第11课时 15.3分式方程(3)

合集下载

2013-12-10 15.3分式方程的解法

2013-12-10 15.3分式方程的解法
2x 1 3x 1 ⑧ x
1 ( 5)x 2 ⑦ x
【解分式方程】
90 60 如何求分式方程 30 v 30 v 的解呢?
求一元一次 方程的解时, 我们先去分 母。
解这个分式 方 程也应该 去分母.
【解分式方程】
90 60 如何求分式方程 30 v 30 v 的解呢?
解分式方程的一般步骤: 一化二解三检验
去分母 等式两边乘 最简公分母
分式方程
整式方程
解整式方程
目标
x =a
检验
a是分式方程的解
最简公分 母不为0
最简公分 母 为0
a不是分式方程的解
练习P152
(1)
解方程
:
x 2 (2) 1 x 1 3x 3
1 2 2x x 3
2 4 (3) 2 x 1 x 1
将整式方程的解代入最简公分母, 若最简公分母≠0,则是原分式方程的解, 若最简公分母=0,则不是原分式方程的解, 须舍去。
例1:
2 3 (1) x 3 x
x 3 ( 2) 1 x 1 ( x 1)( x 2)
例1:
2 3 (1) x 3 x
x 3 ( 2) 1 x 1 ( x 1)( x 2)
5 1 (4) 2 0 2 x x x x
小结:
1、如何解分式方程 2、检验步骤 3、解分式方程的步骤
下一站
分式方程的应用:有增根与无解
1.提问:解分式方程的基本思想是什么?
答:解分式方程的基本思想是将分式方程转化 为整式方程,方法是方程两边同乘最简公分母.
2.问:为什么解分式方程必须验根,如何验根?
回顾与预习

八上第十五章《分式》教材分析用

八上第十五章《分式》教材分析用

人教版八年级上册第十五章《分式》教材分析与教学建议广州市第七中学尹双玲分式蕴含着双重身份:既是除法的表达式又表示除法的结果。

从这个观点出发,《分式》这章是继整式乘除之后对代数式进一步的研究。

数学里的数与式,其生命力在于运算,只有与运算联系起来,才能深化对数与式的认识,《分式》的基础是分数、整式的四则运算、正整数指数幂的运算、多项式的因式分解、一元一次方程等知识。

同时它是今后进一步学习反比例函数、一元二次方程的基础,分式变形也是在以后学习物理、化学中经常遇到的问题。

一、课标要求(1)以描述实际问题中的数量关系为背景,抽象出分式的概念,了解分式的概念,认识分式是一类应用广泛的重要代数式.(2)类比分数的基本性质,了解分式的基本性质,能利用分式的基本性质进行约分和通分,了解最简分式的概念.(3)类比分数的四则运算法则,探究分式的四则运算法则,能进行简单的分式加、减、乘、除运算.(4)结合分式的运算,将指数的范围从正整数扩大到全体整数,了解整数指数幂的运算性质;能用科学记数法表示小于1的正数.(5)掌握可化为一元一次方程的分式方程的解法,体会解分式方程过程中的化归思想.(6)结合利用分式方程解决实际问题的实例,进一步体会方程是刻画实际问题数量关系的一种重要数学模型.二、重点、难点重点:分式基本性质、分式运算、分式方程.难点:——它是整式运算、因式分解和分式运算的综合运用;2.分式方程的增根问题;——与列整式方程相比,尽管涉及的基本数量关系相同,但是由于含有未知数的式子可以是整式或分式,所以更具灵活性,学生会感到困难.关键:通过分式与分数类比,从具体到抽象、从特殊到一般地认识分式;教学中仔细分析数量关系,用分式来表示未知量。

三、教材分析(一)本章知识结构图(二)本章的课时安排本章共安排了三个小节以及两个选学内容,教学时间约需15课时,具体分配如下(仅供参考):15.1 分式3课时15.2 分式的运算6课时15.3 分式方程3课时数学活动 1课时小结 2课时(三)本章内容主要变化1.更加突出类比的思考方法与学习方法(引言、部分正文、小结)如:章引言:“像9030v +和6030v-这样分母中含有字母的式子都是分式.本章中,我们将类比分数学习分式,解一些分式方程,并利用分式的知识解决一些实际问题。

15.3.1分式方程及其解法

15.3.1分式方程及其解法

求a的取值范围. 【思路点拨】解关于 x 的分式方程→根据解是正数 (即大于零)列出关于字母a的不等式→解不等式,确定 a的(x-2),得2x+a=2-x,
2a . 解得 x= 3 2a 2a >0,且 2. 由题意,得 3 3 2a 2a >0, 由 解得a<2;由 得a≠-4. 2, 3 3
解得:x=50经检验x=50是原方程的解
则甲工程队每天能完成绿化的面积是
50×2=100(m2) 答:甲,乙两工程队每天能完成绿化的面积分别是 100m2,50m2.
过程展示
解:(2)设至少应安排甲队工作x天,根据题意得:
1800 100x 0.4x+ ∙0.25≤8, 50
解得:x≥10 答:至少应安排甲队工作10天.
× √
√) (×)
知识运用
一.分式方程的定义及解法 例1.(2013·资阳中考)解方程: 【教你解题】
x 2 1 + = . 2 x -4 x 2 x-2
解:
去分母
方程两边都乘以(x+2)(x-2), 得:x+2(x-2)=x+2. 解这个方程,得:x=3. 经检验,x=3是原方程的解
解整式方程
方法提示
分式方程无解的“两种情况”: 分式方程无解时分式方程化为整式方程后有 以下两种情况: (1)整式方程有解但这个解不是原分式方程的解; (2)分式方程化为整式方程后整式方程无解.
中考链接
(2014年∙广东汕尾)某校为美化校园,计划对面积为 1800m2的区域进行绿化,安排甲,乙两个工程队完成. 已知甲队每天能完成绿化的面积是乙队每天能完成绿 化的面积的2倍,并且在独立完成面积为400m2区域的 绿化时,甲队比乙队少用4天. (1)求甲,乙两工程队每天能完成绿化的面积分别是多 少 m2 ? (2)若学校每天需付给甲队的绿化费用为0.4万元,乙队 为0.25万元,要使这次的绿化总费用不超过8万元,至少 应安排甲队工作多少天?

人教版八年级上册数学教案:15.3分式方程

人教版八年级上册数学教案:15.3分式方程
分式方程(第1课时)教学设计
设计教师
工作单位
学科
数学
课型
新授课
所教内容
新人教版数学八年级上册第十五章第三节第一课时
课程标准
讨论分式方程的概念及解法,主要涉及可以化为一元一次方程的分式方程.从章引言中的实际问题出发,分析分式方程的特点,给出分式方程的概念,接着从分式方程的特点入手,引出解分式方程的基本思路,即通过去分母将分式方程化为整式方程,再解出未知数.
教材分析
《分式方程》是人教版八年级数学《分式方程》第三节内容,从知识上讲,分式方程是在掌握方程、分式相关概念基础上的一次知识拓展,本节课为分式方程第一课时,让学生初步感知分式方程,认识分式方程,初步掌握分式方程的一般解法,为以后学习解打基础。从思想方法上讲,分式方程的求解是转化为已经学习的整式方程的解法,从而找到解分式方程的途径,让学生逐步理解并掌握应用转化的思想方法。
(师总结新的根的检验方法:将整式方程的解代入最简公分母,如果最简公分母不为0,则整式方程的解是原分式方程的解,否则,就不是原分式方程的解。
问:你能概括出解分式方程的基本思路和一般步骤吗?解分式方程应该注意什么?
观察分式方程的两种检验方法,你发现了什么?
学生自愿上讲台解题,其他学生在下面独立完成.
学生自愿举手评价板书学生的解题过程.
1、如何把它化成整式方程?
2、如何去分母?
3、在方程两边乘什么样的式子才能把每一个分母都约去?
4、这样做的依据是什么?
师生共同分析解法,微视频展示系统地分析过程,师按照严格的格式板书详细的解方程过程)
再次展示规范的解题过程:
追问:x=6是原分式方程的解吗?怎样检验?
师总结道:在解分式方程的过程中体现了一个非常重要的数学思想方法:转化的数学思想(分式方程转化为整式方程----化分为整)。

人教版初二数学目录[整理版]

人教版初二数学目录[整理版]

八年级(上)(62)第11章三角形(8)11.1 与三角形有关的线段(2)11.1.1 三角形的边 11.1.2三角形的高、中线与角平分线11.1.3 三角形的稳定性信息技术应用画图找规律11.2 与三角形有关的角(3)11.2.1 三角形的内角 7.2.2 三角形的外角阅读与思考为什么要证明11.3 多边形及其内角和(2)11.3.1 多边形 11.3.2 多边形的内角和数学活动小结(1)第12章全等三角形(11)12.1 全等三角形(1)12.2 三角形全等的判定(6)信息技术应用探究三角形全等的条件12.3 角的平分线的性质(2)数学活动小结(2)第13章轴对称(14)13.1 轴对称(3)13.1.1 轴对称 13.1.2 线段的垂直平分线的性质13.2 画轴对称图形(2)信息技术应用用轴对称进行图案设计13.3 等腰三角形(5)13.3.1 等腰三角形 13.3.2 等边三角形实验与探究三角形中边与角之间的不等关系13.4 课题学习最短路径问题(2)数学活动小结(2)第14章整式的乘法与因式分解(14)14.1整式的乘法(6)14.1.1 同底数幂的乘法14.1.2 幂的乘方14.1.3 积的乘方 14.1.4 整式的乘法14.2 乘法公式(3)14.2.1 平方差公式 14.2.2 完全平方公式阅读与思考杨辉三角14.3 因式分解(3)14.3.1 提公因式法 14.3.2 公式法阅读与思考型式子的分解数学活动小结(2)第15章分式(15)15.1 分式(4)15.1.1 从分数到分式 15.1.2 分式的基本性质15.2 分式的运算(6)15.2.1 分式的乘除 15.2.2 分式的加减 15.2.3 整数指数幂阅读与思考容器中的水能倒完吗?15.3 分式方程(3)数学活动小结(2)八年级下(62)第16章二次根式(9)16.1 二次根式(2)16.2 二次根式的乘除(2)16.3 二次根式的加减(3)阅读与思考海伦——秦九韶公式数学活动小结(2)第17章勾股定理(9)17.1 勾股定理(4)阅读与思考勾股定理的证明17.2 勾股定理的逆定理(3)阅读与思考费马大定理数学活动小结(2)第18章平行四边形(15)18.1 平行四边形(7)18.1.1 平行四边形的性质 18.1.2 平行四边形的判定18.2 特殊的平行四边形(6)18.2.1 矩形 18.2.2 菱形 18.2.3 正方形实验与探究丰富多彩的正方形数学活动小结(2)第19章一次函数(17)19.1 变量与函数(6)19.1.1 变量与函数 19.1.2 函数的图象阅读与思考如何测算岩石的年龄19.2 一次函数(7)19.2.1 正比例函数 19.2.2 一次函数 19.2.3一次函数与方程、不等式信息技术应用用计算机画函数图象19.3 课题学习选择方案(2)数学活动小结(2)第20章数据的分析(12)20.1 数据的集中趋势(6)20.1.1 平均数 20.1.2 中位数和众数20.2 数据的波动程度(2)阅读与思考数据波动程度的几种度量20.3 课题学习体质健康测试中的数据分析(2)数学活动小结(2)。

八年级数学上册 第十五章 分式 15.3 分式方程 第1课时 分式方程课件

八年级数学上册 第十五章 分式 15.3 分式方程 第1课时 分式方程课件
4-
2

1
(2)3 +
=
.
3-1
9-3
解:(1)方程两边同乘x-4,
得3-x-1=x-4,
解得x=3.
检验:当x=3时,x-4=-1≠0,
所以(suǒyǐ)x=3是原分式方程的解.
1
(2)方程两边同乘 9x-3,得 2(3x-1)+3x=1.解得 x=3.
1
检验:当 x= 时,9x-3=0.
1
5.分式方程的验根方法
解分式方程时,去分母(fēnmǔ)后所得整式方程的解有可能使原方程中分母(fēnmǔ)
为0,因此应做如下检验:将整式方程的解代入最简公分母,若最简公分母的
,则整式方程的解是原分式方程的解
;否则,这个解
不为0

式方程的解
.
不是(bùshi)
12/13/2021
第五页,共十六页。
原分
的过程(guòchéng)叫做解方程.
3.解一元一次方程的一般步骤是
:去分母,去括号,
,合并同类
方程的解
项,
.
移项
未知数系数化为1
12/13/2021
第三页,共十六页。
快乐预习感知
学前温故
(wēn ɡù)
新课早知
1.分式方程的概念
分母中含 未知数
的方程叫做分式方程.
2.下列方程属于分式方程的是( B ).
第八页,共十六页。
轻松尝试应用
1
1.下列式子是分式方程的是(
A.
C.
2 +1
2

2-1
=

5
3
3
2+1

人教版初中新教材八年上数学详细目录

人教版初中新教材八年上数学详细目录(62)第11章三角形(8)11.1 与三角形有关的线段(2)11.1.1 三角形的边 11.1.2三角形的高、中线与角平分线11.1.3 三角形的稳定性信息技术应用画图找规律11.2 与三角形有关的角(3)11.2.1 三角形的内角7.2.2 三角形的外角阅读与思考为什么要证明11.3 多边形及其内角和(2)11.3.1 多边形11.3.2 多边形的内角和数学活动小结(1)第12章全等三角形(11)12.1 全等三角形(1)12.2 三角形全等的判定(6)信息技术应用探究三角形全等的条件12.3 角的平分线的性质(2)数学活动小结(2)第13章轴对称(14)13.1 轴对称(3)13.1.1 轴对称13.1.2 线段的垂直平分线的性质13.2 画轴对称图形(2)信息技术应用用轴对称进行图案设计13.3 等腰三角形(5)13.3.1 等腰三角形13.3.2 等边三角形实验与探究三角形中边与角之间的不等关系13.4 课题学习最短路径问题(2)数学活动小结(2)第14章整式的乘法与因式分解(14)14.1整式的乘法(6)14.1.1 同底数幂的乘法14.1.2 幂的乘方14.1.3 积的乘方14.1.4 整式的乘法14.2 乘法公式(3)14.2.1 平方差公式14.2.2 完全平方公式阅读与思考杨辉三角14.3 因式分解(3)14.3.1 提公因式法14.3.2 公式法阅读与思考型式子的分解数学活动小结(2)第15章分式(15)15.1 分式(4)15.1.1 从分数到分式 15.1.2 分式的基本性质15.2 分式的运算(6)15.2.1 分式的乘除15.2.2 分式的加减15.2.3 整数指数幂阅读与思考容器中的水能倒完吗?15.3 分式方程(3)数学活动小结(2)。

人教版八年级数学上册15.3 分式方程及其应用 习题梳理

15.3 分式方程及其应用考点一 分式方程的定义1. 分母中含有未知数的方程叫做分式方程.例1.下列方程是分式方程的是()A .1023x -= B .42x=- C .213x -=D .213x x +=答案解析:选B .A 、1023x -=是一元一次方程, 故A 错误;B 、42x=-是分式方程, 故B 正确;C 、213x -=是一元二次方程, 故C 错误;D 、213x x +=是一元一次方程, 故D 错误.过关检测1. 下列关于x 的方程中,是分式方程的是( ) A .132x =B .12x= C .2354x x++= D .321x y -= 2. 下列关于x 的方程①153x -=,②141x x =-,③1(1)1x x x-+=,④11x a b =-中, 是分式方程的有( ) A . 4 个 B . 3 个 C . 2 个 D . 1 个考点二 解分式方程1. 解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.例1.解方程:答案解析:最简公分母是2(x-1),等号两边同时乘最简公分母,去分母得:2x ﹣4x+4=3,解得:x=,经检验x=是分式方程的解.过关检测1. 解分式方程14322x x-=--时, 去分母可得( ) A .13(2)4x --= B .13(2)4x --=-C .13(2)4x ---=-D .13(2)4x --=2. 解方程 (1)113x x x -=+ (2)241111x x x -+=-+ (3)13211x x-=-- (4)1112x x x ++=- (5)考点三 分式方程的解(一般解、增根、无解)1. 求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程解.2. 增根的定义:在分式方程变形时,有可能产生不适合原方程的根,即代入分式方程后分母的值为0或是转化后的整式方程的根恰好是原方程未知数的允许值之外的值的根,叫做原方程的增根.例1.若关于x 的分式方程311m x -=-的解为2x =,则m 的值为( ) A .5 B .4C .3D .2答案解析:关于x 的分式方程311m x -=-的解为2x =,22x m ∴=-=,解得:4m =.故选:B .例2.若关于x 的分式方程2122x a x -=-的解为非负数, 则a 的取值范围是________答案解析:原分式方程的解为x=223a-+,0x x ∴≥关于的解释非负数 则2302a-+≥,得1a ≥.故答案为1a ≥.过关检测1. 2x =是分式方程321321x a x a +-=-+的解, 则a 的值是( )A .1-B . 0C . 1D . 3 2. 分式方程2112x x -=-的解为( ) A .1x =- B .12x =C .1x =D .2x = 3. 已知3x =是分式方程2121kx k x x--=-的解,则实数k 的值为?4. 若关于x 的分式方程2322x m mx x++=--的解为正实数, 则实数m 的取值范围是?例3. 若方程61(1)(1)1mx x x -=+--有增根,则它的增根是( )A .0B .1C .1-D .1和1-答案解析:方程两边都乘(1)(1)x x +-,得6(1)(1)(1)m x x x -+=+-,由最简公分母(1)(1)0x x +-=,可知增根可能是1x =或1-.当1x =时,3m =,当1x =-时,得到60=,这是不可能的,所以增根只能是1x =.故选:B .过关检测1. 关于x 的分式方程7311mx x +=--有增根,则增根为( ) A .1x = B .1x =-C .3x =D .3x =-2. 若关于x 的方程1011m x x x --=--有增根,则m 的值是( ) A .3B .2C .1D .1-3.若分式方程231222x a x x x x-+=--有增根,则实数a 的取值是?例4. 关于x 的方程32211x mx x -=+++无解,则m 的值为( ) A .5- B .8- C .2- D .5答案解析:去分母得:3222x x m -=++,由分式方程无解,得到10x +=,即1x =-,代入整式方程得:522m -=-++,解得:5m =-,故选:A .过关检测1. 若关于x 的方程2134416m m x x x ++=-+-无解, 则m 的值为?2. 若关于x 的分式方程3233x a a x x+=--无解,则a 的值为?3. 若关于x 的分式方程7311mx x x +=--无解, 则实数m =?考点四 分式方程的应用1. 行船问题例1.一艘轮船在静水中的最大航速为30/km h ,它以最大航速沿江顺流航行100km 所用时间,与以最大航速逆流航行80km 所用时间相等,设江水的流速为v /km h ,则可列方程为( )A .100803030v v =+-B .100803030v v =-+C .100803030v v=+-D .100803030v v =-+答案解析:船顺流而下时速度为船速加水速,即v+30,逆流而下时速度为船速减水速,即v-30,根据时间相等,列等量关系式,100803030v v =+- 故答案选A过关检测1. 一艘轮船在静水中的最大航速为35/km h ,它以最大航速沿江顺流航行120km 所用时间,与以最大航速逆流航行90km 所用时间相等.设江水的流速为v /km h ,则可列方程为( )A .120903535v v =+- B .120903535v v =-+C .120903535v v =-+ D .120903535v v=+-2. 甲、乙两船从相距300km 的A 、B 两地同时出发相向而行,甲船从A 地顺流航行180km 时与从B 地逆流航行的乙船相遇,水流的速度为6/km h ,若甲、乙两船在静水中的速度均为x /km h ,则求两船在静水中的速度可列方程为( )A .18012066x x =+- B .18012066x x =-+C .1801206x x=+ D .1801206x x =-2. 行程问题例1.为了践行“绿色生活”的理念,甲、乙两人每天骑自行车出行,甲匀速骑行30公里的时间与乙匀速骑行25公里的时间相同,已知甲每小时比乙多骑行2公里,设甲每小时骑行x 公里,根据题意列出方程正确的是( )A .30252x x =+ B .30252x x =+C .30252x x =- D .30252x x=- 答案解析:乙每小时速度为x-2,路程=速度×时间,找到时间为等量关系,有两者时间相等,列关系式为:30252x x =-,故答案选C过关检测1. 甲、乙两地相距600km ,乘高铁列车从甲地到乙地比乘特快列车少用4h ,已知高铁列车的平均行驶速度是特快列车的3倍,设特快列车的平均行驶速度为/xkm h ,根据题意可列方程为( ) A .60060043x x += B .60060043x x -= C .60060043x x-= D .600600423x x-=⨯ 2. 2016年5月15日从呼市到鄂尔多斯市的6767D 次动车首发成功,鄂尔多斯市自此迎来了动车时代,已知两地铁路长为450千米,动车比火车每小时多行驶50千米,从呼市到鄂尔多斯市乘动车比乘火车少用40分钟,设动车速度为每小时x 千米,则可列方程为( )A .4504504050x x -=- B .4504504050x x -=+ C .4504502503x x -=+ D .4504502503x x -=-3. 徐州至北京的高铁里程约为700km ,甲、乙两人从徐州出发,分别乘坐“徐州号”高铁A 与“复兴号”高铁B 前往北京.已知A 车的平均速度比B 车的平均速度慢,车的行驶时间比车的行驶时间多,两车的行驶时间分别为多少?4.小明和小刚相约周末到雪莲大剧院看演出,他们的家分别距离剧院和,两人分别从家中同时出发,已知小明和小刚的速度比是,结果小明比小刚提前到达剧院.求两人的速度.5. 班级组织同学乘大巴车前往“研学旅行”基地开展爱国教育活动,基地离学校有90公里,队伍从学校出发.苏老师因有事情,从学校自驾小车以大巴1.5倍的速度追赶,追上大巴后继续前行,结果比队伍提前15分钟到达基地.问: (1)大巴与小车的平均速度各是多少?(2)苏老师追上大巴的地点到基地的路程有多远?80/km h A B 40%1200m 2000m 3:44min 8:008:3090606x x =-3. 工程问题例1. 甲、乙二人做某种机械零件,甲每小时比乙多做6个,甲做90个所用的时间与乙60个所用的时间相等.设甲每小时做个零件,所列方程正确的是D . A .B . C. 答案解析:工程总量=工作效率×工作时间,设甲的工作效率为x ,则乙的工作效率为x-6,根据工作时间相等列等量关系式,有:,故答案选A 过关检测1. 西宁市创建全国文明城市已经进入倒计时!某环卫公司为清理卫生死角内的垃圾, 调用甲车 3 小时只清理了一半垃圾, 为了加快进度, 再调用乙车, 两车合作 1.2 小时清理完另一半垃圾 . 设乙车单独清理全部垃圾的时间为小时, 根据题意可列出方程为 A .B .C .D .2. 某社区积极响应正在开展的“创文活动”, 组织甲、 乙两个志愿工程队对社区的一些区域进行绿化改造 . 已知甲工程队每小时能完成的绿化面积是乙工程队每小时能完成的绿化面积的 2 倍, 并且甲工程队完成 300 平方米的绿化面积比乙工程队完成 300x ()90606x x =-90606x x =+90606x x =+90606x x =-x ()1.2 1.216x += 1.2 1.2162x +=1.2 1.2132x += 1.2 1.213x+=平方米的绿化面积少用 3 小时, 乙工程队每小时能完成多少平方米的绿化面积?4.经济问题例1.小敏上月在某文具店正好用30元钱买了几本笔记本,本月再去买时,恰遇此文具店搞优惠酬宾活动,同样的笔记本,每本比上月便宜1元,结果小敏只比上次多用了6元钱,却比上次多买了8本,若设她上月买了本笔记本,则根据题意可列方程为... .答案解析:销售总价=销售单价×销售数量。

八年级上册数学第十五章 分式思维导图

八年级上册数学第十五章
分式15.1 分式
15.1.1 从分数到分式分式的定义
如果A,B表示两个整式,并且B中含有字母,那么式子叫做分式
分式中,A叫做分子,B叫做分母
B
A
B
A
15.1.2 分式的基本性质
分式的分子与分母乘(或除以)同一个不等于0的整式,分式的值不变
相关概念
约分把一个分式的分子或分母的公因式约去,叫做分式的约分
最简分式分子与分母没有公式式的分式
通分把几个异分母的分式分别化成雨原来分式相等的同分母的分式
最简公分母各分母的所有因式的最高次幂的积作公分母
15.2 分式的运算
15.2.1 分式的乘除
乘法法则1
除法法则2
分式乘方要把分子、分母分别乘方
15.2.2 分式的加减
加法法则3
减法法则4
15.2.3 整数指数幂 这条性质对于m,n是任意整数的情形仍然适用
a∗
m a=
n a m+
(n)
15.3 分式方程
概念分母中含未知数的方程
检验
将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是
原分式方程的解;否则,这个解不是原分式方程的解
八年级上册数学总大纲
备注:
1. 分式乘分式,用分子的积作为积的分子,分母的积作为积的分母
2. 分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘
3. 同分母分式相加减,分母不变,把分子相加减
4. 异分母分式相加减,先通分,变为同分母的分式,再加减。

八年级数学上册 15.3分式方程第1课时分式方程及其解法课件11-13


90(30-x)=60(30+x)
真相揭秘: 分式两边同乘了不为0的式子,所得整式方程的解与分式方程 的解相同.
1 x−5
=
10 x2 − 25
两边同乘(x+5)(x-源自)②当x=5时, (x+5)(x-5)=0
x+5=10
真相揭秘:分式两边同乘了等于0的式子,所得整式方程的解使分 母为0,这个整式方程的解就不是原分式方程的解.
想一想:
上面两个分式方程中,为什么 90 = 60 ①
30+x 30 − x
去分母后所得整式方程的解就是原分式方程的解,

x
1 −5
=
10 x2 − 25
②去分母后所得整式方程的解却不是原分式方程的解呢?
我们再来观察去分母的过程:
90 = 60
两边同乘(30+x)(30-x)

30+x 30 − x 当x=6时,(30+x)(30-x)≠0
好几天都没吃到一顿可口的美餐了,除了两三只根本塞不了牙缝的小虫子外,几乎一无所获。于是,它说:
“不行,这家不行,我曾偷过他们的鸡。不用说,蛇高效地完成了任务,他把青蛙爸爸所有的亲戚无论大小都吃掉了。 电影在线观看 /tv/29.html 转眼小树长成了大树,林西发觉这树长成了一棵弯腰树,既难看,又无用,才决定去把树扶直。两只黑鸟大声地叫着:“白鸟!你干嘛出去呀?”白鸟惊讶地回过头:“当然是出去展翅飞翔啦!”“难道你就不怕外面的灾难 ?”“当然不怕!你们不出来吗?”白鸟毫不犹豫地打断了黑鸟的话。,见道旁有一群狗在抢骨头,便连蹦带跳地跑过去凑热闹,还故意撞了一条狗的后屁股
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档