第二十四章 《圆》
【单元练】广东潮州市九年级数学上册第二十四章《圆》经典练习题(课后培优)

一、选择题1.在平面直角坐标系中,以点()3,4-为圆心,半径为5作圆,则原点一定( ) A .与圆相切B .在圆外C .在圆上D .在圆内C解析:C【分析】设点(-3,4)为点P ,原点为点O ,先计算出OP 的长,然后根据点与圆的位置关系的判定方法求解.【详解】解:∵设点(-3,4)为点P ,原点为点O ,∴OP =2234+=5,而⊙P 的半径为5,∴OP 等于圆的半径,∴点O 在⊙P 上.故选:C .【点睛】本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.2.在⊙O 中,AB 为直径,点C 为圆上一点,将劣弧AC 沿弦AC 翻折交AB 于点D ,连结CD .如图,若点D 与圆心O 不重合,∠BAC =25°,则∠BDC 的度数( )A .45°B .55°C .65°D .70°C解析:C【分析】 连接BC ,求出∠B =65°,根据翻折的性质,得到∠ADC+∠B =180°,进而得到∠BDC=∠B =65°.【详解】解:连接BC ,∵AB 是直径,∴∠ACB =90°,∵∠BAC =25°,∴∠B =90°﹣∠BAC =90°﹣25°=65°,根据翻折的性质,AC 所对的圆周角为∠B ,ABC 所对的圆周角为∠ADC ,∴∠ADC+∠B =180°,∴∠BDC=∠B =65°,故选:C .【点睛】本题考查了圆周角定理及其推论,根据题意添加适当辅助线是解题关键.3.中国美食讲究色香味美,优雅的摆盘造型也会让美食锦上添花,图①中的摆盘,其形状是扇形的一部分,图②是其几何示意图(阴影部分为摆盘),通过测量得到12AC BD cm ==,C ,D 两点之间的距离为3cm ,圆心角为60︒,则图中摆盘的面积是( )A .212cm πB .224cm πC .236cm πD .248cm πC解析:C【分析】 首先证明△OCD 是等边三角形,求出OC=OD=CO=3cm ,再根据S 阴影=S 扇形OAB -S 扇形OCD ,求解即可.【详解】解:如图,连结CD .∵OC=OD ,∠O=60°,∴△OCD 是等边三角形,∴OC=OD=CO=3cm ,∴OA=OC+AC=15cm ,∴OB=OA=15cm ,∴S 阴影=S 扇形OAB -S 扇形OCD =226015603360360ππ⋅⋅⋅⋅-=236cm π. 故选C .【点睛】本题考查了扇形的面积,等边三角形的性质与判定等知识.扇形的面积=2360n r π︒. 4.如图,PA 切O 于点,A PB 切O 于点B PO ,交O 于点C ,下列结论中不一定成立的是( )A .PA PB =B .PO 平分APB ∠C .AB OP ⊥D .2PAB APO ∠=∠D解析:D【分析】 利用切线长定理证明△PAG ≌△PBG 即可得出.【详解】解:连接OA ,OB ,AB ,AB 交PO 于点G ,由切线长定理可得:∠APO =∠BPO ,PA =PB ,又∵PG=PG ,∴△PAG ≌△PBG ,从而AB ⊥OP .因此A .B .C 都正确.无法得出AB =PA =PB ,可知:D 是错误的.综上可知:只有D 是错误的.故选:D .【点睛】本题考查了切线长定理、全等三角形的判定和性质,关键是利用切线长定理解答. 5.如图,PA 、PB 、CD 是O 的切线,切点分别是A 、B 、E ,CD 分别交PA 、PB 于C 、D 两点,若60APB ∠=︒,则COD ∠的度数( )A .50°B .60°C .70°D .75°B解析:B【分析】 连接AO ,BO ,OE 由切线的性质可得90PAO PBO ︒∠=∠=,结合已知条件和四边形的内角和为360°可求出AOB 的度数,再由切线长定理即可求出COD 的度数.【详解】如图,连接AO ,BO ,OE ,∵PA 、PB 是O 的切线,∴∠PAO =∠PBO =90∘,∵60APB ∠=︒,∴36029060120AOB ∠=︒-⨯︒-︒=︒,∵PA 、PB 、CD 是⊙O 的切线,∴∠ACO =∠ECO ,∠DBO =∠DEO ,∴∠AOC =∠EOC ,∠EOD =∠BOD , ∴1602COD COE EOD AOB ∠=∠+∠=∠=︒, 故选B.【点睛】本题考查了切线的性质及切线长定理,解答本题的关键是熟练掌握:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线,平分两条切线的夹角.6.如图,AB 是⊙O 的直径,C ,D 是⊙O 上的点,28CDB ∠=︒,过点C 作⊙O 的切线交AB 的延长线于点E ,则E ∠等于( )A .28︒B .34︒C .44︒D .56︒B解析:B【分析】 连接OC ,由CE 为圆O 的切线,利用切线的性质得到OC 垂直于CE ,由OA=OC ,利用等边对等角得到一对角相等,再利用外角性质求出∠COE 的度数,即可求出∠E 的度数.【详解】解:连接OC ,∵CE 为圆O 的切线,∴OC ⊥CE ,∴∠COE=90°,∵∠CDB 与∠BAC 都对BC ,且∠CDB=28°,∴∠BAC=∠CDB=28°,∵OA=OC ,∴∠OAC=∠OCA=28°,∵∠COE 为△AOC 的外角,∴∠COE=56°,则∠E=34°.故选:B .【点睛】此题考查了切线的性质,圆周角定理,等腰三角形的性质,以及三角形内角和定理,熟练掌握切线的性质是解本题的关键.7.如图,大半圆中有n 个小半圆,若大半圆弧长为1L ,n 个小半圆弧长的和为2L ,大半圆的弦AB ,BC ,CD 的长度和为3L .则( )A .123L L L =>B .123L L L =<C .无法比较1L 、2L 、3L 间的大小关系D .132L L L >>A解析:A【分析】利用圆周长公式计算1L 和2L 的长.根据圆周长公式分别写出1L 和2L 的表达式进行比较,再根据“两点之间线段最短的性质”得出13L L >,即可选出答案.【详解】解:设n 个小半圆半径依次为1r ,2r ,⋯,n r .则大圆半径为()12n r r r ++⋯+()112n L r r r π∴=++⋯+,212n L r r r πππ=++⋯+()12n r r r π=++⋯+,12L L ∴=;根据“两点之间线段最短的性质”可得:13L L >,123L L L ∴=>..故选A .【点睛】本题考查了半圆弧长的计算,两点之间线段最短的性质,是基础题,难度不大. 8.如图,⊙O 是四边形 ABCD 的内切圆,连接 OA 、OB 、OC 、OD .若∠AOB =110°,则∠COD 的度数是( )A .60°B .70°C .80°D .45°B解析:B【分析】 设四个切点分别为E 、F 、G 、H ,分别连接切点和圆心,利用切线性质和HL 定理可以得到4对全等三角形,进而可得∠1=∠2,∠3=∠4,∠5=∠6,∠7=∠8,根据8个角之和为360°即可求解.【详解】解:设四个切点分别为E 、F 、G 、H ,分别连接切点和圆心,则OE ⊥AB ,OF ⊥BC ,OG ⊥CD ,OH ⊥AD ,OE=OF=OG=OH ,在Rt △BEO 和△BFO 中,OE OF OB OB =⎧⎨=⎩, ∴Rt △BEO ≌△BFO (HL )∴∠1=∠2,同理可得:∠3=∠4,∠5=∠6,∠7=∠8,∴∠1+∠8=∠2+∠7,∠4+∠5=∠3+∠6,∵∠1+∠2+∠3+∠4+∠5+∠6+∠7+∠8=360°,∴∠1+∠8+∠4+∠5=180°,即∠AOB+∠COD=180°,∵∠AOB=110°,∴∠COD=180°﹣∠AOB=180°﹣110°=70°,故选:B .【点睛】本题考查了圆的切线性质、全等三角形的判定与性质,利用圆的的切线性质,添加辅助线构造全等三角形是解答的关键.9.如图,在平行四边形ABCO 中,45C ∠=︒,点A ,B 在O 上,点D 在ADB 上,DA DB =,则AOD ∠的度数为( )A .112.5°B .120°C .135°D .150°C解析:C【分析】 延长DO 交AB 于点H ,连接OB ,证明△△AOD BOD ≅,OD 是AOB ∠的角平分线,求得290345∠=︒-∠=︒,进行求解即可;【详解】延长DO 交AB 于点H ,连接OB ,∵四边形ABCD 是平行四边形,45C ∠=︒,∴345∠=︒,∵DA DB =,OA OB =,∴△△AOD BOD ≅,∴OD 是AOB ∠的角平分线,又∵AO BO =,∴DH AB ⊥,∴290345∠=︒-∠=︒,又∵221∠=∠,∴18045135AOD ∠=︒-︒=︒.故选:C .【点睛】本题主要考查了与圆有关的计算,结合全等三角形的性质和角平分线的性质计算即可. 10.如图,P 与y 轴交于点()0,4M -,()0,10N -,圆心P 的横坐标为4-,则P 的半径为( )A .3B .4C .5D .6C解析:C【分析】 过点P 作PD ⊥MN ,连接PM ,由垂径定理得DM =3,在Rt △PMD 中,由勾股定理可求得PM 为5即可.【详解】解:过点P 作PD ⊥MN ,连接PM ,如图所示:∵⊙P 与y 轴交于M (0,−4),N (0,−10)两点,∴OM =4,ON =10,∴MN =6,∵PD ⊥MN ,∴DM =DN =12MN =3, ∴OD =7,∵点P 的横坐标为−4,即PD =4,∴PM =22PD DM +=2243+=5,即⊙P 的半径为5,故选:C .【点睛】本题考查了垂径定理、坐标与图形性质、勾股定理等知识;熟练掌握垂径定理和勾股定理是解题的关键. 二、填空题11.一排水管截面如图所示,截面半径13dm OA =,水面宽10dm AB =,则圆心O 到水面的距离OC =______dm .12【分析】根据垂径定理求出AC=5dm 再根据勾股定理求出OC 即可【详解】∵OC ⊥AB ∴AC=5dm 在Rt △AOC 中∴OC==12dm 故答案为:12【点睛】此题考查垂径定理勾股定理熟记垂径定理是解题解析:12【分析】根据垂径定理求出AC=5dm ,再根据勾股定理求出OC 即可.【详解】∵OC ⊥AB ,10dm AB =,∴AC=5dm ,在Rt △AOC 中,13dm OA =,∴2222135OA AC -=-,故答案为:12【点睛】此题考查垂径定理,勾股定理,熟记垂径定理是解题的关键.12.如图,O的半径为6,AB、CD是互相垂直的两条直径,点P是O上任意一点,过点P作PM AB⊥于M,PN CD⊥于N,点Q是MN的中点,当点P沿着圆周从点D逆时针方向运动到点C的过程中,当∠QCN度数取最大值时,线段CQ的长为______.【分析】利用矩形的性质得出OQ=MN=OP=3再利用当CQ与此圆相切时∠QCN最大此时在直角三角形CQ′O中通过勾股定理求得答案【详解】连接OQ∵MN=OP(矩形对角线相等)⊙O的半径为6∴OQ=M解析:33【分析】利用矩形的性质得出OQ=12MN=12OP=3,再利用当CQ与此圆相切时,∠QCN最大,此时,在直角三角形CQ′O中,通过勾股定理求得答案.【详解】连接OQ,∵MN=OP(矩形对角线相等),⊙O的半径为6,∴OQ=12MN=12OP=3,可得点Q的运动轨迹是以O为圆心,3为半径的半圆,当CQ与此圆相切时,∠QCN最大,此时,在直角三角形CQ′O中,∠CQ′O=90°,OQ′=3,CO=6,∴CQ′22CO OQ-'33即线段CQ的长为33故答案为:33′【点睛】此题主要考查了矩形的性质、点的轨迹,圆的切线等,得出当CQ与此圆相切时,∠QCN 最大是解题的关键.13.在直径为10cm的⊙O中,弦AB=5cm,则∠AOB的度数为_______.60°【分析】如图连接OAOB根据等边三角形的性质求出∠AOB的度数【详解】解:如图在⊙O中直径为10cm弦AB=5cm∴OA=OB=5cm∴OA=OB=AB∴△OAB是等边三角形∴∠AOB=60°解析:60°【分析】如图,连接OA、OB,根据等边三角形的性质,求出∠AOB的度数.【详解】解:如图,在⊙O中,直径为10cm,弦AB=5cm,∴OA=OB=5cm,,∴OA=OB=AB∴△OAB是等边三角形,∴∠AOB=60°,故答案为:60°.【点睛】考查了圆的性质以及等边三角形的性质,熟练掌握运算性质定理是解题的关键.14.边长为2的正方形ABCD的外接圆半径是____________.【分析】如图:连接ACBD交于点O即为正方形ABCD外接圆的圆心根据正方形的性质可得OA=OC∠AOC=90°根据勾股定理可得OA和OC的值即为为正方形ABCD外接圆的半径【详解】解:如图:连接AC2【分析】如图:连接AC、BD交于点O,即为正方形ABCD外接圆的圆心,根据正方形的性质可得OA=OC,∠AOC=90°,根据勾股定理可得OA和OC的值,即为为正方形ABCD外接圆的半径.【详解】解:如图:连接AC、BD交于点O,即为正方形ABCD外接圆的圆心,∴OA、OB、OC、OD为正方形ABCD外接圆的半径∵四边形ABCD是正方形,∴OA=OC,∠AOC=90°在Rt △AOC 中,AC 2=OA 2+OC 2,∵AC =2,OA=OC ,∴4=2 OA 2,∴OA =2 即正方形ABCD 外接圆的半径为2故答案为2【点睛】本题考查正方形外接圆的有关知识,利用到正方形的性质,勾股定理,解题的关键是熟练掌握所学知识.15.在△ABC 中,已知∠ACB =90°,BC =3,AC =4,以点C 为圆心,2.5为半径作圆,那么直线AB 与这个圆的位置关系分别是_________.相交【分析】根据勾股定理作于点则的长即为圆心到的距离利用等积法求出的长与半径比较大小再作判断【详解】解:如图作于点∵的两条直角边斜边即半径是直线与圆相交【点睛】此题考查的是勾股定理直线与圆的位置关系解析:相交【分析】根据勾股定理,5AB =.作CD AB ⊥于点D ,则CD 的长即为圆心C 到AB 的距离.利用等积法求出CD 的长,与半径比较大小,再作判断.【详解】解: 如图, 作CD AB ⊥于点D . ∵Rt ABC 的两条直角边3BC =,4AC =,∴斜边5AB =. 1122ABC S AC BC AB CD ∆==,即 512CD ,2.4CD .半径是2.5 2.4>,∴直线与圆C 相交 .【点睛】此题考查的是勾股定理,直线与圆的位置关系,熟悉相关性质是解题的关键. 16.如图,在Rt △ABC 中,∠C =90°,AC =3cm ,BC =4cm ,若以C 为圆心,r 为半径所作的圆与斜边AB 相切,则r 的值是________【分析】根据相切的定义可得利用等面积法即可求解【详解】解:∵∠C =90°AC =3cmBC =4cm ∴由题意可得∴即故答案为:【点睛】本题考查直线与圆的位置关系勾股定理掌握相切的定义是解题的关键 解析:125【分析】根据相切的定义可得CD AB ⊥,利用等面积法即可求解.【详解】解:∵∠C =90°,AC =3cm ,BC =4cm , ∴225cm AB AC BC =+=,由题意可得CD AB ⊥, ∴1122AC BC AB CD ⋅=⋅,即125CD =, 故答案为:125. 【点睛】本题考查直线与圆的位置关系、勾股定理,掌握相切的定义是解题的关键.17.如图,ABC 10的半圆,AB 为直径,点M 是弧AC 的中点,连结BM 交AC 于点E ,AD 平分∠CAB 交BM 于点D ,∠ADB =_____°,当点D 恰好为BM 的中点时,BM 的长为____.【分析】(1)根据直径所对的圆周角是可得到再根据弧的中点定义同弧所对的圆周角相等角平分线定义可推导出最后有三角形的内角和定理即可求得答案;(2)在(1)的基础上结合已知条件添加辅助线连接从而构造出等解析:13542【分析】(1)根据直径所对的圆周角是90︒可得到90CAB CBA ∠+∠=︒,再根据弧的中点定义、同弧所对的圆周角相等、角平分线定义可推导出45DAB DBA ∠+∠=︒,最后有三角形的内角和定理即可求得答案;(2)在(1)的基础上,结合已知条件添加辅助线“连接AM ”,从而构造出等腰Rt ADM △,利用勾股定理解Rt ABM 即可求得答案.【详解】解:(1)∵AB 是直径∴90ACB ∠=︒∴90CAB CBA ∠+∠=︒∵点M 是弧AC 的中点∴AM CM =∴CBM ABM ∠=∠∵AD 平分CAB ∠∴CAD BAD ∠=∠∴()1452DAB DBA CAB CBA ∠+∠=∠+∠=︒ ∴()180135ADB DAB DBA ∠=︒-∠+∠=︒.(2)连接AM ,如图:∵AB 是直径∴90AMB ∠=︒∵18045ADM ADB ∠=︒-∠=︒∴AM DM =∵点D 为BM 的中点∴DM DB =∴2BM AM =∴设AM x =,则2BM x =∵半圆的半径为10 ∴210AB =∵在Rt ABM 中,222AM BM AB +=∴22440x x +=∴122x =,222x =-(不合题意舍去)∴22AM =∴42BM =.【点睛】本题考查了直径所对的圆周角是90︒、弧的中点定义、同弧所对的圆周角相等、角平分线定义、三角形的内角和定理、线段的中点定义、利用勾股定理解直角三角形、解一元二次方程等知识点,通过添加辅助线构造直角三角形解决问题的关键,难度中等,属于中考常考题型.18.如图,AB 是O 的直径,O 交BC 的中点于D ,DE AC ⊥于E ,连接AD ,则下列结论正确的有______(填序号) ①AD BC ⊥;②EDA B ∠=∠;③12OA AC =;④DE 是O 的切线. ①②③④【分析】根据题意易得∠ADB=90°可得①进而根据线段垂直平分线的性质可得AC=AB 连接OD 然后根据圆的基本性质及切线的判定定理可求解【详解】解:∵是的直径∴∠ADB=90°∴AD ⊥BC 故① 解析:①②③④【分析】根据题意易得∠ADB=90°,可得①,进而根据线段垂直平分线的性质可得AC=AB ,连接OD ,然后根据圆的基本性质及切线的判定定理可求解.【详解】解:∵AB 是O 的直径,∴∠ADB=90°,∴AD ⊥BC ,故①正确;∵点D 是BC 的中点,∴AC=AB ,∴△ABC 是等腰三角形,∴∠B=∠C ,∠CAD=∠BAD ,∵DE ⊥AC ,∠CDA=90°,∴∠EDA+∠EAD=90°,∠CAD+∠C=90°,∴EDA C ∠=∠,∴EDA B ∠=∠,故②正确; ∵12OA AB =, ∴12OA AC =,故③正确; 连接OD ,如图所示:∵OD=OA ,∴∠ADO=∠DAO ,∴∠ADO=∠EAD ,∴∠ADO+∠EDA=90°,∴ED 是⊙O 的切线,故④正确;∴正确的有①②③④;故答案为①②③④.【点睛】本题主要考查切线的判定定理及等腰三角形的性质与判定,熟练掌握切线的判定定理及等腰三角形的性质与判定是解题的关键.19.扇形 的半径为6cm ,弧长为10cm ,则扇形面积是________.30【分析】结合题意根据弧长计算公式计算得弧长对应圆心角;再结合扇形面积公式计算即可得到答案【详解】∵扇形的半径为6cm 弧长为10cm ∴弧长对应的圆心角n 为:∴扇形面积为:故答案为:30【点睛】本题解析:302cm【分析】结合题意,根据弧长计算公式,计算得弧长对应圆心角;再结合扇形面积公式计算,即可得到答案.【详解】∵扇形的半径为6cm ,弧长为10cm∴弧长对应的圆心角n 为:101803006ππ⨯=⨯ ∴扇形面积为:263003630360360n πππ⨯⨯=⨯=2cm 故答案为:302cm .【点睛】本题考查了弧长、扇形面积计算的知识;解题的关键是熟练掌握弧长、扇形的性质,从而完成求解.20.如图,已知空间站A 与星球B 距离为a ,信号飞船C 在星球B 附近沿圆形轨道行驶,B ,C 之间的距离为b .数据S 表示飞船C 与空间站A 的实时距离,那么S 的最小值________.a-b 【分析】根据圆外一点到圆的最大距离是过圆心的直线与圆相交的最远的点到圆的最小距离是点与圆心的连线与圆相交的最近点求解即可【详解】解:空间站A 与星球B 飞船C 在同一直线上时S 取到最小值a-b 故答案解析:a-b【分析】根据圆外一点到圆的最大距离是过圆心的直线与圆相交的最远的点,到圆的最小距离是点与圆心的连线与圆相交的最近点求解即可.【详解】解:空间站A 与星球B 、飞船C 在同一直线上时,S 取到最小值a-b .故答案为:a-b .【点睛】本题考查了圆外一点到圆的最大距离和最短距离,最大距离和最短距离都在过圆心的直线上.属于基础知识.三、解答题21.如图,AB 为O 的弦,,C D 是直线AB 上两点,且AC BD =,求证:C D ∠=∠.解析:见解析【分析】过O 作OH ⊥AB 于H ,则AH =BH ;再根据线段的和差关系可得:CH =DH ,即OH 是CD 的线段垂直平分线,所以OC =OD ,继而即可求证结论.【详解】证明:如图过点O 作OH ⊥AB ,于点H .∵AB 为O 的弦,∴AH =BH又∵AC =BD∴AC +AH =BD +BH ,即CH DH =又OH ⊥AB ,∴OC =OD ,∴∠C =∠D .【点睛】本题考查了垂径定理,解答本题的关键是作辅助线,利用垂径定理和线段垂直平分线的性质证明OC =OD .22.如图,已知AB 为O 的直径,点C 、D 在O 上,CD BD =,E 、F 是线段AC 、AB 的延长线上的点,并且EF 与O 相切于点D .(1)求证:2A BDF ∠=∠;(2)若3AC =,5AB =,求CE 的长.解析:(1)见解析;(2)1【分析】(1)如图连接AD ,,先证明CD BD =可得∠1=∠2,根据圆周角定理得到∠ADB=90°,再根据切线的性质得到OD EF ⊥即3490∠+∠=°,最后证明∠1=∠4即可;(2)如图,连接BC 交OD 于,由圆周角定理得到∠ACB=90°,由CD BD =得到OD BC ⊥,则CF=BF ,进而求得OF 、DF ,然后证明四边形CEDH 为矩形即可解答.【详解】(1)证明:连接AD ,如图,CD BD =,∴CD BD =,12∠∠∴=,∵AB 为直径,90ADB ∴∠=︒,190ABD ∴∠+∠=︒,∵EF 为切线,∴OD EF ⊥,∴3490∠+∠=°,∵OD OB =,3OBD ∴∠=∠,14∴∠=∠,2A BDF ∴∠=∠;(2)解:连接BC 交OD 于F ,如图,∵AB 为直径,90ACB ∴∠=︒,∵CD BD =,∴OD BC ⊥,∴CF BF =, ∴1322OF AC ==, ∴53122DF =-=, ∵ACB 90∠=︒,OD BC ⊥,OD EF ⊥∴四边形CEDF 为矩形,∴1CE DF ==.【点睛】本题主要考查了切线的性质、圆周角定理以及矩形的判定与性质,灵活应用相关知识点成为解答本题的关键.23.如图,在△ABC中,以AB为直径的⊙O交AC于点M,弦MN∥BC交AB于点E,且ME=NE=3.(1)求证:BC是⊙O的切线;(2)若AE=4,求⊙O的直径AB的长度.解析:(1)见解析;(2)AB=254.【分析】(1)先由垂径定理得AB⊥MN,再由平行线的性质得BC⊥AB,然后由切线的判定定理即可得到BC是⊙O的切线;(2)连接OM,设⊙O的半径是r,在Rt△OEM中,根据勾股定理得到r2=32+(4-r)2,解方程即可得到⊙O的半径,即可得出答案.【详解】(1)证明:∵ME=NE=3,∴AB⊥MN,又∵MN∥BC,∴BC⊥AB,∴BC是⊙O的切线;(2)解:连接OM,如图,设⊙O的半径是r,在Rt△OEM中,OE=AE﹣OA=4﹣r,ME=3,OM=r,∵OM2=ME2+OE2,∴r2=32+(4﹣r)2,解得:r=25 8,∴AB=2r=254.【点睛】本题考查了切线的判定定理、垂径定理和勾股定理等知识;熟练掌握切线的判定和垂径定理是解题的关键.24.如图,AB 是⊙O 的直径,弦CD AB ⊥于点H ,30A ∠=︒,43CD =,求⊙O 的半径的长.解析:4【分析】连接OC, 根据垂径定理可得∠CHO=90°,CD=2CH ,求出CH 的长,根据30°的直角三角形的特征以及勾股定理求出OC=2OH 即可. 【详解】连接OC ,则OA =OC .∴∠A =∠ACO =30°.∴∠COH =60°.∵AB 是⊙O 的直径,弦CD ⊥AB 于点H ,∴∠CHO=90°,CD=2CH∴∠OCH=30°,∴2OC OH =,∵CD =43,∴CH =23.∴在Rt OCH 中,222OH HC OC +=∴OH =2.∴OC =4.【点睛】本题考查了垂径定理及30度的直角三角形的性质以及勾股定理得应用,解题的关键是掌握垂径定理及30度的直角三角形的性质.25.如图,在直角坐标系中,A (0,4)、B (4,4)、C (6,2),(1)写出经过A 、B 、C 三点的圆弧所在圆的圆心M 的坐标:______; (2)判断点()5,2D -与圆M 的位置关系.解析:(1)(2,0);(2)在圆内.【分析】(1)由网格容易得出AB 的垂直平分线和BC 的垂直平分线,它们的交点即为点M ,根据图形即可得出点M 的坐标;(2)用两点间距离公式求出圆的半径和线段DM 的长,当DM 小于圆的半径时点D 在圆内.【详解】(1)如图1,点M 就是要找的圆心;圆心M 的坐标为(2,0).故答案为(2,0);(2)圆的半径AM 2224+=25线段MD =22(52)2-+=13<25,所以点D 在⊙M 内.【点睛】本题考查的是点与圆的位置关系,坐标与图形性质以及垂径定理,利用网格结构得到圆心M 的坐标是解题的关键.26.第十届亚运会在广东召开,有三名运动员分别下榻在A 、B 、C 三个宾馆,三个宾馆由三条道路相连,如图所示.(1)为建一个公共活动场地P 到三个宾馆的距离相等.请用尺规作图方法作出点P ,使得点P 落在△ABC 内部.保留作图痕迹,不要求写作法.(2)如果ACB α∠=,那么APB ∠=______.解析:(1)作两边的垂直平分线,交点即为所求,见解析;(2)2α.【分析】(1)分别作三角形两条边的垂直平分线,两条直线的交点即为所求;(2)根据(1)的作法,可以确定点P 是△ABC 的外接圆的圆心,再根据圆周角定理即可确定∠APB 是∠ACB 的2倍,即可求得结论.【详解】解:(1)如图所示,点P 即为所求(2)由(1)可知PA=PB=PC ,所以点A 、B 、C 在以P 为圆心,PA 为半径的圆上,即A 、B 、C 三点共圆,∴∠APB 与∠ACB 是AB 所对的圆心角和圆周角,∴∠APB=2∠ACB ,又∵ACB α∠=,∴∠APB=2α.故答案为:2α.【点睛】本题考查垂直平分线的作法和定义,三角形外心定义、三角形外接圆、圆周角定理,难度中等.27.如图,四边形ABCD 内接于O ,AB AC =,BD AC ⊥,垂足为E .(1)若40BAC ∠=︒,求ADC ∠的度数;(2)求证:2BAC DAC ∠=∠.解析:(1)110ADC ∠=︒;(2)证明见解析【分析】(1)根据等腰三角形的性质和圆内接四边形的性质即可得到结论;(2)根据等腰三角形的性质和三角形的内角和即可得到结论.【详解】(1)解:AB AC =,40BAC ∠=︒,70ABC ACB ∴∠=∠=︒,四边形ABCD 是O 的内接四边形,180110ADC BAC ∴∠=︒-∠=︒,(2)证明:BD AC ⊥,90AEB BEC ∴∠=∠=︒,90ACB CBD ∴∠=︒-∠,AB AC =, 90ABC ACB CBD ∴∠=∠=︒-∠,18022BAC ABC CBD ∴∠=︒-∠=∠,DAC CBD ∠=∠,2BAC DAC ∠=∠∴;【点睛】本题考查了圆内接四边形,等腰三角形的性质,熟练掌握圆内接四边形的性质是解题的关键.28.如图,半径为2的⊙O 与正五边形ABCDE 的边AB 、AE 相切于点M 、N ,求劣弧MN 的长度.解析:45π 【分析】如图(见解析),先根据圆的切线的性质可得,OM AB ON AE ⊥⊥,再根据正五边形的内角和可得108A ∠=︒,然后根据四边形的内角和可得72MON ∠=︒,最后弧长公式即可得.【详解】如图:连接OM ,ON ,∵O 与正五边形ABCDE 的边AB 、AE 相切于点M 、N ,∴,OM AB ON AE ⊥⊥,90AMO ANO ∴∠=∠=︒,∵正五边形的每个内角为(52)1801085-⨯︒=︒, 108A ∴∠=︒,∴在四边形AMON 中,36072AMO ANO A MON ∠-∠=-∠∠︒-=︒,∵O 的半径为2,∴劣弧MN 的长度为72241805ππ⨯=.【点睛】本题考查了正五边形的内角和、圆的切线的性质、弧长公式等知识点,熟练掌握正五边形的内角和是解题关键.。
《圆》说课标、说教材、说建议

《圆》说课标、说教材、说建议我今天说课的内容是人教版《义务教育课程标准实验教科书》数学九年级上册第二十四章《圆》接下来,我将从说课标,说教材,说建议三个方面进行具体阐述:第一方面从课程目标,课程内容进行分说;第二方面从编写体例及特点,内容结构,立体整合三个小点去说明;第三方面从教学建议,评价建议,课程资源开发和利用建议三个角度去分析。
课程目标的总目标有三层意思:第一、获得“四基”,第二增强能力,第三培养科学态度。
四基是在02年实验稿双基的基础上扩展的,增加了基本思想,和基本活动经验,体现了育人为本的核心理念;增强能力,由二能转化为四能,新增加了发现问题和提出问题的能力,为培养具有创新意识的人才奠定了一定的基础。
由此可见总目标的各部分是一个有机整体,各部分是不可割裂的。
第三学段的课程目标,从知识与技能,数学思考,问题解决,情感与态度四个方面做了进一步的描述。
知识与技能方面就是掌握数与代数,图形与几何,统计与概率,综合与实践的基础知识、和基本技能;数学思考就是发展形象思维,抽象思维,发展合情推理,演绎推理的能力;问题解决就是学会从数学的角度发现问题和提出问题,学会与他人合作交流,学会评价与反思。
情感与态度就是对数学有好奇心和求知欲,能养成认真勤奋、独立思考、合作交流、反思质疑的学习习惯。
初中数学课程内容有四大领域:第一领域数与代数,第二领域图形与几何,第三领域统计与概率,第四领域综合与实践。
旧课标的第二领域叫空间与图形,第四领域称之为实践与综合应用,从名称的修改上我们不难发现,新课标将更加科学更加符合内容实际。
图形与几何领域的主要内容有图形的性质,图形的变化,图形与坐标,其中图形的性质介绍的前五个,它们分别编排在七八年级的第4、第5、第7、第11、第19章;第6个介绍圆,它被编排在九年级上册的第二十四章;圆的内容标准:圆的基本性质里课标要求:了解、理解、知道探索相关内容;点与圆的位置关系课标要求:会、探索、作一些重要图形;直线与圆的位置关系课标要求:了解、掌握、探索、会画圆的切线。
第二十四章-圆-单元测试(含答案)

第二十四章圆学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图,∠ACB =30°,点O 是CB 上的一点,且OC =6,则以4为半径的⊙O 与直线CA 的公共点的个数为( )A .0个B .1个C .2个D .无法确定2.如图,AB 是⊙O 的弦,半径OC ⊥AB 于点D ,若⊙O 的半径为10cm ,AB =16cm ,则CD 的长是( )A .2cmB .3cmC .4cmD .5cm3.如图,圆的半径是2,圆内阴影图案的周长是( )A .4πB .3πC .2πD . π4.如图,⊙O 是△ABC 的外接圆,⊙O 的半径为3,∠A=45°,则 BC的长是( )A .34πB .32πC .452πD .94π5.如图,DC 是O 直径,弦AB CD ⊥于F ,连接,BC DB ,则下列结论错误的是( )A . AD BD =B .90DBC ∠=︒C .AF BF =D .OF CF=66,则78(A .50°B .70°C .80°D .100°9.如图,CB 为⊙O 的直径,P 是CB 的延长线上的一点,且OB=BP,∠AOC=120°,则PA 与⊙O 的位置关系是( )A.相离B.相切C.相交D.不确定10.如图,已知⊙O的内接五边形ABCDE,连接AD、AC,若AB=BC=CD,∠AED=120°,则∠BAC 的度数为( )A.30°B.35°C.40°D.45°11.如图,A、D是⊙O上的两个点,BC是直径.若∠D=32°,则∠OAC=( )A.64°B.58°C.72°D.55°12.下列命题是假命题的是()A.三角形的内心到这个三角形三边的距离相等B.有一个内角为60°的等腰三角形是等边三角形C.直角坐标系中,点(a,b)关于原点成中心对称的点的坐标为(-b,-a)D.有三个角是直角且一组邻边相等的四边形是正方形二、填空题13.现有32%圆周的一个扇形彩纸片,该扇形的半径为40cm,小红同学为了在“六一”儿童节联欢晚会上表演节目,她打算剪去部分扇形纸片后,利用剩下的纸片制作成一个底面半径为10cm的圆锥形纸帽(接缝处不重叠),那么剪去的扇形纸片的圆心角为.14.一圆锥的底面半径为3,它的母线长为4,则它的侧面积S=侧.15.中国美食讲究色香味美,优雅的摆盘造型也会让美食锦上添花.图1中的摆盘,其形状是扇形的1617三、解答题18.一条盘水管的截面如图所示,水面宽AB垂直平分半径OD.(1)求ODB ∠的度数;(2)若O 的半径为6,求弦AB 的长.(3)若连结AD ,请判断四边形AOBD 的形状,并给出证明.19.在平面直角坐标系xOy 中,线段4AB =,点M ,N 在线段AB 上,且2MN =,P 为MN 的中点,如果任取一点Q ,将点Q 绕点P 顺时针旋转180︒得到点Q ',则称点Q '为点Q 关于线段AB 的“旋平点”(1)如图1,已知()1,0A -,()3,0B ,()1,2Q ,如果(),Q a b '为点Q 关于线段AB 的“旋平点”,①写出一个点Q 的“旋平点”的坐标______;②画出示意图,写出a 的取值范围:(2)如图2,O 的半径为3,点A ,B 在O 上,点()1,0Q ,如果在直线x m =上存在点Q 关于线段AB 的“旋平点”,求m 的取值范围.20.上海之鱼是奉贤区的核心景观湖,湖面成鱼型.如图,鱼身外围有一条圆弧形水道,在圆弧形水道外侧有一条圆弧形道路,它们的圆心相同.某学习小组想要借助所学的数学知识探索上海之鱼的大小.(1)利用圆规和直尺,在图上作出圆弧形水道的圆心O .(保留作图痕迹)(2)如图,学习小组来到了圆弧形道路内侧A 处,将所携带的200米绳子拉直至圆弧道路内侧另一点B 处,并测得绳子中点C 与圆弧形道路内侧中点D 的距离为10米,圆弧形水道外侧到道路内侧的距离DE 为22米(点D 、C 、E 在同一直线上),请计算圆弧形水道外侧的半径.21.某校组织九年级学生前往某蔬菜基地参观学习,该蔬菜基地欲修建一顶大棚.如图,大棚跨度8m AB =,拱高2m CD =.同学们讨论出两种设计方案:方案一,设计成圆弧型,如图1,已知圆心O ,过点O 作OC AB ⊥于点D 交圆弧于点C .连接OA .方案二,设计成抛物线型,如图2,以AB 所在直线为x 轴,线段AB 的垂直平分线为y 轴建立平面直角坐标系.(1)求方案一中圆的半径;(2)求方案二中抛物线的函数表达式;(3)为扩大大概的空间,将大棚用1米高的垂直支架支撑起来,即1m AE BF ==.在大棚内需搭建2m 高的植物攀爬竿,即2m GM HN ==,GM AB ⊥于点P ,HN AB ⊥于点Q ,GH 与OC 交于点K .请问哪种设计的种植宽度()MN 要大些?(不考虑种植间距等其他问题,且四边形GMNH 是矩形)22.已知,正方形ABCD ,边长为4,点F 是边AB 、BC 上一动点,以DF 为直径作O ,(1)点F 在边AB 上时(如图1)①求证:点O在边AD的垂直平分线上;②如图2,若O与边BC相切,请用尺规作图,确定圆心的位置,(不写作法,保留作图痕迹),并求出AF长;③如图3,点F从A运动到点B的过程中,若H始终是FHD的中点,写出H点运动的轨迹并求出路径长:(2)当点F在边BC上时(如图4),若H始终是FHD的中点,连接CH,12CHFC,连接FH,求:F C HV的面积.23.如图,AB 是O 的直径,AM 和BN 是它的两条切线,DE 切O 于点E ,交AM 于点D ,交BN 于点C ,F 是CD 的中点,连接OF .(1)求证:OD BE ∥;(2)猜想:OF 与CD 有何数量关系?并说明理由.24.如图,在Rt ACD中,∠ACD=90°,点O在CD上,作⊙O,使⊙O与AD相切于点B,⊙O与CD 交于点E,过点D作DF∥AC,交AO的延长线于点F,且∠OAB=∠F.(1)求证:AC是⊙O的切线;(2)若OC=6,DE=4,求tan∠F的值.参考答案:题号12345678910答案C C A B D B B C B C 题号1112 答案BC1.C 2.C 3.A 4.B 5.D 6.B 7.B 8.C 9.B 10.C 11.B 12.C 13.25.2°14.12π15.96π16.70°.17.3518.(1)60︒(2)(3)菱形19.(1)①()1,2-(不唯一),②13a -≤≤(2)11m -≤≤-20.(1)见解析(2)圆弧形水道外侧的半径为483米21.(1)5m (2)2128y x =-+(3)方案一中的种植宽度()MN 要大些22.(1)①略;②3AF =;③H 点运动的轨迹为线段MC ,线段MC =(2)16FCH S =-△2324。
第24章《圆》(解答题20题)(解析版)-2021-2022学年九上精选20题常考题型训练

人教版九年级上册精选20题常考压轴题题型训练(解答题)第24章圆1.(2021•南关区校级二模)如图,四边形ABCD为菱形,以AD为直径作⊙O交AB于点F,连接DB交⊙O于点H,E是BC上一点,且BE=BF,连接DE.(1)求证DE是⊙O的切线;(2)若BF=1,BD=,则菱形ABCD的面积为 5 .思路引导:(1)证明△DAF≌△DCE,可得∠DF A=∠DEC,证出∠ADE=∠DEC=90°,即OD⊥DE,DE是⊙O的切线.(2)连接AH,在Rt△BDF利用勾股定理求解DF的长,再根据Rt△ADF中,利用勾股定理求解AB的长,再利用菱形的面积公式可求解.完整解答:(1)证明:连接DF,∵四边形ABCD为菱形,∴AB=BC=CD=DA,AD∥BC,∠DAB=∠C,∵BF=BE,∴AB−BF=BC−BE,即AF=CE,∴△DAF≌△DCE(SAS),∴∠DF A=∠DEC,∵AD是⊙O的直径,∴∠DF A=90°,∴∠DEC=90°∵AD∥BC,∴∠ADE=∠DEC=90°,∴OD⊥DE,∵OD是⊙O的半径,∴DE是⊙O的切线;(2)解:∵AD是⊙O的直径,∴∠AHD=∠DF A=90°,∴∠DFB=90°,在Rt△BDF中,BF=1,BD=,∴DF2=BD2−BF2=5﹣1=4,∴DF=2,在Rt△ADF中,AD2=DF2+AF2,∴AB2=22+(AB﹣1)2,解得AB=,∴S菱形ABCD=AB•DF=×2=5.2.(2021•章丘区二模)如图,在△ABC中,AB=AC.若O为AB的中点,以O为圆心,OB为半径作⊙O交BC于点D,过D作DE⊥AC,垂足为E.①试说明:BD=CD;②判断直线DE与⊙O的位置关系,并说明理由.思路引导:①根据题意和等腰三角形的性质,可以说明BD=CD,本题得以解决;②先判断直线DE与⊙O的位置关系,然后根据题意和图形可以说明猜想的结论是否正确.完整解答:解:①连接AD,∵AB为⊙O的直径,∴∠ADB=90°,即AD⊥BC,∵AB=AC,AD⊥BC,∴BD=CD;②直线DE与⊙O相切,理由:连接OD,∵AB=AC,OB=OD,∴∠ODB=∠B=∠C,∴OD∥AC,∵DE⊥AC,∴DE⊥OD,∵OD为⊙O的半径,∴DE与⊙O相切.3.(2021•保康县模拟)如图,四边形ABCD内接于⊙O,BD是⊙O的直径,AE⊥CD且交CD的延长线于点E,DA平分∠BDE.(1)求证:AE是⊙O的切线;(2)如果AB=4,AE=2,求⊙O的半径.思路引导:(1)连接OA,利用已知首先得出OA∥DE,进而证明OA⊥AE就能得到AE 是⊙O的切线;(2)通过证明△BAD∽△AED,再利用对应边成比例关系从而求出⊙O半径的长.完整解答:(1)证明:如图,连接OA,∵OA=OD,∴∠OAD=∠ODA,∵DA平分∠BDE,∴∠ODA=∠EDA,∴∠OAD=∠EDA,∴OA∥DE,∵∠AED=90°,∴∠OAE=90°,∴OA⊥AE,∵点A在⊙O上,∴AE是⊙O的切线;(2)解:∵BD是⊙O的直径,∴∠BAD=90°,∴∠BAD=∠AED=90°,∵∠BDA=∠EDA,∴△BDA∽△EDA,∴=,∵AB=4,AE=2,∴BD=2AD,∴BD2=AD2+AB2,∴BD2=BD2+42,解得BD=.∴⊙O的半径为.4.(2021•镇雄县一模)如图,在Rt△ABC中,∠ACB=90°,D为AB的中点,以CD为直径的⊙O分别交AC,BC于点E,F两点,过点F作FG⊥AB于点G.(1)求证:FG是⊙O的切线;(2)若AC=3,CD=2.5,求FG的长.思路引导:(1)如图,连接OF,根据直角三角形的性质得到CD=BD,得到∠DBC=∠DCB,根据等腰三角形的性质得到∠OFC=∠OFC,得到∠OFC=∠DBC,推出∠OFG =90°,即可求解;(2)连接DF,根据勾股定理得到BC==4,根据圆周角定理得出∠DFC=90°,根据三角形函数的定义即可得出结论.完整解答:(1)证明:如图,连接OF,∵∠ACB=90°,D为AB的中点,∴CD=BD,∴∠DBC=∠OCF,∵OF=OC,∴∠OFC=∠OCF,∴∠OFC=∠DBC,∴OF∥DB,∴∠OFG+∠DGF=180°,∵FG⊥AB,∴∠DGF=90°,∴∠OFG=90°,∵OF为半径,∴FG是⊙O的切线;(2)解:如图,连接DF,∵CD=2.5,∴AB=2CD=5,∴BC==4,∴∠DFC=90°,∴FD⊥BC,∵DB=DC,∴BF=BC=2,∵sin∠ABC=,即,∴FG=.5.(2021•诸城市三模)如图,⊙O是△ABC的外接圆,∠ABC=45°,OC∥AD,AD交BC 的延长线于点D,AB交OC于点E.(1)求证:AD是⊙O的切线;(2)若AE=10,BE=6,求图中阴影部分的面积.思路引导:(1)连接OA,利用已知条件OC∥AD求证∠OAD=90°,即可求解;(2)根据已知条件可求证△AEC∽△ACB,利用相似三角形的线段比可求出半径,即可求解.完整解答:(1)证明:连接OA,∵AD//OC,∴∠AOC+∠OAD=180°,∵∠AOC=2∠ABC=2×45°=90°,∴∠OAD=90°,∴OA⊥AD,∵OA是⊙O的半径,(2)∵AO=CO且∠AOC=90°,∴∠ACO=∠CAO=45°,即∠B=∠ACE,∵∠CAE=∠BAC,∴△AEC∽△ACB,∴,∴AC2=AE•AB=10×(10+6)=160,∴AC=4,∴AO=CO=4,∴.6.(2021•南阳模拟)如图,在Rt△ABC中,∠ABC=90°,点E是BC的中点.以AB为直径的⊙O交AC于点D,连接DE.(1)求证:DE是⊙O的切线;(2)若∠A=60°,AB=4,求阴影部分的面积.思路引导:(1)连接OD,BD,根据圆的性质可知∠BDC=90°,又因为点E是BC的中点,DE=BE=BC,∠EBD=∠EDB,因为OB=OD,∠OBD=∠ODB,根据角度等量代换可知∠ODE=90°,即可求解;(2)连接OE,由图形可知:S阴影=S四边形OBED﹣S扇形OBD,通过圆的性质可以分别求出四边形OBED和扇形OBD的面积,即可求解.完整解答:(1)证明:如图,连接OD,BD,∵AB是⊙O的直径,∴∠ADB=90°,∴∠BDC=90°,∵点E是BC的中点,∴DE=BE=BC,∴∠EBD=∠EDB,∵OB=OD,∴∠OBD=∠ODB,∴∠EBD+∠OBD=∠EDB+∠ODB,∵∠ABC=∠EBD+∠OBD=90°,∴∠ODE=∠EDB+∠ODB=∠EBD+∠OBD=90°,∴OD⊥DE,OD是⊙O的半径,∴DE是⊙O的切线;(2)解:如图,连接OE,∵O是AB的中点,∴OB=AB=2,在Rt△ABC中,BC=AB•tan A=4,∵E是BC的中点,∴BE=BC=2,S△OBE=×OB•BE=2,由(1)知,∠ODE=∠OBE=90°,∵OB=OD,OE=OE,∴Rt△OBE≌Rt△ODE(HL),∴S△ODE=S△OBE=2,∴S四边形OBED=4,∵∠A=60°,∴∠BOD=120°,∴S扇形OBD==,∴S阴影=S四边形OBED﹣S扇形OBD=4﹣.7.(2021•周村区一模)如图,线段AB是圆O的直径,延长AB至点C,使BC=OB,点E 是线段OB的中点,DE⊥AB交圆O于点D,点P是圆O上的一动点(不与点A,B重合),连接CD,PE,PC.(1)求证:CD是圆O的切线;(2)求的值.思路引导:(1)连接OD,DB,由已知可知DE垂直平分OB,BC=OB,OB=OD,由对应线段比例关系以及夹角相等,可求证△EOD∽△DOC,可得∠CDO=∠DEO=90°,即可求解;(2)连接OP,由已知可得:OP=OB=BC=2OE,由对应线段比例关系以及夹角相等,可求证△OEP∽△OPC,即可求解.完整解答:(1)证明:如图,连接OD,DB,∵点E是线段OB的中点,DE⊥AB交⊙O于点D,∴DE垂直平分OB,∴OB=DO,OE=BE,∵BC=OB,OB=OD,∴,∵∠DOE=∠COD,∴△EOD∽△DOC,∴∠CDO=∠DEO=90°,∴CD是圆O的切线;(2)解:如图,连接OP,由已知可得:OP=OB=BC=2OE,∴,∵∠COP=∠POE,∴△OEP∽△OPC,∴,8.(2021秋•雨花区校级月考)如图,△ABC与⊙O交于D,E两点,AB是直径且长为12,OD∥BC.(1)若∠B=40°,求∠A的度数;(2)证明:CD=DE;(3)若AD=4,求CE的长度.思路引导:(1)由平行线的性质可得∠AOD=∠B=40°,再利用等腰三角形的性质可得;(2)根据三角形的内角和定理和圆内接四边形的性质可得∠C=∠DEC,从而证明结论;(3)设CE=x,则BE=12﹣x,根据勾股定理可得AC2﹣CE2=AB2﹣BE2,代入即可得出方程,从而解决问题.完整解答:(1)解:∵OD∥BC,∴∠AOD=∠B=40°,∵OA=OD,∴∠ADO=∠A,∴∠A=;(2)证明:∵四边形ABED内接于⊙O,∴∠CDE=∠B,∠DEC=∠A,∴∠CDE=∠AOD,∵∠C=180°﹣∠CDE﹣∠DEC,∠ADO=180°﹣∠A﹣∠AOD,∴∠C=∠ADO=∠A,∴∠C=∠DEC,∴CD=DE;(3)解:连接OE,AE,由(2)得AB=BC=12,∴∠AOE=2∠B,∠B=∠AOD,∴∠AOE=2∠AOD,∴∠AOD=∠DOE,∴AD=DE,∴AC=2AD=8,∵AB是直径:∠AEB=90°,设CE=x,则BE=12﹣x,∵AC2﹣CE2=AB2﹣BE2,∴82﹣x2=122﹣(12﹣x)2,解得:,∴CE=.9.(2021•宜都市一模)如图,⊙O是△ABC的外接圆,AB=AC,CD⊥AB于点D,BO的延长线交CD于点E,交⊙O于另一点F.(1)求证:∠DBE=∠BCD.(2)若BC=4,BE=4,求AB的长.思路引导:(1)连接CF,由题意可知∠BCF=∠ADC=90°,利用圆周角定理可得∠BAC =∠BFC,根据内角和为180°可得∠ACD=∠FBC,因为AB=AC,所以∠ABC=∠ACB,通过等量代换即可求解;(2)根据角的互余可得∠FEC=∠FCE,从而可得FE=FC,设FC=x,则BF=4+x,根据勾股定理即可求解.完整解答:(1)证明:如图,连接CF,∵BF为直径,∴∠BCF=90°,∵CD⊥AB,∴∠ADC=90°,∵∠BAC=∠BFC,∴∠ACD=180°﹣∠ADC﹣∠BAC,∠FBC=180°﹣∠BCF﹣∠BFC,∴∠ACD=∠FBC,∵AB=AC,∴∠ABC=∠ACB,∴∠DBE=∠BCD;(2)解:∠DBE+∠DEB=90°,∠DEB=∠FEC,∴∠DBE+∠FEC=90°,∵∠BCD+∠FCE=90°,∠DBE=∠BCD,∴∠FEC=∠FCE,∴FE=FC,设FC=x,则BF=4+x,在Rt△BCF中,BC2+FC2=BF2,即(4)2+x2=(4+x)2,解得x=2,∴BF=6,如图,过点A作AG⊥BC于G,∵AB=AC,∴BG=CG=2,∴点A、O、G在同一直线上,∴OG=FC=1,∴AG=AO+OG=4,在Rt△ABG中,AB2=AG2+BG2=24,∴AB=2.10.(2021•福建模拟)如图,四边形ABCD内接于⊙O,对角线AC⊥BD,垂足为E,CF⊥AB于点F,直线CF与直线BD于点G.(1)若点G在⊙O内,如图1,求证:G和D关于直线AC对称;(2)连接AG,若AG=BC,且AG与⊙O相切,如图2,求∠ABC的度数.思路引导:(1)根据垂直的定义得到∠ABD=∠ACF,根据圆周角定理得到∠ABD=∠ACD,根据全等三角形的性质得到DE=GE,于是得到结论;(2)延长CB交AG于点H,连接OA,OB,OC,EF,根据圆周角定理得到∠GAF=∠GEF=∠BCF,求得∠AHB=∠BFC=90°,根据全等三角形的性质得到AF=CF,推出△AFC为等腰直角三角形,得到∠BAC=45°,根据切线的性质得到OA⊥AG,根据平行线的性质得到∠AOB=∠OBC=45°,于是得到答案.完整解答:解:(1)证明:∵CF⊥AB,BE⊥AC,∴∠ABD=∠ACF,又∵=,∴∠ABD=∠ACD,∴∠ACG=∠ACD,又∵∠GEC=∠DEC=90°,CE=CE,∴△CEG≌△CED(ASA),∴DE=GE,又CE⊥GD,∴点G和D关于直线AC成轴对称;(2)延长CB交AG于点H,连接OA,OB,OC,EF,如图,∵BE⊥AC,AF⊥CG,∴A、G、F、E四点共圆,B、F、C、E四点共圆,∴∠GAF=∠GEF=∠BCF,∴∠AHB=∠BFC=90°,又∵∠AFG=∠CFB=90°,AG=CB,∴△AGF≌△CBF(AAS),∴AF=CF,∴△AFC为等腰直角三角形,∴∠BAC=45°,∴∠BOC=90°,又OB=OC,∴∠OBC=45°,∵AG与⊙O相切,∴OA⊥AG,∴BC∥OA,∴∠AOB=∠OBC=45°,∴,∴∠ABC=180°﹣∠BAC﹣∠ACB=112.5°.11.(2021•淅川县一模)如图,在△ACE中,AC=CE,⊙O经过点A,C且与边AE,CE分别交于点D,F,点B是上一点,且,连接AB,BC,CD.(1)求证:△CDE≌△ABC;(2)若AC为⊙O的直径,填空:①当∠E=60°时,四边形OCFD为菱形;②当∠E=45°时,四边形ABCD为正方形.思路引导:(1)先判断出∠BAC=∠DCE,进而得出∠CDE=∠ABC,即可得出结论;(2)①先判断出点D是AE的中点,再利用DF∥AC,点F是CE的中点,即可得出AC =AE,即可得出结论;②先判断出AD=CD,∠ADC=90°,进而得出∠ACD=45°,再判断出∠DCE=∠ACD=45°,即可得出∠ACE=90°,即可得出结论.完整解答:证明:(1)∵,∴∠BAC=∠DCE,∵∠CDE是圆内接四边形ABCD的外角,∴∠CDE=∠ABC,在△CDE和△ABC中,,∴△CDE≌△ABC(AAS);(2)如图,①连接AF,∵AC是直径,∴OA=OC,∠ADC=∠AFC=90°,∵四边形OCFD是菱形,∴DF∥AC,OD∥CE,∵OA=OC,∴AD=DE(经过三角形一边的中点平行于一边的直线必平分第三边),∵DF∥AC,∴CF=EF(经过三角形一边的中点平行于一边的直线必平分第三边),∵∠AFC=90°,∴AC=AE(垂直平分线上的点到两端点的距离相等),∵AC=CE,∴AC=AE=CE,∴△ACE是等边三角形,∴∠E=60°;故答案为:60°;②∵四边形ABCD是正方形,∴AD=CD,∠ADC=90°,∴∠ACD=45°,∵AC=CE,CD⊥AE,∴∠DCE=∠ACD=45°,∴∠ACE=90°,∵AC=CE,∴△ACE是等腰直角三角形.∴∠E=45°.故答案为:45°.12.(2021•枣阳市模拟)如图,AB是⊙O的直径,C是⊙O上一点,OD⊥BC于点D,过点C作⊙O的切线,交OD的延长线于点E,连结BE.(1)求证:BE是⊙O的切线;(2)设OE交⊙O于点F,若DF=2,BC=,求劣弧BC的长.思路引导:(1)由题意连接OC,依据垂直平分线的性质得出∠EBC=∠ECB,进而利用切线得出∠OBE=90°,OB⊥BE,即可求解;(2)设⊙O的半径为R,则OD=R﹣DF=R﹣2,OB=R,进而利用OD2+BD2=OB2,得到R,最后根据三角函数求出∠BOC,从而运用劣弧BC=得出答案.完整解答:(1)证明:连接OC,如图,∵OD⊥BC,∴CD=BD,∴OE为BC的垂直平分线,∴EB=EC,∴∠EBC=∠ECB∵OB=OC,∴∠OBC=∠OCB,∴∠OBC+∠EBC=∠OCB+∠ECB,即∠OBE=∠OCE,∵CE为⊙O的切线,∴OC⊥CE,∴∠OCE=90°,∴∠OBE=90°,∴OB⊥BE,∵OB是半径,∴BE是⊙O的切线;(2)设⊙O的半径为R,则OD=R﹣DF=R﹣2,OB=R,在Rt△OBD中,BD=BC=,∵OD2+BD2=OB2,∴,解得R=4,∴OD=2,OB=4,∴cos∠BOD=,∴∠BOD=60°,又OD⊥BC,OB=OC,得∠BOC=120°,∴劣弧BC=.13.(2021•思明区校级模拟)如图,在Rt△ABC中,∠ACB=90°,点D边AC上,∠DBC =∠BAC,⊙O经过A、B、D三点,连接DO并延长交AB于点E,交⊙O于点F.(1)求证:CB是⊙O的切线;(2)若DE=6,EF=14,求CD的长度.思路引导:(1)连接OB、BF,综合圆周角的基本性质以及题意推出∠DBC=∠OBF,从而结合直径所对的圆周角证明∠OBC=90°,即可得出结论;(2)连接AF,延长BO交AF于点H点,推出四边形ACBH为矩形,先求出半径,然后根据题意推出△ADE∽△BOE,从而结合相似三角形的性质求出AD,然后结合垂径定理求出OH,得出AC的长度,从而得出结论.完整解答:(1)证明:如图,连接OB、BF,则∠OBF=OFB,根据圆周角的性质,∠BFO=∠BAC,∵∠DBC=∠BAC,∴∠DBC=∠BFO,∴∠DBC=∠OBF,∵DF为⊙O的直径,∴∠DBF=∠DBO+∠OBF=90°,∴∠DBO+∠DBC=90°,即∠OBC=90°,且OB为半径,∴CB是⊙O的切线;(2)解:如图,连接AF,延长BO交AF与H点,∵DF为直径,∴∠DAF=90°,且∠C=∠OBC=90°,∴四边形ACBH为矩形,∴∠OHA=90°,根据垂径定理:AF=2AH,∵DE=6,EF14,∴DF=20,DO=BO=10,EO=DO﹣DE=4,∵HB∥AC,∴△ADE∽△BOE,∴,可得AD=15,在Rt△ADF中,AF==5,∴AH=HF=AF=,在Rt△OHF中,OH==,∴HB=AC=OH+BO=,∴CD=AC﹣AD=﹣15=,即CD的长度为.14.(2021秋•诸暨市月考)如图,四边形ABCD内接于⊙O,AC为直径,AC和BD交于点E,AB=BC.(1)求∠ADB的度数;(2)过B作AD的平行线,交AC于F,试判断线段EA,CF,EF之间满足的等量关系,并说明理由.思路引导:(1)由直径所对的圆周角为直角及等腰三角形的性质和互余关系可得答案;(2)线段EA,CF,EF之间满足的等量关系为:EA2+CF2=EF2.如图2,设∠ABE=α,∠CBF=β,先证明α+β=45°,再过B作BN⊥BE,使BN=BE,连接NC,判定△AEB ≌△CNB(SAS)、△BFE≌△BFN(SAS),然后在Rt△NFC中,由勾股定理得:CF2+CN2=NF2,将相关线段代入即可得出结论;完整解答:解:(1)如图1,∵AC为直径,∴∠ABC=90°,∴∠ACB+∠BAC=90°,∵AB=BC,∴∠ACB=∠BAC=45°,∴∠ADB=∠ACB=45°;(2)线段EA,CF,EF之间满足的等量关系为:EA2+CF2=EF2.理由如下:如图2,设∠ABE=α,∠CBF=β,∵AD∥BF,∴∠EBF=∠ADB=45°,又∠ABC=90°,∴α+β=45°,过B作BN⊥BE,使BN=BE,连接NC,∵AB=CB,∠ABE=∠CBN,BE=BN,∴△AEB≌△CNB(SAS),∴AE=CN,∠BCN=∠BAE=45°,∴∠FCN=90°.∵∠FBN=α+β=∠FBE,BE=BN,BF=BF,∴△BFE≌△BFN(SAS),∴EF=FN,在Rt△NFC中,CF2+CN2=NF2,∴EA2+CF2=EF2;15.(2021•贵池区模拟)已知:在⊙O中,AB为直径,P为射线AB上一点,过点P作⊙O 的切线,切点为点C,D为弧AC上一点,连接BD、BC、DC.(1)如图1,求证:∠D=∠PCB;(2)如图2,若四边形CDBP为平行四边形,BC=5,求⊙O的半径.思路引导:(1)利用切线的性质和圆周角定理即可证明;(2)利用平行四边形的性质,三角形内角和定理,结合(1)的结论,证明△OBC是等边三角形,即可求出⊙O的半径.完整解答:(1)证明:如图1,连接AC,OC,∵AB为直径,PC为⊙O的切线,∴∠ACB=∠OCP=90°,∴∠ACO=∠PCB,∵OA=OC,∴∠ACO=∠A,∵∠A=∠D,∴∠D=∠PCB;(2)解:如图2,连接AC,OC,∵四边形CDBP为平行四边形,∴∠D=∠CPB,由(1)得,∠ACB=∠OCP=90°,∠D=∠A=∠CPB,∴∠D=∠A=∠CPB=∠PCB,在△ACP中,∠A+∠ACB+∠BCP+∠CPB=180°,∴∠A+∠BCP+∠CPB=90°,∴∠A=∠CPB=∠PCB=30°,∴∠OBC=60°,∵OB=OC,∴△OBC是等边三角形,∴OB=BC=5,故⊙O的半径为5.16.(2021•奎屯市一模)如图,已知以Rt△ABC的边AB为直径作△ABC的外接圆⊙O,∠B的平分线BE交AC于D,交⊙O于E,过E作EF∥AC交BA的延长线于F.(1)求证:EF是⊙O切线;(2)若AB=15,EF=10,求AE的长.思路引导:(1)要证EF是⊙O的切线,只要连接OE,再证∠FEO=90°即可;(2)先证明△FEA∽△FBE,根据相似三角形对应边成比例求出AF=5,BF=20,BE=2AE.再根据圆周角定理得出∠AEB=90°,利用勾股定理列方程,即可求出AE的长.完整解答:(1)证明:连接OE,∵∠B的平分线BE交AC于D,∴∠CBE=∠ABE.∵EF∥AC,∴∠CAE=∠FEA.∵∠OBE=∠OEB,∠CBE=∠CAE,∴∠FEA=∠OEB.∵∠AEB=90°,∴∠FEO=90°.∴EF是⊙O切线.(2)解:在△FEA与△FBE中,∵∠F=∠F,∠FEA=∠FBE,∴△FEA∽△FBE,∴==,∴AF•BF=EF•EF,∴AF×(AF+15)=10×10,解得AF=5.∴BF=20.∴=,∴BE=2AE,∵AB为⊙O的直径,∴∠AEB=90°,∴AE2+BE2=152,∴AE2+(2AE)2=225,∴AE=3.17.(2021•商河县二模)如图,钝角△ABC中,AB=AC,BC=2,O是边AB上一点,以O为圆心,OB为半径作⊙O,交边AB于点D,交边BC于点E,过E作⊙O的切线交边AC于点F.(1)求证:EF⊥AC.(2)连接DF,若∠ABC=30°,且DF∥BC,求⊙O的半径长.思路引导:(1)连接OE,如图,先证明OE∥AC,再利用切线的性质得OE⊥EF,从而得到EF⊥AC;(2)连接DE,如图,设⊙O的半径长为r,利用圆周角定理得到∠BED=90°,则DE =BD=r,BE=r,再证明∠EDF=90°,∠DFE=60°,接着用r表示出DF=r,EF=r,CE=r,从而得到r+r=2,然后解方程即可.完整解答:(1)证明:连接OE,如图,∵OB=OE,∴∠B=∠OEB,∵AB=AC,∴∠B=∠C,∴∠OEB=∠C,∴OE∥AC,∵EF为切线,∴OE⊥EF,∴EF⊥AC;(2)解:连接DE,如图,设⊙O的半径长为r,∵BD为直径,∴∠BED=90°,在Rt△BDE中,∵∠B=30°,∴DE=BD=r,BE=r,∵DF∥BC,∴∠EDF=∠BED=90°,∵∠C=∠B=30°,∴∠CEF=60°,∴∠DFE=∠CEF=60°,在Rt△DEF中,DF=r,∴EF=2DF=r,在Rt△CEF中,CE=2EF=r,而BC=2,∴r+r=2,解得r=,即⊙O的半径长为.18.(2021•鼓楼区校级模拟)已知⊙O为△ABC的外接圆,直线l与⊙O相切于点P,且l ∥BC.(1)连接PO,并延长交⊙O于点D,连接AD.证明:AD平分∠BAC;(2)在(1)的条件下,AD交BC于点E,连接CD.若DE=2,AE=6.试求CD的长.思路引导:(1)根据切线的性质、垂径定理证明即可;(2)根据相似三角形的判定和性质解答即可.完整解答:(1)证明:∵l与⊙O相切于点P,∴PD⊥l,∵l∥BC,∴PD垂直平分弦BC,∴,∴∠BAD=∠DAC,即AD平分∠BAC;(2)∠BAD=∠BCD,且∠BAD=∠DAC,∴∠DAC=∠BCD,在△ADC和△CDE中∠DAC=∠BCD,∠ADC=∠EDC,∴△ADC∽△CDE,∴,即,得DC=4.19.(2020秋•高州市期末)如图,AB是⊙O的直径,弦CD⊥AB于点E,且CD=24,点M在⊙O上,MD经过圆心O,连接MB.(1)若BE=8,求⊙O的半径;(2)若∠DMB=∠D,求线段OE的长.思路引导:(1)根据题意和图形,利用勾股定理、垂径定理可以解答本题;(2)根据三角形全等、勾股定理可以求得线段OE的长.完整解答:解:(1)设⊙O的半径长为r,则OD=r,OE=r﹣8,∵AB是⊙O的直径,弦CD⊥AB于点E,且CD=24,∴DE=12,∴OD2=OE2+DE2,即r2=(r﹣8)2+122,解得,r=13,即⊙O的半径是13;(2)连接BC,∵∠DMB=∠D,∠DMB=∠DCB,∴∠D=∠DCB,∵AB是⊙O的直径,弦CD⊥AB于点E,且CD=24,∴CE=DE=12,∠CEB=∠DEO,∴△CEB≌△DEO(ASA),∴OE=BE=0.5OB,设⊙O的半径长为r,则r2=122+(0.5r)2,解得,r=或r=﹣8(舍去),∴OE=4.20.(2021•南关区校级模拟)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作EF⊥AC于点E,交AB的延长线于点F.(1)判断直线DE与⊙O的位置关系,并说明理由;(2)如果AB=5,BC=6,求DE的长.思路引导:(1)连接AD,OD,根据已知条件证得OD⊥DE即可;(2)根据勾股定理计算即可.完整解答:解:(1)相切,理由如下:连接AD,OD,∵AB为⊙O的直径,∴∠ADB=90°.∴AD⊥BC.∵AB=AC,∴CD=BD=BC.∵OA=OB,∴OD∥AC.∴∠ODE=∠CED.∵DE⊥AC,∴∠ODE=∠CED=90°.∴OD⊥DE.∴DE与⊙O相切.(2)由(1)知∠ADC=90°,∴在Rt△ADC中,由勾股定理得AD==4.∵S ACD=AD•CD=AC•DE,∴×4×3=×5DE.∴DE=.。
人教版数学九年级上册第24章圆《切线长定理》教学设计

-使用动态图形展示切线与圆的关系,帮助学生形成直观的认识。
-利用信息技术手段,制作互层次的学生设计不同难度的练习和任务,使每个学生都能在原有基础上得到提高。
-设计探究活动,鼓励学生提出假设,通过实际操作验证假设。
-组织小组讨论,培养学生的合作意识和交流能力。
2.逻辑推理:运用几何知识和逻辑推理方法证明切线长定理。
-引导学生运用已学的几何知识,如圆的性质、直角三角形的性质等,进行逻辑推理。
-培养学生的逻辑思维和分析问题的能力。
3.应用与实践:将切线长定理应用于解决实际问题,提高学生的应用能力。
四、教学内容与过程
(一)导入新课
在导入新课环节,我将利用学生的生活经验和已有知识,激发他们对新知识的兴趣和好奇心。首先,我会提出一个问题:“在日常生活中,你们有没有见过或听说过道路或铁路在接近圆形交叉路口时,为什么会设计成曲线而非直线呢?”通过这个问题,引导学生思考圆与直线的关系,从而自然过渡到切线的概念。
-注意:要求学生在解题过程中注重逻辑推理的严密性和步骤的完整性。
2.实践应用题:选择一个生活中的实际问题,如道路设计、园林规划等,运用切线长定理进行解决,并将解题过程和结果写成小报告。通过这项作业,学生可以更好地理解数学与实际生活的联系,提高解决实际问题的能力。
-提示:鼓励学生使用图形和图表来辅助说明解题思路,使报告更加清晰易懂。
1.切线与半径的垂直关系:通过动态演示切线与半径的垂直关系,引导学生观察和思考,从而得出切线与半径垂直的结论。
2.切线长定理的证明:利用直角三角形的性质,分步骤引导学生完成切线长定理的证明。在此过程中,强调每一步的逻辑推理和几何依据。
方法技巧篇24 第二十四章 圆

第二十四章圆B.中考常考题型与解题方法技巧一、垂径定理的应用给出的圆形纸片如图所示,如果在圆形纸片上任意画一条垂直于直径CD的弦AB,垂足为P,再将纸片沿着直径CD对折,我们很容易发现A、B两点重合,即有结论AP=BP,弧AC=弧BC.其实这个结论就是“垂径定理”,准确地叙述为:垂直于弦的直径平分这条弦,并且平分弦所对的弧.垂径定理是“圆”这一章最早出现的重要定理,它说明的是圆的直径与弦及弦所对的弧之间的垂直或平分的对应关系,是解决圆内线段、弧、角的相等关系及直线间垂直关系的重要依据,同时,也为我们进行圆的有关计算与作图提供了方法与依据.例1某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,下图是水平放置的破裂管道有水部分的截面.(1)请你补全这个输水管道的圆形截面;(2)若这个输水管道有水部分的水面宽AB=16cm,水面最深地方的高度为4cm,求这个圆形截面的半径.例2如图,PQ=3,以PQ为直径的圆与一个以5为半径的圆相切于点P,正方形ABCD 的顶点A、B在大圆上,小圆在正方形的外部且与CD切于点Q,则AB=?例3如图,已知⊙O中,直径MN=10,正方形ABCD的四个顶点分别在半径OM、OP以及⊙O上,并且∠POM=45°,则AB的长为多少?例4图为小自行车内胎的一部分,如何将它平均分给两个小朋发做玩具?二、与圆有关的多解题几何题目一般比较灵活,若画图片面,考虑不周,很容易漏解,造成解题错误,在解有关圆的问题时,常常会因忽视图形的几种可能性而漏解.1.忽视点的可能位置.例5△ABC是半径为2的圆的内接三角形,若32BC cm,则∠A的度数为______.2.忽视点与圆的位置关系.例6点P到⊙0的最短距离为2 cm,最长距离为6 cm,则⊙0的半径是______.3.忽视平行弦与圆心的不同位置关系.例7已知四边形ABCD是⊙0的内接梯形,AB∥CD,AB=8 cm,CD=6 cm,⊙0的半径是5 cm,则梯形的面积是______.4.忽略两圆相切的不同位置关系例8点P在⊙0外,OP=13 cm,PA切⊙0于点A,PA=12 cm,以P为圆心作⊙P与⊙0相切,则⊙P的半径是______.例9若⊙O1与⊙02相交,公共弦长为24 cm,⊙O1与⊙02的半径分别为13 cm和15 cm,则圆心距0102的长为______.三、巧证切线切线是圆中重要的知识点,而判断直线为圆的切线是中考的重要考点.判断直线是否是圆的切线,主要有两条途径:1.圆心到直线的距离等于半径当题中没有明确直线与圆是否相交时,可先过圆心作直线的垂线,然后证明圆心到直线的距离等于半径.例10 如图,P 是∠AOB 的角平分线OC 上一点,PD⊥OA 于点D ,以点P 为圆心,PD 为半径画⊙P,试说明OB 是⊙P 的切线.2.证明直线经过圆的半径的外端,并且垂直于这条半径当已知直线与圆有交点时,连结交点和圆心(即半径),然后证明这条半径与直线垂直即可.例11 如图,已知AB 为⊙O 的直径,直线BC 与⊙0相切于点B ,过A 作AD∥OC 交⊙0于点D ,连结CD.(1)求证:CD 是⊙0的切线;(2)若AD=2,直径AB=6,求线段BC 的长.四、结论巧用,妙解题例12 已知:如图,⊙O 为Rt△ABC 的内切圆,D 、E 、F 分别为AB 、AC 、BC 边上的切点,求证:BD AD s ABC ⋅=∆.该结论可叙述为:“直角三角形的面积等于其内切圆与斜边相切的切点分斜边所成两条线段的乘积.”运用它,可较简便地解决一些与直角三角形内切圆有关的问题,举例如下:例13如图,⊙0为Rt△ABC的内切圆,切点D分斜边AB为两段,其中AD=10,BD=3,求AC和BC的长.例14如图,△ABC中∠A与∠B互余,且它们的角平分线相交于点0,又OE⊥AC,OF⊥BC,垂足分别为E、F,AC=10,BC=13.求AE·BF的值.五、点击圆锥的侧面展开图圆锥的侧面展开图是中考中的热点内容:解决此类问题的关键是明确圆锥的侧面展开图中各元素与圆锥各元素之间的关系:圆锥的侧面展开图是扇形,而扇形的半径是圆锥的母线,弧长是圆锥的底面周长.例15若一个圆锥的母线长是它的底面半径长的3倍,则它的侧面展开图的圆心角是( )A.180° B.90° C.120° D.135°例16圆锥的侧面展开图是一个半圆面,则这个圆锥的母线长与底面半径长的比是( )A.2:1 B.2π:1 C.2:1 D.3:1例17如图,小红要制作一个高4 cm,底面直径是6 cm的圆锥形小漏斗,若不计接缝,不计损耗,则她所需纸板的面积是( )A .15πcm 2B .6π13cm 2C .12π⋅13cm 2D .30 cm 2例18 下图是小芳学习时使用的圆锥形台灯罩的示意图,则围成这个灯罩的铁皮的面积为______cm 2.(不考虑接缝等因素,计算结果用π表示)评注:圆锥的侧面积,需要熟练掌握其计算公式,理解圆锥的侧面积等于其剪开后扇形的面积.例19 如图,有一块四边形形状的铁皮ABCD ,BC= CD,AB= 2AD,∠ABC=∠ADB= 90°.(1)求∠C 的度数;(2)以C 为圆心,CB 为半径作圆弧BD 得一扇形CBD ,剪下该扇形并用它围成一圆锥的侧面,若已知BC =a ,求该圆锥的底面半径;(3)在剩下的材料中,能否剪下一块整圆做该圆锥的底面?并说明理由.六、例谈三角形内切圆问题三角形的内切圆是与三角形都相切的圆,它的圆心是三角形三条角平分线的交点,它到三角形三边的距离相等,它与顶点的连线平分内角.应用内心的性质,结合切线的性质、切线长的性质可以解决很多问题,现举例说明,例20 如图,△ABC 中,内切圆⊙I 和边BC 、CA 、AB 分别相切于点D 、E 、F .求证:(1)A FDE ∠-︒=∠2190;(2)A BIC o ∠+=∠2190.例21 如果△ABC 的三边长分别为a 、b 、c ,它的内切圆⊙I 半径为r ,那么△ABC 的面积为( ).A .r c b a )(++B .r c b a )(++21 C .r c b a )(++31 D .r c b a )(++41 七、阴影部分面积的求值技巧求阴影部分面积,通常是根据图形的特点,将其分解、转化为规则图形求解.但在转化过程中又有许多方法.本文精选几个题,介绍几种常用方法.1.直接法当已知图形为熟知的基本图形时,先求出适合该图形的面积计算公式中某些线段、角的大小,然后直接代入公式进行计算.例22 如图,在矩形ABCD 中,AB=1,AD=3,以BC 的中点E 为圆心的与AD 相切于点P ,则图中阴影部分的面积为( )A .π32B .π43C .π43D .3π 2.和差法当图形比较复杂时,我们可以把阴影部分的面积转化为若干个熟悉的图形的面积的和或差来计算.例23 如图,AB 和AC 是⊙0的切线,B 、C 为切点,∠BAC=60°,⊙0的半径为1,则阴影部分的面积是( )A .π323-B .33π-C .332π- D .π-32 3.割补法把不规则的图形割补成规则图形,然后求面积.例24 如图,正方形ABCD 的顶点A 是正方形EFGH 的中心,EF=6cm ,则图中的阴影部分的面积为______.4.等积变形法把所求阴影部分的图形进行适当的等积变形,即可找出与它面积相等的特殊图形,从而求出阴影部分面积.例25 如图,C 、D 两点是半圆周上的三等分点,圆的半径为R ,求阴影部分的面积.5.平移法把图形做适当的平移,然后再计算面积.例26 如图,CD 是半圆0的直径,半圆0的弦AB 与半圆O ' 相切,点O ' 在CD 上,且AB∥CD,AB =4,则阴影部分的面积是(结果保留π).6.整体法 例27 如图,正方形的边长为a ,分别以对角顶点为圆心,边长为半径画弧,则图中阴影部分的面积是( )A .224121a a π+-B .)41(222a a π- C .22.21a a π+- D .2221a a π- 7.折叠法例28 如图,半圆A 和半圆B 均与y 轴相切于点0,其直径CD ,EF 均和x 轴垂直,以0为顶点的两条抛物线分别经过点C 、E 和点D 、F ,则图中阴影部分的面积是______.8.聚零为整法例29 如图所示,将半径为2 cm 的⊙0分割成十个区域,其中弦AB 、CD 关于点0对称,EF 、GH 关于点0对称,连结PM ,则图中阴影部分的面积是______(结果用π表示).八、圆中辅助线大集合圆是初中重点内容,是中考必考内容.关于圆的大部分题目,常需作辅助线来求解.现对圆中辅助线的作法归纳总结如下:1、有关弦的问题,常做其弦心距,构造直角三角形例30 如图,矩形ABCD 与圆心在AB 上的⊙O 交于点G 、B 、F 、E ,GB=8 cm ,AG =1 cm ,DE =2 cm ,则EF =______cm .2、有关直径问题,常做直径所对的圆周角例31 如图,在△ABC 中,∠C=90°,以BC 上一点0为圆心,以OB 为半径的圆交AB 于点M ,交BC 于点N .(1)求证:BN BC BM AB ⋅=⋅(2)如果CM 是⊙0的切线,N 为OC 的中点,当AC =3时,求AB 的值.3、直线与圆相切的问题,常连结过切点的半径,得到垂直关系;或选圆周角,找出等角关系例32 如图,AB 、AC 分别是⊙0的直径和弦,点D 为劣弧AC 上一点,弦ED 分别交⊙0于点E ,交AB 于点H ,交AC 于点F ,过点C 的切线交ED 的延长线于P .(1)若PC =PF ,求证:AB⊥ED.(2)点D 在劣弧的什么位置时,才能使AD 2=DE·DF,为什么?4、两圆相切,常做过切点的公切线或连心线,充分利用连心线必过切点等定理例33 如图,⊙02与半圆O l 内切于点C ,与半圆的直径AB 切于D ,若AB=6,⊙02的半径为1,则∠ABC 的度数为______.C 、数学思想方法与中考能力要求数学思想和方法是数学的血液和精髓,是解决数学问题的有力武器,是数学的灵魂.因此,我们领悟和掌握以数学知识为载体的数学思想方法,是提高数学思维水平,提高数学能力,运用数学知识解决实际问题的有力保证,因此,我们在学习中必须重视数学思想在解题中的应用.一、数形结合思想.数形结合的思想,其实质是将抽象的数学语言与直观的图形结合起来,使抽象思维和形象思维相结合.通过对图形的认识,数形结合的转化,可培养同学们思维的灵活性、形象性,使问题化难为易,化抽象为具体.例1 MN 是半圆直径,点A 是的一个三等分点,点B 是的中点,P 是直径MN 上的一动点,⊙0的半径是1,求AP+BP 的最小值.二、转化思想转化思想,就是在研究和解决有关数学问题时,采用某种手段将问题通过变换,使之转化,进而得到解决的一种方程,转化思想,能化繁为简,化难为易,化未知为已知.例2 如图,以0⊙的直径BC为一边作等边△ABC,AB、AC交⊙0于D、E两点,试说明BD=DE=EC.在同圆或等圆中,经常利用圆心角、圆周角、弧、弦等量的转化,说明其他量.三、分类思想所谓分类思想,就是当被研究的问题包含多种可能情况,不能一概而论时,必须按可能出现的所有情况来分别讨论,得出各种情况下相应的结论.分类必须遵循一定的原则:(1)每一次分类要按照同一标准进行;(2)不重、不漏、最简.例3 ⊙0的直径AB=2 cm,过点A的两条弦AC=2cm,AD=3cm,求∠CAD所夹的圆内部分的面积.在圆中有许多分类讨论的题目,希望同学们做题时,要全面、缜密,杜绝“会而不对,对而不全”的现象.四、方程思想通过对问题的观察、分析、判断,将问题化归为方程问题,利用方程的性质和实际问题与方程的互相转化达到解决问题的目的.例4如图,AB是⊙0的直径,点P在BA的延长线上,弦CD⊥AB,垂足为E,且PC是⊙O的切线,若OE:EA=1:2,PA=6,求⊙0的半径.五、函数思想例5(2005·梅州市)如图,Rt△ABC中,∠ACB=90°,AC=4,BA=5,点P是AC上的动点(P不与A、C重合),设PC=x,点P到AB的距离为y.(1)求y与x的函数关系式;(2)试讨论以P为圆心,半径为x的圆与AB所在直线的位置关系,并指出相应的x的取值范围.例6(2006·烟台)如图,从⊙0外一点A作⊙0的切线AB、AC,切点分别为B、C,且⊙0直径BD=6,连结CD、AO.(1)求证:CD∥AO;(2)设CD=x,AO=y,求y与x之间的函数关系式,并写出自变量x的取值范围;(3)若AO+CD=11,求AB的长.。
【单元练】人教版初中九年级数学上册第二十四章《圆》经典练习题(含答案解析)
一、选择题1.如图,,AB AC 分别是O 的直径和弦,OD AC ⊥于点,D 连接,BD BC .若10,8AB AC ==,则BD 的长是( )A .25B .4C .213D .245C 解析:C【分析】 先根据圆周角定理得∠ACB=90°,则利用勾股定理计算出BC=6,再根据垂径定理得到CD=AD=12AC=4,然后利用勾股定理计算BD 的长. 【详解】解:∵AB 为直径,∴∠ACB=90°,∴22221086BC AB AC =-=-=,∵OD ⊥AC , ∴CD=AD=12AC=4, 在Rt △CBD 中,222246213BD BC CD =+=+=.故选:C .【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了垂径定理.2.如图,四个水平放置正方形的边长都为4,顶点A 、B 、C 是圆上的点,则此圆的面积为( )A .72πB .85πC .100πD .104πB解析:B【分析】连接BC,作AB,BC的垂直平分线,交点为点O,连接OB,OC,根据垂直平分线可得AE=BE=2,DE=4×4=16,DC=4+2=6,设OD=x,则OE=16-x,再根据OB=OC即可列出方程求得x=7,最后再根据圆的面积公式计算即可.【详解】解:如图,连接BC,作AB,BC的垂直平分线,交点为点O,连接OB,OC,则OB=OC,AE=BE=2,DE=4×4=16,DC=4+2=6,设OD=x,则OE=16-x,∵OB=OC,∴OB2=OC2,∴22+(16-x) 2=62+x2,解得x=7,∴r2=OB2=22+92=85,∴圆的面积S=πr2=85π,故选:B.【点睛】本题考查了作三角形的外心,垂径定理的应用,圆的面积公式,熟练掌握垂径定理是解决本题的关键.3.如图,分别以AB,AC为直径的两个半圆,其中AC是半圆O的一条弦,E是弧AEC中点,D是半圆ADC中点.若DE=2,AB=12,且AC˃6,则AC长为()A.2B.2C.2D.2D解析:D【分析】连接OE,交AC于点F,由勾股定理结合垂径定理求出AF的长,即可得到结论.【详解】解:连接OE ,交AC 于点F ,∵E 为AEC 的中点,∴OE AC ⊥,F 为AC 的中点,∵12AB =∴6OE AO ==设EF x =,则6OF x =-∵F 为AC 的中点,D 为半圆ADC 的中点,∴DF AC ⊥,DF AF =∵2DE =,∴2DF x AF =+=在Rt △AOF 中,222OA OF AF =+即2226(6)(2)x x =-++, ∴122x =+,222x =-∴2(2)822AC x =+=+或822-∵6AC >∴822AC =+故选:D【点睛】本题考查了垂径定理,熟练掌握垂径定理,运用勾股定理求出AF 是解题的关键. 4.为落实好扶贫工作,某村驻村干部帮助村民修建了一个粮仓,该粮仓的屋顶是一个圆锥,为了合理购买、不浪费原材料,需要进行计算1个屋顶的侧面积大小,该圆锥母线长为5m ,底面圆周长为8m π,则1个屋顶的侧面积等于( )2m .(结果保留π)A .40πB .20πC .16πD .80πB解析:B【分析】 先根据底面周长可求得底面圆的半径,再根据圆锥的侧面积公式计算即可求解.【详解】解:∵2πr=8π,∴r=4,又∵母线l=5,∴圆锥的侧面积=πrl =π×4×5=20π.故选:B .【点睛】本题考查了圆锥的侧面积计算方法,牢记有关圆锥和扇形之间的对应关系是解决本题的关键.5.如图,在三角形ABC 中,AB=22,∠B=30°,∠C=45°,以A 为圆心,以AC 长为半径作弧与AB 相交于点E ,与BC 相交于点F ,则弧EF 的长为( )A .6πB .2πC .23πD .πA解析:A【分析】过A 作AD ⊥BC ,连接AF ,求出∠FAE ,再利用弧长计算公式计算EF 的长即可.【详解】解:过A 作AD 垂直BC ,连接AF ,如图,∵2,30,45AB B C =∠=︒∠=︒,可得2∴AC=2,∵AC=AF∴∠AFC=∠C=45°,∴∠FAE=∠AFC-∠B=45°-30°=15°∴EF 的长为:152180π⨯=6π 故选:A【点睛】此题主要考查了弧长的计算,关键是掌握弧长计算公式.6.已知⊙O ,如图,(1)作⊙O 的直径AB ;(2)以点A 为圆心,AO 长为半径画弧,交⊙O 于C ,D 两点;(3)连接CD 交AB 于点E ,连接AC ,BC .根据以上作图过程及所作图形,有下面三个推断:①CE DE =;②3BE AE =;③2BC CE =.其中正确的推断的个数是( )A .0个B .1个C .2个D .3个D解析:D【分析】 ①根据作图过程可得AC AD =,根据垂径定理可判断;②连接OC ,根据作图过程可证得△AOC 为等边三角形,由等边三角形的性质即可判断; ③根据直角三角形中30°角所对的直角边等于斜边的一半即可判断.【详解】解:①∵以点A 为圆心,AO 长为半径画弧,交⊙O 于C ,D 两点,∴AC AD =,根据垂径定理可知,AB ⊥CE ,CE=DE ,∴①正确;②连接OC ,∵AC=OA=OC ,∴△AOC 为直角三角形,∵AB ⊥CE ,∴AE=OE ,∴BE=BO+OE=3AE ,∴②正确;③∵AB 为直径,∴∠ACB=90°,∵∠CAB=60°,∴∠ABC=30°,∴BC=2CE ,∴③正确,故选:D .【点睛】本题考查了垂径定理、圆周角定理、等边三角形的判定与性质、含30°角的直角三角形的性质,理解基本作图知识,熟练掌握各基本性质和综合运用是解答的关键.7.如图,在⊙O 中,AB 是直径,弦AC=5,∠BAC=∠D .则AB 的长为( )A .5B .10C .52D .102解析:C【分析】 根据圆周角定理得出∠D=∠B ,得出△ABC 是等腰直角三角形,进而解答即可.【详解】∵AC=AC ,∴∠D=∠B ,∵∠BAC=∠D ,∴∠B=∠BAC ,∴△ABC 是等腰三角形,∵AB 是直径,∴△ABC 是等腰直角三角形,∵AC=5,∴AB=52故选:C .【点睛】本题考查了圆周角定理,等腰直角三角形的判定和性质,勾股定理的应用,关键是根据圆周角定理得出∠D=∠B .8.如图,AB 为O 的弦,半径OC 交AB 于点D ,AD DB =,5OC =,3OD =,则AB 的长为( )A.8 B.6 C.4 D.2A解析:A【分析】连接OB,根据⊙O的半径为5,CD=2得出OD的长,再由垂径定理的推论得出OC⊥AB,由勾股定理求出BD的长,进而可得出结论.【详解】解:连接OB,如图所示:∵⊙O的半径为5,OD=3,∵AD=DB,∴OC⊥AB,∴∠ODB=90°,∴2222=-=-=,BD OB OD.534∴AB=2BD=8.故选:A.【点睛】本题考查的是垂径定理以及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.9.如图,四边形ABCD内接于⊙O,AB为⊙O的直径,点C为BD的中点.若∠=︒,则B的度数是()A50A.50︒B.55︒C.60︒D.65︒D解析:D【分析】连接AC,根据圆心角、弧、弦的关系求出∠BAC,根据圆周角定理求出∠ACB=90°,根据三角形内角和定理计算即可.【详解】解:连接AC ,∵点C 为BD 的中点,∴∠BAC=12∠BAD=25°, ∵AB 为⊙O 的直径,∴∠ACB=90°,∴∠B=90°-∠BAC=65°,故选:D .【点睛】本题考查的是圆心角、弧、弦的关系、圆周角定理的应用,掌握圆心角、弧、弦的关系定理和圆周角定理是解题的关键.10.如图,在平行四边形ABCO 中,45C ∠=︒,点A ,B 在O 上,点D 在ADB 上,DA DB =,则AOD ∠的度数为( )A .112.5°B .120°C .135°D .150°C解析:C【分析】 延长DO 交AB 于点H ,连接OB ,证明△△AOD BOD ≅,OD 是AOB ∠的角平分线,求得290345∠=︒-∠=︒,进行求解即可;【详解】延长DO 交AB 于点H ,连接OB ,∵四边形ABCD 是平行四边形,45C ∠=︒,∴345∠=︒,∵DA DB =,OA OB =,∴△△AOD BOD ≅,∴OD 是AOB ∠的角平分线,又∵AO BO =,∴DH AB ⊥,∴290345∠=︒-∠=︒,又∵221∠=∠,∴18045135AOD ∠=︒-︒=︒.故选:C .【点睛】本题主要考查了与圆有关的计算,结合全等三角形的性质和角平分线的性质计算即可.二、填空题11.已知正方形MNKO 和正六边形ABCDEF 边长均为1,把正方形放在正六边形外边,使OK 边与AB 边重合,如图所示,按下列步骤操作:将正方形在正六边形外绕点B 顺时针旋转,使KN 边与BC 边重合,完成第一次旋转;再绕点C 顺时针旋转,使NM 边与CD 边重合,完成第二次旋转;…在这样连续的旋转过程中,第一次点M 在图中直角坐标系中的坐标是_______,第6次点M 的坐标是_______.【分析】先将正方形旋转六次的图形画出确定六次旋转之后点的位置然后通过添加辅助线构造出直角三角形进而利用含角的直角三角形的性质求得再根据勾股定理求得再根据正六边形的性质线段的和差即可求得即可得解【详解 解析:13,12⎛+ ⎝⎭332⎛ ⎝⎭【分析】先将正方形旋转六次的图形画出,确定六次旋转之后点M 的位置,然后通过添加辅助线构造出直角三角形,进而利用30含角的直角三角形的性质求得12FH =、12CJ =,再根据勾股定理求得632JM =,再根据正六边形的性质、线段的和差即可求得32JF =,即可得解.【详解】解:经历六次旋转后点M 落在点6M 处,过M 作MH x ⊥于点H ,过6M 作6M J x ⊥于点J ,连接6IM ,如图:∵在Rt AFH 中,1AF =,60AFH ∠=︒,30FAH ∠=︒∴1122FH AF == ∵已知点M 的纵坐标是312+,即312MH =+ ∴点M 的坐标是:13,12⎛ ⎝⎭; ∵在6Rt CJM 中,61CM =,660JCM ∠=︒,630CM J ∠=︒∴61122CJ CM ==,226632JM CM CJ =-= ∵点I 是正六边形的中心∴1IC IF ==∴32JF IF IC CJ =+-=∴点6M 的坐标是:33,22⎛⎫ ⎪ ⎪⎝⎭. 故答案是:13,122⎛⎫+ ⎪ ⎪⎝⎭;33,22⎛⎫ ⎪ ⎪⎝⎭【点睛】本题考查了正多边形、旋转变换、含30角的直角三角形、勾股定理、线段的和差以及坐标系中的图形与坐标,体现了数形结合的数学思想.12.如图,在平面直角坐标系xOy 中,点,,A B C 的坐标分别是(0,),(22,0),()4,0,M是ABC ∆的外接圆,则圆心M 的坐标为__________________,M 的半径为_______________________. 【分析】M 点为BC 和AB 的垂直平分线的交点利用点ABC 坐标易得BC 的垂直平分线为直线x=3AB 的垂直平分线为直线y=x 从而得到M 点的坐标然后计算MB 得到⊙M 的半径【详解】解:∵点ABC 的坐标分别是(解析:()3,310【分析】M 点为BC 和AB 的垂直平分线的交点,利用点A 、B 、C 坐标易得BC 的垂直平分线为直线x=3,AB 的垂直平分线为直线y=x ,从而得到M 点的坐标,然后计算MB 得到⊙M 的半径.【详解】解:∵点A ,B ,C 的坐标分别是(0,2),(2,0),(4,0),∴BC 的垂直平分线为直线x=3,∵OA=OB ,∴△OAB 为等腰直角三角形,∴AB 的垂直平分线为第一、三象限的角平分线,即直线y=x ,∵直线x=3与直线y=x 的交点为M 点,∴M 点的坐标为(3,3),∵22(32)310MB =-+=∴⊙M 10.故答案为(3,3),10.【点睛】本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了坐标与图形的性质.13.如图,等腰直角△ABC中,∠BAC=90°,AB=AC=4.平面内的直线l经过点A,作CE⊥l 于点E,连接BE.则当直线l绕着点A转动时,线段BE长度的最大值是________.【分析】以AC为直径作圆O连接BO并延长交圆O于点可得BO+O>B从而可得BO+OE>B即BE为最大值再由勾股定理求出BO 的长即可解决问题【详解】解:由题意知CE⊥l于点E∴以AC为直径作圆O∵CE解析:225+【分析】以AC为直径作圆O,连接BO,并延长交圆O于点E',可得BO+O E'>B E',从而可得BO+OE>B E',即BE为最大值,再由勾股定理求出BO的长即可解决问题.【详解】解:由题意知,CE⊥l于点E,∴以AC为直径作圆O,∵CE⊥AE,∴点E在圆O上运动,连接BO,并延长交圆O于点E',如图,∴BO+O E'>B E',∵OE=O E',∴BO+OE>B E',∴BE的长为最大值,∵AO=OC=OE,且AB=AC=4,∴122OE AC==又∵∠BAC=90°∴22222BO AO AB=+=+=4220∴25BO=∴BE=252+=+BO OE+故答案为:225【点睛】此题主要考查了求线段的最大值,构造出△ACE的外接贺是解答本题的关键.14.如图,点A,B,C在O上,顺次连接A,B,C,O.若四边形ABCO为平行∠=________︒.四边形,则AOC120【分析】连接OB先证明四边形ABCD是菱形然后再说明△AOB△OBC为等边三角形最后根据等边三角形的性质即可解答【详解】解:如图:连接OB∵点在上∴OA=OC=OB∵四边形为平行四边形∴四边形解析:120【分析】连接OB,先证明四边形ABCD是菱形,然后再说明△AOB、△OBC为等边三角形,最后根据等边三角形的性质即可解答.【详解】解:如图:连接OB∵点A,B,C在O上∴OA=OC=OB∵四边形ABCO为平行四边形∴四边形ABCO是菱形∴OA=OC=OB=AB=BC∴△AOB、△OBC为等边三角形∴∠AOB=∠BOC=60°∴∠AOC=120°.故答案为120.【点睛】本题主要考查了圆的性质和等边三角形的性质,根据题意证得△AOB 、△OBC 为等边三角形是解答本题的关键.15.如图,在平面直角坐标系中,点()3,4A ,()3,0B ,以A 为圆心,2为半径作A ,点P 为A 上一动点,M 为OP 的中点,连接BM ,设BM 的最大值为m ,最小值为n ,则m n -的值为_________.2【分析】方法一:在轴上取一点连接可求由可得由点在上运动可知共线时可以取得最大值或最小值最大值最小值由最大值与最小值求出即可;方法二:连接取中点连接利用三角形三边关系有可得作差计算即可【详解】解:方解析:2【分析】方法一:在x 轴上取一点()6,0E ,连接PE ,可求3OB BE ==,22345AE +=,由OM PM =,OB BE =,可得12BM PE =,由点P 在A 上运动,可知P 、A 、B 共线时,可以取得最大值或最小值,最大值'527EP ==+=,最小值''523EP =-=,由最大值与最小值求出72m =,32n =即可;方法二:连接PA 、OA ,取OA 中点N ,连接MN 、BN ,利用三角形三边关系有BN MN BM BN MN -≤≤+,可得m BN MN =+,n BN MN =-,作差计算22m n MN PA -===即可.【详解】解:方法一:在x 轴上取一点()6,0E ,连接PE ,∵()3,0B ,()3,4A ,∴3OB BE ==,22345AE =+=,∵OM PM =,OB BE =,∴12BM PE =, ∵点P 在A 上运动, ∴P 、A 、B 共线时,可以取得最大值或最小值,最大值'527EP ==+=,最小值''523EP =-=,∴72m =,32n =, ∴2m n -=, 故答案为2.方法二:连接PA 、OA ,取OA 中点N ,连接MN 、BN ,BN MN BM BN MN -≤≤+,m BN MN =+,n BN MN =-,22m n MN PA -===.故答案为:2.【点睛】本题考查三角形的中位线,勾股定理,三角形三边关系,线段和差,掌握三角形的中位线,勾股定理,三角形三边关系,线段和差,引辅助线构造准确图形是解题关键. 16.如图,已知点C 是半圆О上一点,将弧BC 沿弦BC 折叠后恰好经过点,O 若半圆O 的半径是2,则图中阴影部分的面积是________________________.【分析】过点O 作OD ⊥BC 于E 交半圆O 于D 点连接CD如图根据垂径定理由OD ⊥BC 得BE =CE 再根据折叠的性质得到ED =EO 则OE =OB 则可根据含30度的直角三角形三边的关系得∠OBC =30°即∠AB 解析:23π 【分析】过点O 作OD ⊥BC 于E ,交半圆O 于D 点,连接CD ,如图,根据垂径定理由OD ⊥BC 得BE =CE ,再根据折叠的性质得到ED =EO ,则OE =12OB ,则可根据含30度的直角三角形三边的关系得∠OBC =30°,即∠ABC =30°则∠AOC=60°,由于OC =OB ,则弓形OC 的面积=弓形OB 的面积,然后根据扇形的面积公式及S 阴影部分=S 扇形OAC 即可得到阴影部分的面积.【详解】如图:过点O 作OD ⊥BC 于E ,交半圆O 于D 点,连接CD ,∵OD ⊥BC ,∴BE =CE ,∵半圆O 沿BC 所在的直线折叠,圆弧BC 恰好过圆心O ,∴ED =EO ,∴OE =12OB , ∴∠OBC =30°,即∠ABC =30°,∴∠AOC=60°;∵OC =OB ,∴弓形OC 的面积=弓形OB 的面积,∴S 阴影部分=S 扇形OAC =260223603ππ⋅= . 【点睛】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了垂定定理、圆周角定理和扇形的面积公式.17.如图,在圆O 的内接五边形ABCDE 中,40CAD ∠=︒,则B E ∠+∠=_______°.220【分析】连接CE根据圆内接四边形对角互补可得∠B+∠AEC=180°再根据同弧所对的圆周角相等可得∠CED=∠CAD然后求解即可【详解】解析:220【分析】连接CE,根据圆内接四边形对角互补可得∠B+∠AEC=180°,再根据同弧所对的圆周角相等可得∠CED=∠CAD,然后求解即可.【详解】连接CE,∵五边形ABCDE是⊙O的内接五边形,∴四边形ABCE是⊙O的内接四边形,∴∠B+∠AEC=180°,∵∠CED=∠CAD=40°,∴∠B+∠AED=180°+40°=220°【点睛】本题考查圆内接四边形的性质,同弧所对的圆周角相等的性质,熟记性质并作辅助线构造出圆内接四边形是解题关键.BC=,若点P是矩形ABCD上一动点,要使得18.在矩形ABCD中,43AB=6∠=︒,则AP的长为__________.或4或8【分析】取CD中点P1连接60APBAP1BP1由勾股定理可求AP1=BP1=4即可证△AP1B是等边三角形可得∠AP1B =60°过点A点P1点B作圆与ADBC各有一个交点即这样的P点一共3个再运用勾解析:434或8.【分析】取CD中点P1,连接AP1,BP1,由勾股定理可求AP1=BP1=3△AP1B是等边三角形,可得∠AP1B=60°,过点A,点P1,点B作圆与AD,BC各有一个交点,即这样的P 点一共3个.再运用勾股定理求解即可.【详解】解:如图,取CD 中点P 1,连接AP 1,BP 1,如图1,∵四边形ABCD 是矩形∴AB =CD =43,AD =BC =6,∠D =∠C =90°∵点P 1是CD 中点∴CP =DP 1=23∴AP 1=221AD DP +=43, BP 1=221BC CP +=43 ∴AP 1=P 1B =AB∴△APB 是等边三角形∴∠AP 1B =60°,过点A ,点P 1,点B 作圆与AD ,BC 的相交,∴这样的P 点一共有3个当点P 2在AD 上时,如图2,∵四边形ABCD 是矩形,∴3,43,90AB A CD AD =∠===︒∵260,AP B ∠=︒∴221,2P A P B = 即222,P B P A =在2Rt P AB ∆中,22222,P B P A AB -=∴222222(43),P A P A -=∴24AP =;当点P 3在BC 上时,如图3,∵四边形ABCD 是矩形,∴∠B=90°∵∠360,AP B =︒∴∠3390906030,P AB AP B =︒-∠=︒-︒=︒ ∴331,2BP AP = 在3Rt ABP ∆中,22233,AP BP AB -=222331()(43),2AP AP -= 23348,4AP = ∴8,AP =综上所述,AP 的长为:43或4或8.故答案为:43或4或8.【点睛】本题考查了矩形的性质,勾股定理,等边三角形的判定和性质,灵活运用这些性质进行推理是本题的关键.19.如图,半径为10的扇形AOB 中,∠AOB=90°,C 为AB 上一点,CD ⊥OA ,CE ⊥OB ,垂足分别为D 、E .若∠CDE=36°,则图中阴影部分的面积为____.10π【分析】连接OC 易得△ODE ≌△ECO 所以扇形OBC 的面积就是图中阴影部分的面积因此求得扇形OBC 的面积即可【详解】解:如下图连接OC ∵∠AOB=90°CD ⊥OACE ⊥OB ∴四边形ODCE 为矩解析:10π【分析】连接OC ,易得△ODE ≌△ECO ,所以扇形OBC 的面积就是图中阴影部分的面积,因此求得扇形OBC 的面积即可.【详解】解:如下图连接OC ,∵∠AOB=90°、CD ⊥OA 、CE ⊥OB∴四边形ODCE 为矩形∴OD=CE ,OE 为公共边∴△ODE ≌△ECO∴△ODE 的面积=△ECO 的面积∴图中阴影部分的面积=2236361010360360O BC SOB πππ-==⨯=. 故答案为:10π.【点睛】本题考查扇形面积的计算和矩形的性质.其关键是用矩形性质对阴影部分进行等积变换,发现△ODE 的面积=△ECO 的面积.20.湖州南浔镇河流密如蛛网,民间有“千步一桥”之说.如图,某圆弧形桥拱的跨度AB =12米,拱高CD =4米,则该拱桥的半径为____米. 65【分析】根据垂径定理的推论此圆的圆心在CD 所在的直线上设圆心是O 连接OA 根据垂径定理和勾股定理求解【详解】根据垂径定理的推论知此圆的圆心在CD 所在的直线上设圆心是O 连接OA 拱桥的跨度AB=12m解析:6.5【分析】根据垂径定理的推论,此圆的圆心在CD 所在的直线上,设圆心是O .连接OA .根据垂径定理和勾股定理求解.【详解】根据垂径定理的推论,知此圆的圆心在CD 所在的直线上,设圆心是O ,连接OA . 拱桥的跨度AB =12m ,拱高CD =4m ,根据垂径定理,得AD=6 m ,利用勾股定理可得:()22264AO AO =--,解得:AO =6.5m .即圆弧半径为6.5米,故答案为:6.5.【点睛】本题综合运用了勾股定理以及垂径定理.注意由半径、半弦、弦心距构造的直角三角形进行有关的计算. 三、解答题21.如图,AB 是⊙O 的直径,点C 在⊙O 上,BD 平分ABC ∠交⊙O 于点D ,过点D 作DE BC ⊥,垂足为E .(1)求证:DE 与⊙O 相切;(2)若10AB =,6AD =,求DE 的长.解析:(1)见解析;(2)245 【分析】(1)连接OD ,由BD 为角平分线得到OBD CBD ∠=∠,再由OB=OD ,利用等边对等角得到ODB OBD ∠=∠,从而得出ODB CBD ∠=∠,利用内错角相等两直线平行得到OD 与BE 平行,由DE 垂直于BE 得到OD 垂直于DE ,即可得证;(2)过D 作DH AB ⊥于H ,根据HL 得出△≌△Rt ADH Rt CDE ,得出AH CE =,再根据勾股定理得出22221068BD AB AD -=-=,再利用等积法即可得出DE 的长.【详解】(1)证明:连接OD .∵OD OB =,∴ODB OBD ∠=∠.∵BD 平分ABC ∠,∴OBD CBD ∠=∠.∴ODB CBD ∠=∠,∴//OD BE .∴180BED ODE ∠+∠=︒.∵BE DE ⊥,∴90BED ∠=︒.∴90ODE ∠=︒.∴OD DE ⊥.∴DE 与O 相切;(2)过D 作DH AB ⊥于H .∵BD 平分ABC ∠,DE BE ⊥,∴DH DE =.∵AD CD =,∴AD CD =.∴()Rt ADH Rt CDE HL △≌△,∴AH CE =.∵AB 是O 的直径,∴90ADB ∠=︒. ∵10AB =,6AD =, ∴22221068BD AB AD =-=-=. ∵1122AB DH AD BD ⋅=⋅,∴245DH =. ∴245DE =. 【点睛】 此题考查了切线的判定,角平分线的性质、圆周角定理、平行线的判定与性质等知识,熟练掌握切线的判定方法是解本题的关键,属于中考常考题型.22.如图,AB 是圆的直径,且AD//OC ,求证:CD BC =.解析:证明见解析.【分析】主要是根据弧相等只需要证明弧所对的圆周角相等或者弧所对的圆心角相等即可证明.连接AC 或者OD 都可以证明.【详解】解:连接ACAD//OC∴∠DAC=∠OCAOA=OC∴∠BAC=∠ACO∴∠DAC=∠BAC∴CD BC =.【点睛】主要是考察学生对圆周角定理的内容的掌握.同时角相等和弧相等之间的转化. 23.如图,已知直线PT 与⊙O 相交于点T ,直线PO 与⊙O 相交于A 、B 两点,已知PTA B ∠=∠.(1)求证:PT 是⊙O 的切线;(2)若3PT BT ==解析:(1)证明见解析;(2)364π- 【分析】 (1)先根据圆周角定理得:∠ATB=90°,则∠B+∠OAT=90°,根据同圆的半径相等和等腰三角形的性质得:∠OAT=∠2,从而得∠PTA+∠2=90°,即∠OTP=90°,所以直线PT 与⊙O 相切;(2)利用TP=TB 得到∠P=∠B ,而∠OAT=2∠P ,所以∠OAT=2∠B ,则利用∠ATB=90°可计算出∠B=30°,∠POT=60°,利用含30度的直角三角形三边的关系得到AT=12AB ,△AOT 为等边三角形,然后根据扇形的面积公式和图中阴影部分的面积=S 扇形OAT -S △AOT 进行计算.【详解】(1)证明:连接OT ,∵AB 是⊙O 的直径,∴∠ATB=90°,∴∠B+∠OAT=90°,∵OA=OT ,∴∠OAT=∠2,∵∠PTA=∠B ,∴∠PTA+∠2=90°,即∠OTP=90°,∴直线PT 与⊙O 相切;(2)∵3PT BT ==∴∠P=∠B=∠PTA ,∵∠TAB=∠P+∠PTA ,∴∠TAB=2∠B ,∵∠TAB+∠B=90°,∴∠TAB=60°,∠B=30°,在Rt △ABT 中,设AT=a ,则AB=2AT=2a ,∴a 232=(2a)2,解得:a=1,∴AT=1,∵OA=OT ,∠TAO=60°,∴△AOT 为等边三角形, 13312AOT S ∴=⨯=. ∴阴影部分的面积2Δ 60133360464AOT AOTS S ππ⨯=-=-=-扇形. 【点睛】本题考查了切线的判定、勾股定理,此类题常与方程结合,列方程求圆的半径和线段的长,也考查了扇形的面积公式.24.如图,已知AB 是O 的直径,四边形AODE 是平行四边形,请用无刻度直尺按下列要求作图.(1)如图1,当点D 在圆上时,作BAC ∠的平分线;(2)如图2,当点D 不在圆上时,作BAC ∠的平分线.解析:(1)见解析;(2)见解析.【分析】(1)由四边形AODE 是平行四边形,结合圆的 半径相等,可知四边形AODE 是菱形,利用菱形的性质即可做出BAC ∠的平分线;(2)延长OD 交于圆一点,连接该点与点A ,由此即可作出C BA ∠的平分线.【详解】解:(1)如图①:AD 即为所求.∵四边形AODE 是平行四边形点D 在圆上∴四边形AODE 是菱形∴AD 平分BAC ∠;(2)如图②:延长OD 交于圆一点P ,连接AP ,同理可证AP 即为所求.【点睛】此题考查尺规作图,关键是掌握圆的相关知识及角平分线的判定方法.25.如图1是某人荡秋千的情形,简化成图2所示,起始状态下秋千顶端O 与座板A 的距离为2m (此时OA 垂直于地面),现一人荡秋千时,座板到达点B (OA 不弯曲).(1)当BOA 30∠=时,求AB 弧的长度(保留π);(2)当从点C 荡至点B ,且BC 与地面平行,3m BC =时,若点A 离地面0.4m ,求点B 到地面的距离(保号根号).解析:(1)3m π;(2)127()52m -. 【分析】(1)利用弧长公式计算,得到答案;(2)根据等腰三角形的性质求出BD ,根据勾股定理求出OD ,结合图形计算即可.【详解】解:(1)AB 弧线的长度=302()1803m ππ⨯=; (2)如图,∵OB=OC ,OD ⊥BC ,∴1322BD BC ==, 在Rt △OBD 中,OD 2+BD 2=OB 2, ∴2222372()2OD OB BD =-=-=, ∴点B 到地面的距离=712720.4252-+=-, 答:点B 到地面的距离为127(5m -. 【点睛】本题考查的是解直角三角形的应用、弧长的计算、勾股定理,掌握弧长公式是解题的关键.26.如图,已知AB 是⊙O 的直径,点C 、D 在⊙O 上,点E 在⊙O 外,∠CAE=∠ADC .(1)求证:AE 是⊙O 的切线;(2)若⊙O 的半径为2,∠B=60°,求图中阴影部分的面积.(结果保留根号和π) 解析:(1)见解析;(2)433π- 【分析】(1)根据AB 是直径得到∠ACB=90°,根据已知条件得到∠BAE =90°,即可得到结果; (2)作OM ⊥AC ,垂足为M ,求得AM=3,根据扇形的面积计算公式计算即可;【详解】(1)证明:∵AB 是⊙O 的直径,∴∠ACB=90°,∴∠B+∠BAC=90°,∵∠B=∠ADC=∠CAE ,∴∠BAE=∠BAC+∠EAC=∠BAC+∠B=90°,∴ BA ⊥AE ,∴AE 是⊙O 的切线.(2)解:作OM ⊥AC ,垂足为M .∵∠B=60°,∴∠AOC=2∠B=120°,∴∠AOM=∠COM=60°, ∴OM=12AO=1, ∴3 ∴AC=2AM=23∴S 阴=S 扇形AOC -S △AOC =120414-231336023ππ. 【点睛】本题主要考查了切线的证明和扇形的面积计算,准确分析计算是解题的关键. 27.如图,ABC 内接于O ,60BAC ∠=︒,点D 是BC 的中点.BC ,AB 边上的高AE ,CF 相交于点H .试证明:(1)FAH CAO ∠=∠;(2)四边形AHDO 是菱形.解析:(1)见详解;(2)见详解【分析】(1)连接AD ,根据题意易得,BAD CAD OD BC ∠=∠⊥,则有∠DAE=∠ODA ,∠DAO=∠ODA ,然后根据角的等量关系可求解;(2)过点O 作OM ⊥AC 于M ,由题意易得AC=2AM ,AC=2AF ,进而可证△AFH ≌△AMO ,然后可得四边形AHDO 是平行四边形,最后问题可证.【详解】证明:(1)连接AD ,如图所示:∵点D 是BC 的中点,∴,BAD CAD OD BC ∠=∠⊥,∵AE ⊥BC ,∴AE ∥OD ,∴∠DAE=∠ODA ,∵OA=OD ,∴∠DAO=∠ODA ,∴∠BAD-∠DAE=∠CAD-∠DAO ,∴∠FAH=∠CAO ;(2)过点O 作OM ⊥AC 于M ,∴AC=2AM ,∵CF ⊥AB ,∠BAC=60°,∴AC=2AF ,∴AF=AM ,∵∠AFH=∠AMO=90°,∠FAH=∠OAM ,∴△AFH ≌△AMO (ASA ),∴AH=AO ,∵OA=OD ,∴AH //CD ,∴四边形AHDO 是平行四边形,∵OA=OD ,∴四边形AHDO 是菱形.【点睛】本题主要考查圆周角定理、垂径定理及菱形的判定,熟练掌握圆周角定理、垂径定理及菱形的判定是解题的关键.28.已知PA 、PB 分别与O 相切于点A ,B 两点,76APB ∠=︒ ,C 为O 上一点. (1)如图,求ACB ∠的大小; (2)如图,AE 为O 的直径,AE 与BC 相交于点D ,若AB AD =,求EAC ∠的大小.解析:(1)52︒;(2)19︒【分析】(1)连接OA 、OB ,根据切线的性质得到90OAP OBP ∠=∠=︒,可以求出AOB ∠的度数,再根据圆周角定理得到ACB ∠的度数;(2)连接CE ,根据(1)的结论,先求出BCE ∠的度数,再由圆周角定理得到BAE BCE ∠=∠,再等腰三角形ABD 中求出底角ADB ∠的度数,再由外角和定理就可以求出EAC ∠的度数.【详解】解:(1)如图,连接OA 、OB ,∵PA 、PB 是O 的切线,∴90OAP OBP ∠=∠=︒,∴360909076104AOB ∠=︒-︒-︒-︒=︒,根据圆周角定理,1522ACB AOB ∠=∠=︒;(2)如图,连接CE , ∵AE 是O 的直径, ∴90ACE ∠=︒, ∵52ACB ∠=︒, ∴905238BCE ∠=︒-︒=︒, ∴38BAE BCE ∠=∠=︒, ∵AB AD =, ∴71ABD ADB ∠=∠=︒, ∴19EAC ADB ACB ∠=∠-∠=︒.【点睛】本题考查圆周角定理和切线的性质,解题的关键是掌握这些性质定理进行求解.。
人教版九年级数学第二十四章《圆》单元知识点总结
人教版九年级数学第二十四章《圆》单元知识点总结1.弦弦:连结圆上任意两点的线段叫做弦. 直径:经过圆心的弦叫做直径.弦心距:圆心到弦的距离叫做弦心距.2.弧:圆上任意两点间的部分叫做圆弧,简称弧.以A、B为端点的弧记作,读作“圆弧AB”或“弧AB”.①半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆;②优弧:大于半圆的弧叫做优弧;③劣弧:小于半圆的弧叫做劣弧.3.同心圆与等圆圆心相同,半径不等的两个圆叫做同心圆.圆心不同,半径相等的两个圆叫做等圆.同圆或等圆的半径相等.4.等弧在同圆或等圆中,能够完全重合的弧叫做等弧.5、弧、弦、圆心角的关系(1)圆心角定义如图所示,∠AOB的顶点在圆心,像这样顶点在圆心的角叫做圆心角.(2)定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.推论:在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦也相等.在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧也相等.6、圆周角(1)圆周角定义:像图中∠AEB、∠ADB、∠ACB这样的角,它们的顶点在圆上,并且两边都与圆相交的角叫做圆周角.(2).圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.(3).圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.要点诠释:(1)圆周角必须满足两个条件:①顶点在圆上;②角的两边都和圆相交.(2)圆周角定理成立的前提条件是在同圆或等圆中.7.圆内接四边形:(1)定义: 圆内接四边形:顶点都在圆上的四边形,叫圆内接四边形.(2)性质:圆内接四边形对角互补,外角等于内对角(即它的一个外角等于它相邻内角的对角).8.弦、弧、圆心角、弦心距的关系:在同圆或等圆中,弦,弧,圆心角,弦心距等几何量之间是相互关联的,即它们中间只要有一组量相等,(例如圆心角相等),那么其它各组量也分别相等(即相对应的弦、弦心距以及弦所对的弧也分别相等)。
人教版九年级上册数学 第24章《圆》讲义 第讲 正多边形和圆弧长和扇形面积(有答案)
第17讲 正多边形和圆、弧长和扇形面积 第一部分 知识梳理 知识点一:圆与内正多边形的计算1、正三角形 在⊙O 中△ABC 是正三角形,有关计算在Rt BOD ∆中进行:::1:3:2OD BD OB =;2、正四边形 同理,四边形的有关计算在Rt OAE ∆中进行,::1:1:2OE AE OA =3、正六边形 同理,六边形的有关计算在Rt OAB ∆中进行,::1:3:2AB OB OA = 知识点二、扇形、圆柱和圆锥的相关计算公式1、扇形:(1)弧长公式:180n R l π=; (2)扇形面积公式: 213602n R S lR π== n :圆心角 R :扇形多对应的圆的半径 l :扇形弧长 S :扇形面积2、圆柱侧面展开图:3、圆锥侧面展开图第二部分 考点精讲精练考点1、正多边形和圆的求解例1、六边形的边长为10cm ,那么它的边心距等于( )A .10cmB .5cmC .cm D .cm 例2、已知正多边形的边心距与边长的比为21,则此正多边形为( ) A .正三角形 B .正方形 C .正六边形 D .正十二边形例3、如图,在⊙O 内,AB 是内接正六边形的一边,AC 是内接正十边形的一边,BC 是内接正n 边形的一边,那么n= .例4、圆的内接正六边形边长为a,这个圆的周长为.例5、如图,已知边长为2cm的正六边形ABCDEF,点A1,B1,C1,D1,E1,F1分别为所在各边的中点,求图中阴影部分的总面积S.举一反三:1、下列命题中的真命题是()A.三角形的内切圆半径和外接圆半径之比为2:1B.正六边形的边长等于其外接圆的半径C.圆外切正方形的边长等于其边A心距的倍D.各边相等的圆外切多边形是正方形2、已知正方形的边长为a,其内切圆的半径为r,外接圆的半径为R,则r:R:a=()A.1:1:B.1::2 C.1::1 D.:2:43、某工人师傅需要把一个半径为6cm的圆形铁片加工截出边长最大的正六边形的铁片,则此正六边形的边长为 cm.4、如图,正六边形与正十二边形内接于同一圆⊙O中,已知外接圆的半径为2,则阴影部分面积为.5、如图,⊙O半径为4cm,其内接正六边形ABCDEF,点P,Q同时分别从A,D两点出发,以1cm/s速度沿AF,DC向终点F,C运动,连接PB,QE,PE,BQ.设运动时间为t(s).(1)求证:四边形PEQB为平行四边形;(2)填空:①当t= s时,四边形PBQE为菱形;②当t= s时,四边形PBQE为矩形.考点2、弧长的计算例1、一条弧所对的圆心角是90°,半径是R,则这条弧长是()A.B.C.D.例2、一个滑轮起重装置如图所示,滑轮半径是10cm,当重物上升10cm时,滑轮的一条半径OA绕轴心O,绕逆时针方向旋转的角度约为(假设绳索与滑轮之间没有滑动,π取3.14,结果精确到1°)()A.115°B.160°C.57°D.29°例3、已知:如图,四边形ABCD内接于⊙O,若∠BOD=120°,OB=1,则∠BAD= 度,∠BCD= 度,弧BCD的长= .例4、如图,在Rt△ABC中,∠C=90°,∠A=60°,AC=cm,将△ABC绕点B旋转至△A′BC′的位置,且使点A、B、C′三点在一条直线上,则点A经过的最短路线的长度是.例5、如图,菱形ABCD的边长为6,∠BAD=60°,AC为对角线.将△ACD绕点A逆时针旋转60°得到△AC′D′,连接DC′.(1)求证:△ADC≌△ADC′;(2)求在旋转过程中点C扫过路径的长.(结果保留π)举一反三:1、弧长为6π的弧所对的圆心角为60°,则弧所在的圆的半径为()A.6 B.6C.12D.182、如图,一块边长为10cm的正方形木板ABCD,在水平桌面上绕点D按顺时针方向旋转到A′B′C′D′的位置时,顶点B从开始到结束所经过的路径长为()A.20cm B.20cm C.10πcm D.5πcm3、一段铁路弯道成圆弧形,圆弧的半径是2km.一列火车以每小时28km的速度经过10秒通过弯道.那么弯道所对的圆心角的度数为度.(π取3.14,结果精确到0.1度).4、已知矩形ABCD的长AB=4,宽AD=3,按如图放置在直线AP上,然后不滑动地转动,当它转动一周时(A→A′),顶点A所经过的路线长等于.5、如图,在一个横截面为Rt△ABC的物体中,∠CAB=30°,BC=1米.工人师傅把此物体搬到墙边,先将AB边放在地面(直线l)上,再按顺时针方向绕点B翻转到△A1B1C1的位置(BC1在l上),最后沿BC1的方向平移到△A2B2C2的位置,其平移的距离为线段AC的长度(此时A2C2恰好靠在墙边).(1)请直接写出AB、AC的长;(2)画出在搬动此物的整个过程A点所经过的路径,并求出该路径的长度(精确到0.1米).考点3、扇形面积的计算例1、已知五个半径为1的圆的位置如图所示,各圆心的连线构成一个五边形,那么阴影部分的面积是()A.B.2π C.D.3π例2、一个商标图案如图中阴影部分,在长方形ABCD中,AB=8cm,BC=4cm,以点A 为圆心,AD为半径作圆与BA的延长线相交于点F,则商标图案的面积是()A.(4π+8)cm2 B.(4π+16)cm2C.(3π+8)cm2 D.(3π+16)cm2例3、如图,E是正方形ABCD内一点,连接EA、EB并将△BAE以B为中心顺时针旋转90°得到△BFC,若BA=4,BE=3,在△BAE旋转到△BCF的过程中AE扫过区域面积.例4、如图,有一直径为1米的圆形铁皮,要从中剪出一个最大的圆心角为90°的扇形,则剩下部分的(阴影部分)的面积是.例5、如图,已知P为正方形ABCD内一点,△ABP经过旋转后到达△CBQ的位置.(1)请说出旋转中心及旋转角度;(2)若连接PQ,试判断△PBQ的形状;(3)若∠BPA=135°,试说明点A,P,Q三点在同一直线上;(4)若∠BPA=135°,AP=3,PB=,求正方形的对角线长;(5)在(4)的条件下,求线段AP在旋转过程中所扫过的面积.举一反三:1、若一个扇形的面积是相应圆的41,则它的圆心角为( ) A .150° B .120° C .90° D .60°2、如图所示的4个的半径均为1,那么图中的阴影部分的面积为( )A .π+1B .2πC .4D .63、如图,O 为圆心,半径OA=OB=r ,∠AOB=90°,点M 在OB 上,OM=2MB ,用r 的式子表示阴影部分的面积是 .4、如图,直角△ABC 的直角顶点为C ,且AC=5,BC=12,AB=13,将此三角形绕点A 顺时针旋转90°到直角△AB′C′的位置,在旋转过程中,直角△ABC 扫过的面积是 .(结果中可保留π)5、如图,四边形ABCD 是长方形,AB=a ,BC=b (a >b ),以A 为圆心AD 长为半径的圆与CD 交于D ,与AB 交于E ,若∠CAB=30°,请你用a 、b 表示图中阴影部分的面积.考点4、圆锥侧面积计算例1、如果圆锥的高为3cm ,母线长为5cm ,则圆锥的侧面积是( )A .16πcm 2B .20πcm 2C .28πcm 2D .36πcm 2例2、新疆哈萨克族是一个游牧民族,喜爱居住毡房,毡房的顶部是圆锥形,如图所示,为防雨需要在毡房顶部铺上防雨布.已知圆锥的底面直径是5.7m ,母线长是3.2m ,铺满毡房顶部至少需要防雨布(精确到1m 2)( )A .58 m 2B .29 m 2C .26 m 2D .28 m 2例3、扇形的圆心角为150°,半径为4cm ,用它做一个圆锥,那么这个圆锥的表面积为 cm 2.例4、在十年文革期间的“高帽子”.这种“高帽子”是用如图①所示的扇形硬纸板,做成如图②所示的无底圆锥体.已知接缝的重叠部分的圆心角为30°.(1)求重叠部分的面积.(结果保留π)(2)计算这顶“高帽子”有多高?(结果保留根号)例5、已知:一个圆锥的侧面展开图是半径为20cm,圆心角为120°的扇形,求这圆锥的底面圆的半径和高.举一反三:1、若圆锥的侧面积为12πcm2,它的底面半径为3cm,则此圆锥的母线长为()A.4πcm B.4 cm C.2πcm D.2 cm2、圆锥的轴截面是一个等腰三角形,它的面积是10cm2,底边上的高线是5cm,则圆锥的侧面展开图的弧长等于()A.87πcm B.47πcm C.8 cm D.4 cm3、如图,扇形的半径为6,圆心角θ为120°,用这个扇形围成一个圆锥的侧面,所得圆锥的高为。
【人教版】九年级上册数学课件:第24章《圆》
名师解读:理解这些与圆相关的概念时,要注意数形结合,对比理 解,同时注意“线”的“曲”和“直”及是否为全等形.
教材新知精讲 知识点一 知识点二
例2 如图,点A,O,D以及点B,O,C分别在一条直线上,则圆中弦的 条数是( )
A.2 B.3 C.4 D.5 解析:将图形中的线段根据弦的概念逐个进行分析,从而得到图 中的弦有AB,BC,CE共三条. 答案:B
A.(5,-4) B.(4,-5) C.(4,-7) D.(5,-7)
拓展点一 拓展点二 拓展点三
综合知识拓展
解析:∵M(0,-4),N(0,-10),∴MN=6.
连接 PM,过点 P 作 PE⊥MN 于 E,
∴ME=NE=12MN=3,∴OE=OM+EM=4+3=7.在 Rt△PEM
中,PE= ������������2-������������2 = 52-32=4,
础上再看是否绕中心旋转任意角度能与原图形重合:①不是轴对称
图形,是旋转对称图形;②是轴对称图形,是旋转对称图形;③是轴对
称图形,是旋转对称图形;④是轴对称图形,是旋转对称图形.
答案:C
知识点一 知识点二 知识点三
教材新知精讲
解答这类问题,可以简单地认为是“找对称轴”和“旋转中心”, 先确定是其中一种具有特质的图形,再看是否具备另一种 图形的特质.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 第二十四章 圆
24.1 圆 教学目标 知识与技能:了解圆的有关概念,理解垂径定理并灵活运用垂径定理及圆的概念解决一些实际问题. 过程与方法:从感受圆在生活中大量存在到圆形及圆的形成过程,讲授圆的有关概念.利用操作几何的方法,理解圆是轴对称图形,过圆心的直线都是它的对称轴. 情感、态度与价值观:通过复合图形的折叠方法得出猜想垂径定理,并辅以逻辑证明加予理解. 重难点: 1.重点:垂径定理及其运用. 2.难点:探索并证明垂径定理及利用垂径定理解决一些实际问题. 教学过程 一、复习引入 (学生活动)请同学口答下面两个问题(提问一、两个同学) 1.举出生活中的圆三、四个. 2.你能讲出形成圆的方法有多少种? 老师点评(口答):(1)如车轮、杯口、时针等.(2)圆规:固定一个定点,固定一个长度,绕定点拉紧运动就形成一个圆. 二、探索新知 从以上圆的形成过程,我们可以得出: 在一个平面内,线段OA绕它固定的一个端点O旋转一周,•另一个端点所形成的图形叫做圆.固定的端点O叫做圆心,线段OA叫做半径. 以点O为圆心的圆,记作“⊙O”,读作“圆O”. 学生四人一组讨论下面的两个问题: 问题1:图上各点到定点(圆心O)的距离有什么规律? 问题2:到定点的距离等于定长的点又有什么特点? 老师提问几名学生并点评总结. (1)图上各点到定点(圆心O)的距离都等于定长(半径r); (2)到定点的距离等于定长的点都在同一个圆上. 因此,我们可以得到圆的新定义:圆心为O,半径为r的圆可以看成是所有到定点O的距离等于定长r的点组成的图形. 同时,我们又把 ①连接圆上任意两点的线段叫做弦,如图线段AC,AB; ②经过圆心的弦叫做直径,如图24-1线段AB;
③圆上任意两点间的部分叫做圆弧,简称弧,“以A、C为端点的弧记作”,读作“圆弧”或“弧AC”.大于半圆的弧(如图所示叫做优弧,•小于半圆的弧(如图所示)或叫做劣弧.
④圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆. 2
(学生活动)请同学们回答下面两个问题. 1.圆是轴对称图形吗?如果是,它的对称轴是什么?•你能找到多少条对称轴?
圆是轴对称图形,其对称轴是任意一条过圆心的直线. (学生活动)请同学按下面要求完成下题: 如图,AB是⊙O的一条弦,作直径CD,使CD⊥AB,垂足为M.
(1)如图是轴对称图形吗?如果是,其对称轴是什么? (2)你能发现图中有哪些等量关系?说一说你理由. (老师点评)(1)是轴对称图形,其对称轴是CD.
(2)AM=BM,,,即直径CD平分弦AB,并且平分及. 这样,我们就得到下面的定理: 垂直于弦的直径平分弦,并且平分弦所对的两条弧. 下面我们用逻辑思维给它证明一下: 已知:直径CD、弦AB且CD⊥AB垂足为M
求证:AM=BM,,. 分析:要证AM=BM,只要证AM、BM构成的两个三角形全等.因此,只要连结OA、•OB或AC、BC即可.
证明:如图,连结OA、OB,则OA=OB 在Rt△OAM和Rt△OBM中
∴Rt△OAM≌Rt△OBM ∴AM=BM ∴点A和点B关于CD对称 ∵⊙O关于直径CD对称
∴当圆沿着直线CD对折时,点A与点B重合,与重合,与重合. ∴, 进一步,我们还可以得到结论: 平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧. 3
(本题的证明作为课后练习) 例1.如图,一条公路的转弯处是一段圆弦(即图中,点O是的圆心,•其中CD=600m,E为上一点,且OE⊥CD,垂足为F,EF=90m,求这段弯路的半径. 三、巩固练习 教材 练习. 四、应用拓展 例2.有一石拱桥的桥拱是圆弧形,如图24-5所示,正常水位下水面宽AB=•60m,水面到拱顶距离CD=18m,当洪水泛滥时,水面宽MN=32m时是否需要采取紧急措施?请说明理由. 分析:要求当洪水到来时,水面宽MN=32m•是否需要采取紧急措施,•只要求出DE的长,因
此只要求半径R,然后运用几何代数解求R. 五、归纳小结(学生归纳,老师点评) 本节课应掌握: 1.圆的有关概念; 2.圆是轴对称图形,任何一条直径所在直线都是它的对称轴. 3.垂径定理及其推论以及它们的应用. 六、布置作业
板书设计
教学反思
4
24.1 圆 (第2课时) 教学目标 知识与技能:了解圆心角的概念:掌握在同圆或等圆中,圆心角、弦、弧中有一个量的两个相等就可以推出其它两个量的相对应的两个值就相等,及其它们在解题中的应用. 过程与方法:通过复习旋转的知识,产生圆心角的概念,然后用圆心角和旋转的知识探索在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等,最后应用它解决一些具体问题. 情感、态度与价值观:培养学生的审美观。 重难点 1.重点:定理:在同圆或等圆中,相等的圆心角所对的弧相等,•所对弦也相等及其两个推论和它们的应用. 2.难点:探索定理和推导及其应用. 教学过程 一、复习引入 (学生活动)请同学们完成下题. 已知△OAB,如图所示,作出绕O点旋转30°、60°的图形. . 二、探索新知 如图所示,∠AOB的顶点在圆心,像这样顶点在圆心的角叫做圆心角.
(学生活动)请同学们按下列要求作图并回答问题: 如图所示的⊙O中,分别作相等的圆心角∠AOB•和∠A•′OB•′将圆心角∠AOB绕圆心O旋转到∠A′OB′的位置,你能发现哪些等量关系?为什么?
=,AB=A′B′ 理由:∵半径OA与O′A′重合,且∠AOB=∠A′OB′ ∴半径OB与OB′重合 ∵点A与点A′重合,点B与点B′重合
∴与重合,弦AB与弦A′B′重合 ∴=,AB=A′B′ 因此,在同一个圆中,相等的圆心角所对的弧相等,所对的弦相等. 5
在等圆中,相等的圆心角是否也有所对的弧相等,所对的弦相等呢?•请同学们现在动手作一作. (学生活动)老师点评:如图1,在⊙O和⊙O′中,•分别作相等的圆心角∠AOB和∠A′O′B′得到如图2,滚动一个圆,使O与O′重合,固定圆心,将其中的一个圆旋转一个角度,使得OA与O′A′重合.
(1) (2) 你能发现哪些等量关系?说一说你的理由?
我能发现:=,AB=A/B/. 现在它的证明方法就转化为前面的说明了,•这就是又回到了我们的数学思想上去呢──化归思想,化未知为已知,因此,我们可以得到下面的定理: 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等. 同样,还可以得到: 在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,•所对的弦也相等. 在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,•所对的弧也相等. (学生活动)请同学们现在给予说明一下. 请三位同学到黑板板书,老师点评. 例1.如图,在⊙O中,AB、CD是两条弦,OE⊥AB,OF⊥CD,垂足分别为EF. (1)如果∠AOB=∠COD,那么OE与OF的大小有什么关系?为什么?
(2)如果OE=OF,那么与的大小有什么关系?AB与CD的大小有什么关系?•为什么?∠AOB与∠COD呢?
三、巩固练习 教材 练习1 四、应用拓展 例2.如图3和图4,MN是⊙O的直径,弦AB、CD•相交于MN•上的一点P,•∠APM=∠CPM. (1)由以上条件,你认为AB和CD大小关系是什么,请说明理由. (2)若交点P在⊙O的外部,上述结论是否成立?若成立,加以证明;若不成立,请说明理由. 6
(3) (4)
五、归纳总结(学生归纳,老师点评) 本节课应掌握: 1.圆心角概念. 2.在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,•那么它们所对应的其余各组量都部分相等,及其它们的应用. 六、布置作业
板书设计
八、教学反思
7
24.1.4 圆周角 教学目标 知识与技能:了解圆周角的概念. 过程与方法:设置情景,给出圆周角概念,探究这些圆周角与圆心角的关系,运用数学分类思想给予逻辑证明定理,得出推导,让学生活动证明定理推论的正确性,最后运用定理及其推导解决一些实际问题. 情感、态度与价值观:熟练掌握圆周角的定理及其推理的灵活运用. 重难点 1.重点:圆周角的定理、圆周角的定理的推导及运用它们解题. 2.难点:运用数学分类思想证明圆周角的定理. 教学过程 一、复习引入 (学生活动)请同学们口答下面两个问题. 1.什么叫圆心角? 2.圆心角、弦、弧之间有什么内在联系呢? 老师点评:(1)我们把顶点在圆心的角叫圆心角. (2)在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,•那么它们所对的其余各组量都分别相等. 刚才讲的,顶点在圆心上的角,有一组等量的关系,如果顶点不在圆心上,它在其它的位置上?如在圆周上,是否还存在一些等量关系呢?这就是我们今天要探讨,要研究,要解决的问题. 二、探索新知
问题:如图所示的⊙O,我们在射门游戏中,设E、F是球门,•设球员们只能在所在的⊙O其它位置射门,如图所示的A、B、C点.通过观察,我们可以发现像∠EAF、∠EBF、∠ECF这样的角,它们的顶点在圆上,•并且两边都与圆相交的角叫做圆周角.
现在通过圆周角的概念和度量的方法回答下面的问题. 1.一个弧上所对的圆周角的个数有多少个? 2.同弧所对的圆周角的度数是否发生变化? 3.同弧上的圆周角与圆心角有什么关系? (学生分组讨论)提问二、三位同学代表发言. 老师点评:www.1230.org 初中数学资源网 1.一个弧上所对的圆周角的个数有无数多个. 2.通过度量,我们可以发现,同弧所对的圆周角是没有变化的. 3.通过度量,我们可以得出,同弧上的圆周角是圆心角的一半. 下面,我们通过逻辑证明来说明“同弧所对的圆周角的度数没有变化,•并且它的度数恰好等于这条弧所对的圆心角的度数的一半.” (1)设圆周角∠ABC的一边BC是⊙O的直径,如图所示