我的国培作业实数
国培作业

2)结合初中数学教学实践,请您谈谈对数学教学中渗透方程思想、转化思想、数形结合思想、分类讨论思想等的认识与感受?答:一、渗透方程思想的认识与感受:方程思想是指借助解方程来求出未知量的一种解题策略。
运用方程思想求解的题目在中考试题中经常出现。
同时,方程思想也是我们求解有关图形中的线段、角的大小的重要方法。
如例1:已知线段AC:AB:BC=3:5:7,且AC+AB=16cm,求线段BC的长。
解:设AC=3x,则AB=5x,BC=7x,因为AC+AB=16cm,所以3x+5x=16cm,解得x=2因此BC=7x=14cm我们知道方程是刻画现实世界的一个有效的数学模型。
所以方程思想实际上就是由实际问题抽象为方程过程的数学建模思想。
方程思想的领会与否直接关系到数学建模能力的大小。
因此,我们对学生进行方程思想的渗透,就是对学生进行数学建模能力的培养,这对学生以后的学习有着深远的影响。
二、渗透转化思想的认识与感受:转化思想是指把待解决或未解决的问题,通过转化,归结到已经解决或比较容易解决的问题中去,最终使问题得到解决的一种思想方法。
这体现了研究科学的一种基本思想,即把“不熟悉”迁移到“熟悉”的路子上去。
可以说转化思想在教材的数学教学中是贯穿始终的。
例如:在《有理数的减法》、《有理数的除法》这两节内容中,学生在自主探究和合作交流的过程中,经历把有理数的减法、除法转化为加法、乘法的过程,体验、学会并熟悉转化思想。
教材在出示了一组例题后,说明“减法可以转化为加法”、“除法可以转化为乘法”、“除以一个数等于乘以这个数的倒数”。
这在主观上帮助了学生在探索时进行转化的过程,而在学生体会到成功后客观上就渗透了转化思想。
又如解无理方程可以转化为解有理方程,解分式方程可以转化为解整式方程,解多边形问题可以转化为解三角形问题等等。
三、渗透数形结合思想的认识与感受:数形结合思想是指将数与图形结合起来解决问题的一种思维方式。
著名的数学家华罗庚曾经说过:“数缺形时少直观,形少数时难入微。
我的国培学习作品-文档资料

现代教育技术的特点
现代教育技术克服了传统教学知识结构线性的缺陷,具有信息呈现多 形式、非线性网络结构的特点,符合现代教育认知规律。 现代教育技术的运用,使学生与学生之间、学生与教师之间跨越时空 的限制进行互相交流,实现自由讨论式的协同学习,这显然是传统教 学模式无法与之相提并论的 。
现代教育技术可以集声、文、图、像于一体,使知识信息来源丰富,
3 能够根据教学内容,设计电子演示文稿,所用的资源来自学生生活实际, 能够自己上网搜索与教学相关的资料,并应用到自己的演示文稿中。
不足之处
1 对教材的理解不够深入,因此教学过程恰当地为教学内容服务。
2 在教学设计方面,还不会插入一些常见的图形,在幻灯片的图形的绘制时, 还不能制作出效果比较好的图形。
我在教学中是如何利用教育技术的
在教学活动中,根据教学内容,最大程度地利用 学校所具备的条件,来辅助我的课堂教学。 语文课,我把搜集到的课文朗读录音放给学生听, 这样,就使教师和学生都处在一个聆听者的角度 来听课文的录音。把学生的积极性调动起来,也 把教师解脱出来。效果非常好。 如果备件具备的话,用电脑课件会更好的。
我的国培学习作品
扶余县五家站镇中心小学
石桂芝
目录
我的理解的教育技术
第一次作业 小数的性质教学设计 第二次作业 百分数的认识 教学设计
第三次作业 教学实施计划
第四次作业 教学信息处理
第五次作业 最终培训作品
我的作品出色的地方
1 教学设计的内容比较符合学生的实际接受能力
2 与教学配套的电子演示文稿能较好地为教学内容服务
目
录
现代教育技术的概念 现代教育技术的特点 现代教育技术的作用 我对AECT94教育技术的理解 为什么要用教育技术? 我在教学中是如何利用教育技术的 教育技术对新课程改革的影响
国培作业一

内容
解决问题的设想与主要内容
填报要求
通过培训要解决的主要问题
八年的语文教学让我发现了学生在语文学习中存在着诸多问题,尤其是农村学校的学生,其中最让我头疼的还是口语交际课,农村的孩子大多腼腆,农村的孩子眼界不是很开阔,所以使得他们不敢说,也不知该说什么,所以通过培训我要解决的问题是:“如何提高农村小学生口语交际水平?”
3、标志问题解决的物化成果
解决问题的路径、计划与举措
1、如何利用预设课程、专家引领、校本研修及岗位实践
2、结合培训周期的问题解决计划、安排
3、体现特色与个性的实践策略
其它
以上栏目未能涵盖的其它设想
1、对拟解决问题的概括表述
2、是来自实际教学中的突出问题
3、内涵明确边界清晰
问题生成过程反思、原因分析及本次解决问题思路
1、
1、问题产生的时间、程度及教学障碍
2、问题产生的原因分析
3、此前解决问题的尝试及未能如愿解
1、对核心问题解决的预期目标
2、相关问题解决的预期目标
国培数学模块一作业

二、过程与方法
1.自主学习和合作探究。
2.讨论交流,答疑解惑。
三、知识与技能
1.掌握含两级的数的读法,能正确地读出万以内的大数,并体会。
2.理解读数的规则。
教学重点、难点
1.含两级的数的读法。
2.数位上出现0的读法。
教学资源
四年级上册第一单元的内容,需要的课件、小黑板。
教学设计方案
黑龙江省鸡西市鸡东县东海中心学校学员姓名刘忠宝
课题名称
万以上数的认识
科目
数学
年级
四年级
教学时间
40分钟
学习者分析
本节课从学生已有的知识和经验出发,创设有助于学生自主学习、合作交流的学习情境,引导学生在探究活动中掌握新知。充分体现了以学生为本的思想。
教学目标
一、情感态度与价值观
1.培养学生对大数的感受,使学生体验到数与生活的密切联系。
教学过程
教学活动1
生:读数师;生活离不开数,数的运用使我们进一步了解了昔日熟悉的XX公园,了解了我们身边的事物。这节课学习万以上数的认识。
教学活动2
一.复习旧知、检查自主学习的情况。
1.读出下面的数305 300 53500 2879
2.123456789是一个()位数,4在()位上,表示4个().
2、发现数位中“0”的读法。
6407000读作:24960000读作:85000300读作:
师更正及时启发、引导、评价。
概括总结:回忆读数的过程,读一个含两级的数应该注意些什么?(出示课件)
教学活动4
三、过关检测
1、做一做5页
2、练习一2题
3、计数器拨数,生读。
4、读下面的数:200800 7090000奖。
国培研修作业

研修心得体会作为一名基层普通小学教师,每年的各类业务培训是必不可少的,参培的次数多了,难免会有些抵触情绪,但深知当今,没有终身学习的观念,已很难适应时代飞速的发展,这对于自身素养的提高以及学科教学的影响必将是致命的,正所谓与时俱进,责任使然;本次研修内容涉及国学经典,学来跟到收获很大,虽然很累,但也倍感欣慰一、参加研修带来的收获1.在这次专题的学习中,我认真观看视频;并认真做好读书笔记,写出自己的心得;不断在理性认识中丰富自我,在学习中成长自我;2.这次研修解决了我在教学中的许多困惑;如当专家讲到作文教学时,我口说我见,我手写我心.....我发现学生的写作困难是我所限制了;3.这次研修提升了我的教学水平;以前,在教学中,我由于教学时间紧张,对课堂中的细点问题总是采用“大概式”的处理方式,通过这次研修,看到名师的经典课例使我认识到处理课堂中的细点问题的重要性;二、参加研修带来的思考和启示1.对于一节“好课”的思考;什么是一节好课呢通过研修,在我看来,只要有敬业精神的课,只要有提高的课都均可称之为“好课”;2.对于创新教研方式的思考;教研是教学研究的简称,重“教”轻“研”不称之为教研;反思过去的教学与思想,我要坚持过去的好的优良的传统,一改过去的不科学的理念和方法,尽力做好以后的教学教育工作;3.这次研修使我从其他的学员身上学到了很多;他们的好学给我留下了非常深刻的印象,他们努力研修,认真思考;我对他们非常钦佩,在他们身上我认识到我的不足,我就在今后的学习工作中弥补自己的不足;4.通过此次研修,我认识到做为一个教师必须终身学习,只有不断的学习,不断的更新我的知识和教学理念,我才能胜任教师这一角色;这次培训内容丰富,形式多样,有各级教育专家的专题报告,有小学高级教师的教学展示,通过理论学习,教学观摩,这些天的学习,对我既有观念上的洗礼,也有理论上的提高;既有知识上的积淀,也有教学技艺的增长;带着一颗好奇心和种种疑问,我走进了培训课堂;课堂上,专家们精彩的讲座一次次激起我内心的感应,更激起我的反思;在这种理论和实践的对话中,我收获着专家们思想的精髓,理论的精华;听了教授的讲座,我进一步体会到了参与式教学的重要性;知道教师组织活动的能力对于课堂参与式教学的意义,在教学中,多创造互动机会,让学生与学生互动,教师与学生互动,激发学生学习兴趣,提高学习效率;教授的“语言学与小学语文教育”强调了教师语言艺术的重要性;语言艺术中的趣味性不容忽视,因为小学生天生活泼好动,需要有趣的东西来吸引他们,带有趣味性的语言更能吸引他们的注意力,学生的注意力集中了,就能更好地进行教学,达到事半功倍的效果;其次,教师要将自己的课堂语言“说准、说清、说精、说好”;听了教授的讲座“美育与小学语文教育”,让自己一颗困顿的心顿时恍然大悟,激发了我探索语文教育中美育因素的兴趣,同时听教授的讲座,也是在享受一种美;教授主讲的“儿童文学与小学语文教育”,为我点亮了儿童文学的起航灯,让我第一次感受到了儿童文学的趣味性,感受颇深;听了教授的讲座“小学语文阅读与习作有效教学策略”,让我对小学各学段阅读与习作的教学内容、教学目标及有效教学策略有了更多的认识,为自己理清了各学段的教学思路;通过对“小学语文教学实用信息技术”的培训,我明白了多媒体辅助教学的重要性,学会了制作简单的ppt课件及如何在课件中加入影片、动画等;通过教授的指导,我对新课程小学语文教育有了新的认识,对备课有了更深入的了解,对说课、评课有了更全面的认识,为自己在教学中遇到的许多困惑寻找到了答案;在培训中无论是每一次的听课学习,还是听专家的课堂教学展示,都让我感受着新课程理念的和风,沐浴着新课程改革的阳光;我异常珍惜这样的机会,因为他们为我提供了宝贵的教学案例和资源,让我从自身出发寻找差距,反复的琢磨和钻研,不断的反思和总结;对我来说,短短几十天的骨干教师培训,不论从理论还是教学上,都是一个让我锻炼和进步的有效良机;在交流过程中,我也积极参与交流讨论,聆听感言,交流自己的心得;从每一次的观摩学习中,我的教学理念和教学技艺都能有一次革新和飞跃,让我对教学充满了信心和希望;我很幸运地参加了这次教师国培在线研修学习,观看专家与老师讲座的视频:一个个生动的教学课例,让我更加贴近了课堂;专家们精辟独到的分析又使我知道了教学中应该注意什么,哪些细节需要扬弃,哪些地方需要改正;特别是在语文作业布置、批改上我有更深刻的认识;我认真完成自己的作业,研修日记,阅读了大量的文章,深刻感受到了学习的乐趣;这次培训,受益良多;我们在教学过程中,要善于去引导、组织学生,同时要注意发挥学生的积极性和他们的主体性;课堂该是鼓舞人心的:要让不同层次的学生有清晰的尊严感,能使学生找到自信;要改变只灌输知识,只注重知识传授、对学生进行机械训练的教学方式,把教学过程转变为学生的学习过程;尊重学生,与学生建立一种良好的师生关系,营造一个宽松和谐的民主氛围;在评价手段上,要打破原来传统教学的只重分数的终结性评价,要把形成性评价作为平时检查、督促、鼓励和评价学生的主要手段,充分发挥形成性评价在教学中的激励机制;教书是为了育人;教书是手段,育人是目的,教书和育人是一致的;我们所说的育人是包括知识的传授,品德的形成,身心的健康发展,是全面的培养一代新人;教书不仅仅是传授知识,教书的过程就是全面育人的过程;教师作为学生的启蒙者和引路人,与学生接触频繁,关系密切,必然造成他们仿效的主要对象;因此,教师的一言一行,一举一动都会对学生产生潜移默化的影响;这种烙印和影响将在他们身上长期滞留,甚至一辈子都难抹去,这也说明教师的言行决非个人私事,而是一种十分重要的教育力量;这次培训,为我打造了一个崭新的学习环境,为我提供了一个提高的机会,一个充实自我的机会;让我感受到学习的路还很长,但我对教育教学充满了信心和希望,虽然培训已经结束,但终身的学习还在继续;这次培训,就像冬日里一抹浓浓的绿意,带给我无限希望;同时让我更加清醒地认识到自己的不足我的收获的非常多,它大大提高了我对于课改的认识;对我在以后的教学过程中必定有很大的帮助;这次培训是短暂的,但收获是充实的;让我站在了一个崭新的平台上审视了我的教学,使我对今后的工作有了明确的方向;这一次研修学习活动后,我要把所学的教学理念,咀嚼、消化,内化为自己的教学思想,指导自己的教学实践;要不断搜集教育信息,学习教育理论,增长专业知识;。
我的国培计划

我的国培计划
黄珍荣
根据教育部文件以及九部委的有关文件及指示精神。
首先要明确今后教育改革的方向,提高教师在信息技术的应用。
通过培训,使我懂得了我们这次的“国培”任务,必须围绕两个主题:优化课堂教学和转变学习方式去学习;从而提升教师的三种能力:信息技术的能力、学科教学能力和专业自主发展能力。
这样就会实现两个整合:网络研修与校本研修的整合、信息技术与学科教学的整合。
具体做法就是通过看课,积极参与活动,认真完成作业,不懂的地方及时提出质疑或与其他学员交流。
总的来说就是首先思想方面要更新观念,跟上时代的步伐,然后把思想落实到行动中去。
使自己的网络研修达到预期目的。
把现代信息技术与学科很好地进行整合。
让现代信息技术能为我的教学很好地服务。
努力做到“技术为我所用,教学因我而变”。
国培作业
模块一思考题(第1题为必答)1.谈谈数学十年课程改革取得的成效。
义务教育阶段的数学课程改革,自2011年实施以来,到现在已有十个年头,回头看来,十年的教改已经取得了巨大的成效,我就此谈谈自的几点拙见:1、教育观念的更新。
教育要以人为本,以学生的发展为本,这是现代教育的核心。
在课堂教育中如何看待自己的教育对象,是否诚心地把学生视为自己的小主人,这是教学的关键问题,根据我的教学经验,必须紧紧地抓住“面向全体,尊重差异,主动参与,体验成功”,我以这十六个字来开展教学工作。
既面向全体,又要尊重学生的个性差异。
个性的差异表现在,人人都能获得必须的数学,不同的人在数学上得到不同的发展,应看到每个学生的特殊性,学生都有一个自己的兴趣、爱好、个性,都需要关怀,需要尊重,他们都有自我发展的要求。
2、教师教学方式的改变。
在教学时,教师能走出单一的传统的教学模式,结合具体的教学内容,探索运用启发式、探究式、操作式的教学方法,让学生在问题情境中进行讨论、参与,这样就得到了问题的解决,从而使学生的学习过程更加生动有趣,让学生的主动性、独立性和创造性得到发展。
3、评价的方式发生了变化。
新课程的评价是课改的一个重要组成部分,它贯穿于教学活动的每一个环节。
课堂教学中,善于应用激励性评价,不仅可以增强学生的荣誉感自豪感,而且可以活跃课堂气氛,激发学习兴趣。
许多教师尝试运用课堂观察、成长记录等方式评价学生的学习过程,了解学生在数学学习过程中表现出来的创造性、思维能力和情感态度。
在测验题目的选择上,注重现实性和问题情境,也增加了具有一定开放性的题目,使得评价更加灵活多样,与课程改革的多样目标相适应。
4、信息技术在新课标的学习中起到了不可估量的作用。
有许多语言,粉笔难以说清问题,要尽量用多媒体去取代,所以要适应新课标,要多在多媒体上下功夫,要充分体现时代性,在今后的数学教学中,加大对这方面的学习和研究。
2.谈谈数学课标实验稿还存在哪些问题?模块二一、选择题1.课程的实施要注意处理好如下的关系: ( A,B,C )A.过程与结果B.直观与抽象C.直接经验与间接经验D. 归纳与演绎2.关于应用意识的培养,下列说法不恰当的是:( D )A. 注重知识的来龙去脉B. 在整个数学教育的过程中都应该培养学生的应用意识C. 综合实践活动是培养应用意识很好的载体D. 鼓励“质疑”、“发现和提出问题”3.下列说法不恰当的是:( D )A. 数感主要是指关于数与数量、数量关系、运算结果估计等方面的感悟。
初中数学国培第二次作业
初中学生推理论证能力的培养我在教学中发现学生在做圆证明题时出现的问题比较多,学生在这一知识点的掌握上有偏差,犯错误的有成绩好的学生,也有基础较差的学生。
以下是几位学生在解答一道圆的切线的判定中出现的几种错误形式:已知:AB是⊙O的直径,AP是⊙O的切线,A是切点,BP与⊙O 交于点C,若D是AP的中点,求证:直线CD是⊙O的切线。
错解1:连结OC、OD∵ OC=OA,∠COD=∠AOD,OD=OD∴⊿OCD≌⊿OAD(SAS)∴∠OCD = ∠OAD∵ AP是⊙O的切线∴ OA⊥AP∴∠OAD=90°∴∠OCD=90°∴ OC⊥CD∴ 直线CD 是⊙O 的切线错解分析:学生在证明⊿OCD ≌⊿OAD 时,条件∠COD=∠AOD 不是已知中具备的条件,也没有经过推理论证得出这一条件,因此不能直接用上这一条件。
这是部分学生的通病,一道证明题写了满满一大篇,看似正确,却是错误的,这是学生考试时丢分的主要原因。
其错误的主要原因是证明三角形全等时条件的分析不准,有偏差。
已知:AB 是⊙O 的直径,AP 是⊙O 的切线,A 是切点,BP 与⊙O交于点C,若D 是AP 的中点,求证:直线CD 是⊙O 的切线。
错解2:连接OC 、OD 、AC∵ OC=OA∴ OD 是AC 的垂直平分线∴ CD=AD∴ ∠ACD=∠CAD∵ OA=OC∴ ∠OCA =∠OACPDA∴∠OCA + ∠ACD = ∠OAC + ∠CAD∴∠OCD = ∠OAD∵ AP是⊙O的切线∴ OA ⊥ AP∴∠OCD = ∠OAD = 90°∴ OC ⊥ CD∴直线CD是⊙O的切线错解分析:学生由OC=OA得出OD是AC的垂直平分线是错误的,这是学生对线段垂直平分线的判定定理的理解有误造成的,条件OC=OA只能得出点O在线段AC的垂直平分线上,并不能说明OD就是AC的垂直平分线。
以上两种解法都是学生对知识点的掌握不准确造成的。
国培作业详解
国培作业存档个人返岗应用实践总结合什镇小:胡曼“自由的思想,强健的精神”,这是我从本次国培计划中获得的最大收获。
通过网络学习理论返岗实践,现将返岗实践总结如下:一、参加全校范围内和教研组讨论学校要求全校范围讨论,要求教师相互学习(一)要吃透课程标准。
国家课程标准是教材编写、教学、评估和考试命题的依据,是国家管理和评价课程的基础。
体现国家对不同阶段的学生在知识与技能、过程与方法、情感态度与价值观等方面的基本要求,规定各门课程的性质、目标、内容框架,提出教学建议和评价建议。
课程标准包括以下内涵:1.它是按门类制定的;2.它规定本门课程的性质、目标、内容框架;3.它提出了指导性的教学原则和评价建议;4.它不包括教学重点、难点、时间分配等具体内容;5.它规定了不同阶段学生在知识与技能、过程与方法、情感态度与价值观等方面所应达到的基本要求。
(二)要深度解析教材教师要独立地深刻地解析教材。
新课程对教师的一个重要要求就是由“教教材”到“用教材”。
正如著名教育家叶圣陶先生所说:“教材只能作为教课的依据,要教得好,使学生受益,还要靠教师的善于运用”。
教材不是圣书,也不是绝对权威,它只是提供了最基本的教学资源。
由于学生情况、教师素质、教学条件等方面的差异,教师对教材的使用应从实际出发,既遵循教材,又不囿于教材;既要凭借教材,又要跳出教材。
教材是影响学生发展的重要载体,我们只有深入理解它,把握它,创造性地开发和应用它,才跟得上新课改的步伐,才能更好地实现课程目标。
首先,教师要认真分析和理解教材编写的意图。
教师对教材的处理不仅要全面,而且要深刻。
能否领会教材编写者的意图,是衡量教师理解教材深浅的一个重要标志。
教师对教材编写意图领会得越深,越能充分发挥教材在教学中的重要作用。
教学过程是将教材的知识结构转化为学生认知结构的过程,教师在教学中要树立整体观念,从教材的整体入手通读教材,了解教材的编排意图,弄清每部分在整个教材中的地位和作用,用联系的、发展的观点分析和处理教材。
国培教学实践反思数学(3篇)
第1篇一、引言随着我国教育事业的不断发展,教师培训工作日益受到重视。
作为一名数学教师,我有幸参加了国家教师培训计划(以下简称“国培”)的数学教学实践。
通过这段时间的学习和实践,我对数学教学有了更深刻的认识,以下是我对这次国培教学实践的一些反思。
二、教学实践过程中的收获1. 教学理念的提升在国培教学实践中,我深刻认识到,数学教学不仅仅是传授知识,更重要的是培养学生的思维能力、创新精神和实践能力。
因此,在教学过程中,我努力将学生的主体地位放在首位,注重培养学生的自主学习能力,激发学生的学习兴趣。
2. 教学方法的创新在国培教学实践中,我学习了多种教学方法,如情境教学、合作学习、探究式学习等。
这些教学方法使我能够在教学中灵活运用,使课堂氛围更加活跃,学生的参与度更高。
3. 教学评价的多元化在国培教学实践中,我了解到,教学评价不应只关注学生的考试成绩,而应关注学生的全面发展。
因此,我尝试从多个角度评价学生的学习成果,如课堂表现、作业完成情况、实践操作能力等。
4. 教学资源的整合国培教学实践让我认识到,教学资源是提高教学质量的重要保障。
在实践过程中,我学会了如何利用网络、多媒体等资源丰富教学内容,提高教学效果。
三、教学实践过程中的反思1. 教学目标的设定在教学实践中,我发现自己在设定教学目标时,往往过于关注知识点的传授,而忽视了学生的实际需求。
今后,我将更加关注学生的兴趣和需求,设定更加科学合理的教学目标。
2. 教学方法的运用虽然我在国培教学实践中学习了多种教学方法,但在实际教学中,我发现自己对某些教学方法的运用还不够熟练。
今后,我将加强对教学方法的钻研,提高自己的教学水平。
3. 教学评价的改进在教学评价方面,我意识到自己在评价过程中过于注重学生的考试成绩,而忽视了学生的实际进步。
今后,我将更加关注学生的全面发展,采用多元化的评价方式。
4. 教学资源的利用在教学资源方面,我发现自己在利用网络、多媒体等资源时,还存在一定的局限性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《实数》单元测试
(全卷120分,100分钟完成)
班级 姓名 学号 分数
一、填空题(每小题2分,共20分)
1、81的算术平方根是________,81的值是________.
2、16的平方根是________,立方根是________.
3、5—2的相反数是________,绝对值是________.
4、在数轴上到原点的距离是3的点表示的数为_________.
5、若x+x有意义,则1x=____________.
6、若一个数的立方根等于它本身,则这个数是_________.
7、已知2a+∣b-1∣=0,那么(a+b)2011的值是_________.
8、在22,9,0.010010001„(两个“1”之间依次多一个“0”),722, 21,36这几
个数中,无理数共有________个。
9、11的整数部分为m,小数部分为n,则m—n=_______
10、一个正方形的面积为5cm2,它的周长为__________.
二、选择题(每小题3分,共24分)
11、有下列说法:
(1)无理数就是开方开不尽的数 (2)无理数是无限不循环小数
(3)无理数包括正无理数、0、负无理数(4)无理数都可以用数轴上的点来表示
其中正确说法的个数是( )
A.1 B.2 C.3 D.4
12、若—3a=387,则a的值是( )
A.87 B. —87 C. ±87 D.—512343
13、若a2=25,∣b∣=3,则a+b=( )
A.—8 B. ±8 C. ±2 D. ±8或±2
14、使式子(—a)2=—a成立的a的取值范围是( )
A.a≤0 B.a≥0 C.a<0 D.a﹥0
15、如图,数轴上点P表示的数可能是( )
A.7 B. —7 C.—3.2 D.—10
16、下列计算正确的是( )
A. 5—3=2 B.
2
(3)3
C.5+3=53 D. ∣3—5∣+3=5
17、有一个自然数的算术平方根是x,则下一个自然数的算术平方根是( )
A.x+1 B.x2+1 C.x+1 D.12x
18、底面为正方形的蓄水池容积是4.86m3,如果水池的深为1.5m,那么这个水池的底面边长
是( )
A.3.24m B.1.8m C.0.324m D.0.18m
三、解答题(本大题共8小题,共计76分)
19、计算:(每小题4分,共16分)
(1)—3125.0 (2)∣2—3∣+22
(3)327+0—41 (4)3249+51900
20、求下列名式中的x。(每小题4分,共12分)
(1)x2=17 (2)x2—49121=0 (3)(x— 1)3=8
21、一个正数x的平方根是2a—3与5—a,则x的立方根是多少?(5分)
22、已知刹车距离计算公式为v=16df,v表示车速(单位:hkm),d表示刹车距离(单
位:m),f表示摩擦系数,在一次交通事故中,测得d=16m,f=1.69,而发生交通事故的路段
限速为80hkm,肇事汽车是否超速行驶?说明理由。(7分)
23、已知y=x21+12x+2其中x,y都是有理数,求(2x+y)2的平方根。(8分)
24、(1) 填表:
a
0.000001 0.001 1 1000 1000000
3
a
(2) 由上你发现了什么规律?用语言叙述这个规律.
(3) 根据你发现的规律填空:
① 已知442.133,则33000 ,3003.0 ,
② 已知07696.0000456.03,则3456 .(9分)
25、已知a,b互为倒数,c,d互为相反数,求3ab—3ab+dc+1的值。(8分)
26、阅读下面的文字,解答问题:(11分)
大家知道2是无理数,而无理数是无限不循环小数,因此2的小数部分我们不可能
全部地写出来,于是小明用12来表示2的小数部分,你同意小明的表示方法吗?
事实上,小明的表示方法是有道理,因为2的整数部分是1,将这个数减去其整数部
分,差就是小数部分.
又例如:∵974,即372,
∴7的整数部分为2,小数部分为)27(.
请解答:(1)如果5的小数部分为a,13的整数部分为b,求5ba的值;
(2)已知:yx310,其中x是整数,且10y,求yx的相反数.
试卷分析:
这份试题是《实数》单元测试题,全卷分三大题,共26小题。主要考查算术平方根、平方
根、立方根的概念,三者之间的区别与联系,以及实数的分类、绝对值、相反数、有理数与
无理数的相关计算等知识点。难易程度遵循“易、中、难各占70%、20%、10%”的比例,
以先易后难,先简后繁的原则呈现,符合学生的认知特点及答题规律。另外,试题的形式灵
活多样,除了常规的填空、选择、解答题外,还加入了材料分析题、创新规律题。出试题的
时候我抓住了八年级学生的好新奇、爱探究的心理特点,尽量将试题放在实际生活的背景中,
如第22小题便是如此,让学生体会到生活中处处有数学,而学好数学也可以很好地为生活
服务,如此,更能激起学生答题的兴趣。
学生答题情况分析:
1、 测试结果分析:
题号 1 2 3 4 5 6 7 8 9 10 11 12 13
正确率 100% 80% 84% 100% 50% 100% 90% 100% 89% 95% 96% 45% 67
%
题号 14 15 16 17 18 19 20 21 22 23 24 25 26
正确率 37% 100% 74% 56% 96% 71% 81% 87% 62% 68% 86% 81% 36
%
2、 学生主要存在的问题分析:
(1) 对算术平方根、平方根、立方根这三个概念理解得不够透彻,搞不清楚三个概念之
间的区别,经常混淆三者的性质。另外对无理数、有理数的区分也不够清晰,例如
7
22
、36等经常被学生误认为是无理数。
(2) 学生对基本计算不过关。例如第19小题第二小问,在去绝对值时很多学生都不会,
第20题求x值往往只得一个结果,忽略该题前两问实际上是求正数的平方根,结果
应有正负两个。
(3) 学生对于综合性较强的题目缺乏经验,比如第25小题既要考查倒数、相反数的性质,
还要考查立方根、平方根的概念,学生往往顾此失彼。
(4) 学生的答题技巧还有待加强,有部分学生往往先挑战难题,导致最后做基础题时间
又不够,慌中肯定出错。
(5) 大部分学生都有粗心的毛病,有个别学生题目还没看完就急于答题,结果往往掉入
了题目的“陷阱”,导致答错题或答非所问或回答不完整引起失分。
3、 过后补救措施:
针对本班的实际情况,我打算过后采取以下措施:(1)通过复习课加强学生对基本概念的
理解。(2)由于本班人数过多(77人),学生的个体差异较大,我决定分层次对学生加强辅
导力度,尽最大努力让每个学生在现有基础上有所提高。(3)平时或考前教给学生一些重
要的答题技巧、方法。(4)培养学生细心耐心做题的良好习惯。(5)对这次测试成绩不理
想的学生给予最大的鼓励,让他们重拾学好数学的信心。(6)认真做好这次测试的讲评工
作。