期权投资组合套利计算公式
套利定价模型名词解释

套利定价模型名词解释
套利定价模型是一种金融学中用于衡量和估计资产价格的理论模型。
该模型基于套利原理,认为在市场上不存在任何无风险套利机会。
换
言之,如果存在两个或多个市场上的资产,其价格不同但具有相同的
收益或风险特征,则投资者可以通过买入低价资产并卖出高价资产来
实现无风险套利。
套利定价模型主要用于评估期权和其他衍生品的价格。
它基于期权定
价理论和黑-斯科尔斯(Black-Scholes)公式,考虑到标的资产价格、行权价格、时间到期、波动率等因素,并根据市场上其他相关资产的
价格进行调整。
该模型主要包括两个部分:一是确定标的资产价格和波动率等参数;
二是使用这些参数计算期权或其他衍生品的合理价格。
其中,第一部
分通常采用历史数据和统计方法进行估计;第二部分则需要使用复杂
的数学公式和计算机程序进行计算。
套利定价模型在金融市场中具有广泛应用。
它可以帮助投资者更好地
理解期权和其他衍生品的定价规律,并为投资决策提供参考。
同时,
该模型也为金融机构和交易所提供了一种有效的价格发现工具,有助
于促进市场的流动性和稳定性。
期权平价公式

期权平价公式:
C+ Ke^(-rT)=P+S
认购期权价格C与行权价K的现值之和等于认沽期权的价格P加上标的证券现价S
Ke^(-rT):K乘以e的-rT次方,也就是K的现值。
e 的-rT次方是连续复利的折现系数。
也可用exp(-rT)表示贴现因子。
根据无套利原则推导:
构造两个投资组合。
1.看涨期权C,行权价K,距离到期时间T。
现金账户Ke^(-rT),利率r,期权到期时恰好变成行权价K。
2.看跌期权P,行权价K,距离到期时间T。
标的物股票,现价S。
看到期时这两个投资组合的情况。
1.股价St大于K:投资组合1,行使看涨期权C,花掉现金账户K,买入标的物股票,股价为St。
投资组合2,放弃行使看跌期权,持有股票,股价为St。
2.股价St小于K:投资组合1,放弃行使看涨期权,持有现金K。
投资组合2,行使看跌期权,卖出标的物股票,得到现金K
3.股价等于K:两个期权都不行权,投资组合1现金K,
买
卖出买入
S K C P 买
出
买入
S K C
P 行权价K 低于现
行权价K 高于现投资组合2股票价格等于K 。
从上面的讨论我们可以看到,无论股价如何变化,到期时两个投资组合的价值一定相等,所以他们的现值也一定相等。
根据无套利原则,两个价值相等的投资组合价格一定相等。
所以我们可以得到C+Ke^(-rT)=P+S 。
换一种思路理解:C- P = S- Ke^(-rT)
认购期权价格C 与认沽期权的价格P 的差等于证券现价与行权价K 现值的差。
期权定价公式的推导

实际利率i
—
实际贴现率
—
1-v
贴现因子v
1-d
—
利息力δ
ln(1+i)
-ln(1-d)
-lnv
—
19
欧式股票买入期权的定价公式
C(S,T ) SN (d1) XerT N (d2 )
其中T是到期时间,S是当前股价,C(S,T)欧式买入期 权的价格。
1 S 2
d1
16
利息力(force of interest)
利息力是在确切时点上的利息强度,可以用累 积函数的相对变化率定义如下:
式中 为在时点t的利息力。
17
在复利条件下的利息力
可见在复利条件下,利息力是常数,与时间t 无关。
将这个式子变形,可以得到复利的实际利率
18
实际利率i 实际贴现率d 贴现因子v 常数利息力δ
St 就是折现价格。
这说明 St 仍然遵循几何布朗运动,且只有当 r 0 时才是鞅。 μ——股票价格的平均(瞬时)收益率; r——无风险(瞬时)收益率。 根据资产定价基本原理,只要市场上没有套利机会,那么就一定存在一 种等价的概率测度,使得所有证券及其组合的折现价格都成为鞅。这时 所有证券价格的平均收益率都与无风险收益率一致。
Wn pn p0 1 2 n , n 0,1,2,
称为随机游走。这个名称最初是对ε 以相同概率取的 随机变量而言的。在这种情况下,这个随机序列可形 象地解释为一个醉汉在路上横行。在每一时刻,他既 可以往左走一步,也可能往右走一步。它也就是所谓 的“随机游走”。尽管醉汉总围绕原点徘徊,但时间 越长,他就可能离原点越远。
2
3
期权定价公式及其应用解读

(7)
为要套期保值此期权,投资者必须卖空 2 (t, S ) 股此股票
下面求复制期权的证券组合
期权价格的分解:
Ct nt St 0 Ct nt St S t 0 St
Ct nt St ) 由此可知证券组合(portfolio) (nt , 0 St
是自融资证券组合
(四) 方程(7)解的概率表示 命题 2 设
第二,认为在离到期日足够远的时候,买权的价值可能大 于标的股票的价值,这显然也是不可能的。 第三,假设股票的期望报酬(即股价变化的平均值)为零, 这也违背了股票市场的实际情况。
(2) 斯普伦克莱 ( Sprenkle ,1961) 在Bachelier的研究基础上,人们对期权定价问题进行 了长期的研究。
其中,
1 S 1 2 d1 log ( )T , 2 T K
d 2 d1 T
(4) 塞缪尔森 (Samuelson, 1965)
1965年,著名经济学家萨缪尔森(Samuelson)把上 述 成果统一在一个模型中。
C(S , T ) Se
e
y2 2
dy
图1
期权价格曲线随到期时间T的变化
Black-Scholes公式的方便之处在于除股价的 波动率外,其他参数都是直接在市场上可以找到的。 例如,如果这里价格以元计,时间以年计,从而涉 及的两个比率都指的是年率。那么(以下的等号实 际上都是近似等号)
Ke
rT
15e
0.1( 0.25 )
rs ds
T
则Feynman-Kac公式成立:
(t , x) E p [e t
h( y
(t , x ) T
第07讲_期权

总结①若市价大于执行价格,多头与空头价值:金额绝对值相等,符号相反;②若市价小于执行价格,多头与空头价值:均为0。
多头:净损失有限(最大值为期权价格),而净收益却潜力巨大。
空头:净收益有限(最大值为期权价格),而净损失不确定【提问】有一项看涨期权,标的股票的当前市价为19元,执行价格为20元,到期日为1年后的同一天,期权价格为2元,若到期日股票市价为23元。
1.期权空头到期价值为?2.期权多头到期价值为?3.买方期权到期净损益为?4.卖方到期净损失为?【手写板】-(S T-X)=-(23-20)=-3S T-X=3S T-X-C0=3-2=1-1【答案】期权空头到期价值为-3元期权多头到期价值3元买方期权到期净损益为1元卖方到期净损失为-1元。
【考点二】期权的投资策略(一)保护性看跌期权1.含义股票加多头看跌期权组合,是指购买1股股票,同时购入该股票1股看跌期权。
2.图示【手写板】①S T<X:组合收入X②S T>X:组合收入S T3.组合净损益组合净损益=到期日的组合净收入-初始投资(1)股价<执行价格:X-(S0+P0)(2)股价>执行价格:ST-(S0+P0)4.特征锁定了最低净收入和最低净损益。
但是,同时净损益的预期也因此降低了。
(二)抛补性看涨期权1.含义股票加空头看涨期权组合,是指购买1股股票,同时出售该股票1股看涨期权。
2.图示【手写板】①S T<X:组合收入S T②S T>X:组合收入X3.组合净损益组合净损益=到期日组合净收入-初始投资(1)股价<执行价格:(2)股价>执行价格:X+4.结论抛补看涨期权组合锁定了最高净收入,最多是执行价格。
(三)多头对敲多头对敲是指同时买进一只股票的看涨期权和看跌期权,它们的执行价格、到期日都相同。
2.图示【手写板】收入=|-X|3.适用范围多头对敲策略对于预计市场价格将发生剧烈变动,但是不知道升高还是降低的投资者非常有用。
期权投教_全版

页码 8
期权市场上的交易者可以分为:做市商、机构投资者、个人投资者。 做市商为期权市场中的交易者提供买卖单报价,在接受市场上的买单的同时挂出卖单, 为市场提供流动性。
机构投资者往往由基金公司、自营交易商等机构组成。他们交易期权的目的各有不同,
包括,对冲标的价格风险、投机获利以及套利获利。 个人投资者往往由一些资金量较小的投资者组成,他们同样使用期权进行套保、投机
套期保值:套保者可以通过购买期权并持有到期的方式对冲标的资产的价格风险。
例子:
场景:投资者A持有10万份的上证50ETF,他担心未来ETF价格大幅下降导致资产缩水; 假设:行权价格为2.40的认沽期权现价为0.0300;上证50ETF现价为2.500; 操作:投资者可以买入10张认沽期权进行套期保值,初期支付权利金0.0300 ×10000 ×10=3000; 到期时,若上证50ETF价格下降至2.20: 若未购买期权,投资者将损失(2.5-2.2)×100000=3万 ;
主 要 内 容
期权基础介绍
期权套期保值、投资与套利
期权价格的影响因素 上证50ETF期权细则解读
页码 1
期权(Option)是一份合约,它赋予期权买方在特定日期或之前以特定价格买入或卖 出标的资产的权利;期权卖方则通过卖出这样一份权利获取权利金,但期权卖方也同 时承担了兑付合约的义务。
合约编码:按合约推出 顺序依次累加。 (与交 易代码不同)
认购期权
行权价格
认沽期权
图中,紫色底色部分为实值期权,青色底色部分为虚值期权。
页码 6
50ETF 认购期权 1 1 月2.55,在其
到期时,期权买方的收益如下图所示
3 2.5
期权定价方法综述_刘海龙

综述研究期权定价方法综述①刘海龙,吴冲锋(上海交通大学安泰管理学院,上海200052)摘要:介绍了期权定价理论的产生和发展;然后对期权定价方法及其实证研究进行了较详细的分类综述,突出综述了既适用于完全金融市场,又适用于非完全的金融市场的确定性套利定价方法、区间定价方法和Ε2套利定价方法;最后,对各种方法的条件和特点进行了讨论和评价.关键词:综述;期权定价;蒙特卡罗模拟;有限差分方法;Ε2套利;区间定价中图分类号:F830.9 文献标识码:A 文章编号:100729807(2002)022*******0 引 言期权是一种极为特殊的衍生产品,它能使买方有能力避免坏的结果,而从好的结果中获益,同时,它也能使卖方产生巨大的损失.当然,期权不是免费的,这就产生了期权定价问题.期权定价理论是现代金融理论最为重要的成果之一,它集中体现了金融理论的许多核心问题,其理论之深,方法之多,应用之广,令人惊叹.期权的标的资产也由股票、指数、期货合约、商品(金属、黄金、石油等),外汇增加到了利率,可转换债券、认股权证、掉期和期权本身等许多可交易证券和不可交易证券.期权是一种企业、银行和投资者等进行风险管理的有力工具.期权的理论与实践并非始于1973年B lack2 Scho les关于期权定价理论论文的发表.早在公元前1200年的古希腊和古腓尼基国的贸易中就已经出现了期权交易的雏形,只不过当时条件下不可能对其有深刻认识.期权的思想萌芽也可以追溯到公元前1800年的《汉穆拉比法典》.公认的期权定价理论的始祖是法国数学家巴舍利耶(L ou is B achelier,1900年),令人难以理解的是,长达半个世纪之久巴舍利耶的工作没有引起金融界的重视,直到1956年被克鲁辛格(K ru izenga)再次发现.1973年芝加哥委员会期权交易所创建了第一个用上市股票进行看涨期权交易的集中市场,首次在有组织的交易所内进行股票期权交易,在短短的几年时间里,期权市场发展十分迅猛,美国股票交易所、太平洋股票交易所以及费城股票交易所纷纷模仿,1977年看跌期权的交易也开始出现在这些交易所内.有趣的是,布来克和斯科尔斯(B lack and Scho les)发表的一篇关于期权定价的开创性论文也是在1973年[1],同年,莫顿教授又对其加以推广和完善,不久,B lack2Scho les期权定价方程很快被编成了计算机程序,交易者只需键入包括标的资产价格、标的资产价格的波动率、货币利率和期权到期日等几个变量就很容易解出该方程,后来有人用这个方程对历史期权价格进行了验证,发现实际价格与理论价格基本接近,这一理论研究成果直接被应用到金融市场交易的实践中,推动了各类期权交易的迅猛发展.关于期权定价的理论研究[2-30]和综述文献[31-33]已相当丰富.本文与以往综述类文献根本不同的特点是将金融市场分为完全的金融市场和非完全的金融市场.突出了适用于非完全市场期第5卷第2期2002年4月管 理 科 学 学 报 JOU RNAL O F M ANA GE M EN T SC IEN CES I N CH I NA V o l.5N o.2A p r.,2002①收稿日期:2001201208;修订日期:2002201216.基金项目:国家自然科学基金(70173031)资助项目;国家杰出青年科学基金(70025303)资助项目;教育部跨世纪优秀人才基金资助项目.作者简介:刘海龙(19592),男,吉林省吉林市人,博士,教授.权定价理论的研究成果.金融市场是完全的假设下的期权定价问题的研究已经取得了丰硕的成果[2-8].如今,在金融市场不完全情况下的期权定价问题已经成为人们的研究热点[9-13].股票期权价格是以所对应的标的股票价格为基础的,受股票价格的波动率及无风险收益率等参数的影响.目前关于期权定价方法研究的主要成果有:(1°)传统期权定价方法,(2°)B lack2Scho les期权定价方法,(3°)二叉树期权定价方法,(4°)有限差分方法,(5°)蒙特卡罗模拟方法,(6°)确定性套利方法,(7°)Ε2套利定价方法,(8°)区间定价方法.为了更好地了解期权定价方法发展的脉络,本文对此进行了较详细的叙述.1 传统期权定价方法在B lack2Scho les以前,最早的期权定价模型的提出应当归功于法国的巴舍利耶,他发表了他的博士论文“投机理论”(T heo rie de la specu lati on)[13],第一次给予了B row n运动以严格的数学描述,他假设股票价格过程是一个没有漂移和每单位时间具有方差Ρ2的纯标准布朗运动,他得出到期日看涨期权的预期价格是P(x,t)=x5x-kΡt-k5x-kΡt+ Ρt x-kΡt(1)其中P(x,t)表示t时刻股票价格为x时期权的价值,x表示股票价格,k表示期权的执行价格,5表示标准正态分布函数, 表示标准正态分布密度函数.现在来看,巴舍利耶期权定价模型的主要缺陷是绝对布朗运动允许股票价格为负和平均预期价格变化为零的假设脱离实际,而且没有考虑资金的时间价值.在巴舍利耶以后,期权定价模型的最新发展,当属斯普里克尔(Sprek le,1961)[14],他假设了一个股票价格服从具有固定平均值和方差的对数分布,且该分布允许股票价格有正向漂移,他得到的看涨期权价值公式为P(x,t)=x eΑt5ln(x k)+Α+12Ρ2t- (1-Π)K5ln(x k+Α-12Α2tΡt(2)其中参数Π是市场“价格杠杆”的调节量,Α是股票预期收益率(不是无风险收益率),这一模型也没有考虑资金的时间价值.这一期间,卡苏夫(Kassouf,1969)、博内斯(Boness,1964)和萨缪尔森(Sam uelson,1965)也相继给出了看涨期权定价公式[15-17],特别是博内斯和萨缪尔森的看涨期权定价公式基本上接近了B lack2Seho les的期权定价公式.2 Black-Seholes期权定价方法B alck2Seho les的期权定价理论假设条件如下[1]:(1°)标的资产价格变动比例遵循一般化的维纳过程,该假定等价于标的资产价格服从对数正态分布;(2°)允许使用全部所得卖空衍生资产;(3°)没有交易费用和税收;(4°)不存在无风险套利机会;(5°)无风险利率r为常数且对所有到期日都相同.B lack2Seho les期权定价方法的基本思想是:衍生资产的价格及其所依赖的标的资产价格都受同一种不确定因素的影响,二者遵循相同的维纳过程.如果通过建立一个包含恰当的衍生资产头寸和标的资产头寸的资产组合,可以消除维纳过程,标的资产头寸与衍生资产头寸的盈亏可以相互抵消.由这样构成的资产组合为无风险的资产组合,在不存在无风险套利机会的情况下,该资产组合的收益应等于无风险利率,由此可以得到衍生资产价格的B lack2Seho les微分方程5P(x,t)5t-r P(x,t)+r x5P(x,t)x+ 12Ρ2x252P(x,t)5x2=0P(x,T)=m ax{0,x,-k},x>0(3)其中P(x,t)表示t时刻标的资产价格为x时看涨期权的价值,T表示期权的有效期限,r表示无风险利率,Ρ2表示标的资产收益率变化速度的方差,描述的是标的资产价格的易变性.k表示期权的执行价格.该方程的一个重要特性就是消去了预—86—管 理 科 学 学 报 2002年4月期收益率Λ,从而不包含任何反映投资者风险偏好的变量.由于风险偏好对期权定价不产生影响,因此,所有投资者都是风险中性的假定是没有必要的.通过求解偏微分方程(3)可得欧式看涨期权的定价公式P(x,t)=x5(d1)-k5(d2)exp[-r(T-t)](4)其中5( )是标准累积正态分布函数.d1=ln(x k)+(r+Ρ2 2)(T-t)ΡT-td2=ln(x k)+(r-Ρ2 2)(T-t)ΡT-t同理,可以得到欧式看跌期权的定价公式为P(x,t)=-x5(-d1)+k5(-d2)exp[-r(T-t)](5)期权定价方程可以用来制定各种金融衍生产品的价格,是各种金融衍生产品估价的有效工具.期权定价方程为西方国家金融创新提供了有力的指导.B lack2Scho les期权定价方法是现代期权定价理论的又一创举.自从布来克和斯科尔斯的论文发表以后,由默顿、考克斯、鲁宾斯坦等一些学者相继对这一理论进行了重要的推广并得到了广泛的应用[4-6].3 二叉树方法二叉树方法是由Cox,Ro ss和Rob in stein提出来的[3],其基本思想是:把期权的有效期分为若干个足够小的时间间隔,在每一个非常小的时间间隔内假定标的资产的价格从开始的x运动到两个新值,运动到比现价高的值xu的概率为p,运动到比现价低的值xd的概率为1-p.由于标的资产价格的变动率服从正态分布,运用风险中性定价原理,可以求得u=eΡ∃t d=1u=e-Ρ∃t P=e∃t-du-d(6)假设初始时刻时间为0,已知标的资产的价格为x;时间为∃t时,标的资产价格有两种可能: xu和xd;时间为2∃t时,标的资产价格有3种可能:xu2,xud和xd2.注意在计算每个结点标的资产价格时要使用u=1d 这一关系.一般情况下,i∃t时刻,标的资产价格有i+1种可能xu j d i-j j=0,1,…,i(7)如果是看涨期权,其价值应为m ax(x-k,0),这样,在已知到期日的股价之后,可求出二叉树的M+1个末端期权的价格.依据风险中性定价原理,T-∃t时刻每个节点上期权的价格都可由T时刻期权价格的期望值以无风险利率r折现求得.以此类推,可由期权的未来值回溯期权的初始值.值得注意的是,二叉树方法是由期权的未来值回溯期权的初始值,因此可以用于美式期权计算.美式期权在某个节点期权的价格是如下两个价格之中的较大者:一个是立即执行时的价格;另一个是继续持有∃t时间的折现值.假设一个不付红利股票的美式期权的有效期被分成N个长度为∃t的小段.设c ij为i∃t时刻股票价格为xu j d i-j(0≤i≤N,0≤j≤i)时的期权价值,也就是结点(i,j)的期权值.由于美式看涨期权在到期日的价值为m ax(x-k,0),因此c N j=m ax[xu jd N-j-k,0] j=0,1,…,N(8)在i∃t时刻股票价格xu j d N-j从结点(i,j)向(i+1)∃t时刻结点(i+1,j+1)移动的概率p,即移动到股票价格为xu j+1d i-j;向结点(i+1,j)移动的概率为1-p,即移动到股票价格为xu j d i+1-j.假设不提前执行,风险中性倒推公式为c ij=e-r∃t[p c i+1,j+1+(1-p)c i+1,j] (0≤i≤N-1,0≤j≤i)(9)若考虑提前执行时,式中的C ij必须与看涨期权的内涵价值进行比较,因此可以得到c ij=m ax{xu jd i-j-k, e-r∃t[p c i-1,j+1+(1-p)c i+1,j]}(10)因为计算是从T时刻倒推回来的,所以i∃t期权价值不仅反映了在i∃t时刻提前执行这种可能性对期权价值的影响,而且也反映了在后面的时间里提前执行对期权价值的影响.当∃t趋于0时,可以获得准确的美式看涨期权价值.如果不考虑提前执行,就得出欧式看涨期权价值.4 蒙特卡罗模拟方法蒙特卡罗模拟方法是一种对欧式衍生资产估—96—第2期 刘海龙等:期权定价方法综述值方法[18],其基本思想是:假设已知标的资产价格的分布函数,然后把期权的有效期限分为若干个小的时间间隔,借助计算机的帮助,可以从分布的样本中随机抽样来模拟每个时间间隔股价的变动和股价一个可能的运行路径,这样就可以计算出期权的最终价值.这一结果可以被看作是全部可能终值集合中的一个随机样本,用该变量的另一条路径可以获得另一个随机样本.更多的样本路径可以得出更多的随机样本.如此重复几千次,得到T时刻期权价格的集合,对几千个随机样本进行简单的算术平均,就可求出T时刻期权的预期收益.根据无套利定价原则,把未来T时刻期权的预期收益X T用无风险利率折现就可以得到当前时刻期权的价格. P=e-r T E(X T)(11)其中,P表示期权的价格,r表示无风险利率, E(X T)为T时刻期权的预期收益.蒙特卡罗模拟方法的优点在于它能够用于标的资产的预期收益率和波动率的函数形式比较复杂的情况,而且模拟运算的时间随变量个数的增加呈线性增长,其运算是比较有效率的.但是,该方法的局限性在于只能用于欧式期权的估价,而不能用于对可以提前执行合约的美式期权.且结果的精度依赖于模拟运算次数.5 有限差分方法有限差分方法主要包括内含有限差分方法和外推有限差分方法,其基本思想是通过数值方法求解衍生资产所满足的微分方程来为衍生资产估值,将微分方程(3)转化为一系列差分方程之后,再通过迭代法求解这些差分方程(详见文[18]).总的来看,有限差分方法的基本思想与二叉树方法基本相似,它们既可以用来求解欧式期权的价格又可以用来求解美式期权的价格.6 确定性套利方法确定性套利的期权定价方法是在金融市场是广义完全的假设下提出来的[19],广义完全的金融市场是指在金融市场中对于任意衍生资产v,总存在v的强复制策略.记期权v的强复制策略构成的集合为H(v)={Η:D TΗ≥v},则期权v的价格p3(v)定义为 p3(v)=m inΗ∈Hq TΗ(12)其中v为期权,p3(v)为期权价格,q=[q1,…, q n]T∈R n为标的资产期初价格向量,D表示风险资产在不确定状态下的价格矩阵,Η=[Η1,Η2,…,Ηn]T∈R n表示风险资产组合向量.一般来说,期权的卖方要构造一个强复制策略来对他的潜在负债进行套期保值,因此期权的卖方要求期权价格不低于它的套期保值成本.7 Ε2套利定价方法在非完全市场不存在完全复制策略的情况下,传统期权定价方法、B lack2Scho les期权定价方法、二叉树期权定价方法和有限差分方法就不适用了.Ε2套利定价方法的基本思想是[20]:对于任意期权v,如果对于给定Ε,能够构造一个资产组合Η满足‖D TΗ-v‖≤Ε,则称Η是一个Ε2不完全复制策略,那么Ε2不完全复制策略Η与标的资产期初价格向量q的内积就是期权的价格.记期权v的Ε2复制策略构成的集合为HΕ(v)={Η:‖D TΗ-v‖≤Ε},则有期权的定价公式p3(v)={q TΗ:m inΗ∈HΕ(v)‖D TΗ-v‖}(13)其中v为期权,p3(v)为期权价格,q=[q1,…, q n]T∈R n为标的资产期初价格向量,D表示风险资产在不确定状态下的价格矩阵,Η=[Η1,Η2,…,Ηn]T∈R n表示风险资产组合向量.8 区间定价方法区间定价方法与确定性套利定价方法和Ε2套利定价方法一样既适用于完全的金融市场,又适用于非完全的金融市场.它的基本思想是仍然采用无套利定价原理[21].但由于在非完全的金融市场不存在完全的复制策略,因此期权价格不是一个确定的值,而是一个区间,只不过用了买方无套利和卖方无套利确定区间的两个端点.若记衍生资产v的买方强复制策略构成的集合H(v)= v D T—7—管 理 科 学 学 报 2002年4月略构成的集合G(v)={Η:D TΗ-v≥0},定义 a=m axΗ∈H(v)q TΗ(14) b=m inΗ∈G(v)q TΗ(15)衍生资产的卖方通过构造的强复制策略来对他的潜在负债进行套期保值所确定的衍生资产的价格就是衍生资产的买方的无套利价格.衍生资产的买方通过构造的强复制策略对他的潜在负债进行套期保值所确定的衍生资产的价格就是衍生资产的卖方的无套利价格.非完全市场衍生资产价格区间为[a,b]=[m axΗ∈H(v)q TΗ,m inΗ∈G(v)q TΗ](16)9 各种期权定价方法的比较上述各种定价方法从求解角度看可分为解析方法与数值方法,前者包括传统期权定价方法和B lack2Scho les方法;后者包括蒙特卡罗模拟方法、二叉树方法、有限差分方法、确定性套利方法、Ε2套利方法和区间定价方法.从应用的角度看可分为只适用完全金融市场的方法和既适用完全金融市场又适用非完全金融市场的方法,前者包括B lack2Scho les方法、蒙特卡罗模拟、二叉树方法和有限差分方法;后者包括确定性套利定价方法、Ε2套利定价方法和区间定价方法.B lack2Scho les期权定价方法的主要优点是:该方法能够得到套期保值参数和杠杆效应的解析表达式,从而为衍生资产的交易策略提供较清晰的定量结论,解析解本身没有误差,当需要计算的期权的数量较小时,直接使用B lack2Scho les公式比较方便.但是,该方法也存在不足之处,即只能给出欧式期权的解析解,而且,该方法也难以处理期权价格依赖于状态变量历史路径及其它的一些较复杂的情况.数值计算方法各有其优缺点.蒙特卡罗模拟方法的优点在于能处理较复杂的情况且计算的相对效率较高,但由于该方法是由初始时刻的期权值推导未来时刻的期权值,它只能用于欧式期权的计算,而不能用于对可以提前执行合约的美式期权.二叉树方法和有限差分方法是由期权的未来值回溯期权的初始值,因此可以用于美式期权的计算,但这两种方法不仅计算量大、计算效率低,而且难以计算期权依赖于状态变量历史路径的复杂情况.就二者之间的优劣比较而言, Geske2Shastrid的研究结果进一步表明,二叉方法更适用于计算少量期权的价值,而从事大量期权价值计算时有限差分方法更有效率.在非完全市场情况下,传统期权定价方法、B lack2Scho les期权定价方法、二叉树期权定价方法、有限差分方法和蒙特卡罗模拟方法都不适用.衍生资产价格不是一个确定的值,而是一个区间.Ε2套利定价方法所得到的结果位于运用区间定价方法所得到的区间内.在完全金融市场情况下,这个区间就退化为一个点,这时衍生资产区间定价方法与二叉树定价方法和Ε2套利定价方法得到的结果是一致的.二叉树定价方法是确定性套利定价方法、区间定价方法和Ε2套利定价方法的特殊情况,确定性套利定价方法、区间定价方法和Ε2套利定价方法是二叉树定价方法在非完全金融市场的推广,运用Ε2套利定价方法所得到的结果一定在运用区间定价方法所得到的区间内,确定性套利定价方法、区间定价方法和Ε2套利定价方法都既适用于完全金融市场,又适用于非完全的金融市场.本文是在离散时间单期假设下给出的确定性套利定价方法、区间定价方法和Ε2套利定价方法,事实上,这些方法完全可以推广到多期模型和连续时间模型,只不过计算更为复杂.确定性套利定价方法应用价值不大,区间定价法和Ε2套利定价法较符合实际.在多期模型假设下,区间定价法需要解二个多层次线性规划,Ε2套利需要解一个多层次二次规划.另外,完全可以寻找解决非完全市场的B lack2Scho les期权定价方法、二叉树定价方法和有限差分方法.比如在一定假设条件下,按买方无套利和卖方无套利原则求解两个B lack2Scho les 期权定价方程,就可以得到连续时间框架下期权定价区间,当然,也可以按类似的思路、用其它方法解决此问题.应该充分认识到现在和将来,迫切需要创造性地研究出既符合实际又计算灵活方便的期权定价方法.10 结束语综上所述,无论是在连续时间模型框架下,还—17—第2期 刘海龙等:期权定价方法综述是在离散时间模型框架下;无论在完全市场假设下,还是在非完全市场假设下;无论是对欧式期权、美式期权、亚式期权的定价,还是对其它复杂的衍生资产的定价,无套利定价原则都是一个普遍适用的基本原则.正如我国金融工程学科的主要创导者之一,宋逢明教授在文[22]中所述,“不懂得无套利均衡分析,就是不懂得现代金融学的基本方法论,当然,也就不懂得金融工程的基本方法论”.可以说有关各类期权定价方法的研究还在不断的探讨和发展[23230],因为从理论上讲期权发展是无止境的,从实际上讲期权是复杂多变和应用广泛的,因此,研究探讨期权定价方法的共性和个性,对于深入研究复杂期权的定价有重要意义.在这方面文[28]和[34]既有理论意义又有实用价值,值得深入研究.参考文献:[1] B lack F ,Scho les M .T he p ricing of op ti ons and co rpo rate liabilities [J ].Journal of Po litical Econom y ,1973,81(3):6372654[2] D avis M ,Panas V G ,Zari phopoulou T .European op ti on p ricing w ith transacti on co sts [J ].S I AM J .O f Contro land Op ti m izati on 1993,31(2):4702493[3] Cox J C ,Ro ss S A ,R ubinstein M .Op ti on p ricing :a si m p lified app roach [J ].Journal of F inancial Econom ics ,1979,9(7):2292263[4] M erton R .T heo ry of rati onal op ti on p ricing [J ].Bell Journal of Econom ics and M anagem ent Science ,1973,4(1):1412183[5] Cox J ,Ro ss S .T he valuati on of op ti ons fo r alternati on stochasic p rocesses [J ].Journal of F inancial Econom ics ,1976,3(3):1452166[6] R ubinstein M .T he valuati on of uncertain incom e stream s and the p ricing of op ti ons [J ].Bell Journal of Econom icsand M anagem ent Science ,1976,7(2):4072425[7] Cox J ,Ro ss S .A survey of som e new results in financial op ti on p ricing theo ry [J ].Journal of F inancial ,1976,31(2):3832402[8] 黄小原.一种新的期权价格估计方法[J ].预测,1996,15(2):59[9] Toft K .O n the m ean 2variance tradeoff in op ti on rep licati on w ith transacti ons co sts [J ].Journal of F inancial andQ uantitative A nalysis ,1996,31:2332263[10] H ull J C .Op ti ons ,futures ,and o ther derivative securities [M ].Englew ood C liffs ,N J :P rentice 2H all Inc .,1993[11] M cEneaney W M .A robust contro l fram ew o rk fo r op ti on p ricing [J ].M ath .of Operati ons R esearch ,1997,22:2022221[12] 马超群,陈牡妙.标的资产服从混合过程的期权定价模型[J ].系统工程理论与实践,1999,19(4):41246[13] Bachelier L .T heo rie de la speculati on [A ].Coonter P H .A nnales de I ’eco le N o r m ale Superieure .EnglishT ranslati on in the R andom Character of Stock M arket P rices [D ].Cam bridge :M IT P ress ,1964.17278[14] Sp renk le C M .W arrant p rices as indicato rs of expectati ons and p references [J ].Yale Econom ic E ssays ,1961,1(2):1782231[15] Kassouf S T .A n econom etric model fo r op ti on p rice w ith i m p licati ons fo r investo rs expectati ons and audacity [J ].Econom etrica ,1969,37(4):6852694[16] Boness A J .E lem ents of a theo ry of stock op ti on value [J ].Journal of Po litical Econom y ,1964,72(2):1632175[17] Sam uelson P A .R ati onal theo ry of w arrant p ricing [J ].IndustrialM anagem ent R eview ,1965,6(2):13232[18] H ull J C .期权、期货和衍生证券[M ].张陶伟译.北京:华夏出版社,1997.2052252[19] 郑立辉,张 近.确定性套利——非完备市场中期权定价的新概念[A ].吴冲锋,黄培清.亚太金融研究:亚太金融学会第七届年会论文选[C ].上海:上海交通大学出版社,2001.28236[20] 刘海龙,吴冲锋.非完全市场期权定价的Ε2套利方法[J ].预测,2001,20(4):17219[21] M usiela M ,Kutkow sk i M .M artingale m ethods in financial modeling theo ry and app licati on [M ].Beling—27—管 理 科 学 学 报 2002年4月H eidelberg ,N ew Yo rk :Sp ringer 2V erlay ,1997.1262180[22] 宋逢明.金融工程原理[M ].北京:清华大学出版社,1999[23] D uffie D .D ynam ic assets p ricing theo ry [M ].N ew Jersey :P rinceton U niversity P ress ,1992[24] Galitz L .金融工程学[M ].唐 旭译.北京:经济科学出版社,1998.2202228[25] Pheli m P B ,V o rst T .Op ti on rep licati on in discrete ti m e w ith transacti on co sts [J ].Journal of F inance ,1992,47(1):2712293[26] D avid S B ,Johnson H .T he Am erican put op ti on and its critical stock p rice [J ].Journal of F inance ,2000,55(5):233322356[27] 党开宇,吴冲锋.亚式期权定价及其在期股激励上的应用[J ].系统工程,2000,18(2):27232[28] 顾 勇,吴冲锋.基于回售条款的可换股债券的定价研究[J ].管理科学学报,2001,4(4):9215[29] Zhang P G .Exo tic op ti ons :a guide to second generati on op ti ons [M ].Singapo re ,N ew Jersey ,L ondon ,Hongkong :W o rld Scientific ,1998.1262198[30] 郑立辉.基于鲁棒控制的期权定价方法[J ].管理科学学报,2000,3(3):60264[31] 宋逢明.期权定价理论和1997年度诺贝尔经济学奖[J ].管理科学学报,1998,1(2):6210[32] 罗开位,候振挺,李致中.期权定价理论的产生和发展[J ].系统工程,2000,18(6):125[33] 沈艺峰.斯科尔斯和莫顿的期权理论评价[J ].投资研究,1998,5:44248[34] 王承炜,吴冲锋.上市公司可转换债券价值分析[J ].系统工程,2001,19(4):47253Survey of option pr ic i ng m ethodsL IU H a i 2long ,W U Chong 2f engA etna Schoo l of M anagem en t ,Shanghai J iao tong U n iversity ,Shanghai 200052,Ch inaAbstract : T h is p ap er first in troduces the em ergence and developm en t of op ti on p ricing theo ry ,then gives a m o re detailed descri p ti on of the theo retical and em p irical researches on the m ethod .Inparticu lar ,w e focu s on the such m ethods as deter m in istic arb itrage ,Ε2arb itrage and in terval p ricing ,w ith app licati on s to bo th com p lete m arkets and incom p lete m arkets .F inally ,conditi on s andcharacteristics of the vari ou s op ti on p ricing m ethods are discu ssed .Key words : su rvey ;op ti on p ricing ;M on te Carlo si m u late ;fin ite difference m ethod ;Ε2arb itrage ;in terval p ricing—37—第2期 刘海龙等:期权定价方法综述。
5第五章 期权定价1(理论)

C − P − S + X (1 + r ) − t = 0 −t P = C − S + X (1 + r )
C = P + S − X (1 + r ) − t
或
上式即为买入卖出期权平价公式。如果市场 出现不符平价公式,则就存在套利组合。
例如市场出现下列情况:有效期为3月,施 权价为40的买入期权价C=3,同样的卖出 期权价为P=2,股票市价为40,利率为5%, 根据买入卖出期权平价,应该为:
uS0
S0
dS 0
则期权价值 Vc 也是两种情况
C u = max{0, uS 0 − X }
期权价格(option premium):指购买期权权 利(包括购买 calls的费用C或购买puts的费用 P)而非股票本身的市价或施权价。期权本身 的市场价格称为期权费。 例如:买主向卖主按每股120美元(施权价) 买入100股股票的权利,买主应向卖主付出每 股8.5美元的权利金(期权价格C)。100股 (通常,每一份期权合约赋予购买或出售1整 手股的权利)付出权利金总额850美元。 同一种股票,施权价愈高则期权价(费用)就 愈小。同一种价位股票签约期愈长,期权费也 愈小 。
102030405060708090第一季度第二季度第三季度第四季度东部西部北部安徽财经大学会计学院一有关期权的若干概念二买入期权c与卖出期权p的平价关系三期权价格的上下限四期权的二项式定价期权是指未来的选择权它赋予期权的持有者购买者或多头一种权利而不必承担义务可以按预先敲定的价格购买或者出手一定数量和一定品质的资产
c (T ) = max {S (T ) − X ,0} p (T ) = max {X − S (T ), 0}
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
期权投资组合套利计算公式
期权投资是一种常见的金融衍生品投资方式,投资者可以通过期权合约在未来
某个时间点以特定价格买入或卖出标的资产。
期权投资组合套利是指利用期权市场上的价格差异,通过组合不同的期权合约进行套利交易,从而获得稳定的收益。
在进行期权投资组合套利时,投资者需要运用一些计算公式来评估风险和收益,以便制定合适的投资策略。
1. 期权价格计算公式。
在期权投资组合套利中,首先需要计算期权的价格。
期权的价格由多个因素决定,包括标的资产价格、行权价格、剩余时间、波动率等。
常见的期权价格计算公式包括布莱克-斯科尔斯期权定价模型和宏观经济学期权定价模型。
其中,布莱克-
斯科尔斯期权定价模型是最为常用的期权价格计算公式,其基本形式如下:
C = SN(d1) Xe^(-rt)N(d2)。
P = Xe^(-rt)N(-d2) SN(-d1)。
其中,C表示看涨期权的价格,P表示看跌期权的价格,S表示标的资产价格,X表示行权价格,r表示无风险利率,t表示剩余时间,N()表示标准正态分布函数,d1和d2分别表示两个标准正态分布函数。
通过以上公式,投资者可以计算出期权
的价格,并据此评估期权的价值和风险。
2. 期权 Greeks 计算公式。
在期权投资组合套利中,投资者还需要计算期权的 Greeks 值,即 Delta、Gamma、Theta、Vega和Rho。
这些指标可以帮助投资者评估期权价格对标的资产
价格、波动率、时间价值和利率变化的敏感程度,从而更好地把握市场风险和机会。
常见的期权 Greeks 计算公式包括:
Delta = N(d1)(看涨期权)1。
Delta = N(d1)(看跌期权)。
Gamma = N'(d1) / (S σ sqrt(T))。
Theta = -(S N'(d1) σ) / (2 sqrt(T)) r X e^(-rT) N(-d2)。
Vega = S N'(d1) sqrt(T)。
Rho = X T e^(-rT) N(d2)(看涨期权)。
Rho = -X T e^(-rT) N(-d2)(看跌期权)。
通过以上公式,投资者可以计算出期权的 Delta、Gamma、Theta、Vega和Rho 值,据此评估期权的价格波动、时间价值衰减、波动率变化和利率变化对期权价格的影响,从而更好地进行风险管理和套利交易。
3. 期权投资组合套利计算公式。
在进行期权投资组合套利时,投资者需要综合考虑不同期权合约的价格、Greeks 值和市场预期,制定合适的组合策略。
常见的期权投资组合套利计算公式
包括:
组合收益 = 组合期权价格初始投入成本。
组合 Delta = ∑(Delta_i 份额_i)。
组合 Gamma = ∑(Gamma_i 份额_i)。
组合 Theta = ∑(Theta_i 份额_i)。
组合 Vega = ∑(Vega_i 份额_i)。
组合 Rho = ∑(Rho_i 份额_i)。
通过以上公式,投资者可以计算出期权投资组合的收益和 Greeks 值,据此评
估组合的风险和收益,从而制定合适的套利交易策略。
在进行期权投资组合套利时,
投资者还需要考虑交易成本、流动性风险、市场预期变化等因素,综合分析市场情况,灵活调整投资组合,以获取稳定的收益。
总之,期权投资组合套利是一种复杂的金融交易策略,投资者需要充分了解期权定价和风险管理的基本原理,灵活运用各种计算公式,综合分析市场情况,制定合适的投资策略。
通过不断学习和实践,投资者可以提高期权投资组合套利的成功率,获取稳定的收益。
同时,投资者还需要谨慎管理风险,避免因市场波动导致的损失,保持良好的心态和风险意识,实现长期稳健的投资回报。