定积分的计算

定积分的计算
定积分的计算

图1

4.5 定积分的计算

课题: 定积分的计算

目的要求: 知道变上限的定积分是变上限的函数,知道有关求导定理。熟练掌握牛顿

(Newton )—莱布尼兹(Leibniz )公式。掌握定积分的换元积分法及分部积分法。

重点: 牛顿—莱布尼兹公式,定积分的换元积分法及分部积分法。 难点: 定积分的换元积分法 教学方法: 讲练结合 教学时数: 4课时 教学进程:

我们知道,定积分是求总量的数学模型,但如果按照分割、代替、求和、取极限的四步法求定积分,步骤虽然十分清楚,但能求出和式极限的问题却微乎其微.正因此,定积分虽然为解决求总量的问题提供了极好的模型,但应用的前景十分有限.幸好牛顿、莱布尼兹等人从另一个角度揭示了微分和积分的内在联系:微积分基本定理,并由此推导出计算定积分的简便公式,即牛顿—莱布尼兹公式,从而为计算定积分另辟蹊径.

一、牛顿—莱布尼兹公式

1、微积分基本定理

设函数)(x f 在],[b a 上连续,∈x ],[b a ,则函数)(x f 在],[x a 上可积.以x 为积分上限的定积分

?

x a

dt t f )(

与x 相对应,显然它是x 的函数,记作)(x Φ(图1),即

)(x Φ=?x

a

dt t f )( ∈x ],[b a .

这种积分上限为变量的定积分称为变上限定积分.

定理1(微积分基本定理)变上限定积分所确定的函数是被积函数的原函数,即设)(x f 在],[b a 上连续,∈x ],[b a , 则

)()(x f dt t f dx

d x

a =? (1) (证明从略).

公式(1)告诉我们

(1) 变上限定积分的导数等于被积函数,这表明变上限定积分是被积函数的原函数.这揭示了微分(或导数)与(变上限)定积分之间的内在联系,因而称为微积分基本定理.

(2) 定理1要求函数)(x f 在],[b a 上连续,于是附带给出了原函数存在定理,即 推论 某区间上的连续函数在该区间上存在原函数.

(3) 既然变上限定积分是被积函数的原函数,这就为计算定积分开辟了新途径.

例1 求

?+x t

dt e dx d 0)1sin(. 解 ?+x t

dt e dx d 0)1sin()1sin(x e +=. 例2 求?+0

)1sin(x

t dt e dx d . 例3 求?+20)1sin(x t

dt e dx

d .

图2

2、牛顿—莱布尼兹公式

定理2 设)(x f 在],[b a 上连续,且)(x F 是)(x f 的一个原函数,则

)()()(a F b F dx x f b

a

-=?

. (2)

公式(2)是著名的牛顿—莱布尼兹公式,常记作

)()(|)()(a F b F x F dx x f b a b

a

-==?

牛顿—莱布尼兹公式把定积分的计算问题归结为求被积函数的原函数在上、下限处函数

值之差的问题,从而巧妙地避开了求和式极限的艰难道路,为运用定积分计算普遍存在的总量问题另辟坦途.

例4 求由抛物线2x y =,直线1=x 和x 轴围成的曲边三角形的面积.

解 设所求曲边三角形(图2)的面积为S ,则

3

1

3

1

31

02

=

=

=?x dx x S . 例5 求?

-+2

1dx x e x )(.

例6 求?

--3

11dx x .

例7 求

?+

4

1x

dx .

解 先用换元积分法求不定积分?+x

dx 1.

t x =,则2t x =,tdt dx 2=,于是

?+x dx 1dt t dt t t t tdt ?????

? ??

+-=+-+=+=1112111212

C x x C t t ++-=++-=)]1ln([2)]1ln([2.

取一个原函数

)]1ln([2)(x x x F +-=,

由公式(2),得

?+

4

1x

dx [

])3ln 2(2)1ln(24

0-=+-=x x .

注意:在本例求原函数时用到了不定积分的换元积分法.需消去新变量t ,还原为原积

分变量x ,而后用牛顿—莱布尼兹公式.

二、定积分的换元积分法和分部积分法

我们已经会依据牛顿—莱布尼兹公式给出的步骤求定积分:先求被积函数的一个原函数,再求原函数在上、下限处的函数值之差.这是计算定积分的基本方法.但这种方法遇到用换元积分法求原函数时,需将新变量还原为原来的积分变量,才能求原函数之差,如例7所做的那样.这样做比较麻烦.现介绍省略还原为原积分变量的步骤计算定积分的方法.

1. 定积分的换元积分法 先看例7用新方法来计算.

t x =,即tdt dx t x 2,2==,当0=x 时,0=t .当4=x 时,2=t .于是

?+40

1x

dx =+=?2012t tdt [])3ln 2(2)1ln(220-=+-t t . 这样做省略了将新变量t 还原为原积分变量x 的麻烦.但需注意两点:

第一,引入的新函数)(t x ?=必须单调,使t 在区间],[βα上变化时,x 在区间],[b a 上变化,且)(α?=a ,)(β?=b .

第二,改变积分变量时必须改变积分上、下限,简称为换元必换限. 严格说来,关于定积分的换元积分法有下面的定理. 定理3 设

(1) 函数)(x f 在区间],[b a 上连续.

(2) 函数)(t x ?=在区间],[βα上单调,且有连续导数. (3) t ∈],[βα时,x ∈],[b a ,且)(α?=a ,)(β?=b , 则

[]??

'=β

α

??dt t t f dx x f b

a

)()()(. (3)

公式(3)称为定积分的换元积分公式.证明从略.

例8 求

?

-a dx x a 0

22 )0(>a .

解 令t a x sin = ])2

,0[(π

∈t ,则d t a dx cos =.当0=x 时0=t ,a x =时2

π

=

t ,

于是

?

-a

dx x a 0

22??=0

c o s c o s π

t d t a t a ?

=0

22

c o s π

t d t

a

2

00

2

2

4

122sin 222cos 122

a t t a dt t a

ππ

π=??? ??+=+=?

. 2.定积分的分部积分法

设函数)(x u 和)(x v 在区间],[b a 上存在连续导数,则由v u v u uv '+'=')(,得

v u uv v u '-'=')(.两端从a 到b 对x 求定积分,便得定积分的分部积分公式:

??

-=b

a

b

a b

a

vdu v u udv .

例9 求?

10

arcsin xdx .

?

?

--=2

12

12

10

2

00

1a r c s i n a r c s i n dx x

x x x xdx

12

3

12

112

2

1

2-+

=

-

+=π

π

x . 例10 求

?

1

dx e x .

例11 计算

?

sin π

xdx n

(0≥n 为整数)

. 解 设=

n I ?2

sin π

xdx n

,则

2

π=

=?dx I ,1|cos sin 2

2

00

1=-==

?

π

π

x xdx I

??

---==

22

1

1

cos sin

sin sin

π

π

x xd xdx x I n n n

?---+-=2

2

2

01

cos sin

)1(|cos sin

π

π

xdx x n x x n n

?

--=-2

22)sin 1(sin )

1(π

dx x x n n

??

---=-22

2

sin )1(sin

)

1(π

π

xdx n xdx n n

n

n n I n I n )1()1(2---=-

移项得: 21

--=

n n I n

n I . 上述公式称为递推公式.

例如 422

3

----=

n n I n n I 同样地依次进行下去,直到n I 的下标递减到0或1为止.于是

??

????--?-?--?-==?为奇数.为偶数.n n n n n n n n n n xdx I n n ,132

231,22123

1sin 20 ππ

例如 πππ

3252214365sin 2

06=

???=?xdx . 15

813254sin 2

05=??=?π

xdx .

小结本讲内容:1、变上限的定积分是变上限的函数。

2、用牛顿(Newton )—莱布尼兹(Leibniz )公式计算定积分时,只要

求出被积函数 f (x ) 的任意一个原函数F (x ) ,然后求这个原函数在积分区间 [a , b ] 上的增量F (b ) – F (a ) 即可。

3、用定积分的换元积分法计算定积分时需注意在换元的同时,必须相应地变换积分的上、下限,这样求出原函数后,就不必用原来的变量代回,计算起来就比较简单了。

4、定积分的分部积分法与不定积分的分部积分法完全类似,只是多了一个积分限,使用时只需记住每一步都不要丢掉积分上、下限。

作业: P128~P129 1;2;3。

定积分的方法总结

定积分的方法总结 定积分是新课标的新增内容,其中定积分的计算是重点考查的考点之一,下面例析定积分计算的几种常用方法. 一、定义法 例1、求 s i n b a x d x ? , (b a <) 解:因为函数s i n x 在],[b a 上连续,所以函数sin x 在],[b a 上可积,采用特殊的 方法作积分和.取h = n a b -,将],[b a 等分成n 个小区间, 分点坐标依次为 ?=+<<+<+

定积分的性质与计算方法

定积分的性质与计算方法 摘要: 定积分是微积分学中的一个重要组成部分,其计算方法和技巧非常 丰富。本文主要给出定积分的定义及讨论定积分的性质和计算方法,并通过一些很有代表性的例题说明了其计算方法在简化定积分计算中的强大功能。 关键词:定积分 性质 计算方法 定积分的定义 设函数f(x) 在区间[a,b]上连续,将区间[a,b]分成n 个子区间[x 0,x 1], (x 1,x 2], (x 2,x 3], …, (x n-1,x n ],其中x 0=a ,x n =b 。可知各区间的长度依次是:△x 1=x 1-x 0, △x 2=x 2-x 1, …, △x n =x n -x n-1。在每个子区间(x i-1,x i ]中任取一点i ξ(1,2,...,n ),作和式1()n i i f x ι=ξ?∑。设λ=max{△x 1, △x 2, …, △x n }(即λ是 最大的区间长度),则当λ→0时,该和式无限接近于某个常数,这个常数叫做函数f(x) 在区间[a,b]的定积分,记为: ()b a f x dx ?。 其中:a 叫做积分下限,b 叫做积分上限,区间[a, b]叫做积分区间,函数f(x)叫做被积函数,x 叫做积分变量,f(x)dx 叫做被积表达式,∫ 叫做积分号。 对于定积分,有这样一个重要问题:函数()f x 在[a,b]上满足怎样的条件, ()f x 在[a,b]上一定可积?下面给出两个充分条件: 定理1: 设()f x 在区间[a,b]上连续,则()f x 在[a,b]上可积。 定理2: 设()f x 在区间[a,b]上有界,且只有有限个间断点,则 ()f x 在[a,b]上可积。 例:利用定义计算定积分1 20x dx ?. 解:因为被积函数2()f x x =在积分区间[0,1]上连续,而连续函数是可积的,所以积分与区间[0,1]的分法及点i ξ的取法无关。因此,为了 便于计算,不妨把区间[0,1]分成n 等份,分点为i i x n = ,1,2,,1i n =?-;这样,

七大积分总结

七大积分总结 一. 定积分 1. 定积分的定义:设函数f(x)在[a,b]上有界,在区间[a,b]中任意插入n -1个分点: a=x 0

? ??==b a b a b a du u f dt t f dx x f )()()(。 (2) 定义中区间的分法与ξi 的取法是任意的。 (3) 定义中涉及的极限过程中要求λ→0,表示对区间[a,b]无限细分的过程,随λ →0必有n →∞,反之n →∞并不能保证λ→0,定积分的实质是求某种特殊合式的极限: 例:∑?=∞→=n i n n i f dx x f 1 1 0n 1 )()(lim (此特殊合式在计算中可以作为公式使用) 2. 定积分的存在定理 定理一 若函数f(x)在区间[a,b]上连续,则f(x)在[a,b]上可积。 定理二 若函数f(x)在区间[a,b]上有界,且只有有限个间断点,则f(x)在区间上可积。 3. 定积分的几何意义 对于定义在区间[a,b]上连续函数f(x),当f(x)≥0时,定积分 ? b a dx x f )(在几何上表示由曲线y=f(x),x=a,x=b 及x 轴所围成的曲边梯形的面积;当f(x) 小于0时,围成的曲边梯形位于x 轴下方,定积分?b a dx x f )(在几何意义上表示曲边梯形面积的负值。若f(x)在区间上既取得正值又取得负值时,定积分的几何意义是:它是介于x 轴,曲线y=f(x),x=a,x=b 之间的各部分曲边梯形的代数和。 4.定积分的性质 线性性质(性质一、性质二)

定积分总结

定积分讲义总结 内容一 定积分概念 一般地,设函数()f x 在区间[,]a b 上连续,用分点0121i i n a x x x x x x b -=<<<<<<<=L L 将区间[,]a b 等分成n 个小区间,每个小区间长度为x ?(b a x n -?= ),在每个小区间[]1,i i x x -上取一点()1,2,,i i n ξ=L ,作和式:1 1 ()()n n n i i i i b a S f x f n ξξ==-=?=∑∑ 如果x ?无限接近于0(亦即n →+∞)时,上述和式n S 无限趋近于常数S ,那么称该常数S 为函数()f x 在区间[,]a b 上的定积分。记为:()b a S f x dx = ? 其中()f x 成为被积函数,x 叫做积分变量,[,]a b 为积分区间,b 积分上限,a 积分下限。 说明:(1)定积分 ()b a f x dx ? 是一个常数,即n S 无限趋近的常数S (n →+∞时)称为()b a f x dx ?,而不是n S . (2)用定义求定积分的一般方法是:①分割:n 等分区间[],a b ;②近似代替:取点[]1,i i i x x ξ-∈;③求和: 1()n i i b a f n ξ=-∑;④取极限:()1()lim n b i a n i b a f x dx f n ξ→∞=-=∑? 例1.弹簧在拉伸的过程中,力与伸长量成正比,即力()F x kx =(k 为常数,x 是伸长量),求弹簧从平衡位置拉长b 所作的功. 分析:利用“以不变代变”的思想,采用分割、近似代替、求和、取极限的方法求解. 解: 将物体用常力F 沿力的方向移动距离x ,则所作的功为W F x =?. 1.分割 在区间[]0,b 上等间隔地插入1n -个点,将区间[]0,1等分成n 个小区间: 0,b n ??????,2,b b n n ?? ????,…,()1,n b b n -?????? 记第i 个区间为()1,(1,2,,)i b i b i n n n -???=? ? ??L ,其长度为()1i b i b b x n n n -??=-= 把在分段0, b n ? ???? ?,2,b b n n ?? ????,…,()1,n b b n -?????? 上所作的功分别记作:1W ?,2W ?,…,n W ? (2)近似代替 有条件知:()()11i i b i b b W F x k n n n --???=??=?? ? ?? (1,2,,)i n =L (3)求和 ()1 1 1n n n i i i i b b W W k n n ==-=?=??∑∑ =()()22222 110121122n n kb kb kb n n n n -?? ++++-==-?? ?? ??? L

高二定积分的计算

一、教学目标: 1. 理解定积分的基本概念并能利用定积分的几何意义解决一些简单的积分计算问题. 2. 理解微积分的基本定理,并会用定积分公式解决简单函数的定积分问题. 二、知识要点分析 1. 定积分的概念:函数)(x f 在区间[a ,b ]上的定积分表示为:? b a dx x f )( 2. 定积分的几何意义: (1)当函数f (x )在区间[a ,b]上恒为正时,定积分 ? b a dx x f )(的几何意义是:y=f (x )与x=a ,x=b 及x 轴围成的曲边梯形面积,在一般情形下. ? b a dx x f )(的几何意义是介 于x 轴、函数f (x )的图象、以及直线x=a ,x=b 之间的各部分的面积代数和,在x 轴上方的面积取正号,x 轴下方的面积取负号. 在图(1)中:0s dx )x (f b a >=? ,在图(2)中:0s dx )x (f b a <=? ,在图(3)中:dx )x (f b a ? 表示函数y=f (x )图象及直线x=a ,x=b 、x 轴围成的面积的代数和. 注:函数y=f (x )图象与x 轴及直线x=a ,x=b 围成的面积不一定等于? b a dx x f )(,仅 当在区间[a ,b]上f (x )恒正时,其面积才等于 ? b a dx x f )(. 3. 定积分的性质,(设函数f (x ),g (x )在区间[a ,b ]上可积) (1)?? ?±=±b a b a b a dx )x (g dx )x (f dx )]x (g )x (f [ (2)?? =b a b a dx x f k dx x kf )()(,(k 为常数) (3) ?? ?+=b c b a c a dx x f dx x f dx x f )()()( (4)若在区间[a ,b ]上,? ≥≥b a dx x f x f 0)(,0)(则 推论:(1)若在区间[a ,b ]上,? ?≤≤b a b a dx x g dx x f x g x f )()(),()(则 (2)?? ≤b a b a dx x f dx x f |)(||)(| (3)若f (x )是偶函数,则 ?? =-a a a dx x f dx x f 0 )(2)(,若f (x )是奇函数,则 0)(=? -a a dx x f

定积分计算的总结论文

定积分计算的总结论文公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

定积分计算的总结 闫佳丽 摘 要:本文主要考虑定积分的计算,对一些常用的方法和技巧进行了归纳和总结.在定积分的计算中,常用的计算方法有四种:(1)定义法、(2)牛顿—莱布尼茨公式、(3)定积分的分部积分法、(4)定积分的换元积分法. 关键词:定义、牛顿—莱布尼茨公式、分部积分、换元. 1前言 17世纪后期,出现了一个崭新的数学分支—数学分析.它在数学领域中占据着主导地位.这种新数学思想的特点是非常成功地运用了无限过程的运算即极限运算.而其中的微分和积分这两个过程,则构成系统微积分的核心.并奠定了全部分析学的基础.而定积分是微积分学中的一个重要组成部分. 2正文 那么,究竟什么是定积分呢我们给定积分下一个定义:设函数()f x 在[],a b 有定义,任给[],a b 一个分法T 和一组{}k ξξ=,有积分和 1 (,)()n k k k T f x σξξ==?∑,若当()0l T →时,积分和(,)T σξ存在有限极限, 设()0()0 1 lim (,)lim ()n k k l T l T k T f x I σξξ→→==?=∑,且数I 与分法T 无关,也与k ξ在[]1,k k x x -的取法无关,即{}0,0,:(),k T l T εδδξξ?>?>?

定积分应用方法总结(经典题型归纳).docx

精品文档 定积分复习重点 定积分的考查频率不是很高,本讲复习主要掌握定积分的概念和几何意义,使 用微积分基本定理计算定积分,使用定积分求曲边图形的面积和解决一些简单的物 理问题等. 1. 定积分的运算性质 (1) b b kf (x)dx k f (x)dx(k 为常数 ). a a (2) b b f 1 ( x)dx b 2 ( x)dx. [ f 1 ( x) f 2 ( x)]dx f a a a b c b 其中 a

定积分计算公式和性质

第二节 定积分计算公式和性质 一、变上限函数 设函数在区间上连续,并且设x 为上的任一点, 于是, 在区间 上的定积分为 这里x 既是积分上限,又是积分变量,由于定积分与积分变量无关,故可将此改为 如果上限x 在区 间上任意变动,则对 于每一个取定的x 值,定积分有一个确定值与之对应,所以定积分在 上定义了一个以x 为自变量的函数,我们把 称为函数 在区间 上 变上限函数 记为 从几何上看,也很显然。因为X 是上一个动点, 从而以线段 为底的曲边梯形的面积,必然随着底数 端点的变化而变化,所以阴影部分的面积是端点x 的函数(见图5-10) 图 5-10

定积分计算公式 利用定义计算定积分的值是十分麻烦的,有时甚至无法计算。因此,必须寻求计算定积分的简便方法。 我们知道:如果物体以速度作直线运动,那么在时间区间上所经过的路程s 为 另一方面,如果物体经过的路程s 是时间t 的函数,那么物体 从t=a 到t=b 所经过的路程应该是(见图5-11) 即 由导数的物理意义可知:即 是 一个原函数,因此,为了求出定积分,应先求出被积函数 的原函数 , 再求 在区间 上的增量 即可。 如果抛开上面物理意义,便可得出计算定积分的一般 方法: 设函数在闭区间上连续, 是 的一个原函数, 即 ,则 图 5-11

这个公式叫做牛顿-莱布尼兹公式。 为了使用方便,将公式写成 牛顿-莱布尼兹公式通常也叫做微积分基本公式。它表示一个函数定积分等于这个函数的原函数在积分上、下限处函数值之差。它揭示了定积分和不定积分的内在联系,提供了计算定积分有效而简便的方法,从而使定积分得到了广泛的应用。 例1 计算 因为是的一个原函数所以 例 2 求曲线 和直线x=0、x= 及y=0所围成图形面积A(5-12) 解 这个图形的面积为 二、定积分的性质 设 、 在相应区间上连续,利用前面学过的知识,可以 得到定积分以下几个简单性质: 图 5-12

[全]高等数学之不定积分的计算方法总结[下载全]

高等数学之不定积分的计算方法总结不定积分中有关有理函数、三角函数有理式、简单无理函数的求法,是考研中重点考察的内容,也是考研中的难点。不定积分是计算定积分和求解一阶线性微分方程的基础,所以拿握不定积分的计算方法很重要。不定积分考查的函数特点是三角函数、简单无理函数、有理函数综合考查,考查方法是换元积分法、分部积分法的综合应用。不定积分的求法的理解和应用要多做习题,尤其是综合性的习题,才能真正掌握知识点,并应用于考研。 不定积分的计算方法主要有以下三种: (1)第一换元积分法,即不定积分的凑微分求积分法; (2)第二换元积分法 (3)分部积分法常见的几种典型类型的换元法:

樂,Q? o 金J犷- / .乍治阳必厶二如皿盒.「宀丄" 名% =a仏 找.』x二a沁沁r 年”十I '九久二严詈严妬5inx八ic5兄厶 整 I—炉 叶严 山二启虫? 常见的几种典型类型的换元法 题型一:利用第一换元积分法求不定积分

分析: 1-3 ? - IK )-忑.旦r x 二)祝成);网><可久切 二2氐化如(長)寸 a 花不直押、朱 J 、 解: 2少弋協“尤十C__

-辿迪牆H JS m 弟 R Eff 洱 ->1和弟r 直 - —7朮呻' g 丄 U P A J 齐—系卩£.§计 一 H a8~t ' J 乂 u D y " ?朮?

p o r t v 卩 J (r 4 5*〉J" 卩?对渎 t-k )+c p T + T d ? g T + c m -辿」

当积分j/O心(X)不好计算容易计算时[使用分部私jf(A-)Jg(.v)二f(x)g(x)- J g(x)df(x).常见能使用分部积分法的类型: ⑴卩"“dx J x n srn xdx J尢"cos皿等,方法是把。',sin-t, cosx 稽是降低X的次数 是化夫In 尢9 arcsine arctanx. 例11: J (1 + 6-r )arctanAz/.r :解:arctan f xdx等,方法是把疋; Jx" arcsm11xdx

大学微积分1方法总结

第一章 函数、极限、连续 注 “★”表示方法常用重要. 一、求函数极限的方法 ★1.极限的四则运算;★2.等价量替换;★3.变量代换;★4.洛比达法则;★5.重要极限;★6.初等函数的连续性;7.导数的定义;8. 利用带有佩亚诺余项的麦克劳林公式;9.夹逼定理;10利用带有拉格朗日余项的泰勒公式;11.拉格朗日定理;★12. 无穷小量乘以有界量仍是无穷小量等. ★二、已知函数极限且函数表达式中含有字母常数,确定字母常数数值的方法 运用无穷小量阶的比较、洛必达法则或带有佩亚诺余项的麦克劳林公式去分析问题,解决问题。 三、无穷小量阶的比较的方法 利用等价无穷小量替换或利用洛必达法则,无穷小量的等价代换或利用带有皮亚诺余项的佩亚诺余项公式展开 四、函数的连续与间断点的讨论的方法 如果是)(x f 初等函数,若)(x f 在0x x =处没有定义,但在0x 一侧或两侧有定义,则0x x =是间断点,再根据在0x x =处左右极限来确定是第几类间断点。如果)(x f 是分段函数,分界点是间断点的怀疑点和所给范围表达式没有定义的点是间断点。

五、求数列极限的方法 ★1.极限的四则运算;★2. 夹逼定理;★3. 单调有界定理; 4. )()(lim )()(lim ∞=?∞=∞ →+∞→A n f A x f n x ;5. 数列的重要极限;6.用定积分的定义求数列极限;7. 利用若∑∞ =1n n a 收敛,则0lim =∞→n n a ;8. 无穷小量乘以有界量 仍是无穷小量;9.等价量替换等. 【评注】1. 数列的项有多项相加或相乘式或∞→n 时,有无穷项相加或相乘,且不能化简,不能利用极限的四则运算, 2.如果数列的项用递推关系式给出的数列的收敛性或证明数列极限存在,并求极限.用单调有界定理 3.对数列极限的未定式不能用洛比达法则。因为数列作为函数不连续,更不可导,故对数列极限不能用洛比达法则. 4.由数列{}n a 中的通项是n 的表达式,即).(n f a n =而)(lim )(lim x f n f x n ∞ →∞→与是特殊与一般的关系,由归结原则知 ★5. 有lim 1011()()n n i i f f x dx n n →∞ ==?∑或1lim 1001()()n n i i f f x dx n n -→∞==?∑ 第二章 一元函数微分学 ★一、求一点导数或给处在一点可导推导某个结论的方法: 利用导数定义,经常用第三种形式 二、研究导函数的连续性的方法:

定积分计算例题

第5章 定积分及其应用 (一)、单项选择题 1.函数()x f 在区间[a ,b]上连续是()x f 在[a ,b]上可积的( )。 A .必要条件 B 充分条件 C 充分必要条件 D 既非充分也非必要条件 2.下列等式不正确的是( )。 A . ()()x f dx x f dx d b a =??????? B. ()()()[]()x b x b f dt x f dx d x b a '=???? ??? C. ()()x f dx x f dx d x a =??????? D. ()()x F dt t F dx d x a '=???? ??'? 3.? ?→x x x tdt tdt sin lim 的值等于( ). A.-1 B.0 C.1 D.2 4.设x x x f +=3 )(,则 ? -2 2 )(dx x f 的值等于( )。 A .0 B.8 C. ? 2 )(dx x f D. ?2 )(2dx x f 5.设广义积分 ? +∞ 1 dx x α收敛,则必定有( )。 A.1-<α B. 1->α C. 1<α D. 1>α 6.求由1,2,===y x e y x 围成的曲边梯形的面积时,若选择x为积分变量,则积分区间为( )。 A.[0,2e ] B.[0,2] C.[1,2] D.[0,1] 7.由曲线2,0,===y x e y x 所围成的曲边梯形的面积为( )。 A.dy y ? 2 1 ln B. dy e e x ? 2 C.dy y ? 2 ln 1ln D. ()d x e x ?-2 1 2 8.由直线1,+-==x y x y ,及x轴围成平面图形的面积为( )。 A. ()[]dy y y ?--1 1 B. ()[]dx x x ? -+-21 1 C. ()[]dy y y ? --210 1 D.()[]dx x x ? +--1 1 9.由e x x y x y e ===,log ,ln 1围成曲边梯形,用微法求解时,若选x为积分变量,面积微元为 ( )。 A.dx x x e ???? ? ? +1 log ln B.dy x x e ???? ? ?+1log ln C.dx x x e ???? ? ?-1log ln D.dy x x e ??? ? ? ?-1log ln 10.由0,1,1,2==-==y x x x y 围成平面图形的面积为( )。 A. ? -1 1 2dx x B. ? 1 2dx x C. ? 1 dy y D.? 1 2 dy y

不定积分解题方法及技巧总结剖析

? 不定积分解题方法总结 摘要:在微分学中,不定积分是定积分、二重积分等的基础,学好不定积分十分重要。然而在学习过程中发现不定积分不像微分那样直观和“有章可循”。本文论述了笔者在学习过程中对不定积分解题方法的归纳和总结。 关键词:不定积分;总结;解题方法 不定积分看似形式多样,变幻莫测,但并不是毫无解题规律可言。本文所总结的是一般规律,并非所有相似题型都适用,具体情况仍需要具体分析。 1.利用基本公式。(这就不多说了~) 2.第一类换元法。(凑微分) 设f(μ)具有原函数F(μ)。则 C x F x d x f dx x x f +==???)]([)()]([)(')]([????? 其中)(x ?可微。 用凑微分法求解不定积分时,首先要认真观察被积函数,寻找导数项内容,同时为下一步积分做准备。当实在看不清楚被积函数特点时,不妨从被积函数中拿出部分算式求导、尝试,或许从中可以得到某种启迪。如例1、例2: 例1:? +-+dx x x x x ) 1(ln )1ln( 【解】) 1(1 111)'ln )1(ln(+- =-+= -+x x x x x x C x x x x d x x dx x x x x +-+-=-+-+-=+-+??2 )ln )1(ln(2 1)ln )1(ln()ln )1(ln()1(ln )1ln(例2:? +dx x x x 2 )ln (ln 1 【解】x x x ln 1)'ln (+= C x x x x x dx dx x x x +-==++??ln 1 )ln (ln )1(ln 122 3.第二类换元法: 设)(t x ?=是单调、可导的函数,并且)(')]([.0)('t t f t ???又设≠具有原函数,则有换元公式 ??=dt t t f dx f )(')]([x)(??

定积分计算的总结论文

定积分计算的总结 闫佳丽 摘 要:本文主要考虑定积分的计算,对一些常用的方法和技巧进行了归纳和总结.在定积分的计算中,常用的计算方法有四种:(1)定义法、(2)牛顿—莱布尼茨公式、(3)定积分的分部积分法、(4)定积分的换元积分法. 关键词:定义、牛顿—莱布尼茨公式、分部积分、换元. 1前言 17世纪后期,出现了一个崭新的数学分支—数学分析.它在数学领域中占据着主导地位.这种新数学思想的特点是非常成功地运用了无限过程的运算即极限运算.而其中的微分和积分这两个过程,则构成系统微积分的核心.并奠定了全部分析学的基础.而定积分是微积分学中的一个重要组成部分. 2正文 那么,究竟什么是定积分呢?我们给定积分下一个定义:设函数()f x 在[],a b 有定义,任给[],a b 一个分法T 和一组{}k ξξ=,有积分和 1 (,)()n k k k T f x σξξ==?∑,若当()0l T →时,积分和(,)T σξ存在有限极限,设 ()0 ()0 1 lim (,)lim ()n k k l T l T k T f x I σξξ→→==?=∑,且数I 与分法T 无关,也与k ξ在[] 1,k k x x -的取法无关,即{}0,0,:(),k T l T εδδξξ?>?>?

高等数学第五章定积分总结

第五章 定积分 内容:定积分的概念和性质、微积分基本公式、换元积分法、分部积分法、广义积分。 要求:理解定积分的概念和性质。掌握牛顿-莱布尼兹公式、定积分的换元法和分部积分法,理解变上限的定积分作为其上限的函数及其求导定理,理解广义积分的概念和计算方法。 重点:定积分的概念和性质;微积分基本公式;换元积分法、分部积分法。 难点:定积分的概念;变上限积分函数及其导数;换元积分法、分部积分法。 §1.定积分的概念 一、实例分析 1.曲边梯形的面积 设函数)(x f y =∈C[a , b ], 且)(x f y =>0. 由曲线0,,),(====y b x a x x f y 围成的图形称为曲边梯形. 如何定义曲边梯形的面积?(1) 矩形面积=底高. (2) 预备一张细长条的纸, 其面积底高. (3) 预备一张呈曲边梯形状的纸, 将其撕成许多细长条. (4) 启示: 将曲边梯形分割为许多细长条, 分割得越细, 误差越小. y =f (x ) x =a x =b y =f (x ) a=x 0 x 1 x i-1 x i x n =b

第i 个细长条面积)],,[()(11---=?∈??≈?i i i i i i i i i x x x x x x f S ξξ 曲边梯形面积: ∑=?≈ n i i i x f S 1 )(ξ 定积分概念示意图.ppt 定义: ),,2,1,max {()(lim 1 n i x x f S i n i i i Λ=?=?=∑=→λξλ 抛开上述过程的几何意义,将其数学过程定义为定积分. 二、定积分的定义 1. 定义 设)(x f y =在[a , b ]有定义, 且有界. (1) 分割: 用分点b x x x a n =<<<=Λ10把[a , b ]分割成n 个小区间: } ,,2,1,max{,,,2,1],,[11n i x x x x n i x x i i i i i i ΛΛ=?=-=?=--λ记 (2) 取点: 在每个小区间],[1i i x x -上任取一点i , 做乘积: i i x f ?)(ξ. (3) 求和: ∑=?n i i i x f 1 )(ξ (4) 取极限: ∑=→?n i i i x f 1 )(lim ξλ 若极限存在, 则其为)(x f 在[a , b ]上的定积分, 记作: ? b a dx x f )(. 即: ∑? =→?=n i i i b a x f dx x f 1 )(lim )(ξλ [a , b ]: 积分区间;a :积分下限;b :积分上限; ∑=?n i i i x f 1 )(ξ积分和式. 问题: 定积分是极限值, 在求极限的过程中, 谁是常量, 谁是变量?

高中数学常见题型解法归纳 求定积分的方法

高中数学常见题型解法归纳 求定积分的方法 【知识要点】 一、曲边梯形的定义 我们把由直线,,0x a x b y ===和曲线()y f x =所围成的图形称为曲边梯形. 二、曲边梯形的面积的求法 分割→近似代替(以直代曲)→求和→取极限 三、定积分的概念 一般地,设函数()f x 在区间[,]a b 上连续,用分点 0121i i n a x x x x x x b -=<<<<<<<=L L 将区间[,]a b 等分成n 个小区间,每个小区间长度为x D (b a x n -D =),在每个小区间[]1,i i x x -上任取一点()1,2,,i i n x =L ,作和式:1 1 ()()n n n i i i i b a S f x x f n ξ==-= ?=∑∑ 如果x D 无限接近于0(亦即n →+∞)时,上述和式n S 无限趋近于常数S ,那么称该常数S 为函数 ()f x 在区间[,]a b 上的定积分.记为:()b a S f x dx =?, 其中 ? 是积分号,b 是积分上限,a 是积分下限,()f x 是被积函数,x 是积分变量,[,]a b 是积分区间,()f x dx 是被积式. 说明:(1)定积分 ()b a f x dx ? 是一个常数,可以是正数,也可以是负数,也可以是零,即n S 无限趋 近的常数S (n →+∞时)记为 ()b a f x dx ? ,而不是n S . (2)用定义求定积分的一般方法是:①分割:n 等分区间[],a b ;②近似代替:取点[]1,i i i x x ξ-∈;③ 求和:1 ()n i i b a f n ξ=-∑;④取极限:()1()lim n b i a n i b a f x dx f n ξ→∞=-=∑? 四、定积分的性质 根据定积分的定义,不难得出定积分的如下性质: 性质1()()()b b a a kf x dx k f x dx k =??为常数(定积分的线性性质); 性质2 1212[()()]()()b b b a a a f x f x dx f x dx f x dx ±=±? ??(定积分的线性性质);

c语言用六种方法求定积分

C语言实验报告 求定积分 班级10信息与计算科学一班姓名戴良伟 学号 21

1. 描述问题 利用①左矩形公式,②中矩形公式,③右矩形公式 ,④梯形公式,⑤simpson 公式,⑥Gauss 积分公式求解定积分。 2. 分析问题 定积分 定积分的定义 定积分就是求函数()f x 在区间[],a b 中图线下包围的面积。即()0,,,y x a x b y f x ====所包围的面积。这个图形称为曲边梯形,特例是曲边梯形。如下图: (图1) 设一元函数()y f x =,在区间[],a b 内有定义。将区间[],a b 分成n 个小区间[][][][]00112,,,,,......,i a x x x x x x b 。设1i i i x x x -?=-,取区间i x ?中曲线上任意一点记做()i f ξ,作和式: ()1lim n n i f i xi ξ→+∞=??? ??? ∑ 若记λ为这些小区间中的最长者。当0λ→时,若此和式的极限存在,则称这个和式是函数()f x 在区间[],a b 上的定积分。 记作:()b a f x dx ? 其中称a 为积分下限, b 为积分上限,()f x 为被积函数,()f x dx 为被积式,∫ 为积分号。 之所以称其为定积分,是因为它积分后得出的值是确定的,是一个数,而不是一个函数。 定积分的几何意义[1] 它是介于x 轴、函数f(x)的图形及两条直线x=a ,x=b 之间的各个部分面积的代数和。在x 轴上方的面积取正号;在x 轴下方的面积取负号。如图 言实现定积分计算的算法 利用复合梯形公式实现定积分的计算

定积分应用方法总结(经典题型归纳)

定积分复习重点 定积分的考查频率不是很高,本讲复习主要掌握定积分的概念和几何意义,使用微积分基本定理计算定积分,使用定积分求曲边图形的面积和解决一些简单的物理问题等. 1.定积分的运算性质 1212(1)()()(). (2)[()()]()(). (3)()()()(). b b a a b b b a a a b c b a a c kf x dx k f x dx k f x f x dx f x dx f x dx f x dx f x dx f x dx =±=±=+????????为常数其中a。 例题:1.2352 2(+5x )0 x dx -=?(同步训练P32 第3题) 2. a a a (cos -5sin 2)(cos -5sin )24a a a x x x dx x x x dx dx a ---+=+=? ?? 3) (2007枣庄模拟)已知f(x)为偶函数,且60 ()8 f x dx =? ,则6 6 ()f x dx -? 等于( B ) A.0 B.4 C.8 D.16 (同步训练P30 第6题) 4.利用定积分求曲边多边形的面积 在直角坐标系中,要结合具体图形来定: 方法总结:求由两条曲线围成的图形的面积的解题步骤 (1)画出图形,(2)求出交点的横坐标.定出积分的上、下限; (1)(); (2)()(); (3)()()()(); (4)[()()]b a b b a a c b c b a c a c b a S f x dx S f x dx f x dx S f x dx f x dx f x dx f x dx S f x g x dx == =-=+=-=-?? ??????

定积分计算例题

定积分计算例题

————————————————————————————————作者:————————————————————————————————日期: 2

1 / 7 第5章 定积分及其应用 (一)、单项选择题 1.函数()x f 在区间[a ,b]上连续是()x f 在[a ,b]上可积的( )。 A .必要条件 B 充分条件 C 充分必要条件 D 既非充分也非必要条件 2.下列等式不正确的是( )。 A .()()x f dx x f dx d b a =??????? B. ()()()[]()x b x b f dt x f dx d x b a '=???? ??? C. ()()x f dx x f dx d x a =??????? D. ()()x F dt t F dx d x a '=???? ??'? 3.? ?→x x x tdt tdt sin lim 的值等于( ). A.-1 B.0 C.1 D.2 4.设x x x f +=3 )(,则 ? -2 2 )(dx x f 的值等于( )。 A .0 B.8 C. ? 2 )(dx x f D. ?2 )(2dx x f 5.设广义积分 ? +∞ 1 dx x α收敛,则必定有( )。 A.1-<α B. 1->α C. 1<α D. 1>α 6.求由1,2,===y x e y x 围成的曲边梯形的面积时,若选择x为积分变量,则积分区间为( )。 A.[0,2e ] B.[0,2] C.[1,2] D.[0,1] 7.由曲线2,0,===y x e y x 所围成的曲边梯形的面积为( )。 A.dy y ? 2 1 ln B. dy e e x ? 2 C.dy y ? 2 ln 1 ln D. ()d x e x ?-2 1 2 8.由直线1,+-==x y x y ,及x轴围成平面图形的面积为( )。 A. ()[]dy y y ?--1 1 B.()[]dx x x ? -+-21 1 C. ()[]dy y y ? --210 1 D.()[]dx x x ? +--1 1 9.由e x x y x y e ===,log ,ln 1围成曲边梯形,用微法求解时,若选x为积分变量,面积微元为 ( )。 A.dx x x e ???? ? ? +1 log ln B.dy x x e ???? ? ?+1log ln C.dx x x e ???? ? ?-1log ln D.dy x x e ??? ? ? ?-1log ln 10.由0,1,1,2==-==y x x x y 围成平面图形的面积为( )。