沪教版2020年数学必修三-第11讲 古典概率(讲义)学生版
苏教版数学四年级上册第6单元《可能性》说课稿(2)

苏教版数学四年级上册第6单元《可能性》说课稿 (2)一. 教材分析苏教版数学四年级上册第6单元《可能性》的内容主要包括事件的确定性和不确定性、概率的初步认识、以及如何通过实验来探究事件的概率等。
这一单元的内容对于学生来说具有很高的实用性和趣味性,能够激发学生的学习兴趣,培养学生的动手操作能力和思维能力。
在教材中,通过大量的实例和活动,让学生感受和理解事件的确定性和不确定性,以及概率的概念。
同时,教材还注重培养学生的合作意识和解决问题的能力,通过小组合作、讨论交流等方式,让学生在实践中学习和掌握知识。
二. 学情分析在四年级学生的认知水平上,他们已经具备了一定的逻辑思维能力和动手操作能力,对于事件的确定性和不确定性有一定的认识。
但是,对于概率的概念和计算方法还比较陌生,需要通过实践活动来进一步理解和掌握。
同时,学生在之前的学习中已经接触过一些概率的知识,如抛硬币、抽奖等,对于这些活动有一定的兴趣和好奇心。
因此,在教学过程中,可以利用学生的这些特点,通过有趣的实验和活动,激发学生的学习兴趣,提高学生的学习积极性。
三. 说教学目标1.知识与技能目标:通过本节课的学习,让学生理解和掌握事件的确定性和不确定性,以及概率的概念和计算方法。
2.过程与方法目标:通过实验和实践活动,培养学生的动手操作能力和思维能力,提高学生的合作意识和解决问题的能力。
3.情感态度与价值观目标:激发学生对数学的兴趣和好奇心,培养学生的探索精神和积极的学习态度。
四. 说教学重难点1.教学重点:事件的确定性和不确定性、概率的概念和计算方法。
2.教学难点:概率的计算方法,如何通过实验来探究事件的概率。
五. 说教学方法与手段在本节课的教学过程中,我将采用以下教学方法和手段:1.启发式教学:通过提出问题、引导学生思考,激发学生的学习兴趣和主动性。
2.实验教学:通过有趣的实验和实践活动,让学生亲身体验和理解事件的确定性和不确定性,以及概率的概念。
数学电子书籍列表

1.《中等数学》连载《高中奥数训练题》59套.pdf 2.1-50界莫斯科数学竞赛(含详细答案,PDF版).pdf 3.20世纪数学经纬(张奠宙).pdf 4.500个最新世界著名数学智力趣题.pdf 5.数学,确定性的丧失.chm 6.IMO中的数论.pdf 7.抽屉原则与涂色问题.pdf 8.最优系统控制.pdf 9.FOURIER分析与逼近论 第一卷 (上册).pdf 10.Fourier分析-河田龙夫.pdf 11.(课件)图论讲义.pdf 12.(课件)数值分析.pdf 13.(课件)矩阵论.pdf 14.N阶幻方的一种简易解法.pdf 15.奥林匹克数竞赛解迷(高中部分)(康纪权).pdf 16.奥数教程 初一年级 第一版.pdf 17.奥数教程 初二年级 第一版.pdf 18.奥数教程 初三年级 第一版.pdf 19.奥数教程 高一年级 (第3版).pdf 20.奥数教程 高二年级 (第3版).pdf 21.奥数教程 高三年级 (第3版).pdf 22.半群的S-系理论.pdf 23.不等式论文50篇.pdf 24.不等式入门.pdf 25.不等式与区域.pdf 26.不等式与线性规划初步.pdf 27.不可思议的e.pdf 28.蔡国武___素数具有无穷多项的新证明方法.pdf 29.蔡国武___心算(速算)多个多位数相乘的统一速算算法设计.pdf 30.蔡国武猜想(未证明)___对任意方程ZN=X2+Y2存在正整数组解(X,Y)情况的猜想.pdf 31.测度论.pdf 32.测度论基础.pdf 33.测度论讲义.pdf 34.常微分方程.pdf 35.陈景润,邵品琮-世界数学名题欣赏丛书.pdf 36.陈省身文集.pdf 37.乘电梯·翻硬币·游迷宫·下象棋.pdf 38.抽象代数学卷1基本概念.pdf 39.抽象代数学卷2线性代数.pdf 40.抽象代数学卷3域论及伽罗瓦理论.pdf 41.初等几何的著名问题.pdf 42.初等数论(第二版)(闵嗣鹤 严士健).pdf 43.初等数论(潘承洞,潘承彪).pdf 44.初等数论及其应用_阎满富 王朝霞编著.pdf 45.初等数学复习及研究(立体几何).pdf 46.初等数学复习及研究(平面几何).pdf 47.初等数学教程 代数_布尔勒.pdf 48.初等数学教程 理论和实用算术.pdf 49.初等数学前沿.pdf 50.初等数学问题选析(代数部分).pdf 51.初等数学研究.pdf 52.初中数学竞赛指南(上).pdf 53.初中数学竞赛指南(下).pdf 54.从反面考虑问题 严镇军,陈吉范-数学奥林匹克竞赛丛书.pdf 55. 从惊讶到思考—数学的印迹.pdf 56.从前有个数 故事中的数学逻辑.pdf 57.从现代数学看中学数学.pdf 58.从赵爽弦图谈起.pdf 59.大哉言数.pdf 60.代数几何(Hartshorne).pdf 61.代数数论导引_张贤科.pdf 62.代数体函数与常微分方程.pdf 63.代数中的反例.pdf 64.弹性结构的数学理论.pdf 65.当代数学大师.pdf 66.当代数学精英.pdf 67.登山·赝币·红绿灯.pdf 68.等周问题与夫妇入座问题.pdf 69.递归函数论(莫绍揆).pdf 70.丢番图逼近引论.pdf 71.丢番图方程引论.pdf 72.对应_王子侠单墫.pdf 73.多元样条函数及其应用.pdf 74.二阶椭圆型方程与椭圆型方程组.pdf 75.二战时期密码决战中的数学故事.pdf 76.发现数学数学还是这么有趣.pdf 77.发现数学原来数学这么有趣.pdf 78.反射和反演 严镇军-中学生文库.pdf 79.泛函分析讲义(二)Riesz.pdf 80.泛正多面体投影图的优美图解法.pdf 81.仿射微分几何.pdf 82.仿射微分几何李安民.pdf 83.仿微分算子引论.pdf 84.非数值并行算法(第一册)模拟退火算法.pdf 85.非线性代数方程组与定理机器证明(吴文俊).pdf 86.非线性偏微分复方程.pdf 87.非线性演化方程.pdf 88.菲尔兹奖及其得主简介.pdf 89.斐波那契数列.pdf 90.费马大定理的证明与启示.pdf 91.费马大定理-解开一个古代数学难题的秘密.pdf 92.分岔与奇异性.pdf 93.分形论——奇异性探索_林鸿溢.pdf 94.复变函数逼近论.pdf 95.复变函数与积分变换.pdf 96.概率和方程的故事.pdf 97.概率论和数理统计.pdf 98.概率论基础和随机过程.pdf 99.概率论与数理统计学习指导.pdf 100.高等代数习题解(上册)杨子胥.pdf 101.高等代数习题解(下册)杨子胥.pdf 102.高观点下的初等数学(第一卷).pdf 103.高观点下的初等数学(第二卷).pdf 104.高观点下的初等数学(第三卷).pdf 105.高维小波分析(龙瑞麟 ).pdf 106.高中数学奥林匹克竞赛训练题之几何篇_杨德胜编著.pdf 107.高中数学疑难辨析手册.pdf 108.哥德巴赫猜想.pdf 109.哥德尔不完全性定理(朱水林).pdf 110.给数学迷的500个挑战性问题.pdf 111.控制论的哲学原理.pdf 112.工程控制论.pdf 113.工程控制论上、下(钱学森,宋健).pdf 114.公理集合论导引.pdf 115.构造法解题 余红兵,严镇军-数学奥林匹克竞赛丛书.pdf 116.孤子理论(逆问题方法).pdf 117.孤子理论和微扰方法.pdf 118.古今数学思想1.pdf 119.古今数学思想2.pdf 120.古今数学思想3.pdf 121.古今数学思想4.pdf 122.光学混沌.pdf 123.广义多元分析.pdf 124.广义哈密顿系统理论及其应用.pdf 125.函数论习题集远木辛成.pdf 126.好玩的数学.pdf 127.核函数和共形映照Bergman.pdf 128.后现代思想的数学根源.pdf 129.幻方及其他 娱乐数学经典名题_吴鹤龄编著.pdf 130.幻方与素数.pdf 131.混沌的微扰判据.pdf 132.混合相依变量的极限理论.pdf 133.积分几何与几何概率(Santolo).pdf 134.基础代数学.pdf 135.吉米多维奇第01册.pdf 136.吉米多维奇第02册.pdf 137.吉米多维奇第03册.pdf 138.吉米多维奇第04册.pdf 139.吉米多维奇第05册.pdf 140.吉米多维奇第06册.pdf 141.极小曲面.pdf 142.极小曲面概论奥斯曼.pdf 143.几何.pdf 144.几何变换 3(U.M.亚格龙).pdf 145.几何变换(第二册).pdf 146.几何不等式(O.Bottema等).pdf 147.几何的有名定理(矢野健太郎).pdf 148.几何-笛卡尔.pdf 149.数论的方法(上册).pdf 150.数论的方法(下册).pdf 151.控制论基础.pdf 152.控制论基础译文版.pdf 153.控制论浅述.pdf 154.控制论-信息论-系统科学与哲学-第二版.pdf 155.控制论引论.pdf 156.乐在其中的数学.pdf 157.连分数与历法.pdf 158.奥林匹克竞赛训练题之几何篇_杨德胜编著.pdf 159.逻辑的语法--数学漫谈.pdf 160.美国奥数生.pdf 161.美国数学的现在和未来.pdf 162.美国新数学丛书-有趣的数论- 奥本.pdf 163.美国中小学教学技巧2000则 美国教师教学法.pdf 164.名著译丛 数学趣闻集锦 下册(帕帕斯).pdf 165.模糊数学实用集粹.pdf 166.模糊值测度论.pdf 167.诺贝尔经济学奖与数学.pdf 168.平方和.pdf 169.平面几何证明方法全书.pdf 170.平面几何证明方法全书--习题解答.pdf 171.平面几何中的小花-单墫.pdf 172.七巧板、九连环和华容道 中国古典智力玩具三绝_吴鹤龄著.pdf 173.齐次可列马尔可夫过程.pdf 174.齐性流形引论(村上信吾).pdf 175.秦九韶与数书九章.pdf 176.曲面动力系统.pdf 177.趣味随机问题_孙荣恒著.pdf 178.全国高中数学联赛模拟训练试卷精选.pdf 179.人是如何学习的.pdf 180.萨姆劳埃德的数学趣题续编.pdf 181.三角不等式及应用(中学生文库) .pdf 182.三角函数超入门.pdf 183.三角形趣谈 杨世明.pdf 184.身边的数学.pdf 185.生灭过程与马尔科夫链.pdf 186.师生共用-高中数学总复习教案.pdf 187.什么是数学.pdf 188.实变函数与泛函分析概要(第二版)上册.pdf 189.实变函数与泛函分析概要(第二版)下册.pdf 190.世界科技全景百卷书(2)数学与物理的发端.pdf 191.世界科技全景百卷书(38)数学大发现.pdf 192.世界科技全景百卷书(85)数学家.pdf 193.世界数学奥林匹克解题大辞典-代数卷.pdf 194.世界数学奥林匹克解题大辞典--几何卷.pdf 195.世界数学奥林匹克解题大辞典-数论卷.pdf 196.世界数学奥林匹克解题大辞典-选择题卷.pdf 197.世界数学奥林匹克解题大辞典-组合卷.pdf 198.数列与数学归纳法.pdf 199.数论导引(华罗庚).pdf 200.几何定理机器证明的基本原理(初等几何部分)(吴文俊).pdf 201.几何基础(第二版)(d.希尔伯特).pdf 202.几何学的新探索(h.s.m.考克瑟特 s.l.格雷策).pdf 203.几何与拓扑习题集.pdf 204.几何原本.pdf 205.计算几何.pdf 206.交换代数导引.pdf 207.交换代数基础.pdf 208.交换代数与同调代数.pdf 209.进位制与数学游戏.pdf 210.解题研究-单墫.pdf 211.解析不等式的若干问题.pdf 212.解析几何.pdf 213.金牌奥校 数学奥林匹克教程 高中年级.pdf 214.紧黎曼面伍洪熙吕一年.pdf 215.近代调和分析方法及其应用.pdf 216.近代欧氏几何.pdf 217.近世代数(第二版).pdf 218.九章算术导读与译注.pdf 219.九章算术校证.pdf 220.九章算术与刘徽.pdf
小学初中高中数学全册目录(完整版)

七年级上册第1章从自然数到有理数1.1 从自然数到分数1.2 《九章算术》中的正负数1.3 数轴1.4 绝对值1.5 有理数的大小比较第2章有理数的运算2.1 有理数的加法2.2 有理数的减法2.3 有理数的乘法2.4 有理数的除法2.5 有理数的乘方2.6 有理数的混合运算2.7 准确数和近似数2.8 计算器的使用第3章实数3.1 平方根3.2 实数3.3 用计算器进行数的开方3.4 实数的运算第4章代数式4.1用字母表示数4.2代数式4.3代数式的值4.4 整式4.5 合并同类项4.6 整式的加减第5章一元一次方程5.1 一元一次方程5.2 一元一次方程的解法和步骤5.3 一元一次方程的应用5.4 问题解决的基本步骤第6章数据与图表6.1 数据的收集与整理6.2 统计表6.3 条形统计图和统计图6.4 扇形统计图第7章图形的初步知识7.1 几何图形7.2 线段、射线和直线7.3 线段的长短比较7.4 角与角的度量7.5 角的大小比较7.6 余角和补角7.7 相交线7.8 平行线七年级下册第1章三角形的初步知识1.1 认识三角形1.2 三角形的角平分线和中线1.3 三角形的高1.4 全等三角形1.5 三角形全等的条件1.6 作三角形第2章图形和变换2.1 轴对称图形2.2 轴对称变换2.3 平移变换2.4 旋转变换2.5 相似变换2.6图形变换的简单应用第3章事件的可能性3.1 认识事件的可能性3.2 可能性的大小3.3 可能性和概率第4章二元一次方程组4.1 二元一次方程4.2 二元一次方程组4.3 解二元一次方程组4.4 二元一次方程组的应用第5章整式的乘除5.1 同底数幂的乘法5.2 单项式的乘法5.3 多项式的乘法5.4乘法公式5.5 整式的化简5.6 同底数幂的除法5.7 整式的除法第6章因式分解6.1 因式分解6.2 提取公因式法6.3 用乘法公式分解因式6.4因式分解的简单应用第7章分式7.1 分式7.2 分式的乘除7.3 分式的加减7.4 分式方程八年级上册第1章平行线1.1 同位角、内错角、同旁内角1.2 平行线的判定1.3 平行线的性质1.4 平行线之间的距离第2章特殊三角形2.1 等腰三角形2.2 等腰三角形的性质2.3 等腰三角形的判定2.4 等边三角形2.5 直角三角形2.6 探索勾股定理2.7 直角三角形全等的判定第3章直棱柱3.1 认识直棱柱3.2 直棱柱的表面展开图3.3 三视图3.4 由三视图描述几何体第4章样本与数据分析初步4.1 抽样4.2 平均数4.3 中位数和众数4.4 方差和标准差4.5 统计量的选择与应用第5章一元一次不等式5.1 认识不等式5.2 不等式的基本性质5.3 一元一次不等式5.4 一元一次不等式组第6章图形与坐标6.1 探索确定位置的方法6.2 平面直角坐标系6.3 坐标平面内的图形变换第7章一次函数7.1 常量与变量7.2 认识函数7.3 一次函数7.4 一次函数的图象7.5 一次函数的简单应用八年级下册第1章二次根式1.1 二次根式1.2 二次根式的性质1.3 二次根式的运算第2章一元二次方程2.1 一元二次方程2.2 一元二次方程的求解2.3 一元一次方程的应用第3章频数分布及其图形3.1 频数与频率3.2 频数分布直方图3.3 频数分布折线图第4章命题与证明4.1 定义与命题4.2 证明4.3 反例与证明4.4 反证法第5章平行四边形5.1 多边形5.2 平行四边形5.3 平行四边形的性质5.4中心对称5.5 平行四边形的判定5.6 三角形的中位线5.7 逆命题和逆定理第6章特殊平行四边形与梯形6.1 矩形6.2 菱形6.3 正方形6.4梯形九年级上册第1章反比例函数1.1 反比例函数1.2 反比例函数的图像和性质1.3 反比例函数的应用第2章二次函数2.1 二次函数2.2 二次函数的图像2.3 二次函数的性质2.4 二次函数的应用第3章圆的基本性质3.1 圆3.2 圆的轴对称性3.3 圆心角3.4 圆周角3.5 弧长及扇形的面积3.6 圆锥的侧面积和全面积第4章相似三角形4.1 比例线段4.2 相似三角形4.3 两个三角形相似的判定4.4 相似三角形的性质及其应用4.5 相似多边形4.6 图形的位似九年级下册第1章解直角三角形1.1 锐角三角形1.2 有关三角函数的计算1.3 解直角三角形第2章简单事件的概率2.1 简单事件的概率2.2 估计概率2.3 概率的简单应用第3章直线与圆、圆与圆的位置关系3.1 直线与圆的位置关系3.2 三角形的内切圆3.3 圆与圆的位置关系第4章投影与三视图4.1 视角与盲区4.2 投影4.3 简单物体的三视图必修1第一章集合与函数概念1.1 集合1.2 函数及其表示1.3 函数的基本性质第二章基本初等函数(Ⅰ)2.1 指数函数2.2 对数函数2.3 幂函数第三章函数的应用3.1 函数与方程3.2 函数模型及其应用必修2第一章空间几何体1.1 空间几何体的结构1.2 空间几何体的三视图和直观图1.3 空间几何体的表面积与体积第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.2 直线、平面平行的判定及其性质2.3 直线、平面垂直的判定及其性质第三章直线与方程3.1 直线的倾斜角与斜率3.2 直线的方程3.3 直线的交点坐标与距离公式必修3第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 算法案例第二章统计2.1 随机抽样阅读与思考一个著名的案例阅读与思考广告中数据的可靠性阅读与思考如何得到敏感性问题的诚实反应2.2 用样本估计总体2.3 变量间的相关关系第三章概率3.1 随机事件的概率3.2 古典概型3.3 几何概型必修4第一章三角函数1.1 任意角和弧度制1.2 任意角的三角函数1.3 三角函数的诱导公式 1.4 三角函数的图象与性质1.5 函数y=Asin(ωx+ψ)1.6 三角函数模型的简单应用第二章平面向量2.1 平面向量的实际背景及基本概念2.2 平面向量的线性运算2.3 平面向量的基本定理及坐标表示2.4 平面向量的数量积2.5 平面向量应用举例第三章三角恒等变换3.1 两角和与差的正弦、余弦和正切公式3.2 简单的三角恒等变换必修5第一章解三角形1.1正弦定理和余弦定理1.2应用举例1.3实习作业第二章数列2.1数列的概念与简单表示法2.2等差数列2.3等差数列的前n项和2.4等比数列2.5等比数列的前n项和第三章不等式3.1不等关系与不等式3.2一元二次不等式及其解法3.3二元一次不等式(组)与简单的线性规划问题3.3.1二元一次不等式(组)与平面区域3.3.2简单的线性规划问题3.4基本不等式选修1-1第一章常用逻辑用语1.1命题及其关系1.2充分条件与必要条件1.3简单的逻辑联结词1.4全称量词与存在量词第二章圆锥曲线与方程2.1椭圆2.2双曲线2.3抛物线第三章导数及其应用3.1变化率与导数3.2导数的计算3.3导数在研究函数中的应用3.4生活中的优化问题举例选修1-2第一章统计案例1.1 回归分析的基本思想及其初步应用1.2 独立性检验的基本思想及其初步应用第二章推理与证明2.1 合情推理与演绎证明2.2 直接证明与间接证明第三章数系的扩充与复数的引入3.1数系的扩充和复数的概念3.2复数代数形式的四则运算第四章框图4.1流程图4.2结构图选修2-1第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词1.4 全称量词与存在量词第二章圆锥曲线与方程2.1 曲线与方程2.2 椭圆2.3 双曲线2.4 抛物线第三章空间向量与立体几何3.1 空间向量及其运算3.2 立体几何中的向量方法选修2-2第一章导数及其应用1.1 变化率与导数1.2 导数的计算1.3 导数在研究函数中的应用1.4 生活中的优化问题举例1.5 定积分的概念1.6 微积分基本定理1.7 定积分的简单应用第二章推理与证明2.1 合情推理与演绎推理2.2 直接证明与间接证明2.3 数学归纳法第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算选修2-3第一章计数原理1.1 分类加法计数原理与分步乘法计数原理1.2 排列与组合1.3 二项式定理第二章随机变量及其分布2.1 离散型随机变量及其分布列2.2 二项分布及其应用2.3 离散型随机变量的均值与方差2.4 正态分布第三章统计案例3.1 回归分析的基本思想及其初步应用3.2 独立性检验的基本思想及其初步应用选修3-1第一讲早期的算术与几何第二讲古希腊数学第三讲中国古代数学瑰宝第四讲平面解析几何的产生第五讲微积分的诞生第六讲近代数学两巨星第七讲千古谜题第八讲对无穷的深入思考第九讲中国现代数学的开拓与发展选修3-3第一讲从欧氏几何看球面第二讲球面上的距离和角第三讲球面上的基本图形第四讲球面三角形第五讲球面三角形的全等第六讲球面多边形与欧拉公式第七讲球面三角形的边角关系第八讲欧氏几何与非欧几何选修3-4第一讲平面图形的对称群第二讲代数学中的对称与抽象群的概念第三讲对称与群的故事选修4-1第一讲相似三角形的判定及有关性质第二讲直线与圆的位置关系第三讲圆锥曲线性质的探讨选修4-2第一讲线性变换与二阶矩阵第二讲变换的复合与二阶矩阵的乘法第三讲逆变换与逆矩阵第四讲变换的不变量与矩阵的特征向量选修4-4第一讲坐标系第二讲参数方程选修4-5第一讲不等式和绝对值不等式第二讲证明不等式的基本方法第三讲柯西不等式与排序不等式第四讲数学归纳法证明不等式选修4-6第一讲整数的整除第二讲同余与同余方程第三讲一次不定方程第四讲数伦在密码中的应用选修4-7第一讲优选法第二讲试验设计初步选修4-9第一讲风险与决策的基本概念第二讲决策树方法第三讲风险型决策的敏感性分析第四讲马尔可夫型决策简介一年级上册一、数一数二、比一比三、1~5的认识和加减法四、认识物体和图形五、分类六、6~10的认识和加减法七、11~20各数的认识八、认识钟表九、20以内的进位加法十、总复习一年级下册一、位置二、20以内的退位减法三、图形的拼组四、100以内数的认识五、认识人民币(出现简单的名数改写;关于人民币的简单运算)六、100以内的加法和减法(一)七、认识时间八、找规律九、统计十、总复习二年级上册一、长度单位二、100以内的加法和减法(二)三、角的初步知识四、表内乘法(一)五、观察物体六、表内乘法(二)七、统计八、数学广角九、总复习二年级下册一、解决问题二、表内除法(一)三、图形与变换四、表内除法(二)五、万以内数的认识六、克与千克七、万以内的加法和减法(一)八、统计九、找规律十、总复习三年级上册一、测量二、万以内的加法和减法(二)三、四边形四、有余数的除法五、时、分、秒六、多位数乘一位数七、分数的初步认识八、可能性九、数学广角十、总复习三年级下册一、位置与方向二、除数是一位数的除法三、统计四、年、月、日五、两位数乘两位数六、面积七、小数的初步认识八、解决问题九、数学广角十、总复习四年级上册一、大数的认识二、角的度量三、三位数乘两位数四、平行四边形和梯形五、除数是两位数的除法六、统计七、数学广角八、总复习四年级下册一、四则运算二、位置与方向三、运算定律与简便计算四、小数的意义和性质五、三角形六、小数的加法和减法七、统计八、数学广角九、总复习五年级上册一、小数乘法二、小数除法三、观察物体四、简易方程五、多边形的面积六、统计与可能性七、数学广角八、总复习五年级下册一、图形的变换二、因数与倍数三、长方体和正方体四、分数的意义和性质五、分数的加法和减法六、统计七、数学广角八、总复习六年级上册一、位置二、分数乘法三、分数除法四、圆五、百分数六、统计七、数学广角八、总复习六年级下册一、负数二、圆柱与圆锥三、比例四、统计五、数学广角六、整理与复习1、数与代数2、空间与图形3、统计与概率4、综合应用。
高一数学教学计划(15篇)

高一数学教学计划(15篇)高一数学教学计划1一、教材分析(结构系统、单元内容、重难点)必修5第一章:解三角形。
重点是正弦定理与余弦定理。
难点是正弦定理与余弦定理的应用。
第二章:数列。
重点是等差数列与等比数列的前n项的和。
难点是等差数列与等比数列前n项的和与应用。
第三章:不等式。
重点是一元二次不等式及其解法、二元一次不等式(组)与简单的线性规划问题、基本不等式。
难点是二元一次不等式(组)与简单的线性规划问题及应用。
必修2第一章:空间几何体。
重点是空间几何体的三视图和直观图及表面积与体积。
难点是空间几何体的三视图。
第二章:点、直线、平面之间的位置关系。
重点与难点都是直线与平面平行及垂直的判定及其性质。
第三章:直线与方程。
重点是直线的倾斜角与斜率及直线方程。
难点是如何选择恰当的直线方程求解题目。
第四章:圆与方程。
重点是圆的方程及直线与圆的位置关系。
难点是直线与圆的位置关系。
二、学生分析(双基智能水平、学习态度、方法、纪律)较去年而言,今年的学生的素质有了比较大的提高,学生的基础知识水平与基本学习方法比较扎实,大部分的学生对学习都有很大的兴趣,学习纪律比较自觉。
三、教学目的要求1、通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题和与测量及几何计算有关的实际问题。
2、通过日常生活中的实例,了解数列的概念和几种简单的表示方法,了解数列是一种特殊的函数。
理解等差数列、等比数列的概念,探索并掌握2种数列的通项公式与前n项和的公式,能用有关的知识解决相应的问题。
3、理解不等式(组)对于刻画不等关系的意义和价值。
掌握求解一元二次不等式的基本方法,并能解决一些实际问题。
能用一元二次不等式组表示平面区域,并尝试解决简单的二元线性规划问题。
4、几何学研究现实世界中物体的形状、大小与位置的学科。
直观感知、操作确认、思辨论证、度量计算是认识和探索几何图形及其性质的方法。
先从对空间几何体的整体观察入手,认识空间图形及其直观图的画法。
2010年北京市东城区数学选修2-3计数原理教材分析

排列组合例题教学分析
•
• •
•
•
例1和例5是公式的简单计算,教材要求用计 算器进行. 例2和例6分别是判断是否有顺序. 例3和例7重点是让学生从叙述的过程中体会 两者的差别,并判断哪些是排列,哪是组合,加 深学生的理解. 例4是带有限制条件的排列问题,是排列和两 个计数原理的综合应用.课本上分别用三种解法去 解,让学生体会从不同角度去考虑列式不同,但 结果相同,从而加深理解,在教学时注意让学生 说出每种解法的依据,并比较其优劣. 例8中重点是组合和两个计数原理的综合应用.
24
1.3 二项式定理(3课时)
重点: 1.用两个计数原理分析(a+b)2的展开式,归纳得 出二项式定理,并能用计数原理证明; 能应用它解决简 单问题. 2.学会讨论二项式系数性质的一些方法. 难点: 用两个计数原理分析(a+b)2的展开式;用两个计数 原理证明二项式定理
教科书中用两个计数原理非常详细地分析(a+b)2的 展开式,学生模仿分析写出(a+b)3、(a+b)4的展开式, 归纳推理出(a+b)n 的展开式,并给出证明.
28
注意借助几何直观理解 抽象的二项式系数的性质
例5-例9背景丰富、信息量大、综合性强,让学生在 复杂的背景下分清楚“一件事情”是什么、何时分类、何 时分步.最后让学生自己总结用两个计数原理解决问题的 一般思路.
15
两个计数原理教学建议
1、注意使用“树形图”分析问题 2.正确理解“完成一件事”在不同背景下的含义 如 从甲地到乙地;从甲地经过丙地到乙地. 从中任取一本书;从中任取语文、数学各一本书. 3.明确两个计数原理的区别 分类:类类互斥 、不重不漏 分步:步步相依、步骤完整 4. 分类或分步都要注意按照统一的标准进行. 5. 建议教学时多让学生练习说清楚“完成一件事”是什么、 分类还是分步,第一类(步)是什么,第二类(步)是什 么,„„,这样可以让学生在做题中深刻体会两个计数原 理,即便遇到复杂的问题也能迎刃而解. 6. 对两个计数原理建议利用对比法教学
一年级下册数学全册教案(北师大版)

一年级下册数学全册教案(北师大版)第一章:认识数字1-51.1 学习目标:让学生能够认识数字1-5,理解数字的含义。
培养学生数数、点数的能力。
1.2 教学内容:学习数字1-5的读音和写法。
通过实物、图片等方式,帮助学生理解数字的含义。
进行数数、点数的实践活动。
1.3 教学方法:采用直观演示法,展示实物和图片,让学生直观地理解数字的含义。
采用游戏教学法,设计数数、点数的游戏,激发学生的学习兴趣。
采用分组合作法,让学生分组进行数数、点数的实践活动。
1.4 教学步骤:1. 展示实物和图片,引导学生认识数字1-5。
2. 教授数字1-5的读音和写法。
3. 进行数数、点数的实践活动,让学生巩固所学知识。
第二章:认识数字6-102.1 学习目标:让学生能够认识数字6-10,理解数字的含义。
培养学生数数、点数的能力。
2.2 教学内容:学习数字6-10的读音和写法。
通过实物、图片等方式,帮助学生理解数字的含义。
进行数数、点数的实践活动。
2.3 教学方法:采用直观演示法,展示实物和图片,让学生直观地理解数字的含义。
采用游戏教学法,设计数数、点数的游戏,激发学生的学习兴趣。
采用分组合作法,让学生分组进行数数、点数的实践活动。
2.4 教学步骤:1. 展示实物和图片,引导学生认识数字6-10。
2. 教授数字6-10的读音和写法。
3. 进行数数、点数的实践活动,让学生巩固所学知识。
第三章:加法运算3.1 学习目标:让学生能够理解加法的概念,掌握加法的运算方法。
培养学生解决问题的能力。
3.2 教学内容:学习加法的概念和运算方法。
通过实物、图片等方式,帮助学生理解加法的含义。
进行加法运算的实践活动。
3.3 教学方法:采用直观演示法,展示实物和图片,让学生直观地理解加法的含义。
采用游戏教学法,设计加法运算的游戏,激发学生的学习兴趣。
采用分组合作法,让学生分组进行加法运算的实践活动。
3.4 教学步骤:1. 展示实物和图片,引导学生理解加法的含义。
2021-2022学年湖北省高二上学期期末调考数学试题解析

2021-2022学年湖北省高二上学期期末调考数学试题一、单选题1.与空间向量()1,2,3a =-共线的一个向量的坐标是( ) A .()2,1,0- B .()1,2,3 C .13,1,22⎛⎫-- ⎪⎝⎭D .()1,3,2--答案:C根据空间向量共线的坐标表示即可得出结果. 解:131,1,222a ⎛⎫--=- ⎪⎝⎭.故选:C.2.抛物线212x y =的焦点坐标是( ) A .1,08⎛⎫ ⎪⎝⎭B .()1,0C .10,4⎛⎫ ⎪⎝⎭D .10,8⎛⎫ ⎪⎝⎭答案:D由解析式可判断焦点的位置,再求p ,继而可求出焦点坐标.解:∵ 212x y =, ∴ 焦点在y 轴正半轴上,且122p =, ∴128p = ∴ 抛物线212x y =的焦点为10,8⎛⎫ ⎪⎝⎭, 故选:D.3.在单调递减的等比数列{}n a 中,若31a =,24103a a +=,则1a =( ) A .9 B .3C .13D .19答案:A利用等比数列的通项公式可得1103q q +=,结合条件即求. 解:设等比数列{}n a 的公比为q ,则 由31a =,24103a a +=,得 1103q q +=,解得13q =或3q =,又{}n a 单调递减, 故13q =,3129a a q ==.故选:A.4.若OA 、OB 、OC 为空间三个单位向量,OA OB ⊥,且OC 与OA 、OB 所成的角均为60,则OA OB OC ++=( )A .5 BC D答案:C先求OA OB OC ++的平方后再求解即可.解:()22222OA OB OC OA OB OC OA OB OB OC OA OC ++=+++⋅+⋅+⋅ 11320522⎛⎫=+++= ⎪⎝⎭,故5OA OB OC =++, 故选:C5.雅言传承文明,经典浸润人生.某市举办“中华经典诵写讲大赛”,大赛分为四类:“诵读中国”经典诵读大赛、“诗教中国”诗词讲解大赛、“笔墨中国”汉字书写大赛、“印记中国”学生篆刻大赛.某人决定从这四类比赛中任选两类参赛,则“诵读中国”被选中的概率为( )A .34B .12C .14D .16答案:B由已知条件得基本事件总数为24C 6=种,符合条件的事件数为3中,由古典概型公式直接计算即可.解:从四类比赛中选两类参赛,共有24C 6=种选择,其中“诵读中国”被选中的情况有3种,即“诵读中国”和 “诗教中国” ,“诵读中国”和“笔墨中国”, “诵读中国”和“印记中国” ,由古典概型公式可得3162P ==, 故选:B .6.由直线25y x =+上的点向圆221x y +=引切线,则切线长的最小值为( )A .5B .6C .4D .2答案:D切点与圆心的连线垂直于切线,切线长转化为直线上点与圆心连线和半径的关系, 利用点到直线的距离公式求出圆心与直线上点距离的最小值,结合勾股定理即可得出结果.解:设(),P x y 为直线25y x =+上任意一点,min 225512OP ==+,切线长的最小值为:212l OP =-=,故选:D.7.围棋起源于中国,据先秦典籍世本记载:“尧造围棋,丹朱善之”,至今已有四千多年历史.围棋不仅能抒发意境、陶冶情操、修身养性、生慧增智,而且还与天象易理、兵法策略、治国安邦等相关联,蕴含着中华文化的丰富内涵.在某次国际围棋比赛中,规定甲与乙对阵,丙与丁对阵,两场比赛的胜者争夺冠军,根据以往战绩,他们之间相互获胜的概率如下:甲乙丙丁甲获胜概率 / 0.4 0.4 0.8乙获胜概率 0.6 / 0.6 0.3丙获胜概率 0.6 0.4 /0.5丁获胜概率 0.2 0.7 0.5 /则甲最终获得冠军的概率是( )A .0.165B .0.24C .0.275D .0.36答案:B先求出甲第一轮胜出的概率,再求出甲第二轮胜出的概率,即可得出结果. 解:甲最终获得冠军的概率()0.40.50.40.50.80.24p =⨯+⨯=, 故选:B.8.在xOy 平面上有一系列点()()()111222,,,,,,,n n n P x y P x y P x y ,对每个正整数n ,点n P 位于函数()20y x x =≥的图象上,以点n P 为圆心的n P 与x 轴都相切,且n P 与1n P +彼此外切.若11x =,且()*1n n x x n +<∈N ,1n n n T x x +=,{}n T 的前n 项之和为n S ,则10S =( )A .919B .2021C .1021D .1123答案:C根据两圆的几何关系及其圆心在函数()20y x x =≥的图象上,即可得到递推关系式112n n n n x x x x ++-=,通过构造等差数列求得n x 的通项公式,得出112121n T n n =⋅-+,最后利用裂项相消,求出数列{}n T 前n 项和n S ,即可求出10S . 解:由n P 与1n P +彼此外切, ()()22111n n n n n n x x y y y y +++-+-=+,()()()222111n n n n n n x x y y y y +++-+-=+,()()()222221111144n n n n n n n n n n x x y y y y y y x x +++++-=+--==,又∵1n n x x +<, ∴1111122n n n n n n x x x x x x +++-=⇒-=,故1n x ⎧⎫⎨⎬⎩⎭为等差数列且111x =,2d =, 则()112121n n n x =+-=-121n x n ⇒=-, 111111=212122121n n n T x x n n n n +⎛⎫==⋅- ⎪-+-+⎝⎭, 则1111111+23352121n S n n ⎛⎫=--+⋅⋅⋅+- ⎪-+⎝⎭11122121nn n ⎛⎫=-=⎪++⎝⎭, 即101021S =,故答案选:C . 二、多选题9.过点()2,1-且在两坐标轴上的截距互为相反数的直线方程为( ) A .20x y += B .10x y ++= C .30x y -+= D .20x y -=答案:AC将点代入直线方程,并求出横纵截距即可判断答案.解:对A ,点()2,1-满足直线方程,且横纵截距均为0,则A 正确; 对B ,点()2,1-满足直线方程,且横纵截距均为-1,则B 错误; 对C ,点()2,1-满足直线方程,且横截距为-3,纵截距为3,则C 正确; 对D ,点()2,1-不满足直线方程,则D 错误. 故选:AC.10.关于双曲线22:1916x y C -=,下列结论正确的是( )A .离心率为53B .实轴长为6C .渐近线方程为430x y ±=D .焦点F 到一条渐近线的距离为3 答案:ABC由双曲线方程求a b c ,,,由此判断A ,B ,再求渐近线方程及焦点F 到渐近线的距离,由此判断C ,D.解:∵双曲线22:1916x y C -=∴ 3a =,4b =,5c =,故离心率为53e =,实轴长为26a =,A 对,B 对,又双曲线C 的渐近线方程为:430x y ±=,焦点F 的坐标为(5,0)± 焦点F 到一条渐近线的距离为4d ==,C 对,D 错,故选:ABC.11.先后抛掷两颗质地均匀的骰子,第一次和第二次出现的点数分别记为,a b ,则下列结论正确的是( ) A .7a b +=时的概率为536B .2a b≥时的概率为16C .6ab =时的概率为19D .a b +是6的倍数的概率是16答案:CD先求出所有的基本事件的个数为6636⨯=个,再求出四个选项中每一个事件发生包含的基本事件的个数,利用古典概率公式计算概率即可判断是否正确,进而得出正确答案. 解:先后抛掷两颗质地均匀的骰子,共有36种不同的情形.A.7a b +=时满足的情形有()1,6,()2,5,()3,4,()4,3,()5,2,()6,1,故61366P ==,故A 错误; B.2ab≥时满足的情形有()2,1,()3,1,()4,1,()4,2,()5,1,()5,2,()6,1,()6,2,()6,3,故91364P ==,故B 错; C.6ab =时满足的情形有()1,6,()2,3,()3,2,()6,1,故41369P ==,故C 正确; D. a b +是6的倍数的情形有()()()()()1,5,2,4,3,3,4,2,5,1,()6,6,故a b +是6的倍数的概率是16,故D 正确.故选:CD.12.如图,P 是椭圆22122:1(0)x y C a b a b+=>>与双曲线22222:1(0,0)x y C m n m n -=>>在第一象限的交点,且12,C C 共焦点121212,,,,F F F PF C C ∠θ=的离心率分别为12,e e ,则下列结论正确的是( )A .12,PF a m PF a m B .若60θ=︒,则2221314e e += C .若90θ=︒,则2212e e +的最小值为2D .tan2n bθ=答案:ABD根据给定条件结合椭圆、双曲线定义计算判断A ;借助余弦定理、离心率公式、均值不等式计算判断B ,C ,D 作答.解:由椭圆和双曲线的定义得:121222PF PF aPF PF m ⎧+=⎪⎨-=⎪⎩,解得1PF a m =+,2PF a m =-,A正确;在12F PF △中,由余弦定理得:()()()()()2222cos 2a m a m a m a m c θ-++--+=, 整理得()()2221cos 1cos 2a m cθθ-++=,()()22221cos 1cos 2a m c c θθ-++=,即22121cos 1cos 2e e θθ-++=, 当60θ=︒时,222132122e e +=,即2221314e e +=,B 正确;当90θ=︒时,2212112e e +=,2222222112122222121211)11()()1(22e e e e e e e e e e ++++==+12≥=,当且仅当121e e ==时取“=”,而1201,1e e <<>,C 不正确;在椭圆中,22222121212122||||cos ||||||442||||PF PF PF PF F F a c PF PF θ=+-=--,即2122||||1cos b PF PF θ=+, 在双曲线中,22222121212122||||cos ||||||442||||PF PF PF PF F F m c PF PF θ=+-=-+,即2122||||1cos n PF PF θ=-,于是得22222222sin 221cos 2tan 1cos 1cos 1cos 22cos 2n b n b θθθθθθθ-=⇔===-++,而022θπ<<,则tan2nbθ=,D 正确. 故选:ABD点评:方法点睛:双曲线上一点与两焦点构成的三角形,称为双曲线的焦点三角形,与焦点三角形有关的计算或证明常利用正弦定理、余弦定理、双曲线定义,得到a ,c 的关系. 三、填空题13.直线10x -=的倾斜角为_______________. 答案:150由直线10x -=的斜率为k =,得到00tan [0,180)αα=∈,即可求解.解:由题意,可知直线10x +-=的斜率为k =,设直线的倾斜角为α,则003tan ,[0,180)3αα=-∈,解得0150α=, 即换线的倾斜角为0150.点评:本题主要考查直线的倾斜角的求解问题,其中解答中熟记直线的倾斜角与斜率的关系,合理准确计算是解答的关键,着重考查了运算与求解能力,属于基础题. 14.等差数列{}n a 的前n 项之和为n S ,若66a =,则11S =________. 答案:66直接利用等差数列前n 项和公式和等差数列的性质求解即可. 解:由已知条件得()11161111226622a a a S +===, 故答案为:66.15.由曲线()222x y x y +=-围成的图形的面积为________.答案:2π4-曲线()222x y x y +=-围成的图形关于x 轴,y 轴对称,故只需要求出第一象限的面积即可.解:将x -或y -代入方程,方程不发生改变,故曲线()222x y x y +=-关于关于x 轴,y 轴对称,因此只需求出第一象限的面积即可.当0x >,0y >时,曲线()222x y x y +=-可化为:22(1)(1)2x y -++=,在第一象限为弓形,其面积为()2111ππ2211422S =-⨯⨯=-, 故π412π42S ⎛⎫=-=- ⎪⎝⎭.故答案为:24π-.16.已知平行四边形ABCD 内接于椭圆2222:1(0)x y C a b a b+=>>,且,AB AD 的斜率之积为34-,则椭圆的离心率为________.答案:120.5根据对称性设()11,A x y ,()00,B x y ,()00,D x y --,根据34AB ADk k ⋅=-得到2234b a -=-,再求离心率即可.解:由对称性,B ,D 关于原点对称,设()11,A x y ,()00,B x y ,()00,D x y --,2222012222210101022222101010101134AB ADx x b b a a y y y y y y b k k x x x x x x x x a ⎛⎫⎛⎫--- ⎪ ⎪+--⎝⎭⎝⎭⋅=⋅===-=-+---, 故22211142b e e a =-=⇒=.故答案为:12 四、解答题17.甲、乙两人独立地对某一目标射击,已知甲、乙能击中的概率分别为23,34,求:(1)甲、乙恰好有一人击中的概率; (2)目标被击中的概率. 答案:(1)512; (2)1112. (1)分为甲击中且乙没有击中,和乙击中且甲没有击中两种情况,进而根据独立事件概率公式求得答案;(2)先考虑甲乙都没有击中,进而根据对立事件概率公式和独立事件概率公式求得答案. (1)设甲、乙分别击中目标为事件A ,B ,易知A ,B 相互独立且()23P A =,()34P B =,甲、乙恰好有一人击中的概率为()233511343412P AB AB 2⎛⎫⎛⎫+=-+-= ⎪ ⎪⎝⎭⎝⎭.(2)目标被击中的概率为()()321111114312P A B P AB ⎛⎫⎛⎫+=-=---= ⎪⎪⎝⎭⎝⎭.18.设等差数列{}n a 的前n 项和为46,16,12n S S S =-=-. (1)求{}n a 的通项公式n a ; (2)求数列{}n a 的前n 项和n T . 答案:(1)29n a n =-;(2)2*2*8,14832,5n n n n n T n n n n ⎧-≤≤∈=⎨-+≥∈⎩N N且且.(1)根据等差数列前n 项和求和公式求出首项和公差,进而求出通项公式; (2)结合(1)求出n S ,再令0n a ≥得出数列的正数项和负数项,进而结合等差数列求和公式求得答案. (1)设等差数列的首项和公差分别为1a 和d ,∴1111434162382254656122a d a d a d a d ⨯⎧+=-⎪+=-⎧⎪⇒⎨⎨+=-⨯⎩⎪+=-⎪⎩,解得:172a d =-⎧⎨=⎩ 所以()71229n a n n =-+-⨯=-. (2)29n a n =-,所以()()2171282n S n n n n n =-+-⨯=-.当02905n a n n ≥⇒-≥⇒≥;当02904n a n n <⇒-<⇒≤,当04n <≤,*n ∈N 时,()212128n n n T a a a a a a n n =++⋅⋅⋅+=-++⋅⋅⋅+=-,当5n ≥时,()()()21245428216n n n T a a a a a S S n n =-++⋅⋅⋅+++⋅⋅⋅+=-=--⨯-2832n n =-+.综上:2*2*8,14832,5n n n n n T n n n n ⎧-≤≤∈=⎨-+≥∈⎩N N 且且. 19.已知抛物线2:2(0)C x py p =>,直线:2l y kx =+与C 交于,A B 两点且OA OB ⊥(O 为坐标原点). (1)求抛物线C 的方程;(2)设()2,2P ,若直线,PA PB 的倾斜角互补,求k 的值.答案:(1)22x y =;(2)2-.(1)利用韦达定理法即求; (2)由题可求122PA x k +=,222PB x k +=,再结合条件即得. (1)设()11,A x y ,()22,B x y ,由222x py y kx ⎧=⎨=+⎩,得2240x pkx p --=, 故124x x p =-,由OA OB ⊥,可得12120x x y y +=,即221212022x x x x p p+⋅=, ∴1p =,故抛物线C 的方程为:22x y =;(2)设PA 的倾斜角为θ,则PB 的倾斜角为πθ-,∴()tan tan π0PA PB k k θθ+=+-=,由222x y y kx ⎧=⎨=+⎩,得2240x kx --=,∴122x x k +=,∴21111112222222PA x yx k x x --+===--,同理222PB x k +=,由0PA PB k k +=,得1222022x x +++=,∴1240x x ++=,即240k +=,故2k =-.20.如图,在棱长为3的正方体OABC O A B C ''''-中,,E F 分别是,AB BC 上的点且2AE BF ==.(1)求证:A F C E ''⊥;(2)求平面B EF '与平面BEF 的夹角的余弦值.答案:(1)证明见解析(2)27(1)建立空间直角坐标系后得到相关向量,再运用数量积证明;(2)求出相关平面的法向量,再运用夹角公式计算即可.(1) 建立如下图所示的空间直角坐标系:()3,0,3A ',()1,3,0F ,()0,3,3C ',()3,2,0E()2,3,3A F '=--,()3,1,3C E '=--,∴6390A F C E ''⋅=--+=,故A F C E ''⊥.(2)()3,3,3B ',()0,1,3B E '=--,()2,0,3B F '=--,设平面B EF '的一个法向量为(),,m x y z =, 由0302300B E m y z x z B F m ⎧⋅=+=⎧⎪⇒⎨⎨+=⋅=⎪⎩'⎩',令2z =-,则()3,6,2m =-, 取平面BEF 的一个法向量为()0,0,1n =,设平面B EF '与平面BEF 夹角为θ,易知:θ为锐角, 故2cos 793641m nm n θ⋅===++⨯, 即平面B EF '与平面BEF 夹角的余弦值为27.21.某情报站有A B C D E 、、、、.五种互不相同的密码,每周使用其中的一种密码,且每周都是从上周末使用的四种密码中等可能地随机选用一种.设第一周使用A 密码,k P 表示第k 周使用A 密码的概率.(1)求1234,,,P P P P ;(2)求证:15k P ⎧⎫-⎨⎬⎩⎭为等比数列,并求k P 的表达式. 答案:(1)11P =,20P =,314P =,4316P =(2)证明见解析,1141554k k P -⎛⎫⎛⎫=+- ⎪⎪⎝⎭⎝⎭ (1)根据题意可得第一周使用A 密码,第二周使用A 密码的概率为0,第三周使用A 密码的概率为14,以此类推; (2)根据题意可知第1k +周从剩下的四种密码中随机选用一种,恰好选到A 密码的概率为14,进而可得1111545k k P P +⎛⎫-=-- ⎪⎝⎭,结合等比数列的定义可知15k P ⎧⎫-⎨⎬⎩⎭为等比数列,利用等比数列的通项公式即可求出结果.(1)11P =,20P =,314P =,()43131416P P =-⨯= (2)第1k +周使用A 密码,则第k 周必不使用A 密码(概率为1k P -),然后第1k +周从剩下的四种密码中随机选用一种,恰好选到A 密码的概率为14故()1114k k P P +=-,即1111545k k P P +⎛⎫-=-- ⎪⎝⎭ 故15k P ⎧⎫-⎨⎬⎩⎭为等比数列且11455P -=,公比14q =- 故1141554k k P -⎛⎫⎛⎫-=- ⎪⎪⎝⎭⎝⎭,故1141554k k P -⎛⎫⎛⎫=+- ⎪⎪⎝⎭⎝⎭22.已知22:4200A x y x ++-=,直线l 过()2,0B 且与A 交于,C D 两点,过点B 作直线AC 的平行线交AD 于点E .(1)求证:EA EB +为定值,并求点E 的轨迹T 的方程;(2)设动直线:n y kx m =+与T 相切于点P ,且与直线3x =交于点Q ,在x 轴上是否存在定点(),0M t ,使得以PQ 为直径的圆恒过定点M ?若存在,求出M 的坐标;若不存在,说明理由.答案:(1)证明见解析,22162x y +=(0y ≠)(2)存在,()2,0M(1)根据题意和椭圆的定义可知E 点的轨迹是以A ,B为焦点的椭圆,且2a =24c =,进而得出椭圆标准方程;(2)设()00,P x y ,联立动直线方程和椭圆方程并消元得出关于x 的一元二次方程,根据根的判别式可得点P 和Q 的坐标,结合0PM QM ⋅=,利用平面向量的坐标表示列出方程组,即可解出点M 的坐标.(1)圆A :()22224x y ++=,r =∵AC AD =,∴ACD ADC ∠=∠,又BE AC ∥,∴EBD ACD ∠=∠∴EBD EDB ∠=∠,∴EB ED =,故4EB EA ED EA AB +=+=>= ∴E 点的轨迹是以A ,B为焦点的椭圆,且2a =24c =∴2222b a c =-=,故T :22162x y +=(0y ≠); (2) 由22162y kx m x y =+⎧⎪⎨+=⎪⎩,得()222136360k x mkx m +++-= ∴()()()2226436130mk m k ∆=--+=,故()22213m k =+, 设()00,P x y ,则023631mk k x k m =-=-+,002y kx m m=+=, 故62k P m m ⎛⎫- ⎪⎝⎭,,()33Q k m +,, 由0PM QM ⋅=可得:()()62330k t t k m m m ⎛⎫-+++= ⎪⎝⎭ 由()232620k t t t m-++-=对∀k ,m 恒成立 ∴2320220t t t t ⎧-+=⇒=⎨-=⎩ 故存在()20M ,使得以PQ 为直径的圆恒过定点M。
第六讲 用树状图或表格求概率-【暑假衔接】2021年新九年级数学暑假精品知识点(北师大版)(原卷版)

第六讲用树状图或表格求概率【学习目标】1、进一步理解当试验次数较大时试验频率稳定于概率.2、会借助树状图和列表法计算涉及两步试验的随机事件发生的概率.【基础知识】1.古典概型(1)古典概型的定义某个试验若具有:①在一次试验中,可能出现的结构有有限多个;②在一次试验中,各种结果发生的可能性相等。
我们把具有这两个特点的试验称为古典概型。
(2)古典概型的概率的求法一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m中m结果,那么事件A发生的概率为P(A)=n2.列表法求概率(1)列表法用列出表格的方法来分析和求解某些事件的概率的方法叫做列表法。
(2)列表法的应用场合当一次试验要设计两个因素,并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法。
3.树状图法求概率(1)树状图法就是通过列树状图列出某事件的所有可能的结果,求出其概率的方法叫做树状图法。
(2)运用树状图法求概率的条件当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率。
【考点剖析】考点一:利用概率公式进行计算的棋盘,在棋盘方格内随机放入棋子,且每一方格内最多放入一枚棋子.例1.一个33(1)如图①,棋盘内已有两枚棋子,在剩余的方格内随机放入一枚棋子,这三枚棋子恰好能在同一条直线上的概率为__________;(2)如图②,棋盘内已有四枚棋子,在剩余的方格内随机放入两枚棋子,求仅有三枚棋子恰好能在同一条直线上的概率.考点二:列表法或树状图法求概率例2.某校准备从八年级(1)班、(2)班的团员中选取两名同学作为十四运的志愿者,已知(1)班有5名团员(其中男生3人,女生2人),(2)班有4名团员(其中男生1人,女生3人).(1)如果从这两个班的全体团员中随机选取一名同学作为志愿者的组长,则这名同学是男生的概率为______;(2)如果分别从(1)班、(2)班的团员中随机各选取一人,请用画树状图或列表的方法求这两名同学恰好是一名男生、一名女生的概率.考点三:游戏公平性问题例3.相约西安,筑梦全运,为迎接十四运,学校开展了运动会志愿者选拔活动.小亮和小贾都很优秀,一同报名参加了选拔活动,但只有一个参加名额.现通过抽卡片的方式决定谁去参加,规则如下:现有两组卡片,第一组为正面分别写有字母X、Y、Z的三张卡片,第二组为正面分别写有字母X、Y、Y、Z的四张卡片,这些卡片除正面字母外其余均相同.将卡片正面朝下洗匀,随机抽一张,记下字母后放回,称为抽卡片一次.(1)若小贾从第二组中抽卡片15次,其中9次抽出的卡片上写有字母Y,求这15次抽出的卡片上写有字母Y的频率;(2)小亮从第一组中抽卡片一次,小贾从第二组中抽卡片一次,若两人抽出的卡片上的字母相同,则小亮去参加;否则,小贾去参加.请问这种抽卡片的方式对两人是否公平?用列表或画树状图的方法说明理由.考点四:几何概率问题例4.如图,在3×3的正方形方格中,阴影部分是涂黑5个小正方形所形成的图案.(1)如果将一粒米随机地抛在这个正方形方格上,那么米粒落在阴影部分的概率是多少?(2)现将方格内空白的小正方形(A,B,C,D)中任取2个涂黑,得到新图案,请用列表或画树状图的方法求新图案是中心对称图形的概率.考点五:统计与概率综合问题例5.某校九(1)班针对“垃圾分类”知晓情况对全班学生进行专题调查活动,将“垃圾分类”的知晓情况分为A,B,C,D四类,其中,A类表示“非常了解”,B类表示“比较了解”,C类表示“基本了解”,D类表示“不太了解”,每名学生可根据自己的情况任选其中一类,班长根据调查结果进行了统计,并绘制成了不完整的条形统计图和扇形统计图.根据以上信息解决下列问题:(1)补全条形统计图,并求出扇形统计图中类别C所对应扇形的圆心角度数.(2)类别A的4名学生中有3名男生和1名女生,现从这4名学生中随机选取2名学生参加学校“垃圾分类”知识竞赛,求所选取的2名学生中恰好有1名男生、1名女生的概率.【真题演练】1.下列表述中,正确的是()A.“任意一个五边形的外角和是540°”是必然事件B.抛掷一枚质地均匀的硬币100次,正面朝上的次数正好为50次C.抛掷两枚质地均匀的银币,正好一枚正面朝上,一枚反面朝上的概率为1 2D.“367人中至少有两人的生日相同”是随机事件2.如图是一个游戏转盘,自由转动转盘,当转盘停止转动后,指针落在阴影部分的概率是()A.38B.12C.59D.583.笼子里关着一只小松鼠(如图),笼子的主人决定把小松鼠放归大自然,将笼子所有的门都打开,松鼠要先经过第一道门(A,B,或C),再经过第二道门(D或E)才能出去.问松鼠走出笼子的路线(经过的两道门)有()种不同的可能?A.12 B.6 C.5 D.24.一个盒子里装有除颜色外都相同的3个球,其中2个红球,1个白球.现从盒子里随意摸出1个不放回,再摸出1个,两次均摸到红球的概率是()A.13B.12C.23D.565.由两个可以自由转动的转盘、每个转盘被分成如图所示的几个扇形、游戏者同时转动两个转盘,如果一个转盘转出了红色,另一转盘转出了蓝色,游戏者就配成了紫色,下列说法正确的是()A.两个转盘转出蓝色的概率一样大B.如果A转盘转出了蓝色,那么B转盘转出蓝色的可能性变小了C.游戏者配成紫色的概率为1 6D.先转动A转盘再转动B转盘和同时转动两个转盘,游戏者配成紫色的概率不同6.小明参加了一个抽奖游戏:一个不透明的布袋里装有1个红球,2个蓝球,4个黄球,8个白球,这些小球除颜色外完全相同.从布袋里摸出1球,摸到红球、蓝球、黄球、白球可分别得到奖金30元、20元、5元和0元,则小明摸一次球得到的平均收益是________元.7.随着高铁、地铁的大量兴建以及铁路的改扩建,我国人民的出行方式越来越多,出行越来越便捷.为保障旅客快捷、安全的出人车站,每个车站都修建了如图所示的出入闸口.某车站有四个出入闸口,分别记为A、B、C、D.(1)一名乘客通过该站闸口时,求他选择A闸口通过的概率;(2)当两名乘客通过该站闸口时,请用树状图或列表法求两名乘客选择相同闸口通过的概率.8.小明的爸爸拿回一张电影票,儿子小明和妹妹小利都想去看电影,于是爸爸给他们出了一个主意,方法是:从印有1,2,3,4,5,4,6,7的8张扑克牌中任取一张,抽到比4大的牌,则小明去看电影,否则小利去看电影.(1)你认为爸爸这个方法是否合理?请用概率的知识解释原因.(2)若使方法公平,你认为该如何修改这个方法?9.一个不透明的布袋里装有2个红球,1个白球,它们除颜色外其余都相同.(1)摸出1个球,记下颜色后不放回...,再摸出1个球,求两次摸出的球恰好颜色相同的概率(要求画树状图或列表).(2)现再将n个白球放入布袋,搅匀后,使摸出1个球是白球的概率为57,求n的值.10.为了减缓学生中考前的心理压力,某班学生组织了一次拔河比赛,裁判员让甲乙两队队长用“石头、剪刀、布”的手势方式选择场地位置,规则是:石头胜剪刀,剪刀胜布,布胜石头,手势相同则再决胜负.(1)用列表或画树状图法,列出甲、乙两队手势可能出现的情况;(2)裁判员的这种做法对甲、乙双方公平吗?请说明理由.11.新冠疫情以来,各地政府为活跃消费市场,释放消费潜力,各商家采取各种促销以此来对冲疫情影响.某商场为了吸引顾客,设立了可以自由转动的转盘(如图,转盘被均匀分为20份),并规定:顾客每购买200元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得200元、100元、50元的购物券(若指向边界则重转),凭购物券可以在该商场继续购物.如果顾客不愿意转转盘,那么可以直接获得购物券30元.(1)求转动一次转盘获得购物券的概率;(2)某顾客在此商场购物220元,通过转转盘获得购物券和直接获得购物券,你认为哪种方式对顾客更合算?谈谈你的理由.12.为迎接建党100周年,甲、乙两位学生参加了知识竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,记录这8次成绩(单位:分),并按成绩从低到高整理成如下表所示,由于表格被污损,甲的第5个数据看不清,但知道甲的中位数比乙的众数大3.甲78 79 81 82 x 88 93 95乙75 80 80 83 85 90 92 95(1)求x的值;(2)现要从中选派一人参加竞赛,从统计或概率的角度考虑,你认为选派哪位学生参加合适?请说明理由.13.一个智力挑战赛需要全部答对两道单项选择题,才能顺利通过第一关.第一道题有4个选项,第二道题有3个选项,这两道题小新都不会,不过小新还有一个“求助卡”没有用,使用“求助卡”可以让主持人去掉其中一题的一个错误选项.(1)如果小新在第--题使用“求助卡”,请用树状图或者列表来分析小新顺利通过第一关的概率;(2)从概率的角度分析,你建议小新在第几题使用“求助卡”.为什么.14.2021年6月26日是第34个国际禁毒日,为了解同学们对禁毒知识的掌握情况,学校开展了禁毒知识讲座和知识竞赛,从全校1600名学生中随机抽取部分学生的竞赛试卷进行调查分析,测试结果分为“优秀”、“良好”、“合格”、“一般”四类,并绘制出如图所示的两幅不完整的统计图.请根据统计图回答下列问题:(1)本次抽取调查的学生共有______人,估计该校1600名学生中“合格”的学生有______人;(2)请补全条形统计图(提示:要标上人数);(3)被调查的学生中,前4名学生有2名男生1B,2B和2名女生1G,2G,若再从这4名学生中随机抽取2人代表学校参加教育局组织的禁毒演讲比赛,请用画树状图或列表的方法,求恰好抽到1名男生和1名女生的概率.【过关检测】1.一个不透明的盒子中装有5个红球和3个白球,它们除颜色外都相同.若从中任意摸出一个球,则下列叙述正确的是()A.摸到红球是必然事件;B.摸到白球是不可能事件;C.摸到红球和摸到白球的可能性相等;D.摸到红球比摸到白球的可能性大.2.如图所示的飞镖游戏板是顺次连接正六边形的三个不相邻的顶点后得到的,若某人向该游戏板投掷镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是()A.1 B.12C.13D.233.不透明的袋子中装有2个红球和1个白球,除颜色外无其他差别,随机摸出一个球后,放回并摇匀,再随机摸出一个,两次都摸到红球的概率是________.4.不透明的袋子里装有红、黑、白三种颜色的小球,它们质地、形状完全相同,从袋子中随机抽取一个小球,记事件A为“抽到红球”,事件B为“抽到红球或黑球”,若()1 2P A=,则()P B的取值范围是____________.5.一杯子中,盛有红、黄两种豆子、将豆子搅拌均匀,从中随机抓起一把豆子,其中红豆20粒,黄豆100粒.若杯中约有30000粒豆子,试估计杯中约有______粒红豆.6.春节前夕,小丽的奶奶给孩子们准备了一些红包,这些红包的外观相同,其中有1个红包装的是100元,有3个红包装的是50元,剩下的红包装的是20元.若小丽从中随机拿出一个红包,里面装的是20元的红包的概率是45,则装有20元红包的个数是______________.7.甲、乙两人用如图所示的两个转盘(每个转盘分别分成面积相等的3个扇形)做游戏,游戏规则:转动两个转盘各一次,当转盘停止后,指针所在区域的数字之和为偶数时甲获胜;数字之和为奇数时乙获胜;若指针落在分界线上,则需要重新转动转盘甲获胜的概率是______.8.将4张印有我国传统节日“春节”“元宵节”“清明节”“中秋节”(卡片的形状、大小、质地都相同)的卡片放在一个不透明的盒子中,将卡片搅匀.(1)从盒子中任意取出1张卡片,恰好取出印有“春节”的卡片的概率为_________.(2)先从盒子中任意取出1张卡片,记录后放回并搅匀,再从中任意取出1张卡片,求取出的2张卡片中,印有相同节日的概率(请用画树状图法或列表法求解).9.已知不等式组34? 42 33x xx x+>⎧⎪⎨≤+⎪⎩(1)求不等式组的解集,并写出它的所有整数解;(2)在不等式组的所有整数解中任取两个不同的整数相乘,请用画树状图或列表的方法求积为非负数的概率.10.某商场文具专柜为了吸引顾客,设立了一个可以自由转动的转盘(转盘被等分成16份),如图所示,并规定:顾客每购买100元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、蓝色、绿色区域,顾客获得的奖品分别为玩具熊、童话书、彩色笔、文具盒.若甲顾客购物消费125元,乙顾客购物消费89元,请解答以下问题:(1)甲顾客获得一次转动转盘机会的概率为,乙顾客获得一次转动转盘机会的概率为.(2)甲顾客获得哪种奖品的概率最大?请说明理由.11.小丽和小华想利用摸乒乓球游戏决定谁去参加市里举办的喜迎建党一百周年以“学党史、悟思想、办实事、开新局”为主体的演讲比赛,游戏规则是:在一只不透明的袋子中装有4个大小、质地都相同的乒乓球,球面上分别标有数字1-234,,,-,搅匀后,一人先从中随机摸出一个球(不放回),另一人再从余下的3个球中摸出一个球,若摸出的两个小球上的数字之和为偶数,则小丽去,否则小华去参赛.(1)用列表法或树状图法,求小丽参赛的概率;(2)你认为这个游戏公平吗?请说明理由.12.某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:(为了方便记录,把a≤x<b记作:[a,b).)最高气温[10,15) [15,20) [20,25) [25,30) [30,35) [35,40)天数 2 16 36 25 7 4(1)求六月份这种酸奶一天的需求量不超过300瓶的概率;(2)设六月份一天销售这种酸奶的利润为Y (单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y 的所有可能值,并估计Y 大于零的概率.13.某中学开展迎十四运主题宣传活动,给同学们分发十四运吉祥物卡片:A 卡片“金金”;B 卡片“羚羚”;C 卡片“熊熊”;D 卡片“朱朱”,要求每名学生必须选择且只能选择其中一张卡片,学校随机抽查了部分学生,对他们的卡片选择情况进行了统计,并绘制了两幅不完整的统计图. 请根据统计图提供的信息解答下列问题: (1)此次共抽查了______名学生; (2)请通过计算补全条形统计图;(3)现有甲,乙两名同学选卡片,求他们选择同一张卡片的概率.14.为提升学生的数学素养,某学校开展了“数学素养”竞赛活动.九年级1200名学生参加了竞赛,结果所有学生成绩都不低于60分(满分100分).为了了解成绩分布情况,学校随机抽取了部分学生的成绩进行统计,得到如下不完整的统计表,根据表中所给信息,解答下列问题: 成绩x (分)分组频数 频率6070x ≤< 150.307080x ≤< a0.408090x ≤< 10 b 90100x ≤<50.10()1表中___ _ _ ,b = _;()2这组数据的中位数落在_____ _范围内;()3若成绩不小于80分为优秀,请估计九年级大约有多少名学生获得优秀成绩?()4竞赛中有这样一道题目: 如图,有两个转盘,A B 、在每个转盘各自的两个扇形区域中分别标有数字1,2,分别转动转盘,A B 、当转盘停止转动时,若事件“指针都落在标有数字1的扇形区域内”概率是19,则转盘B 中标有数字1的扇形的圆心角的度数是 .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第11讲 古典概率
【知识梳理】
概率性质1 必然事件的概率为1, 不可能事件的概率为0, 即P(Ω)=1,P(Φ)=0. 概率性质2 对任意的事件A, 都有0()1P A ≤≤.
互斥:如果A 与B 没有共同的基本事件,即两个子集不相交,那么有A ∩B=Φ,则两个事件不可能同时发生,或者说互斥。
对立事件:事件A 发生的否定就是事件A 不发生,它也是一个事件,称为事件A 的对立事件。
简称为非A 。
A
A=Φ A A=Ω A B=A B ⋂ A B=A B
概率性质3(可加性). 两个不可能同时发生的事件至少有一个发生的概率是这两个事件的概率之和。
换言之,如果A ∩B=Φ,那么P(A ∪B)=P(A)+P(B)
概率性质4 对任一给定事件,其发生的概率与不发生的概率的和总是1.换言之,有 P(A)=1- P(A )
【例题解析】
知识点一:简单的古典概型
例1.在某微信群的“微信抢红包”活动中,某次所发的红包总金额为10元,被随
机分配为2.13元,3.44元,1.83元,2.60元,现有甲、乙等4人参与抢红包,每人只能抢一次,则甲、乙两人抢到的金额之和大于5元的概率为( ) A .2
3
B .1
2
C .1
3
D .1
4
例2.人的眼皮单双是由遗传自父母的基因决定的,其中显性基因记作B ,隐性基因
记作b ;成对的基因中,只要出现了显性基因,就一定是双眼皮(也就是说,“双眼皮”的充要条件是“基因对是BB ,bB 或Bb ”),人的卷舌与平舌(指是否能左右卷起来)也是由一对基因对决定的,分别用D ,d 表示显性基因、隐形基因,基因对中只要出现了显性基因D ,就一定是卷舌的.生物学上已经证明:控制不同性状的基因遗传时互不干扰.若有一对夫妻,两人决定眼皮单双和舌头形态的基因都是BbDd ,不考虑基因突变,他们的孩子是单眼皮且卷舌的概率为( )
A .
1
16
B .
3
16
C .
7
16
D .
9
16
例3.将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6的正方体
玩具)先后抛掷两次,则向上的点数之和为4的概率为( ) A .
118
B .
1
12
C .1
9
D .1
3
【名师点睛】
求解古典概率“四步”法:
1、读:反复阅读题目,收集整理题目屮的各种信息.
2、判:判断试验是否为古典概型
3、列:求出试验的样本空间和所求專件所包的样本底的个数
4、算:计算出古典概型的概率,对应用题还要作答 知识点二:较复杂的古典概型的计算
例1.四张卡片上分别写有“荣”、“八”、“耻”、“八”四个汉字,一个不识字的幼儿
随机地把它们排成一排,刚好排成“八荣八耻”的概率是( ) A .1
4
B .1
6
C .
1
12
D .
1
24
例2.从集合A ={﹣1,12
,2}中随机选取一个数记为k ,从集合B ={12
,32
,2}中随
机选取一个数记为a ,则a k
>1的概率为( ) A .1
3
B .2
3
C .7
9
D .5
9
例3.将一个正四面体沿各棱的中点截去四个小三棱锥后得到一个新几何体,将此几
何体的任意两个顶点连成一条线段,则其位于原四面体表面的概率为( ) A .1
5
B .2
5
C .3
5
D .4
5
【名师点睛】
解古典概型问题时,要牢牢抓住它的两个特点和其计算公式,但是这类问题的解法多样,技
巧性强,在解决此类题时需要注意以下两个问题:
(1)试验必须具有古典概型的两大特征—有限性和等可能性.
(2)计算基本事件的数目时,须做到不重不漏,常借助坐标系、表格及树状图等列出所有基本事件.
知识点三:互斥事件、对立事件的概率
例1.一台机床有
3
1
的时间加工零件A, 其余时间加工零件B, 加工A 时,停机的概率是103,加工B 时,停机的概率是5
2
, 则这台机床停机的概率为( )
A.
30
11 B.
30
7 C.
10
7 D.
10
1 例2.盒中有6只灯泡,其中2只次品,4只正品,有放回地从中任取两次,每次取
一只,试求下列事件的概率: (1)取到的2只都是次品;
(2)取到的2只中正品、次品各一只; (3)取到的2只中至少有一只正品。
例3.有朋自远方来,已知他乘火车、轮船、汽车、飞机来的概率分别是0.3,0.2,
0.1,0.4.
(1)求他乘火车或飞机来的概率; (2)求他不乘轮船来的概率;
(3)如果他来的概率为0.4,请问他有可能是乘何种交通工具来的?
例4.甲、乙两人各射击一次,击中目标的概率分别是
23和3
.4
假设两人射击是否击中目标,相互之间没有影响;每次射击是否击中目标,相互之间没有影响. (1)求甲射击4次,至少1次未击中目标的概率;
(2)求两人各射击4次,甲恰好击中目标2次且乙恰好击中目标3次的概率; (3)假设某人连续2次未击中...目标,则停止射击.问:乙恰好射击5次后,被中止射击的概率是多少?
【名师点睛】
互斥事件、对立事件的概率公式的应用:
(1)互斥事件的概率加法公式P (A ∪B )=P (A )+P (B )是一个非常重要的公式,运用该公式解题时,首先要分清事件间是否互斥,同时要学会把一个事件分拆为几个互斥事件,然后求出各事件的概率,用加法公式得出结果.
(2)当直接计算符合条件的事件个数比较烦琐时,可间接地先计算出其对立事件的个数,求得对立事件的概率,然后利用对立事件的概率加法公式P (A )+P (B )=1,求出符合条件的事件的概率.
知识点四:概率加法公式的应用
例1.加工某一零件需经过三道工序,设第一、二、三道工序的次品率分别为
170、1
69
、
1
68
,且各道工序互不影响,则加工出来的零件的次品率为 .
例2.甲、乙、丙三人射击同一目标,命中目标的概率分别为1
2
,1
3
,1
4
,且彼此射击
互不影响,现在三人射击该目标各一次,则目标被击中的概率为 .(用数字作答)
例3.三个元件T 1,T 2,T 3正常工作的概率分别为1
2
,3
4
,3
4
,且是互相独立的.将它
们中某两个元件并联后再和第三元件串联接入电路,在如图的电路中,电路不发生故障的概率是 .
【名师点睛】
(1)概率的一般加法公式与互斥事件的概率加法公式在限制条件上的区别:在公式P (A ∪
B )=P (A )+P (B )中,事件A ,B 是互斥事件;在公式P (AUB )=P (A )+P (B )-P (A ∩B )中,事件A ,B 可以是互斥事件,也可以不是互斥事件,可借助图形理解.
(2)利用概率的一般加法公式P (A ∪B )=P (A )+P (B )-P (A ∩B )求解的关键在于理解两个事件A ,B 的交事件A ∩B 的含义,准确求出其概率.
【过关检测】
一、单选题
1.(2021·上海高二专题练习)电子钟一天显示的时间是从00:00到23:59,每一时刻都由4个数字组成,则一天中任一时刻显示的四个数字之和为22的概率为( ) A .1
240
B .
1160
C .
71440
D .
1180
2.(2018·上海师大附中高二期末)从装有4粒大小、形状相同,颜色不同的玻璃球的瓶
中,随意一次倒出若干粒玻璃球(至少一粒),则倒出奇数粒玻璃球的概率比倒出偶数粒玻璃球的概率
A.小B.大C.相等D.大小不能确定
3.给出以下结论:①互斥事件一定对立;②对立事件一定互斥;③互斥事件不一定对立;④事件A与B的和事件的概率一定大于事件A的概率;⑤事件A与B互斥,则有P(A)=1-P(B).其中正确命题的个数为( )
A.0
B.1
C.2
D.3
4.从集合{a,b,c,d,e}的所有子集中任取一个,若这个子集不是集合{a,b,c}的子集的概率是
3
4
,则该子集恰是集合{a,b,c}的子集的概率是( )
A.3
5B.2
5
C.1
4
D.1
8
二、填空题
5.(2021·上海高二专题练习)电影公司随机收集了电影的有关数据,经分类整理得到下表:
好评率是指:一类电影中获得好评的部数与该类电影的部数的比值,则随机选取1部电影,这部电影没有获得好评的概率为_______.
6.(2020·上海市七宝中学高二月考)假设一个随机数发生器一次只能从1,2,3,…,9这九个数学中等可能地选一个数,则该随机数发生器完成了(1)
n n 次选择后,选出的n 个数的乘积能被10整除的概率为________(用含n的代数式示).
7.若事件A,B满足A∩B=⌀,A∪B=Ω,且P(A)=0.3,则P(B)=.
8.盒子中有大小、形状均相同的一些黑球、白球和黄球,从中摸出一个球,摸出黑球的概率是0.42,摸出黄球的概率是0.18,则摸出的球是白球的概率是,摸出的球不是黄球的概率是,摸出的球或者是黄球或者是黑球的概率是.
三、解答题
9.一个电路板上装有甲、乙两根熔丝,甲熔断的概率为0.85,乙熔断的概率为0.74,两根同时熔断的概率为0.63,问至少有一根熔断的概率是多少?
10.据统计,某储蓄所一个窗口排队等候的人数及相应概率如下表:
(1)求至多2人排队等候的概率;
(2)求至少2人排队等候的概率.。