焦作市普通高中2018-2019学年高二上学期定位考试数学试卷
焦作市第三高级中学2018-2019学年高二上学期第二次月考试卷数学

焦作市第三高级中学2018-2019学年高二上学期第二次月考试卷数学班级__________姓名__________ 分数__________一、选择题1. 四棱锥P ﹣ABCD 的底面是一个正方形,PA ⊥平面ABCD ,PA=AB=2,E 是棱PA 的中点,则异面直线BE 与AC 所成角的余弦值是()A .B .C .D .2. 若函数是偶函数,则函数的图象的对称轴方程是( )])1(+=x f y )(x f y =A . B .C .D .1=x 1-=x 2=x 2-=x 3. 若变量x ,y 满足:,且满足(t+1)x+(t+2)y+t=0,则参数t 的取值范围为()A .﹣2<t <﹣B .﹣2<t ≤﹣C.﹣2≤t ≤﹣D .﹣2≤t <﹣4. 若满足约束条件,则当取最大值时,的值为( )y x ,⎪⎪⎩⎪⎪⎨⎧≥≤-+≥+-0033033y y x y x 31++x y y x +A . B . C . D .1-3-35. 设a=lge ,b=(lge )2,c=lg,则()A .a >b >cB .c >a >bC .a >c >bD .c >b >a6. 为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:由算得2()()()()()n ad bc K a b c d a c b d -=++++22500(4027030160)9.96720030070430K ⨯⨯-⨯==⨯⨯⨯附表:参照附表,则下列结论正确的是( )3.841 6.635 10.828k 2() 0.050 0.010 0.001P K k ≥①有以上的把握认为“该地区的老年人是否需要志愿者提供帮助与性别无关”; 99%②有以上的把握认为“该地区的老年人是否需要志愿者提供帮助与性别有关”;99%③采用系统抽样方法比采用简单随机抽样方法更好;④采用分层抽样方法比采用简单随机抽样方法更好;A .①③B .①④C .②③D .②④7. 已知三个数,,成等比数列,其倒数重新排列后为递增的等比数列的前三1a -1a +5a +{}n a 项,则能使不等式成立的自然数的最大值为( )1212111n na a a a a a +++≤+++ A .9 B .8C.7D .58. 直线l ⊂平面α,直线m ⊄平面α,命题p :“若直线m ⊥α,则m ⊥l ”的逆命题、否命题、逆否命题中真命题的个数为( )A .0B .1C .2D .39. 若圆心坐标为的圆在直线上截得的弦长为 )()2,1-10x y --=A . B . ()()22210x y -++=()()22214x y -++=C . D .()()22218x y -++=()()222116x y -++=10.“a >b ,c >0”是“ac >bc ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件11.定义在[1,+∞)上的函数f (x )满足:①当2≤x ≤4时,f (x )=1﹣|x ﹣3|;②f (2x )=cf (x )(c 为正常数),若函数的所有极大值点都落在同一直线上,则常数c 的值是()A.1B.±2C.或3D.1或212.极坐标系中,点P,Q分别是曲线C1:ρ=1与曲线C2:ρ=2上任意两点,则|PQ|的最小值为()A.1B.C.D.2二、填空题13.为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y(毫克)与时间t(小时)成正比;药物释放完毕后,y与t的函数关系式为y=()t﹣a(a为常数),如图所示,据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那从药物释放开始,至少需要经过 小时后,学生才能回到教室.14.定义某种运算⊗,S=a⊗b的运算原理如图;则式子5⊗3+2⊗4= .15.设函数则______;若,,则的大小关系是______.16.如图所示,在三棱锥C ﹣ABD 中,E 、F 分别是AC 和BD 的中点,若CD=2AB=4,EF ⊥AB ,则EF 与CD所成的角是 .17.已知双曲线x 2﹣y 2=1,点F 1,F 2为其两个焦点,点P 为双曲线上一点,若PF 1⊥PF 2,则|PF 1|+|PF 2|的值为 . 18.若双曲线的方程为4x 2﹣9y 2=36,则其实轴长为 .三、解答题19.本小题满分10分选修:坐标系与参数方程选讲44-在直角坐标系中,直线的参数方程为为参数,在极坐标系与直角坐标系取相同的长xoy 3x y ⎧=-⎪⎪⎨⎪=+⎪⎩xOy 度单位,且以原点为极点,以轴正半轴为极轴中,圆的方程为.O xC ρθ=Ⅰ求圆的圆心到直线的距离;C Ⅱ设圆与直线交于点,若点的坐标为,求.C A B 、P (3,PA PB +20.已知函数(a ≠0)是奇函数,并且函数f (x )的图象经过点(1,3),(1)求实数a ,b 的值;(2)求函数f (x )的值域.21.已知函数f (x )=(sinx+cosx )2+cos2x (1)求f (x )最小正周期;(2)求f (x )在区间[]上的最大值和最小值.22.(本小题满分10分)选修4-4:坐标系与参数方程已知曲线的极坐标方程是,以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立C 2cos ρθ=平面直角坐标系,直线的参数方程是(为参数).243x ty t=-+⎧⎨=⎩(1)写出曲线的参数方程,直线的普通方程;C (2)求曲线上任意一点到直线的距离的最大值.C 23.在某大学自主招生考试中,所有选报Ⅱ类志向的考生全部参加了“数学与逻辑”和“阅读与表达”两个科目的考试,成绩分为A ,B ,C ,D ,E 五个等级.某考场考生的两科考试成绩的数据统计如图所示,其中“数学与逻辑”科目的成绩为B 的考生有10人.(Ⅰ)求该考场考生中“阅读与表达”科目中成绩为A的人数;(Ⅱ)若等级A,B,C,D,E分别对应5分,4分,3分,2分,1分,求该考场考生“数学与逻辑”科目的平均分;(Ⅲ)已知参加本考场测试的考生中,恰有两人的两科成绩均为A.在至少一科成绩为A的考生中,随机抽取两人进行访谈,求这两人的两科成绩均为A的概率.24.已知函数f(x)=cosx(sinx+cosx)﹣.(1)若0<α<,且sinα=,求f(α)的值;(2)求函数f(x)的最小正周期及单调递增区间.焦作市第三高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】B【解析】解:以A 为原点,AB 为x 轴,AD 为y 轴,AP 为z 轴,建立空间直角坐标系,则B (2,0,0),E (0,0,1),A (0,0,0),C (2,2,0),=(﹣2,0,1),=(2,2,0),设异面直线BE 与AC 所成角为θ,则cos θ===.故选:B .2. 【答案】A 【解析】试题分析:∵函数向右平移个单位得出的图象,又是偶函数,对称轴方程)1(+=x f y )(x f y =)1(+=x f y 为,的对称轴方程为.故选A .0=x ∴)(x f y =1=x 考点:函数的对称性.3. 【答案】C【解析】解:作出不等式组对应的平面区域如图:(阴影部分).由(t+1)x+(t+2)y+t=0得t (x+y+1)+x+2y=0,由,得,即(t+1)x+(t+2)y+t=0过定点M (﹣2,1),则由图象知A ,B 两点在直线两侧和在直线上即可,即[2(t+2)+t][﹣2(t+1)+3(t+2)+t]≤0,即(3t+4)(2t+4)≤0,解得﹣2≤t≤﹣,即实数t的取值范围为是[﹣2,﹣],故选:C.【点评】本题主要考查线性规划的应用,利用数形结合是解决本题的关键.综合性较强,属于中档题.4.【答案】D【解析】考点:简单线性规划.5.【答案】C【解析】解:∵1<e <3<,∴0<lge <1,∴lge >lge >(lge )2.∴a >c >b .故选:C .【点评】本题主要考查对数的单调性.即底数大于1时单调递增,底数大于0小于1时单调递减. 6. 【答案】D【解析】解析:本题考查独立性检验与统计抽样调查方法.由于,所以有99%的把握认为该地区的老年人是否需要帮助与性别有关,②正确;该地区老年9.967 6.635>人是否需要帮助与性别有关,并且从样本数据能看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男、女两层并采用分层抽样方法比采用简单随机抽样方法更好,④正确,选D .7. 【答案】C 【解析】试题分析:因为三个数等比数列,所以,倒数重新排列后恰1,1,5a a a -++()()()2115,3a a a a +=-+∴=好为递增的等比数列的前三项,为,公比为,数列是以为首项,为公比的等比数列,则{}n a 111,,8421n a ⎧⎫⎨⎬⎩⎭12不等式等价为,整理,得1212111n na a a a a a +++≤+++ ()1181122811212n n ⎛⎫-- ⎪⎝⎭≤--,故选C. 1722,17,n n n N +≤∴≤≤≤∈考点:1、等比数列的性质;2、等比数列前项和公式.8. 【答案】B【解析】解:∵直线l ⊂平面α,直线m ⊄平面α,命题p :“若直线m ⊥α,则m ⊥l ”,∴命题P 是真命题,∴命题P 的逆否命题是真命题;¬P :“若直线m 不垂直于α,则m 不垂直于l ”,∵¬P 是假命题,∴命题p 的逆命题和否命题都是假命题.故选:B . 9. 【答案】B 【解析】考点:圆的方程.1111]10.【答案】A【解析】解:由“a>b,c>0”能推出“ac>bc”,是充分条件,由“ac>bc”推不出“a>b,c>0”不是必要条件,例如a=﹣1,c=﹣1,b=1,显然ac>bc,但是a<b,c<0,故选:A.【点评】本题考查了充分必要条件,考查了不等式的性质,是一道基础题11.【答案】D【解析】解:∵当2≤x≤4时,f(x)=1﹣|x﹣3|.当1≤x<2时,2≤2x<4,则f(x)=f(2x)=(1﹣|2x﹣3|),此时当x=时,函数取极大值;当2≤x≤4时,f(x)=1﹣|x﹣3|;此时当x=3时,函数取极大值1;当4<x≤8时,2<≤4,则f(x)=cf()=c(1﹣|﹣3|),此时当x=6时,函数取极大值c.∵函数的所有极大值点均落在同一条直线上,即点(,),(3,1),(6,c)共线,∴=,解得c=1或2.故选D.【点评】本题考查的知识点是三点共线,函数的极值,其中根据已知分析出分段函数f(x)的解析式,进而求出三个函数的极值点坐标,是解答本题的关键.12.【答案】A【解析】解:极坐标系中,点P,Q分别是曲线C1:ρ=1与曲线C2:ρ=2上任意两点,可知两条曲线是同心圆,如图,|PQ|的最小值为:1.故选:A.【点评】本题考查极坐标方程的应用,两点距离的求法,基本知识的考查.二、填空题13.【答案】0.6【解析】解:当t>0.1时,可得1=()0.1﹣a∴0.1﹣a=0a=0.1由题意可得y≤0.25=,即()t﹣0.1≤,即t﹣0.1≥解得t≥0.6,由题意至少需要经过0.6小时后,学生才能回到教室.故答案为:0.6【点评】本题考查函数、不等式的实际应用,以及识图和理解能力.易错点:只单纯解不等式,而忽略题意,得到其他错误答案.14.【答案】 14 .【解析】解:有框图知S=a⊗b=∴5⊗3+2⊗4=5×(3﹣1)+4×(2﹣1)=14故答案为14【点评】新定义题是近几年常考的题型,要重视.解决新定义题关键是理解题中给的新定义.15.【答案】,【解析】【知识点】函数图象分段函数,抽象函数与复合函数【试题解析】,因为,所以又若,结合图像知:所以:。
焦作市第二高级中学2018-2019学年高二上学期第二次月考试卷数学

焦作市第二高级中学2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1. 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若(acosB+bcosA )=2csinC ,a+b=8,且△ABC 的面积的最大值为4,则此时△ABC 的形状为( )A .等腰三角形B .正三角形C .直角三角形D .钝角三角形2. 设变量x ,y 满足约束条件,则目标函数z=4x+2y 的最大值为( )A .12B .10C .8D .23. 已知在△ABC 中,a=,b=,B=60°,那么角C 等于( )A .135°B .90°C .45°D .75°4. 已知正三棱柱111ABC A B C 的底面边长为4cm ,高为10cm ,则一质点自点A 出发,沿着三棱 柱的侧面,绕行两周到达点1A 的最短路线的长为( )A .16cmB .C .D .26cm5. 圆心为(1,1)且过原点的圆的方程是( )A .2=1B .2=1C .2=2D .2=26. 若等式(2x ﹣1)2014=a 0+a 1x+a 2x 2+…+a 2014x 2014对于一切实数x 都成立,则a 0+1+a 2+…+a 2014=( )A .B .C .D .07. 如图,棱长为1的正方体ABCD ﹣A 1B 1C 1D 1中,M 为线段A 1B 上的动点,则下列结论正确的有( ) ①三棱锥M ﹣DCC 1的体积为定值 ②DC 1⊥D 1M ③∠AMD 1的最大值为90° ④AM+MD 1的最小值为2.A .①②B .①②③C .③④D .②③④8. 将正方形的每条边8等分,再取分点为顶点(不包括正方形的顶点),可以得到不同的三角形个数为( ) A .1372 B .2024 C .3136 D .44959. ABC ∆中,“A B >”是“cos2cos2B A >”的( ) A. 充分必要条件 B. 充分不必要条件 C. 必要不充分条件 D. 既不充分也不必要条件【命题意图】本题考查三角函数的性质与充分必要条件等基础知识,意在考查构造函数的思想与运算求解能力.10.已知数列{a n }满足log 3a n +1=log 3a n+1(n ∈N *),且a 2+a 4+a 6=9,则log (a 5+a 7+a 9)的值是( )A .﹣B .﹣5C .5D .11.等比数列{a n }满足a 1=3,a 1+a 3+a 5=21,则a 2a 6=( ) A .6B .9C .36D .7212.已知集合,则A0或 B0或3C1或D1或3二、填空题13.设()x xf x e=,在区间[0,3]上任取一个实数0x ,曲线()f x 在点()00,()x f x 处的切线斜率为k ,则随机事件“0k <”的概率为_________. 14.已知函数f (x )=,若关于x 的方程f (x )=k 有三个不同的实根,则实数k 的取值范围是 .15.将一枚质地均匀的骰子先后抛掷两次,若第一次朝上一面的点数为a ,第二次朝上一面的点数为b ,则函数y=ax 2﹣2bx+1在(﹣∞,2]上为减函数的概率是 .16()23k x =-+有两个不等实根,则的取值范围是 .17.已知命题p :实数m 满足m 2+12a 2<7am (a >0),命题q :实数m 满足方程+=1表示的焦点在y 轴上的椭圆,且p 是q 的充分不必要条件,a 的取值范围为 .18.函数f (x )=log a (x ﹣1)+2(a >0且a ≠1)过定点A ,则点A 的坐标为 .三、解答题19.从某中学高三某个班级第一组的7名女生,8名男生中,随机一次挑选出4名去参加体育达标测试. (Ⅰ)若选出的4名同学是同一性别,求全为女生的概率; (Ⅱ)若设选出男生的人数为X ,求X 的分布列和EX .20.(本小题满分12分)已知圆M 与圆N :222)35()35(r y x =++-关于直线x y =对称,且点)35,31(-D 在圆M 上.(1)判断圆M 与圆N 的位置关系;(2)设P 为圆M 上任意一点,)35,1(-A ,)35,1(B ,B A P 、、三点不共线,PG 为APB ∠的平分线,且交AB 于G . 求证:PBG ∆与APG ∆的面积之比为定值.21.生产A ,B 两种元件,其质量按测试指标划分为:指标大于或等于82为正品,小于82为次品.现随机抽(Ⅱ)生产一件元件A,若是正品可盈利40元,若是次品则亏损5元;生产一件元件B,若是正品可盈利50元,若是次品则亏损10元.在(Ⅰ)的前提下,(ⅰ)记X为生产1件元件A和1件元件B所得的总利润,求随机变量X的分布列和数学期望;(ⅱ)求生产5件元件B所获得的利润不少于140元的概率.22.已知x2﹣y2+2xyi=2i,求实数x、y的值.23.在长方体ABCD﹣A1B1C1D1中,AB=BC=1,AA1=2,E为BB1中点.(Ⅰ)证明:AC⊥D1E;(Ⅱ)求DE与平面AD1E所成角的正弦值;(Ⅲ)在棱AD上是否存在一点P,使得BP∥平面AD1E?若存在,求DP的长;若不存在,说明理由.24.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知二次函数()f x 为偶函数且图象经过原点,其导函数()'f x 的图象过点()12,. (1)求函数()f x 的解析式; (2)设函数()()()'g x f x f x m =+-,其中m 为常数,求函数()g x 的最小值.焦作市第二高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】A【解析】解:∵(acosB+bcosA)=2csinC,∴(sinAcosB+sinBcosA)=2sin2C,∴sinC=2sin2C,且sinC>0,∴sinC=,∵a+b=8,可得:8≥2,解得:ab≤16,(当且仅当a=b=4成立)∵△ABC的面积的最大值S△ABC=absinC≤=4,∴a=b=4,则此时△ABC的形状为等腰三角形.故选:A.2.【答案】B【解析】解:本题主要考查目标函数最值的求法,属于容易题,做出可行域,由图可知,当目标函数过直线y=1与x+y=3的交点(2,1)时,z取得最大值10.3.【答案】D【解析】解:由正弦定理知=,∴sinA==×=,∵a<b,∴A<B,∴A=45°,∴C=180°﹣A﹣B=75°,故选:D.4.【答案】D【解析】考点:多面体的表面上最短距离问题.【方法点晴】本题主要考查了多面体和旋转体的表面上的最短距离问题,其中解答中涉及到多面体与旋转体的侧面展开图的应用、直角三角形的勾股定理的应用等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,学生的空间想象能力、以及转化与化归思想的应用,试题属于基础题.5.【答案】D【解析】解:由题意知圆半径r=,∴圆的方程为2=2.故选:D.【点评】本题考查圆的方程的求法,解题时要认真审题,注意圆的方程的求法,是基础题.6.【答案】B【解析】解法一:∵,∴(C为常数),取x=1得,再取x=0得,即得,∴,故选B.解法二:∵,∴,∴,故选B.【点评】本题考查二项式定理的应用,定积分的求法,考查转化思想的应用.7.【答案】A【解析】解:①∵A1B∥平面DCC1D1,∴线段A1B上的点M到平面DCC1D1的距离都为1,又△DCC1的面积为定值,因此三棱锥M﹣DCC1的体积V==为定值,故①正确.②∵A1D1⊥DC1,A1B⊥DC1,∴DC1⊥面A1BCD1,D1P⊂面A1BCD1,∴DC1⊥D1P,故②正确.③当0<A1P<时,在△AD1M中,利用余弦定理可得∠APD1为钝角,∴故③不正确;④将面AA1B与面A1BCD1沿A1B展成平面图形,线段AD1即为AP+PD1的最小值,在△D1A1A中,∠D1A1A=135°,利用余弦定理解三角形得AD1==<2,故④不正确.因此只有①②正确.故选:A.8.【答案】C【解析】【专题】排列组合.【分析】分两类,第一类,三点分别在三条边上,第二类,三角形的两个顶点在正方形的一条边上,第三个顶点在另一条边,根据分类计数原理可得.【解答】解:首先注意到三角形的三个顶点不在正方形的同一边上.任选正方形的三边,使三个顶点分别在其上,有4种方法,再在选出的三条边上各选一点,有73种方法.这类三角形共有4×73=1372个.另外,若三角形有两个顶点在正方形的一条边上,第三个顶点在另一条边上,则先取一边使其上有三角形的两个顶点,有4种方法, 再在这条边上任取两点有21种方法,然后在其余的21个分点中任取一点作为第三个顶点.这类三角形共有4×21×21=1764个. 综上可知,可得不同三角形的个数为1372+1764=3136.故选:C .【点评】本题考查了分类计数原理,关键是分类,还要结合几何图形,属于中档题.9. 【答案】A.【解析】在ABC ∆中2222cos 2cos 212sin 12sin sin sin sin sin B A B A A B A B >⇒->-⇔>⇔>A B ⇔>,故是充分必要条件,故选A.10.【答案】B【解析】解:∵数列{a n }满足log 3a n +1=log 3a n+1(n ∈N *), ∴a n+1=3a n >0,∴数列{a n }是等比数列,公比q=3. 又a 2+a 4+a 6=9, ∴=a 5+a 7+a 9=33×9=35,则log(a 5+a 7+a 9)==﹣5.故选;B .11.【答案】D【解析】解:设等比数列{a n }的公比为q ,∵a 1=3,a 1+a 3+a 5=21,∴3(1+q 2+q 4)=21,解得q 2=2. 则a 2a 6=9×q 6=72.故选:D .12.【答案】B【解析】,,故或,解得或或,又根据集合元素的互异性,所以或。
2018_2019学年高二数学上学期期末考试试卷

2018—2019学年度第一学期期末调研测试试题高二数学2019.01(全卷满分160分,考试时间120分钟)注意事项:1. 答卷前,请考生务必将自己的学校、姓名、考试号等信息填写在答卷规定的地方. 2.试题答案均写在答题卷相应位置,答在其它地方无效.一、填空题(本大题共14小题,每小题5分,共70分,请将答案填写在答题卷相应的位置上)1.命题“(0,)2x π∀∈,sin 1x <”的否定是▲.2.已知直线l 过点()()1120A ,B ,、,则直线l 的斜率为▲. 3.一质点的运动方程为210S t =+(位移单位:m ;时间单位:s ),则该质点在3t =时的瞬时速度为▲/m s .4. 课题组进行城市空气质量调查,按地域把24个城市分成甲、乙、丙三组,对应的城市数分别为4128、、, 若用分层抽样的方法抽取6个城市,则丙组中应抽取的城市数为▲个.5.在平面直角坐标系xOy 中,抛物线28y x =的准线方程为▲.6.执行如图所示的伪代码,若输出的y 的值为10,则输入的x 的值 是▲.7.若R a ∈,则“3a =-”是“直线1l :10ax y +-=与2l :()1240a x ay +++=垂直”的▲条件.(注:在“充要”、“既不充分也不必要”、“充分不必要”、“必要不充分”中选填一个) 8.函数()332f x x x =-+的单调递减区间为▲.9. 已知椭圆()222210x y a b a b+=>>左焦点为F 1,左准线为l ,若过F 1且垂直于x 轴的弦的长等于点F 1到l 的距离,则椭圆的离心率是▲.10. 有一个质地均匀的正四面体木块4个面分别标有数字1234,,,.将此木块在水平桌面上 抛两次,则两次看不到...的数字都大于2的概率为▲. 11. 在平面直角坐标系xOy 中,已知双曲线2211x y m m -=+的一个焦点为()30,,则双曲线 的渐近线方程为▲.(第6题)12. 已知可导函数()f x 的定义域为R ,()12f =,其导函数()f x '满足()23f x x '>,则不 等式()3281f x x <+的解集为▲.13.已知圆()22:16C x y +-=,AB 为圆C 上的两个动点,且AB =G 为弦AB的中点.直线20l :x y --=上有两个动点PQ ,且2PQ =.当AB 在圆C 上运动时,PGQ ∠恒为锐角,则线段PQ 中点M 的横坐标取值范围为▲.14.函数()xf x x e a =-在(1,2)上单调递增,则实数a 的取值范围是▲.二、解答题:(本大题共6道题,计90分.解答应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分14分)已知m 为实数.命题p :方程221313x y m m +=--表示双曲线;命题q :对任意x R ∈,29(2)04x m x +-+>恒成立. (1)若命题p 为真命题,求实数m 的取值范围; (2)若命题“p 或q ”为真命题、“p 且q ”为假命题,求实数m 的取值范围.16.(本小题满分14分)某商场亲子游乐场由于经营管理不善突然倒闭。
2018-2019学年高二上学期期末考试数学(理科)试题

一、填空题(本大题共14小题,共70.0分)1.命题:“若,则”的逆否命题是______.【答案】若,则【解析】【分析】根据原命题和其逆否命题的形式,即可得到结果。
【详解】否定前提:否定结论:前提和结论都需要否定,然后调换位置本题正确结果:若,则【点睛】本题考查命题的基本定义,属于基础题。
2.已知复数(是虚数单位),则.【答案】【解析】试题分析:考点:复数模的定义3.已知椭圆,则椭圆的焦点坐标是______.【答案】,【解析】【分析】通过标准方程确定和,根据的关系,得到焦点。
【详解】由题意得:,由得:焦点坐标为本题正确结果:,【点睛】本题考察了椭圆标准方程的定义和简单几何性质,属于基础题。
4.“”是“”成立的______条件在“充分不必要”,“必要不充分”,“充要”,“既不充分又不必要”中选一个填写.【答案】充分不必要【解析】【分析】通过求解不等式得到,判断其与的关系即可得到结果。
【详解】由可得:当时,必有当时,则未必成立(如)本题正确结果:充分不必要【点睛】本题考查充要条件的基础知识,属于基础题。
5.函数,的单调递减区间是______.【答案】【解析】【分析】对求导,通过得到单调递减区间。
【详解】有题意得:令,解得:当时,,此时单调递减本题正确结果:【点睛】本题考查利用导数求解函数单调区间,属于基础题。
要注意在上是单调递减的。
6.若双曲线C:的离心率为,则的值为______.【答案】3【解析】【分析】通过离心率得到的关系,再利用双曲线得到之间的关系。
【详解】离心率,即又,所以本题正确结果:【点睛】本题考察了双曲线离心率以及之间的关系,属于基础题。
7.直线l过点,且与曲线相切于点,若,则实数a的值是______.【答案】2【解析】【分析】利用切线斜率既等于导函数的值,又可以表示为两点连线斜率公式的形式,得到关于的方程,解方程得到结果。
【详解】即切线斜率直线过,则本题正确结果:【点睛】本题考察了导数的几何意义,关键在于构造出关于切线斜率的等量关系,属于基础题。
焦作市第一中学2018-2019学年高二上学期第二次月考试卷数学

焦作市第一中学2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 若f (x )为定义在区间G 上的任意两点x 1,x 2和任意实数λ(0,1),总有f (λx 1+(1﹣λ)x 2)≤λf (x 1)+(1﹣λ)f (x 2),则称这个函数为“上进”函数,下列函数是“上进”函数的个数是( )①f (x )=,②f (x )=,③f (x )=,④f (x )=.A .4B .3C .2D .12. 若a >0,b >0,a+b=1,则y=+的最小值是( )A .2B .3C .4D .53. 已知平面α∩β=l ,m 是α内不同于l 的直线,那么下列命题中错误 的是( )A .若m ∥β,则m ∥lB .若m ∥l ,则m ∥βC .若m ⊥β,则m ⊥lD .若m ⊥l ,则m ⊥β 4. 若关于x 的不等式07|2||1|>-+-++m x x 的解集为R ,则参数m 的取值范围为( ) A .),4(+∞ B .),4[+∞ C .)4,(-∞ D .]4,(-∞【命题意图】本题考查含绝对值的不等式含参性问题,强化了函数思想、化归思想、数形结合思想在本题中的应用,属于中等难度.5. 已知全集U=R ,集合M={x|﹣2≤x ﹣1≤2}和N={x|x=2k ﹣1,k=1,2,…}的关系的韦恩(Venn )图如图所示,则阴影部分所示的集合的元素共有( )A .3个B .2个C .1个D .无穷多个6. 函数f (x )=ax 2+2(a ﹣1)x+2在区间(﹣∞,4]上为减函数,则a 的取值范围为( ) A .0<a ≤ B .0≤a ≤ C .0<a < D .a >7. 已知函数()2111x f x x ++=+,则曲线()y f x =在点()()11f ,处切线的斜率为( ) A .1 B .1- C .2 D .2- 8. 抛物线y=﹣x 2上的点到直线4x+3y ﹣8=0距离的最小值是( )A .B .C .D .39.已知P(x,y)为区域内的任意一点,当该区域的面积为4时,z=2x﹣y的最大值是()A.6 B.0 C.2 D.210.下列说法中正确的是()A.三点确定一个平面B.两条直线确定一个平面C.两两相交的三条直线一定在同一平面内D.过同一点的三条直线不一定在同一平面内11.口袋内装有一些大小相同的红球、白球和黒球,从中摸出1个球,摸出红球的概率是0.42,摸出白球的概率是0.28,那么摸出黒球的概率是()A.0.42 B.0.28 C.0.3 D.0.712.已知函数f(x)的图象如图,则它的一个可能的解析式为()A.y=2B.y=log3(x+1)C.y=4﹣D.y=二、填空题13.如图是函数y=f(x)的导函数y=f′(x)的图象,对此图象,有如下结论:①在区间(﹣2,1)内f(x)是增函数;②在区间(1,3)内f(x)是减函数;③在x=2时,f(x)取得极大值;④在x=3时,f(x)取得极小值.其中正确的是.14.设x∈(0,π),则f(x)=cos2x+sinx的最大值是.15.长方体的一个顶点上的三条棱长分别是3,4,5,且它的8个顶点都在同一个球面上,则这个球的表面积是 .16.等比数列{a n }的前n 项和S n =k 1+k 2·2n (k 1,k 2为常数),且a 2,a 3,a 4-2成等差数列,则a n =________. 17.等差数列{}n a 中,39||||a a =,公差0d <,则使前项和n S 取得最大值的自然数是________.18.在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为 .三、解答题19.某少数民族的刺绣有着悠久的历史,图(1)、(2)、(3)、(4)为她们刺绣最简单的四个图案,这些图案都由小正方形构成,小正方形数越多刺绣越漂亮,现按同样的规律刺绣(小正方形的摆放规律相同),设第n 个图形包含f (n )个小正方形.(Ⅰ)求出f (5);(Ⅱ)利用合情推理的“归纳推理思想”归纳出f (n+1)与f (n )的关系式,并根据你得到的关系式求f (n )的表达式.20.如图,在四棱锥P ﹣ABCD 中,底面ABCD 是正方形,PA ⊥底面ABCD ,且PA=AD ,点F 是棱PD 的中点,点E 为CD 的中点. (1)证明:EF ∥平面PAC ; (2)证明:AF ⊥EF .21.已知双曲线C:与点P(1,2).(1)求过点P(1,2)且与曲线C只有一个交点的直线方程;(2)是否存在过点P的弦AB,使AB的中点为P,若存在,求出弦AB所在的直线方程,若不存在,请说明理由.22.已知△ABC的三边是连续的三个正整数,且最大角是最小角的2倍,求△ABC的面积.23.某校为了解2015届高三毕业班准备考飞行员学生的身体素质,对他们的体重进行了测量,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右前3个小组的频率之比为1:2:4,其中第二小组的频数为11.(Ⅰ)求该校报考飞行员的总人数;(Ⅱ)若经该学校的样本数据来估计全省的总体数据,若从全省报考飞行员的学生中(人数很多)任选3人,设X 表示体重超过60kg 的学生人数,求X 的数学期望与方差.24.(本小题满分12分)在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,1)cos 2cos a B b A c -=, (Ⅰ)求tan tan AB的值;(Ⅱ)若a =4B π=,求ABC ∆的面积.焦作市第一中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】C【解析】解:由区间G 上的任意两点x 1,x 2和任意实数λ(0,1), 总有f (λx 1+(1﹣λ)x 2)≤λf (x 1)+(1﹣λ)f (x 2),等价为对任意x ∈G ,有f ″(x )>0成立(f ″(x )是函数f (x )导函数的导函数),①f (x )=的导数f ′(x )=,f ″(x )=,故在(2,3)上大于0恒成立,故①为“上进”函数;②f (x )=的导数f ′(x )=,f ″(x )=﹣•<0恒成立,故②不为“上进”函数;③f (x )=的导数f ′(x )=,f ″(x )=<0恒成立,故③不为“上进”函数;④f (x )=的导数f ′(x )=,f ″(x )=,当x ∈(2,3)时,f ″(x )>0恒成立.故④为“上进”函数. 故选C .【点评】本题考查新定义的理解和运用,同时考查导数的运用,以及不等式恒成立问题,属于中档题.2. 【答案】C【解析】解:∵a >0,b >0,a+b=1,∴y=+=(a+b )=2+=4,当且仅当a=b=时取等号.∴y=+的最小值是4. 故选:C .【点评】本题考查了“乘1法”与基本不等式的性质,属于基础题.3. 【答案】D【解析】【分析】由题设条件,平面α∩β=l ,m 是α内不同于l 的直线,结合四个选项中的条件,对结论进行证明,找出不能推出结论的即可【解答】解:A 选项是正确命题,由线面平行的性质定理知,可以证出线线平行;B 选项是正确命题,因为两个平面相交,一个面中平行于它们交线的直线必平行于另一个平面;C 选项是正确命题,因为一个线垂直于一个面,则必垂直于这个面中的直线;D 选项是错误命题,因为一条直线垂直于一个平面中的一条直线,不能推出它垂直于这个平面; 综上D 选项中的命题是错误的 故选D 4. 【答案】A5. 【答案】B【解析】解:根据题意,分析可得阴影部分所示的集合为M ∩N , 又由M={x|﹣2≤x ﹣1≤2}得﹣1≤x ≤3, 即M={x|﹣1≤x ≤3}, 在此范围内的奇数有1和3.所以集合M ∩N={1,3}共有2个元素, 故选B .6. 【答案】B【解析】解:当a=0时,f (x )=﹣2x+2,符合题意当a ≠0时,要使函数f (x )=ax 2+2(a ﹣1)x+2在区间(﹣∞,4]上为减函数 ∴⇒0<a ≤综上所述0≤a ≤ 故选B【点评】本题主要考查了已知函数再某区间上的单调性求参数a 的范围的问题,以及分类讨论的数学思想,属于基础题.7. 【答案】A 【解析】试题分析:由已知得()2112x f x x x -==-,则()21'f x x=,所以()'11f =. 考点:1、复合函数;2、导数的几何意义. 8. 【答案】A【解析】解:由,得3x 2﹣4x+8=0.△=(﹣4)2﹣4×3×8=﹣80<0.所以直线4x+3y﹣8=0与抛物线y=﹣x2无交点.设与直线4x+3y﹣8=0平行的直线为4x+3y+m=0联立,得3x2﹣4x﹣m=0.由△=(﹣4)2﹣4×3(﹣m)=16+12m=0,得m=﹣.所以与直线4x+3y﹣8=0平行且与抛物线y=﹣x2相切的直线方程为4x+3y﹣=0.所以抛物线y=﹣x2上的一点到直线4x+3y﹣8=0的距离的最小值是=.故选:A.【点评】本题考查了直线与圆锥曲线的关系,考查了数学转化思想方法,训练了两条平行线间的距离公式,是中档题.9.【答案】A解析:解:由作出可行域如图,由图可得A(a,﹣a),B(a,a),由,得a=2.∴A(2,﹣2),化目标函数z=2x﹣y为y=2x﹣z,∴当y=2x﹣z过A点时,z最大,等于2×2﹣(﹣2)=6.故选:A.10.【答案】D【解析】解:对A,当三点共线时,平面不确定,故A错误;对B,当两条直线是异面直线时,不能确定一个平面;故B错误;对C,∵两两相交且不共点的三条直线确定一个平面,∴当三条直线两两相交且共点时,不一定在同一个平面,如墙角的三条棱;故C错误;对D,由C可知D正确.故选:D.11.【答案】C【解析】解:∵口袋内装有一些大小相同的红球、白球和黑球,从中摸出1个球,在口袋中摸球,摸到红球,摸到黑球,摸到白球这三个事件是互斥的摸出红球的概率是0.42,摸出白球的概率是0.28,∵摸出黑球是摸出红球或摸出白球的对立事件,∴摸出黑球的概率是1﹣0.42﹣0.28=0.3,故选C.【点评】本题考查互斥事件的概率,注意分清互斥事件与对立事件之间的关系,本题是一个简单的数字运算问题,只要细心做,这是一个一定会得分的题目.12.【答案】C【解析】解:由图可得,y=4为函数图象的渐近线,函数y=2,y=log3(x+1),y=的值域均含4,即y=4不是它们的渐近线,函数y=4﹣的值域为(﹣∞,4)∪(4,+∞),故y=4为函数图象的渐近线,故选:C【点评】本题考查的知识点是函数的图象,函数的值域,难度中档.二、填空题13.【答案】③.【解析】解:由y=f'(x)的图象可知,x∈(﹣3,﹣),f'(x)<0,函数为减函数;所以,①在区间(﹣2,1)内f(x)是增函数;不正确;②在区间(1,3)内f(x)是减函数;不正确;x=2时,y=f'(x)=0,且在x=2的两侧导数值先正后负,③在x=2时,f(x)取得极大值;而,x=3附近,导函数值为正,所以,④在x=3时,f(x)取得极小值.不正确.故答案为③.【点评】本题考察了函数的单调性,导数的应用,是一道基础题.14.【答案】.【解析】解:∵f(x)=cos2x+sinx=1﹣sin2x+sinx=﹣+,故当sinx=时,函数f(x)取得最大值为,故答案为:.【点评】本题主要考查三角函数的最值,二次函数的性质,属于基础题.15.【答案】50π【解析】解:长方体的一个顶点上的三条棱长分别是3,4,5,且它的8个顶点都在同一个球面上,所以长方体的对角线就是球的直径,长方体的对角线为:,所以球的半径为:;则这个球的表面积是:=50π.故答案为:50π.16.【答案】【解析】当n=1时,a1=S1=k1+2k2,当n≥2时,a n=S n-S n-1=(k1+k2·2n)-(k1+k2·2n-1)=k2·2n-1,∴k1+2k2=k2·20,即k1+k2=0,①又a2,a3,a4-2成等差数列.∴2a3=a2+a4-2,即8k2=2k2+8k2-2.②由①②联立得k1=-1,k2=1,∴a n=2n-1.答案:2n-117.【答案】或【解析】试题分析:因为0d <,且39||||a a =,所以39a a =-,所以1128a d a d +=--,所以150a d +=,所以60a =,所以0n a >()15n ≤≤,所以n S 取得最大值时的自然数是或. 考点:等差数列的性质.【方法点晴】本题主要考查了等差数列的性质,其中解答中涉及到等差数列的通项公式以及数列的单调性等知识点的应用,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,属于中档试题,本题的解答中,根据数列的单调性,得出150a d +=,所以60a =是解答的关键,同时结论中自然数是或是结论的一个易错点.18.【答案】 .【解析】解:过CD 作平面PCD ,使AB ⊥平面PCD ,交AB 与P ,设点P 到CD 的距离为h ,则有 V=×2×h ××2,当球的直径通过AB 与CD 的中点时,h 最大为2,则四面体ABCD 的体积的最大值为.故答案为:.【点评】本小题主要考查棱柱、棱锥、棱台的体积、球内接多面体等基础知识,考查运算求解能力,考查空间想象力.属于基础题.三、解答题19.【答案】【解析】解:(Ⅰ)∵f (1)=1,f (2)=5,f (3)=13,f (4)=25, ∴f (2)﹣f (1)=4=4×1. f (3)﹣f (2)=8=4×2, f (4)﹣f (3)=12=4×3, f (5)﹣f (4)=16=4×4∴f(5)=25+4×4=41.…(Ⅱ)由上式规律得出f(n+1)﹣f(n)=4n.…∴f(2)﹣f(1)=4×1,f(3)﹣f(2)=4×2,f(4)﹣f(3)=4×3,…f(n﹣1)﹣f(n﹣2)=4•(n﹣2),f(n)﹣f(n﹣1)=4•(n﹣1)…∴f(n)﹣f(1)=4[1+2+…+(n﹣2)+(n﹣1)]=2(n﹣1)•n,∴f(n)=2n2﹣2n+1.…20.【答案】【解析】(1)证明:如图,∵点E,F分别为CD,PD的中点,∴EF∥PC.∵PC⊂平面PAC,EF⊄平面PAC,∴EF∥平面PAC.(2)证明:∵PA⊥平面ABCD,CD⊂平面ABCD,又ABCD是矩形,∴CD⊥AD,∵PA∩AD=A,∴CD⊥平面PAD.∵AF⊂平面PAD,∴AF⊥CD.∵PA=AD,点F是PD的中点,∴AF⊥PD.又CD∩PD=D,∴AF⊥平面PDC.∵EF⊂平面PDC,∴AF⊥EF.【点评】本题考查了线面平行的判定,考查了由线面垂直得线线垂直,综合考查了学生的空间想象能力和思维能力,是中档题.21.【答案】【解析】解:(1)当直线l的斜率不存在时,l的方程为x=1,与曲线C有一个交点.…当直线l的斜率存在时,设直线l的方程为y﹣2=k(x﹣1),代入C的方程,并整理得(2﹣k2)x2+2(k2﹣2k)x﹣k2+4k﹣6=0 (*)(ⅰ)当2﹣k2=0,即k=±时,方程(*)有一个根,l与C有一个交点所以l的方程为…(ⅱ)当2﹣k2≠0,即k≠±时△=[2(k2﹣2k)]2﹣4(2﹣k2)(﹣k2+4k﹣6)=16(3﹣2k),①当△=0,即3﹣2k=0,k=时,方程(*)有一个实根,l与C有一个交点.所以l的方程为3x﹣2y+1=0…综上知:l的方程为x=1或或3x﹣2y+1=0…(2)假设以P为中点的弦存在,设为AB,且A(x1,y1),B(x2,y2),则2x12﹣y12=2,2x22﹣y22=2,两式相减得2(x1﹣x2)(x1+x2)=(y1﹣y2)(y1+y2)…又∵x1+x2=2,y1+y2=4,∴2(x1﹣x2)=4(y1﹣y2)即k AB==,…∴直线AB的方程为y﹣2=(x﹣1),…代入双曲线方程2x2﹣y2=2,可得,15y2﹣48y+34=0,由于判别式为482﹣4×15×34>0,则该直线AB存在.…【点评】本题考查了直线和曲线的交点问题,考查直线方程问题,考查分类讨论思想,是一道中档题.22.【答案】【解析】解:由题意设a=n、b=n+1、c=n+2(n∈N+),∵最大角是最小角的2倍,∴C=2A,由正弦定理得,则,∴,得cosA=,由余弦定理得,cosA==,∴=,化简得,n=4,∴a=4、b=5、c=6,cosA=,又0<A<π,∴sinA==,∴△ABC的面积S===.【点评】本题考查正弦定理和余弦定理,边角关系,三角形的面积公式的综合应用,以及方程思想,考查化简、计算能力,属于中档题.23.【答案】【解析】(本小题满分12分)解:(Ⅰ)设该校报考飞行员的总人数为n,前三个小组的频率为p1,p2,p3,则,解得,,,…由于,故n=55.…(Ⅱ)由(Ⅰ)知,一个报考学生的体重超过60公斤的概率为:p=,由题意知X服从二项分布,即:X~B(3,),…∴P(X=k)=,k=0,1,2,3,∴EX==,DX==.…【点评】本题考查相互独立事件概率、离散型随机变量的分布列及数学期望等基础知识,考查数据处理能力,考查化归与转化思想,是中档题.24.【答案】【解析】(本小题满分12分)解:(Ⅰ)由1)cos2cosa Bb A c-=及正弦定理得1)sin cos2sin cos sin sin cos+cos sinA B B A C A B A B-==,(3分)cos3sin cosA B B A=,∴tantanAB=6分)(Ⅱ)tan A B==3Aπ=,sin42sin sin3a BbAππ===,(8分)sin sin()4C A B=+=,(10分)∴ABC∆的面积为111sin2(32242ab C=⨯=(12分)。
2018-2019学年高二上学期半期考试数学试卷

一.选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个备选项中,只有一项符合题目要求,把答案填写在答题卡相应位置上)1.集合{1,2,3,4,5,6}M =,集合{|36}N x N x =∈<<,则N M ⋂等于( ) A . {|46}x x << B .{|16}x x << C .{1,2,3,4,5,6} D . {4,5}2.已知函数220()30x x f x x x ⎧+≥⎪=⎨⎪+<⎩,则((1))f f -=( )A . 4B . 5C . 6D .7 3.下列函数中,在区间()0+∞,上是增函数的是( )A . 81y x =--B . 22y x =- C .1y x = D .12xy ⎛⎫= ⎪⎝⎭4.把(a -(1)a -移到根号内等于( )A.C.5.设30.8a =,0.83b =,3log 0.8c =,则,,a b c 的大小关系为( )A . c a b << (B )c b a << (C ) a b c << (D)a c b <<6.函数23log (87)y x x =-+-的单调递减区间为( )A. (,4)-∞B. (4,)+∞C. (1,4)D. (4,7)7.若函数)10()(≠>=-a a a x f x 且在),(+∞-∞上是减函数,则)1(log )(-=x x g a 的大致图象是( )8.已知f (x ),g (x )分别是定义在R 上的偶函数和奇函数,且f (x )-g (x )=x 3+x 2+2,则 f (1)+g (1)=( )A .-2B .-1C .1D .29. 已知,1()(5)2,1x a x f x a x x ⎧>=⎨-+≤⎩,对任意21x x ≠,都有1212()()0f x f x x x ->-成立,则实数a的取值范围是( )A. 7(,5]2B.7[,5)2C. (1,5)D.(0,5]10.若函数(2)f x +为偶函数,且()y f x =在[2,)+∞为增函数,则下列结论正确的是( )A.(2)(3)(5)f f f -<<-B. (2)(5)(3)f f f -<-<C.(3)(5)(2)f f f <-<-D. (3)(2)(5)f f f <-<-11.已知函数x x f ln )(=,若b a <<0,且)()(b f a f =,则5a b +的取值范围是( )A.)+∞B.)+∞C.(6,)+∞D. [6,)+∞12.设函数1()2x f x x =-,1()2g x ax =-,若对任意的1[1,2]x ∈,都存在实数2[1,2]x ∈,使得()()12g x f x =成立,则实数a 的取值范围为( )A .[1,2]B .1[,3]2 C .2[2,]5- D .3,22⎡⎤⎢⎥⎣⎦二、填空题(本大题4小题,每小题5分,共20分.把答案填写在答题卡相应位置上)13.函数43x y a +=+ ()10≠>a a 的图象必过定点P ,P 点的坐标为_________. 14. 已知函数)(x f 对任意实数b a ,,都有)()()(b f a f ab f +=成立,若(2)4f =,3)3(=f ,则)36(f 的值为___________.15.奇函数)(x f 对任意实数x 满足)()4(x f x f =+,且当)2,0[∈x ,()1f x x =-,则31()4f = . 16.已知函数21,1()4,1x f x x x x x ⎧-<-⎪=⎨⎪-+≥-⎩,如果方程()0f x a -=有三个不相等的实数解123,,x x x ,则123111x x x ++的取值范围 . 三、解答题:(17题10分,18,19,20,21,22题各12分。
2018-2019学年高二数学上学期期末考试试卷 文(普通班,含解析)
2018-2019学年高二数学上学期期末考试试卷文(普通班,含解析)一、选择题(本大题共12小题,每小题5分,共60分)1.设命题:,则为()A. B.C. D.【答案】C【解析】因为特称命题的否命题全称命题,因为命题,所以为:,故选C.【方法点睛】本题主要考查全称命题的否定,属于简单题.全称命题与特称命题的否定与命题的否定有一定的区别,否定全称命题和特称命题时,一是要改写量词,全称量词改写为存在量词、存在量词改写为全称量词;二是要否定结论,而一般命题的否定只需直接否定结论即可.2.已知=(-1,3),=(1,k),若⊥,则实数k的值是( )A. k=3B. k=-3C. k=D. k=-【答案】C【解析】【分析】根据⊥得,进行数量积的坐标运算即可求k值.【详解】因为=(-1,3),=(1,k),且⊥,,解得k=,故选:C.【点睛】利用向量的位置关系求参数是出题的热点,主要命题方式有两个:(1)两向量平行,利用解答;(2)两向量垂直,利用解答.3.设是向量,命题“若,则”的逆命题是A. 若则B. 若则C. 若则D. 若则【答案】D【解析】:交换一个命题的题设与结论,所得到的命题与原命题是(互逆)命题。
故选D4.命题“若a>0,则a2>0”的否定是( )A. 若a>0,则a2≤0B. 若a2>0,则a>0C. 若a≤0,则a2>0D. 若a≤0,则a2≤0【答案】B【解析】【分析】根据逆命题的定义,交换原命题的条件和结论即可得其逆命题,即可得到答案.【详解】根据逆命题的定义,交换原命题的条件和结论即可得其逆命题,即命题“若,则”的逆命题为“若,则”,故选B.【点睛】本题主要考查了四种命题的改写,其中熟记四种命题的定义和命题的改写的规则是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.5. “a>0”是“|a|>0”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】试题分析:本题主要是命题关系的理解,结合|a|>0就是{a|a≠0},利用充要条件的概念与集合的关系即可判断.解:∵a>0⇒|a|>0,|a|>0⇒a>0或a<0即|a|>0不能推出a>0,∴a>0”是“|a|>0”的充分不必要条件故选A考点:必要条件.【此处有视频,请去附件查看】6.已知命题p:∃x∈R,使tan x=1,命题q:∀x∈R,x2>0.则下面结论正确的是( )A. 命题“p∧q”是真命题B. 命题“p∧q”是假命题C. 命题“p∨q”是真命题D. 命题“p∧q”是假命题【答案】D【解析】取x0=,有tan=1,故命题p是真命题;当x=0时,x2=0,故命题q是假命题.再根据复合命题的真值表,知选项D是正确的.7.若命题“”为假,且“”为假,则()A. 或为假B. 假C. 真D. 不能判断的真假【答案】B【解析】“”为假,则为真,而(且)为假,得为假8.若椭圆焦点在x轴上且经过点(-4,0),c=3,则该椭圆的标准方程为( )A. B.C. D.【答案】B【解析】【分析】由焦点在x轴上且过点(-4,0)知a=4,又c=3,结合即可得标准方程.【详解】由椭圆焦点在x轴上且经过点(-4,0),知a=4,又c=3且得即椭圆标准方程为故选:B.【点睛】本题考查椭圆标准方程的求解,属于基础题.9.双曲线的实轴长是A. 2B.C. 4D. 4【答案】C【解析】试题分析:双曲线方程变形为,所以,虚轴长为考点:双曲线方程及性质10.已知中心在原点的椭圆C的右焦点为,离心率等于,则C的方程是( )A. B. C. D.【答案】D【解析】试题分析:由题意可知椭圆焦点在轴上,因而椭圆方程设为,可知,可得,又,可得,所以椭圆方程为.考点:椭圆的标准方程.【此处有视频,请去附件查看】11.已知双曲线(0<n <12)的离心率为,则n的值为( )A. 4B. 8C. 2D. 6【答案】A【解析】【分析】根据双曲线的离心率公式以及,即可得到答案。