制动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
毕业设计浮钳盘式制动器 原始数据: 整车质量:空载:1550kg;满载:2000kg 质心位置:a=L1=1.35m;b=L2=1.25m 质心高度:空载:hg=0.95m;满载:hg=0.85m 轴 距:L=2.6m 轮 距: L0=1.8m 最高车速:160km/h 车轮工作半径:370mm 轮毂直径:140mm 轮缸直径:54mm 轮 胎:195/60R14 85H 1.同步附着系数的分析 (1)当0时:制动时总是前轮先抱死,这是一种稳定工况,但丧失了转向能力;
(2)当0时:制动时总是后轮先抱死,这时容易发生后轴侧滑而使汽车失去方向稳定性;
(3)当0时:制动时汽车前、后轮同时抱死,是一种稳定工况,但也丧失了转向能力。
分析表明,汽车在同步附着系数为0的路面上制动(前、后车轮同时抱死)时,其制动减速度为gqgdtdu0,即0q,q为制动强度。而在其他附着系数
的路面上制动时,达到前轮或后轮即将抱死的制动强度q,这表明只有在0的路面上,地面的附着条件才可以得到充分利用。 G:汽车满载质量; L:汽车轴距;
其中q=ghaa)(0=85.0)6.07.0(35.17.035.1=0.66
故后轴max2M=3707.0)85.066.035.1(6.220000=1.57610Nmm 后轮的制动力矩为2/1057.16=0.785610Nmm 前轴max1M= Tmax1f=max21fT=0.67/(1-0.67)1.57610=3.2610Nmm 前轮的制动力矩为3.2610/2=1.6610Nmm 2.浮钳盘式制动器主要结构参数的确定 2.1制动盘直径D 制动盘直径D希望尽量大些,这时制动盘的有效半径得以增大,就可以降低制动钳的夹紧力,降低摩擦衬块的单位压力和工作温度。但制动盘直径D受轮毅直径的限制通常,制动盘的直径D选择为轮毅直径的70%~90%,总质量大于2t的车辆应取其上限。通常,制造商在保持有效的制动性能的情况下,尽可能将零件做的小些,轻些。轮辋直径为14英寸(1英寸=2.54cm),又因为M=2000kg,取其上限。
在本设计中:032.2564.2514%72%72DrD,取D=256mm。 2.2制动盘厚度h 制动盘厚度h直接影响着制动盘质量和工作时的温升。为使质量不致太大,制动盘厚度应取得适当小些;为了降低制动工作时的温升,制动盘厚度又不宜过小。制动盘可以制成实心的,而为了通风散热,可以在制动盘的两工作面之间铸出通风孔道。通风的制动盘在两个制动表面之间铸有冷却叶片。这种结构使制动盘铸件显著的增加了冷却面积。车轮转动时,盘内扇形叶片的选择了空气 循环,有效的冷却制动。通常,实心制动盘厚度为l0mm~20mm,具有通风孔道的制动盘厚度取为20mm~ 50mm,但多采用20mm~30mm。
在本设计中选用通风式制动盘,h取20mm。 2.3摩擦衬块外半径R2与内半径R1 推荐摩擦衬块外半径R2与内半径R1的比值不大于1.5。若比值偏大,工作时衬块的外缘与内侧圆周速度相差较多,磨损不均匀,接触面积减少,最终将导致制动力矩变化大。
在本设计中取外半径R2=104mm,3.112RR,则内半径R1=80mm。 2.4摩擦衬块工作面积A 摩擦衬块单位面积占有的车辆质量在1.6kg/2cm~3.5kg/2cm范围内选取。汽车空载质量为1550kg,前轮空载时地载荷为852.5kg,所以852.5/(3.5*4)2cm
在本设计中取衬块的夹角为50°。摩擦衬块的工作面积A: 221225.76032360502)(mmRRAA取76㎝²。
经过计算最终确定前轮制动器的参数如下: 制动盘直径D=256mm;取制动盘厚度h=20mm;摩擦衬片外半径R2=104mm,内半径=80mm;制动衬块工作面积A=76cm2;活塞直径=轮缸直径=54mm
3.制动效能分析 3.1制动减速度j 制动系的作用效果,可以用最大制动减速度及最小制动距离来评价。 假设汽车是在水平的,坚硬的道路上行驶,并且不考虑路面附着条件,因此制动力是由制动器产生。此时mrMje/总
式中 总M——汽车前、后轮制动力矩的总合。
总M=21uuMM=785+1600=2385Nm
er=370mm=0.37m m——汽车总重 m=2000kg 代入数据得j=(785+1600)/0.37×2000=6.16m/s2 轿车制动减速度应在5.8~7m/s2,所以符合要求。 3.2制动距离S 在匀减速度制动时,制动距离S为 S=1/3.6(t1+ t2/2)V+ V2/254 式中,t1——消除制动盘与衬块间隙时间,取0.1s t2——制动力增长过程所需时间,取0.2s V=30km/h 故S=1/3.6(0.1+ 0.2/2)30+ 302/254×0.7=7.2m 轿车的最大制动距离为:ST=0.1V+V2/150 ST=0.130+302/150=9m S所以符合要求。 3.3摩擦衬片的磨损特性计算 摩擦衬片的磨损与摩擦副的材质,表面加工情况、温度、压力以及相对滑磨速度等多种因素有关,因此在理论上要精确计算磨损性能是困难的。但试验表明,摩擦表面的温度、压力、摩擦系数和表面状态等是影响磨损的重要因素。
汽车的制动过程,是将其机械能(动能、势能)的一部分转变为热量而耗散的过程。在制动强度很大的紧急制动过程中,制动器几乎承担了耗散汽车全部动力的任务。此时由于在短时间内制动摩擦产生的热量来不及逸散到大气中,致使制动器温度升高。此即所谓制动器的能量负荷。能量负荷愈大,则摩擦衬片(衬块)的磨损亦愈严重。
双轴汽车的单个前轮制动器的比能量耗散率为: 221211()122amvvetA
式中::汽车回转质量换算系数,紧急制动时02v,1; am:汽车总质量; 1v,2v:汽车制动初速度与终速度(m/s);计算时轿车1v取27.8m/s; t:制动时间,s;按下式计算
sjvvt6.468.2721 j:制动减速度,2/sm, 2/6106.06.0smgj; 1A:前轮制动器衬片的摩擦面积; 1A=7600mm2 :制动力分配系数。 则67.076006.4228.27155022121211tAvmea=5.72w/mm 轿车盘式制动器的比能量耗散率应不大于6.02/mmw,故符合要求。 若摩擦衬片压力与制动盘面接触良好,且各处单位压力分布均匀,则在钳盘式制动器扇形摩擦衬面上任取一微小面积:dA = RdRdθ,在这微小面积上产生的微摩擦力矩为:dM=qRµdA=µqR²dRdθ,式中q为摩擦片与制动盘之间的单位面积上的压力,µ为摩擦片的摩擦系数,则单侧摩擦片作用于制动盘上的制动力矩为可
由下式积分求得:M'=21RR2/2/µpR²dRdθ=21RRθµpR²dR=31µp(R23-R13)(N.m)
则盘式制动器的总制动力矩为:M=32µq(R23-R13) 4.性能约束 (1)制动力矩约束:汽车制动器制动力矩应该小于地面的摩擦力矩,否则会发生车轮抱死现象而产生侧滑,从而失去稳定性 ,即:M21Ger
式中::路面附着系数; G:整车重量(N); :制动力分配系数;
er:车轮有效半径。
(2)摩擦片压力约束:摩擦片应达到要求的耐磨性或使用寿命,对于摩擦片最大许用单位压力[P],一般按经验取值,因此,摩擦片单位面积压力不得超过许用单位压力[P],即: pRRdpRRd)(21)(2142122221222<[P]
(3)比能量耗散率约束:如果比能量耗散率过高,不仅会加快制动摩擦片的磨损,而且可能引起制动盘的龟裂,因此所施加的约束为:
)(22212122211211RRtvmtAvmeaa[e](W/mm)
式中:m:整车质量(kg); [e]:盘式制动器时,取6.0W/mm; T:为制动时间。 (4)制动盘一次制动的温升: △T=GV2/254C1M1[△t]
式中M1:制动盘的质量(Kg)M1=42hD,其中为制动盘的密度7900㎏/m3 C1:制动盘的热容量J/(Kg·K)对钢和铸铁取C=523J/(Kg.K); V:制动初速度(Km/h)取30Km/h [△t]一次制动最大允许温升,一般不大于15℃即288.15K (5)摩擦衬块面积:由于摩擦衬块单位面积占有的车辆质量在1.6kg/2cm~-3.5kg/2cm范围内选取。汽车空载质量为1550kg,前轮空载时地载荷为852.5kg,所以852.5/(3.5*4)2cm
60.892cm
(6)结构约束