第四章 基本平面图形
第四章 基本平面图形4.1线段、射线、直线 知识点

4.1线段、射线、直线
1、线段、射线、直线的定义
(1)线段:线段可以近似地看成是一条有两个端点的崩直了的线。
线段可以量出长度。
(2)射线:将线段向一个方向无限延伸就形成了射线,射线有一个端点。
射线无法量出长度。
(3)直线:将线段向两个方向无限延伸就形成了直线,直线没有端点。
直线无法量出长度。
结论:直线、射线、线段之间的区别:联系:射线是直线的一部分。
线段是射线的一部分,也是直线的一部分。
2、点和直线的位置关系有两种:
①点在直线上,或者说直线经过这个点。
②点在直线外,或者说直线不经过这个点。
3、直线的性质
(1)直线公理:经过两个点有且只有一条直线。
简称两点确定一条直线。
(2)过一点的直线有无数条。
(3)直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小。
(4)直线上有无穷多个点。
(5)两条不同的直线至多有一个公共点。
第四章-基本平面图形(含解析)

2019备战中考数学基础必练(北师大版)-第四章-基本平面图形(含解析)一、单选题1.如图所示,A、B、C、D在同一条直线上,则图中共有线段的条数为()A.3B.4C.5D.62.下列说法错误的是()A. 角的大小与角的边的长短无关B. 角的大小和它们的度数大小是一致的C. 角的平分线是一条直线D. 如果C点在∠AOB的内部,那么射线OC上所有的点都在∠AOB的内部3.在Rt△ABC中,∠C=90°,AC=3.将其绕B点顺时针旋转一周,则分别以BA、BC为半径的圆形成一圆环,该圆环的面积为( ).A. πB. 3πC. 6πD. 9π4.如图所示的四条射线中,表示南偏东65°的是()A. 射线OAB. 射线OBC. 射线OC D. 射线OD5.已知α、β都是钝角,甲、乙、丙、丁四个同学的计算(α+β)的结果依次为28°、48°、60°、88°,其中只有一个同学计算结果是正确的,则得到正确结果的同学是()A. 甲B. 乙C. 丙D. 丁6.下面表示∠ABC的图是()A.B.C.D.7.如图,点B、C在线段AD上,且AB=CD,则AC与BD的大小关系是()A. AC>BD B. AC=BDC. AC<BD D. 不能确定8.点M(﹣3,4)离原点的距离是多少单位长度()A. 3B. 4C. 5D. 79.如图,若干个全等的正五边形排成环状,图中所示的是前3个正五边形,要完成这一圆环还需正五边形的个数为()A. 10B. 9C. 8D. 7二、填空题10.线段AB=10cm,BC=5cm,A、B、C三点在同一条直线上,则AC=________11.如图,∠AOB=90°,OD平分∠BOC,∠DOE=45°,则∠AOE________ ∠COE(填“<”“>”或“=”号)12.某乡在重修通往县城的公路时,把原来弯曲的路改直,其中蕴含的数学道理是________.13.已知点C是线段AB上的一点,如果线段AC=8cm,线段BC=4cm,则线段AC和BC的中点间的距离为________.14.在灯塔O处观测到轮船A位于北偏西43°的方向,同时轮船B在东北的方向,那么∠AOB 的大小为________°.15.甲看乙在北偏东50度,那么乙看甲的方向为________.16.102°43′32″+77°16′28″=________;98°12′25″÷5=________.17.正六边形的边长为a,面积为S,那么S关于a的函数关系式是________ .18.点C在射线AB上,若AB=3,BC=2,则AC为________三、解答题19.如图,已知,,,求的长.20.车轮为什么都做成圆形的?四、综合题21.如图,∠AOB=120°,射线OC从OA开始,绕点O逆时针旋转,旋转的速度为每分钟20°;射线OD从OB开始,绕点O逆时针旋转,旋转的速度为每分钟5°,OC和OD同时旋转,设旋转的时间为t(0≤t≤15).(1)当t为何值时,射线OC与OD重合;(2)当t为何值时,射线OC⊥OD;(3)试探索:在射线OC与OD旋转的过程中,是否存在某个时刻,使得射线OC,OB与OD 中的某一条射线是另两条射线所夹角的角平分线?若存在,请求出所有满足题意的t的取值,若不存在,请说明理由.22.如图,已知同一平面内,∠AOB=90゜,∠AOC=60゜.(1)填空:∠COB=________;(2)如OD平分∠BOC,OE平分∠AOC,直接写出∠DOE的度数为________;(3)试问在(2)的条件下,如果将题目中∠AOC=60゜改成∠AOC=2α(α<45゜),其他条件不变,你能求出∠DOE的度数吗?若能,请你写出求解过程;若不能,请说明理由.23.已知:如图,线段AB=10,C是AB的中点.(1)求线段BC的长;(2)若点D在直线AB上,DB=2.5,求线段CD的长.答案解析部分一、单选题1.【答案】D【考点】直线、射线、线段【解析】【解答】解:如图,线段有:线段AB、线段AC、线段AD、线段BC、线段BD、线段CD共6条.故选D.【分析】根据线段的定义,写出所有线段后再计算条数.2.【答案】C【考点】角平分线的定义,角的计算【解析】【解答】解:A、角的大小与角的边的长短无关,正确,故本选项错误;B、角的大小和它们的度数大小是一致的,正确,故本选项错误;C、角的平分线是从角的顶点出发的一条射线,错误,故本选项正确;D、如果C点在∠AOB的内部,那么射线OC上所有的点都在∠AOB的内部,正确,故本选项错误;故选C.【分析】根据角的有关内容(角的大小和角的两边的长短无关,只和角的度数有关,角的平分线是从角的顶点出发的一条射线)判断即可.3.【答案】D【考点】圆的认识【解析】【解答】圆环的面积=AB2-BC2=(AB2-BC2)在Rt ABC中,根据勾股定理得:AC2=AB2-BC2,∴圆环的面积=AC2=9.故答案为:D.【分析】本题主要考查圆环面积的计算及勾股定理的运用,根据题意用代数式表示圆环的面积,再根据勾股定理等量代换即可求得面积.4.【答案】B【考点】钟面角、方位角【解析】【解答】解:如图所示:表示南偏东65°的是射线OB.故答案为:B.【分析】根据方位角的意义判断即可.5.【答案】B【考点】角的概念,角的计算【解析】【解答】甲、乙、丙、丁四个同学的计算(α +β)的结果依次为28°、48°、60°、88°,那么这四个同学计算α+β的结果依次为168°、288°、360°、528°,又因为两个钝角的和应大于180°且小于360°,所以只有乙同学的计算正确.故答案选:B 【分析】钝角是大于90°且小于180°的角,那么两个钝角的和应大于180°且小于360°.6.【答案】C【考点】角的概念【解析】【解答】解:A、有四个小于平角的角,没有∠ABC,故错误; B、用三个大写字母表示角,表示角顶点的字母在中间,应为∠BCA,故错误;C、用三个大写字母表示角,表示角顶点的字母在中间,应为∠ABC,故正确;D、用三个大写字母表示角,表示角顶点的字母在中间,应为∠BAC,故错误.故选:C.【分析】根据角的概念,对选项进行一一分析,排除错误答案.7.【答案】B【考点】比较线段的长短【解析】【解答】解;AB=CD,两边都加BC,得AB+BC=CD+BC,即AC=BD,故选:B.【分析】根据等式的性质,可得答案.8.【答案】C【考点】两点间的距离【解析】【解答】解:设原点为O(0,0),根据两点间的距离公式,∴MO===5,故选C.【分析】根据两点间的距离公式即可直接求解.9.【答案】D【考点】正多边形和圆【解析】【解答】解:∵五边形的内角和为(5﹣2)•180°=540°,∴正五边形的每一个内角为540°÷5=108°,如图,延长正五边形的两边相交于点O,则∠1=360°﹣108°×3=360°﹣324°=36°,360°÷36°=10,∵已经有3个五边形,∴10﹣3=7,即完成这一圆环还需7个五边形.故选D.【分析】先根据多边形的内角和公式(n﹣2)•180°求出正五边形的每一个内角的度数,再延长五边形的两边相交于一点,并根据四边形的内角和求出这个角的度数,然后根据周角等于360°求出完成这一圆环需要的正五边形的个数,然后减去3即可得解.二、填空题10.【答案】5cm或者15cm【考点】两点间的距离【解析】【解答】解:本题有两种情形:(1)当点C在线段AB上时,如图,AC=AB﹣BC,又∵AB=10cm,BC=5cm,∴AC=10﹣5=5cm;(2)当点C在线段AB的延长线上时,如图,AC=AB+BC,又∵AB=10cm,BC=5cm,∴AC=10+5=15cm.故线段AC=15cm或5cm.故答案为:15cm或5cm.【分析】本题没有给出图形,在画图时,应考虑到A、B、C三点之间的位置关系的多种可能,再根据题意画出的图形进行解答.11.【答案】=【考点】角的计算【解析】【解答】解:∵∠AOB=90°,∠DOE=∠DOC+∠COE=45°,∴∠BOD+∠AOE=45°,∵OD平分∠BOC,∴∠BOD=∠COD,∴∠AOE=∠COE,故答案为:=【分析】根据角的和差得出∠BOD+∠AOE=45°,再利用角平分线的定义得出∠BOD=∠COD,即可得到答案.12.【答案】两点之间,线段最短【考点】线段的性质:两点之间线段最短【解析】【解答】解:某乡在重修通往县城的公路时,把原来弯曲的路改直,其中蕴含的数学道理是:两点之间,线段最短.故答案为:两点之间,线段最短.【分析】根据线段的性质进行解答即可.13.【答案】6cm【考点】两点间的距离【解析】【解答】解:根据题意,点C在线段AB上,如图,∵AB=8cm,BC=4cm,点E、F分别是线段AC、BC的中点,∴CE= AC,CF=BCAC和BC的中点间的距离为:EC+CF=AC+BC=(AC+BC)=×(8+4)=6cm故答案为:6cm.【分析】根据题意画出图形,找出线段之间的关系,列出关系式,代入具体数据计算即可.14.【答案】88【考点】钟面角、方位角【解析】【解答】解:∠AOB=43°+45°=88°.故答案为:88.【分析】根据方向角的定义,然后利用角的和差计算即可求解.15.【答案】南偏西50°【考点】钟面角、方位角【解析】【解答】解:甲看乙在北偏东50度,那么乙看甲的方向为南偏西50°.故答案为:南偏西50°.【分析】根据方向角的表示方法,可得答案.16.【答案】180;19°38′29″【考点】度分秒的换算【解析】【解答】解:102°43′32″+77°16′28″ =(102+77)°+(43+16)′+(32+28)″=179°59′60″=180°;98°12′25″÷5=19°+38′+29″=19°38′29″.故答案为:180;19°38′29″.【分析】(1)利用度分秒分别相加,再把满60的向前一个单位进位即可;(2)首先利用98°除以5,再把余数乘以60化成分,加到12′上再除以,再把余数乘以60加到25″上,再除以5即可.17.【答案】【考点】正多边形和圆【解析】【解答】经过圆心O作圆的内接正n边形的一边AB的垂线OC,垂足是C;连接OA,则在直角△OAC中,∠O=30°,OC是边心距,OA即半径.再根据三角函数即可求解.边长为a的正六边形的面积=6×边长为a的等边三角形的面积s=6××a×(a×sin60°)=.故答案为:S=.【分析】过圆心O作圆的内接正n边形的一边AB的垂线OC,垂足是C;连接OA,即可得出答案。
《基本平面图形》基础知识点

(1)圆的定义:定义①:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫做圆.固定的端点O叫做圆心,线段OA叫做半径.以O点为圆心的圆,记作“⊙O”,读作“圆O”.
定义②:圆可以看做是所有到定点O的距离等于定长r的点的集合.
(2)与圆有关的概念:弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等.
③线段:线段是直线的一部分,用一个小写字母表示,如线段a;用两个表示端点的字母表示,如:线段AB(或线段BA).
(2)点与直线的位置关系:①点经过直线,说明点在直线上;直线公理:经过两点有且只有一条直线.简称:两点确定一条直线.
(4)经过一点的直线有无数条,过两点就唯一确定,过三点就不一定了.
(1)角的和差倍分
①∠AOB是∠AOC和∠BOC的和,记作:∠AOB=∠AOC+∠BOC.∠AOC是∠AOB和∠BOC的差,记作:∠AOC=∠AOB-∠BOC.②若射线OC是∠AOB的三等分线,则∠AOB=3∠BOC或∠BOC= ∠AOB.
(2)度、分、秒的加减运算.在进行度分秒的加减时,要将度与度,分与分,秒与秒相加减,分秒相加,逢60要进位,相减时,要借1化60.
(3)扇形面积计算公式:设圆心角是n°,圆的半径为R的扇形面积为S,
或 (其中l为扇形的弧长)
(4)求阴影面积常用的方法:①直接用公式法;②和差法;③割补法.
(5)求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积.
九、角平分线的定义
(1)角平分线的定义
从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.
(2)性质:若OC是∠AOB的平分线
则∠AOC=∠BOC= ∠AOB或∠AOB=2∠AOC=2∠BOC.
七年级上册数学第四章基本平面图形课件

A
OB C
解:因为AB=4cm,BC=3cm 所以AC=AB+BC=7cm
因为点O是线段AC的中点 所以OC= 1 AC=3.5 cm
2
所以OB=OC-BC=3.5-3=0.5(cm) 答:线段OB的长为0.5 cm
1.两点之间的连线,可能是笔直的,也可能是弯 曲的,在这些线中,笔直的线(即连接两点的线 段)是最短的
七年级数学·上 新课标 [北师]
第四章 基本平面图形
1 线段、射线、直线
学习新知
检测反馈
从下面的三幅图片中,你 能观察出哪些部分分别可 以近似地看作我们小学学 过的 线段、 直和线 ?
射线
返回首页
学习新知
在数学里,一条线段、一条射线、一条直线该怎
样表示呢?请同学们阅读教材自主学习线段、射
线、直线的表述方法.
想一想:重叠后的结果有几种情况?
C
D
A
B
①若端点B与端点D重合
则得到线段AB等于线段CD,可记作:AB =CD
C
D
A
B
②若端点B落在AD内
则得到线段AB小于线段CD,可记作:AB <CD.
CD
A
B
⑤若端点B落在CD外
则得到线段AB大于线段CD,可记作:AB >CD
二、度量法:用刻度尺分别量出线段AB和线段CD
择第 3
条路最近 1
2
A
3
B
4
5
2.图中两条线段a与b的长度谁长谁短?
b
a
学习新知 1.怎样比较两棵树的高矮?怎样比较两根铅笔的
长短?怎样比较窗框相邻两边的长?
2.如何比较下面两条线段的长短? a
北师大版七年级上册数学课件第四章 基本平面图形

线
直
向两方无限延伸
0
线
能否度量
联系
能 不能 不能
线段、射线是 直线上的一部
分
当堂小练
1.平面上有A、B、C三个点,过其中的任两点作直线, 小敏说能作三条;小聪说只能作一条;小真说都有可 能;你认为他们三人谁的说法对?
分析:
A
B
C
(1) 可以画三条直线
A
B
C
(2) 只能画一条直线
当堂小练
2.指出下图中线段、射线、直线分别有多少条?
可否度量 可度量 不可度量
不可度量
新课讲解
典例分析
例 1.如图中,共有几条线段?
分析:以A为左端点的线段有:线段AC、线段 AD、线段AB,以C为左端点的线段有: 线段CD、线段CB,以D为左端点的线段 有:线段DB.
解:共有6条线段.
新课讲解
知识点2 直线的基本事实
讨论
如果将细木条抽象成直线,将钉子抽象为点,你可 以得出什么结论?
0 11
22
33
44
55
66
77 88
新课讲解
知识点2 作一条线段等于已知线段
尺规作图:在数学中,我们常限定用无刻度的直尺和圆规 作图,这就是尺规作图,利用尺规作图可以将一条线段移 到另一条线段上.用直尺(无刻度)和圆规作一条线段等于 已知线段的步骤:
(1)利用直尺(无刻度)作一条射线AB;
新课讲解
课堂小结
线 段 的 性 质
两点之间距离 线段的性质
线段最短 线段的长度 比较线段长度方法
当堂小练
1.把一条弯曲公路改为直路,可以缩小路程,其理由是(A )
A.两点之间线段最短
新北师大版数学七上第四章基本平面图形整章教案

第四章 基本平面图形 第1节 线段、射线、直线教学目标:1、在现实情境中理解线段、射线、直线等简单图形,并会用不同的方式表示。
2、通过操作活动,了解“两点确定一条直线”的几何事实,积累数学活动经验。
3、能够用几何事实解释和解决具体情境中的实际问题。
4、通过从事观察、比较、概括等活动,发展抽像思维能力和有条理的数学表达能力。
教学重点:线段、射线与直线的概念及表示方法 教学难点:了解“两点确定一条直线”等事实,并应用它解决一些实际问题. 教学过程:1个课时教学内容一、生活中的线 1、曲线与直线2、如竖琴的弦、手电筒光、铁轨个小写字母表示。
射线:可以用两个大写字母表示,表示端点的字母只能写在前面,也可以用一个小写字母表示。
直线:可以用两个大写字母表示,两个大写字母表示直线上任意两点,没有顺序,也可以用一个小写字母表示。
三、例:如图,回答下列问题(1)直线AC 与直线AB 是同一条直线吗? (2)线段AC 与线段BC 是同一条线段吗? (3)射线AC 与射线AB 是同一条射线吗?射线AC 与射线CA 呢?射线CB 与射线CA 呢? (4)直线AB 与线段AC 还可以怎么表示?四、生活中哪些线类似上面的图形?五、做一做:P107(1)过一点A 可以画几条直线?• • •C A B m(2)过两点A 、B 可以画几条直线?(3)如果你想将一根细木条固定在墙上,至少需要几个钉子?六、归纳:经过两点有且只有一条直线。
简述为:两点确定一条直线。
如:木匠弹墨线、植树、砌墙九、练习:P107-108十、作业:(下节课带好圆规)1、如图:表示下图中的直线、射线、线段。
2、读句画图(如图示) ①连BC 、AD ②画射线AD③画直线AB 、CD 相交于E④延长线段BC ,反向延长线段DA 相交与F ⑤连结AC 、BD 相交于O第二课时 拓展一、在同一平面内:(1)过1个点能画几条直线? (2)过2个点能画几条直线?(3)过3个点能画几条直线?过3个点最多能画几条直线? (4)过4个点可以画几条直线?过4个点最多能画几条直线? (6)过n 个点最多可以画几条直线? (答案:2)1( n n )二、数线段条数:1、在一条线段上有n 个点,则有几条线段?2、在一条直线上有n 个点,则有几条线段?3、中国地域辽阔,有很多纵横交错的铁路线。
七年级数学上册《第四章基本平面图形》单元测试卷及答案-北师大版

七年级数学上册《第四章基本平面图形》单元测试卷及答案-北师大版一、选择题1.下列各线段的表示方法中,正确的是( )A .线段AB .线段abC .线段ABD .线段Ab2.下列命题是假命题的是( )A .等角的补角相等B .垂线段最短C .两点之间,线段最短D .无限小数是无理数3.下列四个图中,能用1∠,O ∠与AOB ∠三种方法表示同一个角的是( )A .B .C .D .4.利用一副三角板不能画出的角的度数是( )A .105︒B .100︒C .75︒D .15︒5.从多边形的一个顶点出发,可以画出4条对角线,则该多边形的边数为( )A .5B .6C .7D .86.要在墙上钉牢一根木条,至少要钉两颗钉子.能正确解释这一现象的数学知识是( )A .两点之间,线段最短B .垂线段最短C .两点确定一条直线D .经过一点有且只有一条直线与已知直线垂直7.如图,已知ABC ,点D 是BC 边中点,且ADC BAC.∠∠=若BC 6=,则AC =( )A .3B .4C .42D .328.一条船从海岛A 出发,以15海里/时的速度向正北航行,2小时后到达海岛B 处.灯塔C 在海岛A 的北偏西30︒方向上,在海岛B 的北偏西60︒方向上,则海岛B 到灯塔C 的距离是( ) A .15海里B .20海里C .30海里D .60海里9.如图,直线AB 、CD 交于点O ,OE 平分BOC ∠,若136∠=︒,则DOE ∠等于( )A .72︒B .90︒C .108︒D .144︒10.下列命题正确的是( )A .三点确定一个圆B .圆的任意一条直径都是它的对称轴C .等弧所对的圆心角相等D .平分弦的直径垂直于这条弦二、填空题11.要在墙上订牢一根木条,至少需要2颗钉子,其理由是 .12.如图,在菱形ABCD 中,10AB =,M ,N 分别为BC ,CD 的中点,P 是对角线BD 上的一个动点,则PM PN +的最小值是 .13.如图,直线AB 、CD 相交于点O ,OE 平分AOD ∠,若80BOC ∠=︒,则COE ∠的度数是 .14.一个多边形的每个内角都等于150°,则这个多边形的边数为 ,对角线总数是条。
北师版七年级数学上册 第四章 基本平面图形(易错题归纳)

第四章基本平面图形(易错题归纳)易错点一:直线、射线、线段的概念理解不透技巧点拨:代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“⋅”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.根据代数式的书写要求判断各项即可1.直线a上有5个不同的点A、B、C、D、E,则该直线上共有()条线段.A.8B.9C.12D.102.下列叙述正确的是()A.线段AB可表示为线段BAB.射线AB可表示为射线BAC.直线可以比较长短D.射线可以比较长短3.下列说法正确的是()A.直线BA与直线AB是同一条直线B.延长直线ABC.射线BA与射线AB是同一条射线D.直线AB的长为2cm4.下列说法正确的是()A.延长直线ABB.延长射线ABC.反向延长射线ABD.延长线段AB到点C,使AC=BC易错点二:线段运用技巧点拨:正确掌握数线段方法5.A站与B站之间还有3个车站,那么往返于A站与B站之间的车辆,应安排多少种车票?()A.4B.20C.10D.96.由汕头开往广州东的D7511动车,运行途中须停靠的车站依次是:汕头→潮汕→普宁→汕尾→深圳坪山→东莞→广州东.那么要为D7511动车制作的车票一共有()A.6种B.7种C.21种D.42种7.往返于甲、乙两地的列车,中途需要停靠4个车站,如果每两站的路程都不相同,问:(1)这两地之间有种不同的票价;(2)要准备种不同的车票.易错点三:两点间的距离技巧点拨:题意不明确时注意分类讨论8.已知点A、B、C都是直线l上的点,且AB=5cm,BC=3cm,那么点A与点C之间的距离是()A.8cm B.2cm C.8cm或2cm D.4cm9.已知点A,B,C在同一条直线上,若线段AB=3,BC=2,AC=1,则下列判断正确的是()A.点A在线段BC上B.点B在线段AC上C.点C在线段AB上D.点A在线段CB的延长线上10.已知线段AB=6cm,点C在直线AB上,AC=AB,则BC=.11.如图,已知A、B、C是数轴上的三点,点B表示的数是﹣2,BC=6,AC=18,点P从A点出发沿数轴向右运动,速度为每秒2个单位.(1)数轴上点A表示的数为;点C表示的数为.(2)经过t秒P到B点的距离等于P点到C点距离的2倍,求此时t的值.(3)当点Q以每秒1个单位长度的速度从C点出发,沿数轴向终点A运动,N为BQ中点.P、Q同时出发,当一点停止运动时另一点也随之停止运动.用含t的代数式表示线段PN的长.12.P是线段AB上一点,AB=12cm,C,D两点分别从P,B同时向A点运动,且C点的运动速度为2cm/s,D点的运动速度为3cm/s,运动的时间为ts.(1)如图若AP=8cm,①运动1s后,求CD的长;②当D在线段PB上运动时,试说明线段AC和线段CD的数量关系;(2)如果t=2s时,CD=1.5cm,试探索AP的值.易错点四:比较线段的长短技巧点拨:注意点的位置进行分类讨论。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章 基本平面图形 4.1 线段、射线、直线基础题知识点1 线段、射线、直线的概念及表示方法 1.手电筒发射出去的光可看作是一条(B )A.线段B.射线C.直线D.折线 2.下列表示线段的方法中,正确的是(B )A.线段AB.线段ABC.线段abD.线段Ab 3.如图所示,A ,B ,C 是同一直线上的三点,下面说法正确的是(C )A.射线AB 与射线BA 是同一条射线B.射线AB 与射线BC 是同一条射线C.射线AB 与射线AC 是同一条射线D.射线BA 与射线BC 是同一条射线4.(柳州中考)如图,点A ,B ,C 是直线l 上的三个点,图中共有线段的条数是(C )A.1B.2C.3D.4 5.延长线段AB 到C ,则下列说法正确的是(B ) A.点C 在线段AB 上 B.点C 在直线AB 上 C.点C 不在直线AB 上D.点C 在直线BA 的延长线上6.如图,图中的直线可以表示为直线AB 或直线l.7.如图,图中有1条直线,6条射线,6条线段.知识点2 线段、射线、直线的画法8.下列关于作图的语句中,正确的是(D ) A.画直线AB =10厘米B.延长线段AB 到C ,使AC =12ABC.画射线OB =10厘米D.过A ,B 两点画一条直线9.(教材P108习题T2变式)如图,已知平面上四个点A ,B ,C ,D. (1)画直线AB ;(2)画射线BC ;(3)画线段CD ;(4)连接AD.解:如图所示.知识点3两点确定一条直线10.开学整理教室时,老师总是先把每一列最前和最后的课桌摆好,然后再依次摆中间的课桌,一会儿一列课桌摆在一条线上,整整齐齐,这是因为两点确定一条直线.11.用一个钉子把一根细木条钉在木板上,用手拨木条,木条能转动,这说明经过一点可以画无数条直线;用两个钉子把细木条钉在木板上,就能固定细木条,这说明两点确定一条直线.易错点未分类讨论而导致漏解12.平面内有三个点A,B,C,过其中每两个点画直线,可以画出直线的条数为(C)A.1条B.2条C.1条或3条D.无法确定中档题13.如图,对于直线AB,线段CD,射线EF,其中能相交的是(B)A B C D14.如图,MN是过点A的直线,则图中有一个端点是点A的线段有4条,分别是线段AB,AD,AE,AC;图中的射线有2条,分别是射线AM,AN;图中有1条直线,即直线MN.15.如图,已知平面上四点A,B,C,D.(1)画直线AB,射线CD;(2)画射线AD,连接BC;(3)直线AB与射线CD相交于点E;(4)连接AC、BD相交于点F.解:如图所示.16.如图,数轴上点O表示原点,点A表示-2,点B表示1,点C表示2.(1)数轴可以看做是什么图形?(2)数轴上原点及原点右边的部分是什么图形?这个图形怎样表示?(3)射线OB与射线OC是同一条射线吗?端点表示什么数?(4)射线AB与射线BA是同一条射线吗?为什么?(5)数轴上表示绝对值不大于2的部分是什么图形?这个图形怎样表示?解:(1)数轴可以看做规定了原点、正方向、单位长度的直线.(2)数轴上原点及原点右边的部分是射线,这个图形表示成射线OB.(3)射线OB与射线OC是同一条射线,端点表示的数为0.(4)射线AB和射线BA不是同一条射线.理由:它们的端点不同,射线AB的端点是点A,射线BA的端点是点B.(5)数轴上表示绝对值不大于2的部分是从表示-2的点A到表示+2的点C的一条线段,可以表示为线段AC.17.李明乘车回奶奶家,发现这条汽车线路上共有6个站(包括始发站和终点站),学习本节知识后,善于思考的小明已猜到这条线路上有多少种不同的票价,还要准备多少种不同的车票,聪明的你想到了吗? 解:有15种不同票价,有30种不同车票.综合题 18.如图.(1)试验观察:如果每过两点可以画一条直线,那么: 第①组最多可以画3条直线; 第②组最多可以画6条直线; 第③组最多可以画10条直线; (2)探索归纳:如果平面上有n (n ≥3)个点,且每3个点均不在一条直线上,那么最多可以画n (n -1)2条直线;(用含n 的式子表示)(3)解决问题:某班45名同学在毕业后的一次聚会中,若每两人握1次手问好,那么共握990次手.4.2 比较线段的长短基础题知识点1 线段基本事实及两点间的距离 1.下列说法正确的是(D ) A.两点之间直线最短B.画出A ,B 两点间的距离C.连接点A 与点B 的线段,叫A ,B 两点间的距离D.两点之间的距离是一个数,不是指线段本身2.(西安碑林区期末)把弯曲的道路改直,就能缩短路程,其中蕴含的数学原理是(C ) A.过一点有无数条直线 B.两点确定一条直线 C.两点之间线段最短 D.线段是直线的一部分3.如果线段AB =5 cm ,BC =4 cm ,且A ,B ,C 在同一条直线上,那么A ,C 两点间的距离是(C ) A.1 cm B.9 cmC.1 cm 或9 cmD.以上答案都不正确4.(德州中考)如图,为抄近路践踏草坪是一种不文明的现象.请你用数学知识解释出现这一现象的原因:两点之间,线段最短.知识点2 比较两条线段的长短5.如图,用圆规比较两条线段A′B′和AB 的长短,其中正确的是(A )A.A′B′>ABB.A′B′=ABC.A′B′<ABD.不能确定 6.如图,AB =CD ,则AC 与BD 的大小关系是(C )A.AC>BDB.AC<BDC.AC =BDD.不能确定 7.下面给出的四条线段中,用尺规比较最长的是(D )A.线段aB.线段bC.线段cD.线段d知识点3 线段的中点8.点C 在线段AB 上,下列条件中不能确定点C 是线段AB 中点的是(B ) A.AC =BC B.AC +BC =AB C.AB =2AC D.BC =12AB9.如图,C 是线段AB 上的一点,M 是线段AC 的中点.若AB =8 cm ,BC =2 cm ,则MC 的长是(B )A.2 cmB.3 cmC.4 cmD.6 cm10.已知点O 为线段AB 的中点,点C 为OA 的中点,并且AB =40 cm ,求AC 的长. 解:因为点O 为线段AB 的中点,AB =40 cm , 所以OA =12AB =20 cm.因为点C 为OA 的中点, 所以AC =12OA =10 cm.易错点 当题目中没有给出图形时,考虑问题不全面而丢解11.已知线段AB =10 cm ,直线AB 上有一点C ,BC =6 cm ,M 为线段AB 的中点,N 为线段BC 的中点,求线段MN 的长.解:①如图1,当点C 在线段AB 上时,因为M 为AB 的中点,所以MB =MA =5 cm. 因为N 为BC 的中点,所以NB =NC =3 cm. 所以MN =MB -NB =2 cm ;②如图2,当点C 在线段AB 的延长线上时, 因为M 为AB 的中点,所以MB =AM =5 cm. 因为N 为BC 的中点,所以NB =NC =3 cm. 所以MN =MB +BN =8 cm.综上所述,线段MN 的长是2 cm 或8 cm.中档题12.如图,用剪刀沿直线将一片平整的树叶剪掉一部分,则剩下的树叶周长小于原树叶的周长,能解释这一现象的数学道理是(B )A.两点之间直线最短B.两点之间线段最短C.两点确定一条直线D.经过一点有无数条直线13.如图,C 为AB 的中点,D 是BC 的中点,则下列说法错误的是(C )A.CD =AC -BDB.CD =12AB -BDC.CD =23BC D.AD =BC +CD14.线段AB =2 cm ,延长AB 到C ,使BC =AB ,再延长BA 到D ,使BD =2AB ,则线段DC 的长为(C ) A.4 cm B.5 cm C.6 cm D.2 cm 15.(教材P113习题T2变式)已知线段a 、b (a >b ),用尺规作图法作一条线段,使其等于2a -b (不写作法,保留作图痕迹).解:如图所示,线段OC 即为所求.16.如图,已知线段AB ,按下列要求完成作图和计算:(1)延长线段AB 到点C ,使BC =2AB ,取AC 的中点D ; (2)在(1)的条件下,如果AB =4,求线段BD 的长度.解:(1)如图所示.(2)因为BC =2AB ,且AB =4,所以BC =8. 所以AC =AB +BC =4+8=12. 因为D 为AC 的中点, 所以AD =12AC =6.所以BD =AD -AB =6-4=2.综合题17.如图,已知点A ,B ,C 在同一直线上,M ,N 分别是AC ,BC 的中点. (1)若AB =20,BC =8,求MN 的长; (2)若AB =a ,BC =8,求MN 的长; (3)若AB =a ,BC =b ,求MN 的长;(4)从(1)(2)(3)的结果中能得到什么结论?解:(1)因为AB =20,BC =8, 所以AC =AB +BC =28.因为点A ,B ,C 在同一直线上,M ,N 分别是AC ,BC 的中点, 所以MC =12AC =14,NC =12BC =4.所以MN =MC -NC =14-4=10.(2)根据(1),得MN =12(AC -BC )=12AB =12a.(3)根据(1),得MN =12(AC -BC )=12AB =12a.(4)从(1)(2)(3)的结果中能得到线段MN 始终等于线段AB 的一半,与点C 的位置无关.小专题(八) 线段的计算类型1 中点问题【例】 如图,点C 在线段AB 上,点M ,N 分别是AC ,BC 的中点.(1)若AC =9 cm ,CB =6 cm ,则MN =7.5cm ; (2)若AC =a cm ,CB =b cm ,则MN =(12a +12b )cm ;(3)若AB =m cm ,求线段MN 的长;(4)若C 为线段AB 上任一点,且AB =n cm ,其他条件不变,你能猜想MN 的长度吗?并用一句简洁的话描述你发现的结论.解:(3)因为点M 是AC 的中点,所以CM =12AC.因为点N 是BC 的中点,所以CN =12BC.所以MN =CM +CN =12AC +12BC =12AB =12m cm.(4)猜想:MN =12AB =12n cm.结论:当C 为线段AB 上一点,且M ,N 分别是AC ,BC 的中点,则存在MN =12AB.【变式1】 若MN =k cm ,求线段AB 的长. 解:因为点M 是AC 的中点,所以CM =12AC.因为点N 是BC 的中点,所以CN =12BC.所以MN =CM +CN =12AC +12BC =12AB.所以AB =2MN =2k cm.【变式2】 若C 在线段AB 的延长线上,且满足AB =p cm ,M ,N 分别为AC ,BC 的中点,你能猜想MN 的长度吗?请画出图形,并说明理由.解:猜想:MN =12AB.当点C 在线段AB 的延长线时,如图.因为点M 是AC 的中点,所以CM =12AC.因为点N 是BC 的中点,所以CN =12BC.所以MN =CM -CN =12(AC -BC )=12AB =12p cm.如图,点C 在线段AB 所在的直线上,点M ,N 分别是AC ,BC 的中点,则MN =12AB.1.如图,C 是线段AB 上一点,M 是AB 的中点,N 是AC 的中点.若AB =8 cm ,AC =3.2 cm ,则MN =2.4cm.2.如图,已知点C ,D 为线段AB 上顺次两点,M ,N 分别是AC ,BD 的中点. (1)若AB =24,CD =10,求MN 的长;(2)若AB =a ,CD =b ,请用含有a ,b 的式子表示出MN 的长.解:(1)因为AB =24,CD =10, 所以AC +DB =AB -CD =14 cm. 因为M ,N 分别是AC ,BD 的中点, 所以MC +DN =12(AC +DB )=7 cm.所以MN =MC +DN +CD =17 cm. (2)因为AB =a ,CD =b , 所以AC +DB =AB -CD =a -b.因为M ,N 分别是AC ,BD 的中点, 所以MC +DN =12(AC +DB )=12(a -b ).所以MN =MC +DN +CD =12(a -b )+b =12(a +b ).类型2 直接计算线段的长度3.如图,点C 为线段AB 的中点,点D 在线段CB 上. (1)图中共有6条线段;(2)图中AD =AC +CD ,BC =AB -AC ,类似地,请你再写出两个有关线段的和与差的关系式; (3)若AB =8,DB =1.5,求线段CD 的长.解:(2)答案不唯一,如:①BC =CD +DB ;②AD =AB -DB. (3)因为C 为线段AB 的中点,AB =8,所以CB =12AB =4.所以CD =CB -DB =2.5.4.如图,AD =12 cm ,AC =BD =8 cm ,E ,F 分别是AB ,CD 的中点,求EF +2FB 的长.解:因为AD =12 cm ,AC =BD =8 cm , 所以BC =AC +BD -AD =4 cm.所以AB =AC -BC =4 cm ,CD =BD -BC =4 cm. 所以EF =BC + 12(AB +CD )=4+12×8=8(cm ).所以CF = 12CD =2 cm.所以FB =BC +CF =6 cm.所以EF +2FB =8+2×6=20(cm ). 即EF +2FB 的长为20 cm.类型3 运用分类讨论思想求线段的长度5.已知A ,B ,C 三点在一条直线上,且线段AB =15 cm ,BC =5 cm ,则线段AC =20或10cm.6.已知线段AB =60 cm ,在直线AB 上画线段BC ,使BC =20 cm ,点D 是AC 的中点,求CD 的长度. 解:当点C 在线段AB 上时,如图1.图1CD =12AC =12(AB -BC )=12×(60-20)=12×40=20(cm ).当点C 在线段AB 的延长线上时,如图2.图2CD =12AC =12(AB +BC )=12×(60+20)=12×80=40(cm ).所以CD 的长度为20 cm 或40 cm.类型4 动态问题7.如图,数轴上A ,B 两点对应的有理数分别为10和15,点P 从点A 出发,以每秒1个单位长度的速度沿数轴正方向运动,点Q 同时从原点O 出发,以每秒2个单位长度的速度沿数轴正方向运动,设运动时间为t 秒.(1)当0<t <5时,用含t 的式子填空: BP =5-t ,AQ =10-2t ;(2)当t =2时,求PQ 的值; (3)当PQ =12AB 时,求t 的值.解:(2)当t =2时,AP <5,点P 在线段AB 上,OQ <10,点Q 在线段OA 上,如图1.图1此时PQ =OP -OQ =(OA +AP )-OQ =(10+t )-2t =10-t =8. (3)①当点P 在点Q 右边时,如图2.图2此时,AP =t ,OQ =2t ,OA =10,AB =5. 所以PQ =OA +AP -OQ =10+t -2t =10-t. 当PQ =12AB 时,即10-t =2.5,解得t =7.5.②当点P 在点Q 左边时,如图3.图3此时,OQ =2t ,AP =t ,OA =10,AB =5. 所以PQ =OQ -OA -AP =2t -10-t =t -10. 当PQ =12AB 时,即t -10=2.5,解得t =12.5.综上所述,当PQ =12AB 时,t =7.5或12.5.4.3 角基础题 知识点1 角的概念及表示方法 1.下列说法正确的是(D ) A.一条直线可以看成一个平角 B.周角是一条射线C.角是由一条射线旋转而成的D.角是由公共端点的两条射线组成的图形2.下列四个图形中,能用∠1、∠AOB 、∠O 三种方法表示同一个角的图形是(B )3.如图,∠AOB 的顶点是点O ,两边分别是OA 、OB.4.如图,点O 是直线AB 上一点,图中共有5个小于平角的角.知识点2 角的度量及换算 5.计算:(1)15°30′=15.5°; (2)25.35°=25°21′; (3)57.27°=57°16′12″; (4)36°48′36″=36.81°.知识点3 方位角6.(太原师院附属中学阶段考试)A ,B 两地的位置如图所示,则A 在B 的(C )A.南偏东30°B.东偏南60°C.北偏西60°D.西偏北60°易错点 度、分、秒转换时,误按十近制进行换算 7.计算:3.76°=3°45′36″;22°32′24″=22.54°.中档题8.赵师傅透过放大5倍的放大镜从正上方看30°的角,则通过放大镜他看到的角等于(A ) A.30° B.90° C.150° D.180°9.(教材P117习题T3变式)下列时刻中,时针与分针之间的夹角为30°的是(B ) A.早晨6点 B.下午1点 C.中午12点 D.上午9点10.(焦作期末)已知岛P 位于岛Q 的正西方,由岛P ,Q 分别测得船R 位于南偏东30°和南偏西45°方向上,符合条件的示意图是(D )11.计算:(1)85°33′-29°48′; (2)44°35′÷3.解:原式=55°45′. 解:原式=14°51′40″.综合题12.如图,在锐角∠AOB 内部,画1条射线,可得3个锐角;画2条不同射线,可得6个锐角;画3条不同射线,可得10个锐角;…照此规律,画n 条不同射线,可得12(n +1)(n +2)个锐角.…4.4 角的比较基础题 知识点1 角的测量及大小比较1.在∠AOB 的内部任取一点C ,作射线OC ,则一定存在(A ) A.∠AOB >∠AOC B.∠AOC =∠BOC C.∠BOC >∠AOC D.∠AOC >∠BOC2.如图,若∠AOC =∠BOD ,则∠AOD 与∠BOC 的大小关系是(C )A.∠AOD >∠BOCB.∠AOD <∠BOCC.∠AOD =∠BOCD.无法确定3.比较两个角的大小,有以下两种方法(规则):(1)用量角器度量两个角的大小,用度数表示,则角度大的角大; (2)构造图形,若一个角包含(或覆盖)另一个角,则这个角大.对于如图给定的∠ABC 与∠DEF ,用以上两种方法分别比较它们的大小.解:(1)略.(2)如图所示.故∠DEF 大.知识点2 角的平分线及角的运算4.(百色中考)如图,AM 为∠BAC 的平分线,则下列等式错误的是(C )A.12∠BAC =∠BAM B.∠BAM =∠CAMC.∠BAM =2∠CAMD.2∠CAM =∠BAC5.一副三角板如图所示放置,则∠AOB 等于(C )A.120°B.90°C.105°D.60° 6.如图,点O 在直线AB 上,射线OC 平分∠DOB.若∠DOC =35°,则∠AOD 等于(C )A.35°B.70°C.110°D.145° 7.如图,下列条件中不能确定OC 平分∠AOB 的是(D )A.∠AOC =∠BOCB.∠AOC =12∠AOBC.∠AOB =2∠BOCD.∠AOC +∠BOC =∠AOB8.(平顶山期末)如图,若OB 平分∠AOC ,OC 平分∠BOD ,且∠AOB =25°,则∠AOD 等于(C )A.25°B.50°C.75°D.90° 9.如图,OB 是∠AOC 的平分线,∠BOC =30°,∠COD =40°,求∠AOD 的度数.解:因为OB 是∠AOC 的平分线,∠BOC =30°, 所以∠AOC =2∠BOC =60°.因为∠AOD =∠AOC +∠COD ,∠COD =40°, 所以∠AOD =60°+40°=100°.易错点 对角的位置关系没有进行分类讨论,导致漏解10.OC 是从∠AOB 的顶点O 引出的一条射线,若∠AOB =90°,∠AOB =2∠BOC ,则∠AOC 的度数是45°或135°.中档题11.如图,∠AOC 和∠DOB 都是直角,如果∠AOB =150°,那么∠DOC =(A )A.30°B.40°C.50°D.60°12.如图,OC 是∠AOB 的平分线,∠BOD =14∠DOC ,∠BOD =10°,则∠AOD 的度数为(C )A.50°B.60°C.70°D.80° 13.用一副三角板拼角,能拼出的最小角(非0°)的大小是15°,能拼出的最大角(非平角)的大小是150°.14.(太原师院附属中学阶段考试)如图,拿一张长方形纸片,按图中的方法折叠一角,得到折痕EF.如果∠DFE =35°,那么∠D′FA =110°.15.如图,点O 是直线AB 上的一点,∠AOC =130°,OB 平分∠COD ,OE 平分∠AOD ,求∠AOE 的度数.解:因为点O 在直线AB 上, 所以∠AOC +∠BOC =180°. 因为∠AOC =130°, 所以∠BOC =50°.因为OB 平分∠COD ,所以∠COD =2∠COB =100°. 所以∠AOD =360°-∠AOC -∠COD =360°-130°-100°=130°. 因为OE 平分∠AOD , 所以∠AOE =12∠AOD =65°.综合题16.如图所示,OE ,OD 分别平分∠AOC 和∠BOC. (1)如果∠AOB =90°,∠BOC =38°,求∠DOE 的度数; (2)如果∠AOB =α,∠BOC =β(α,β均为锐角,α>β),其他条件不变,求∠DOE 的度数; (3)从(1)(2)的结果中,你发现了什么规律,请写出来.解:(1)因为∠AOB =90°,∠BOC =38°,所以∠AOC =∠AOB +∠BOC =90°+38°=128°. 又因为OE ,OD 分别平分∠AOC 和∠BOC ,所以∠COE =12∠AOC =12×128°=64°,∠COD =12∠BOC =12×38°=19°.所以∠DOE =∠COE -∠COD =64°-19°=45°.(2)因为∠AOB =α,∠BOC =β, 所以∠AOC =∠AOB +∠BOC =α+β.又因为OE ,OD 分别平分∠AOC 和∠BOC ,所以∠COE =12∠AOC =12(α+β),∠COD =12∠BOC =12β.所以∠DOE =∠COE -∠COD =12(α+β)-12β=12α+12β-12β=12α.(3)∠DOE 的大小与∠BOC 的大小无关,∠DOE =12∠AOB.小专题(九) 角度的计算类型1 角平分线问题【例】 如图,已知∠AOB 内部有三条射线OE ,OC ,OF ,且OE 平分∠BOC ,OF 平分∠AOC. (1)若∠AOC =30°,∠BOC =60°,则∠EOF =45°; (2)若∠AOC =α,∠BOC =β,则∠EOF =α+β2; (3)若∠AOB =θ,你能猜想出∠EOF 与∠AOB 之间的数量关系吗?请说明理由.解:∠EOF 与∠AOB 之间的数量关系是∠EOF =12∠AOB =12θ.理由:因为OE 平分∠BOC ,OF 平分∠AOC , 所以∠EOC =12∠BOC ,∠COF =12∠AOC.所以∠EOF =∠EOC +∠COF =12∠BOC +12∠AOC =12(∠BOC +∠AOC )=12∠AOB =12θ.【变式1】 若∠EOF =γ,求∠AOB.解:因为OE 平分∠BOC ,OF 平分∠AOC , 所以∠EOC =12∠BOC ,∠COF =12∠AOC.所以∠EOF =∠EOC +∠COF =12∠BOC +12∠AOC =12(∠BOC +∠AOC )=12∠AOB.因为∠EOF =γ,所以∠AOB =2γ.【变式2】 若射线OC 在∠AOB 的外部,且∠AOB =θ,OE 平分∠BOC ,OF 平分∠AOC ,则上述(3)中的结论还成立吗?请画出图形,并说明理由.解:∠EOF =12θ成立,如图所示.理由:因为OE 平分∠BOC ,OF 平分∠AOC , 所以∠EOC =12∠BOC ,∠COF =12∠AOC.所以∠EOF =∠COF -∠EOC =12∠AOC -12∠BOC =12(∠AOC -∠BOC )=12∠AOB =12θ.如图,当射线OC 在∠AOB 的内部或外部(0°<∠AOC ≤180°),OE 平分∠BOC ,OF 平分∠AOC 时,总有∠EOF =12∠AOB.1.如图,点A ,O ,B 在一条直线上,OE 平分∠BOC ,OF 平分∠AOC ,则∠EOF =90°.2.如图,已知∠AOB 内部有顺次的四条射线:OE ,OC ,OD ,OF ,且OE 平分∠AOC ,OF 平分∠BOD. (1)若∠AOB =160°,∠COD =40°,则∠EOF 的度数为100°; (2)若∠AOB =α,∠COD =β,求∠EOF 的度数; (3)从(1)(2)的结果中,你能看出什么规律吗?解:(2)因为∠EOF =∠COE +∠COD +∠FOD =12∠AOC +∠COD +12∠BOD =12(∠AOC +∠BOD )+∠COD =12(∠AOB -∠COD )+∠COD =12∠AOB +12∠COD ,∠AOB =α,∠COD =β, 所以∠EOF =12α+12β=12(α+β).(3)若∠AOB 内部有顺次的四条射线:OE ,OC ,OD ,OF ,且OE 平分∠AOC ,OF 平分∠BOD , 则∠EOF =12(∠AOB +∠COD ).类型2 直接计算角的度数3.如图,点A ,O ,E 在同一直线上,∠AOB =40°,∠EOD =28°46′,OD 平分∠COE ,求∠COB 的度数.解:因为∠EOD =28°46′,OD 平分∠COE , 所以∠COE =2∠EOD =2×28°46′=57°32′. 因为∠AOB =40°, 所以∠COB =180°-∠AOB -∠COE =180°-40°-57°32′=82°28′.类型3 运用分类讨论思想求角的度数 4.如图,OC 是∠AOB 的平分线. (1)当∠AOB =60°时,求∠AOC 的度数; (2)在(1)的条件下,∠EOC =90°,请在图中补全图形,并求∠AOE 的度数; (3)当∠AOB =α,∠EOC =90°时,直接写出∠AOE 的度数.(用含α的式子表示)解:(1)因为OC 是∠AOB 的平分线, 所以∠AOC =12∠AOB.因为∠AOB =60°, 所以∠AOC =30°.(2)如图1,∠AOE =∠EOC +∠AOC =90°+30°=120°.如图2,∠AOE =∠EOC -∠AOC =90°-30°=60°. 所以∠AOE 的度数为120°或60°. (3)90°+α2或90°-α2.类型4 运用角中的旋转求角的度数5.已知点O 是直线AB 上的一点,∠COD 是直角,OE 平分∠BOC. (1)如图1.①若∠AOC =60°,则∠DOE 的度数为30°; ②若∠AOC =α,则∠DOE 的度数为12α(用含α的式子表示);(2)将图1中的∠DOC 绕点O 顺时针旋转至图2的位置,试探究∠DOE 和∠AOC 的度数之间的关系,写出你的结论,并说明理由.解:∠DOE =12∠AOC.理由如下:因为∠BOC =180°-∠AOC ,OE 平分∠BOC , 所以∠COE =12∠BOC =12(180°-∠AOC )=90°-12∠AOC.所以∠DOE =90°-∠COE =90°-(90°-12∠AOC )=12∠AOC.4.5 多边形和圆的初步认识基础题 知识点1 认识多边形1.下列图形中,不是多边形的是(D )A B C D 2.从九边形的一个顶点出发可以引出的对角线条数为(C )A.3B.4C.6D.93.若某一个顶点与和它不相邻的其他各顶点连接,可将多边形分成7个三角形,则这个多边形是(D ) A.六边形 B.七边形 C.八边形 D.九边形4.n 边形有n 个顶点,n 条边,n 个内角,过n 边形的每一个顶点有(n -3)条对角线.知识点2 认识正多边形 5.下列说法不正确的是(A )A.各边都相等的多边形是正多边形B.正多边形的各边都相等C.正三角形就是等边三角形D.各内角都相等的多边形不一定是正多边形6.一个正六边形的周长是18 cm ,则这个正六边形的边长是3cm.知识点3 认识圆7.下面的平面图形中,为扇形的是(D )A B C D8.如图所示的圆可记作圆O ,半径有3条,分别是OA 、OB 、OC ,请写出任意三条弧:答案不唯一,如:AC ︵、BC ︵、MB ︵.9.将一个圆分割成四个大小相同的扇形,则每个扇形的圆心角是90度.中档题10.下列属于正n 边形的特征的有(A )①各边相等;②各个内角相等;③各条对角线都相等;④从一个顶点可以引(n -2)条对角线;⑤从一个顶点引出的对角线将正n 边形分成面积相等的(n -2)个三角形.A.2个B.3个C.4个D.5个11.从十边形的一个顶点出发,可以引m 条对角线,这些对角线可以把这个十边形分成n 个三角形,则m +n =15W. 12.(教材P124例变式)把一个半径为2的圆分成三个扇形,使它们的圆心角的度数之比为1∶3∶5. (1)求这三个扇形的圆心角的度数; (2)求这三个扇形的面积(π取3.14). 解:(1)1+3+5=9, 360°×19=40°,360°×39=120°,360°×59=200°.答:这三个扇形的圆心角的度数分别是40°,120°,200°. (2)3.14×22=12.56, 12.56×40360=314225,12.56×120360=31475,12.56×200360=31445.答:这三个扇形的面积分别是314225,31475,31445.综合题13.观察探究及应用. (1)观察图形并填空:一个四边形有2条对角线; 一个五边形有5条对角线; 一个六边形有9对角线; 一个七边形有14对角线; (2)分析探究:由凸n 边形的一个顶点出发,可作(n -3)条对角线,多边形有n 个顶点,若允许重复计数,共可作n (n -3)条对角线; (3)结论:一个凸n 边形有n (n -3)2条对角线;(4)应用:一个凸十二边形有54条对角线.章末复习(四) 基本平面图形分点突破知识点1 线段、射线、直线1.如图,下列说法不正确的是(C )A.点O 不在直线AC 上B.图中共有5条线段C.射线AB 与射线BC 是指同一条射线D.直线AB 与直线CA 是指同一条直线 2.按要求作图:如图,在同一平面内有四个点A ,B ,C ,D.①画射线CD ;②画直线AD ;③连接AB ;④直线BD 与直线AC 相交于点O.解:如图所示.知识点2 线段的有关计算3.下列关系中,与图示不符合的式子是(C )A.AD -CD =AB +BCB.AC -BC =AD -DBC.AC -BC =AC +BDD.AD -AC =BD -BC4.如图,若AB =2 cm ,BC =5 cm ,C 是BD 的中点,则BD =10cm ,AD =12cm.5.如图,线段AB =10 cm ,延长AB 到点C ,使BC =6 cm ,点M ,N 分别为AC ,BC 的中点,求线段BM ,MN 的长.解:因为AB =10 cm ,BC =6 cm , 所以AC =16 cm.又因为M 为AC 的中点, 所以MC =AM =8 cm. 因为N 为BC 的中点,所以BN =NC =3 cm ,BM =AB -AM =10-8=2(cm ), MN =BM +BN =2+3=5(cm ).知识点3 角的有关计算6.下列各式计算正确的是(C )A.(12)°=118″ B.38°15′=38.15°C.24.8°×2=49.6°D.90°-85°45′=4°55′ 7.(北京中考)如图,直线AB ,CD 交于点O ,射线OM 平分∠AOC ,若∠AOC =76°,则∠BOM 等于(C )A.38°B.104°C.142°D.144° 8.如图所示,已知∠AOC =∠BOD =80°,∠BOC =30°,则∠AOD 的度数为(C )A.160°B.110°C.130°D.140° 9.如图,OB 为∠AOC 的平分线,OD 是∠COE 的平分线. (1)如果∠AOB =40°,∠DOE =30°,那么∠BOD 为多少度? (2)如果∠AOE =140°,∠COD =30°,那么∠AOB 为多少度?解:(1)因为OB 为∠AOC 的平分线,OD 是∠COE 的平分线, 所以∠AOB =∠BOC ,∠DOE =∠DOC.所以∠BOD =∠BOC +∠DOC =∠AOB +∠DOE =40°+30°=70°. (2)因为OD 是∠COE 的平分线,∠COD =30°, 所以∠EOC =2∠COD =60°. 因为∠AOE =140°,所以∠AOC =∠AOE -∠EOC =80°. 又因为OB 为∠AOC 的平分线, 所以∠AOB =12∠AOC =40°.知识点4 多边形和圆的初步认识10.一个正六边形的边长为6,则它的周长为36.11.将一个圆分成六个完全相同的小扇形,则这些小扇形的圆心角为60度.常考题型演练12.如图,图中小于平角的角有(B )A.10个B.9个C.8个D.4个13.(宝鸡期末)当时刻为下午3:30时,钟表上的时针与分针间的夹角是(C)A.60°B.70°C.75°D.85°14.如图,已知A,B,C,D,E五点在同一直线上,D点是线段AB的中点,点E是线段BC的中点.若线段AC=12,则线段DE等于(C)A.10B.8C.6D.415.从一个多边形的一个顶点出发一共有7条对角线,则这个多边形的边数为10.16.(焦作期末)已知∠AOB=45°,OC是∠AOB的一条三等分线,则∠AOC的度数是15°或30°.17.如图,已知点C为AB上一点,AC=12 cm,CB=23AC,D,E分别为AC,AB的中点.求DE的长.解:因为AC=12 cm,CB=23AC,所以CB=8 cm.所以AB=20 cm.因为D,E分别为AC,AB的中点,所以AD=6 cm,AE=10 cm.所以DE=4 cm.18.如图,射线OA的方向是北偏东15°,射线OB的方向是北偏西40°,∠AOB=∠AOC,OD是OB的反向延长线. (1)射线OC的方向是北偏东70°;(2)求∠COD的度数;(3)若射线OE平分∠COD,求∠AOE的度数.解:(2)因为∠AOB=40°+15°=55°,∠AOB=∠AOC,所以∠BOC=110°.又因为OD是OB的反向延长线,所以∠COD=180°-110°=70°.(3)因为∠COD=70°,OE平分∠COD,所以∠COE=35°.又因为∠AOC=55°,所以∠AOE=55°+35°=90°.19.(郑州5中月考)将平面内一副三角板按三种方式摆放,分别求出对应的度数. (1)平面内将一副三角板按如图1所示摆放,则∠EBC=150°;(2)平面内将一副三角板按如图2所示摆放,若∠EBC=165°,则∠α=15°;(3)平面内将一副三角板按如图3所示摆放,若∠EBC=115°,求∠α的度数.解:因为∠EBC=115°,∠EBD=90°,所以∠DBC=∠EBC-∠EBD=25°.因为∠ABC=60°,所以∠α=∠ABC-∠DBC=35°.。