高三数学课件:导数与三次函数的关系(1)

合集下载

高中数学选修1课件1-3.3.2函数的极值与导数

高中数学选修1课件1-3.3.2函数的极值与导数

4 e2
单调递减
因此,x=0 是函数 f(x)的极小值点,极小值为 f(0)=0;x=2
是函数 f(x)的极大值点,极大值为 f(2)=e42.
状元随笔
(1)求函数极值时要遵循定义域优先的原则,如第(1)小题,若 忽略了定义域,则列表时易将区间(0,e)错写成区间(-∞,e).(2) 求函数的极值时,先确定导数值为零的点,然后根据极值的定义求 解.
f′(x)

0

0

f(x) 单调递增 16 单调递减 -16 单调递增
从表中可以看出,当 x=-2 时,函数有极大值 f(-2)=16.
当 x=2 时,函数有极小值 f(2)=-16.
(2)函数 f(x)的定义域为 R,
f′(x)=2x2x+2+11-24x2=-2x-x21+1x+2 1.
令 f′(x)=0,得 x=-1 或 x=1.
因为 y=ln x 在(0,+∞)内单调递增,y=1x在(0,+∞)内单调 递减,所以 f′(x)单调递增.
又 f′(1)=-1<0,f′(2)=ln 2-12=ln 42-1>0, 故存在唯一 x0∈(1,2),使得 f′(x0)=0. 又当 x<x0 时,f′(x)<0,f(x)单调递减; 当 x>x0 时,f′(x)>0,f(x)单调递增. 因此,f(x)存在唯一的极值点.
A.1,-3 B.1,3 C.-1,3 D.-1,-3
解析:∵f′(x)=3ax2+b,∴f′(1)=3a+b=0.① 又当 x=1 时有极值-2,∴a+b=-2.② 联立①②解得ab= =1-,3. 答案:A
4.函数 y=3x3-9x+5 的极大值为________.

高中数学选修1-1优质课件7:3.3.3 函数的最大(小)值与导数

高中数学选修1-1优质课件7:3.3.3 函数的最大(小)值与导数

解:(2)f′(x)=-4x3+4x, 由 f′(x)=-4x(x+1)(x-1)=0,得 x=-1 或 x=0 或 x=1, 当 x 变化时,f′(x)及 f(x)的变化情况如下表:
所以当 x=-3 时,f(x)有最小值-60, 当 x=-1 或 x=1 时,f(x)有最大值 4.
变式训练: 1.求函数 f(x)=-2cosx-x 在区间-π2,π2上的最大值与最小 值.
(2)若点x0是可导函数f(x)的极值点,则f′(x0)=0.但反过 来不一定成立. (3)函数的极值不是唯一的. (4)极大值与极小值之间无确定的大小关系,即一个函 数的极大值未必大于极小值. (5)函数的极值点一定出现在区间的内部,区间的端点 不能成为极值点.
2.利用结论“判”与“求” 结论1:极值的判别方法:当函数f(x)在点x0处连续时, (1)如果在x0附近的左侧f′(x)>0,右侧f′(x)<0,那么 f(x0)是极大值; (2)如果在x0附近的左侧f′(x)<0,右侧f′(x)>0,那么 f(x0)是极小值.
自主探究 1.函数的极值与最值的区别和联系.
【答案】
区别
联系
是在局部对函数 极 值 可 能
如果连续函Байду номын сангаас
极 值的比较,表示 有 多 个 , 只能在区 数 在 开 区 间
值 函数在某一点附 也 可 能 没 间内取得 (a,b)内存在
近的局部性质 有
最大(小)值,
最 值
是对考区间函在查上数整函的值个数情的区在况比间整较上个,最值有一最大个多( 小只)
3.3.3 函数的最大(小)值与导数
课标要求
理解函数最值的概念,了解函数最值与极 值的区别和联系,会用导数求在给定区间 上不超过三次的多项式函数的最大值、最 小值.

导数与函数的单调性【新教材】人教B版高中数学选择性必修第三册课件

导数与函数的单调性【新教材】人教B版高中数学选择性必修第三册课件
用“∪”连接,用“,”或“和”连接.
激趣诱思
知识点拨
微思考1
函数图像的变化趋势与导数值的大小有怎样的关系?
提示:
导数的绝对值
越大
越小
函数值变化


函数的图像
比较“陡峭”(向上或向下)
比较“平缓”(向上或向下)
微思考2
如果在某个区间内恒有f'(x)=0,那么函数f(x)有什么特征?
提示:f(x)是常数函数.
知识点拨
名师点析 导数与函数单调性关系的深入理解
(1)若在区间(a,b)上有f'(x)>0,则f(x)在该区间上单调递增;若在区间
(a,b)上有f'(x)<0,则f(x)在该区间上单调递减.
(2)若函数f(x)在区间(a,b)上是增函数,则f'(x)≥0在x∈(a,b)内恒成立;
同理,若函数f(x)在区间(a,b)上是减函数,则f'(x)≤0在x∈(a,b)内恒成
所以f(x)的单调递增区间是(-∞,0]和[1,+∞),单调递减区间是[0,1].
(2)函数 f(x)的定义域为(0,+∞),且
1-ln
>0,得
2
1-ln
f'(x)<0,即 2 <0,得

令 f'(x)>0,即
0<x<e;

x>e,
1-ln
f'(x)= 2 .

所以 f(x)的单调递增区间是(0,e],单调递减区间是[e,+∞).
+1
解:函数 f(x)的定义域为(0,+∞),f'(x)=ax+1

高考数学复习考点知识专题讲解课件16---导数与函数的单调性

高考数学复习考点知识专题讲解课件16---导数与函数的单调性
综上所述,当 a=0 时,f(x)在(-∞,+∞)上单调递增; 当 a>0 时,f(x)在(-∞,lna)上单调递减,在(lna,+∞)上单调递增; 当 a<0 时,f(x)在-∞,ln-a2上单调递减,在ln-a2,+∞上单调递增.
返回导航
新高考 大一轮复习 · 数学 题型三 函数单调性的应用 命题点 1 比较大小或解不等式 例 2 (1)已知定义在 R 上的函数 f(x),g(x)满足:对任意 x∈R,都有 f(x)>0,g(x) >0,且 f′(x)g(x)-f(x)g′(x)<0.若 a,b∈R+且 a≠b,则有( ) A.fa+2 bga+2 b>f( ab)g( ab) B.fa+2 bga+2 b<f( ab)g( ab)
返回导航
新高考 大一轮复习 · 数学
②当 a>2 时,令 f′(x)=0,
得 x=a-
2a2-4或 x=a+
a2-4 2.
当 x∈0,a- 2a2-4∪a+ 2a2-4,+∞时,f′(x)<0;
当 x∈a-
2a2-4,a+
2a2-4时,f′(x)>0.
返回导航
新高考 大一轮复习 · 数学
所以
f(x)
返回导航
新高考 大一轮复习 · 数学 2.函数的极值与导数
返回导航
新高考 大一轮复习 · 数学
3.函数的最值 (1)在闭区间[a,b]上连续的函数 f(x)在[a,b]上必有最大值与最小值. (2)若函数 f(x)在[a,b]上单调递增,则 f(a) 为函数的最小值, f(b)为函数的最大值; 若函数 f(x)在[a,b]上单调递减,则 f(a)为函数的最大值,f(b) 为函数的最小值.
返回导航
新高考 大一轮复习 · 数学

导数与函数的单调性-2021届高三数学一轮高考总复习课件

导数与函数的单调性-2021届高三数学一轮高考总复习课件

2.函数的极值 (1)判断f(x0)是极值的方法: 一般地,当函数f(x)在点x0处连续时, ①如果在x0附近的左侧f′(x)>0,右侧f′(x)<0,那么f(x0) 是极大值; ②如果在x0附近的左侧___f_′__(x_)_<__0__,右侧__f_′__(_x_)>__0__, 那么f(x0)是极小值.
(2)求可导函数极值的步骤: ①求 f′(x); ②求方程 f′(x)=0 的根; ③检查 f′(x)在方程 f′(x)=0 的根的左、右值的符号.如果 左正右负,那么 f(x)在这个根处取得极大值;如果左负右正,那 么 f(x)在这个根处取得__极__小__值____;如果左右两侧符号一样,那 么这个根不是极值点.
图 2-16-2
A
B
C
D
解析:原函数先减再增,再减再增,且由增变减时,极值 点的横坐标大于 0.故选 D.
答案:D
(2)函数f(x)=(3-x2)ex的单调递增区间是( ) A.(-∞,0) B.(0,+∞) C.(-∞,3)和(1,+∞) D.(-3,1) 解析:f′(x)=-2xex+(3-x2)ex=(3-2x-x2)ex,∴f′(x)>0, 即x2+2x-3<0.解得-3<x<1.∴f(x)的单调递增区间为(-3,1).故 选 D. 答案:D
小值的可能值为端点值,故只需保证gg- 1=113=+13- a≥a≥ 0,0,

得-13≤a≤13.故选 C.
答案:C
思想与方法 ⊙运用分类讨论思想讨论函数的单调性 例题:(2016 年新课标Ⅰ)已知函数f(x)=(x-2)ex+a(x-1)2. (1)讨论 f(x)的单调性; (2)若 f(x)有两个零点,求实数 a 的取值范围. 解:(1) f′(x)=(x-1)ex+2a(x-1)=(x-1)(ex+2a). ①设a≥0,则当x∈(-∞,1)时,f′(x)<0; 当 x∈(1,+∞)时,f′(x)>0. ∴f(x)在(-∞,1)上单调递减,在(1,+∞)上单调递增.

导数与三次函数的关系

导数与三次函数的关系

4,方程x3-6x2+9x-10=0的实根
个数是( ) A.3 B.2 C.1 D.0
(1,-6)
(3,-10)
5,已知函数(x)=x3+ax2+bx+c,x[-2,2] 表示的曲线过原点,且在x=±1处 的切线斜率均为-1,有以下命题: ①f(x)的解析式为(x)=x3-4x,x[-
2,2] ②(x)的极值点有且仅有一个; ③(x)的最大值与最小值之和等于零. 其中正确的个数为( )
f ( x 2 ) |
4 3
(3)若x1,x2 [-1,1]时,求证:
.
作业:整理导数知识
A.0个 B.1个 C.2个 D.3个
6.设函数f(x)=ax3-2bx2+cx+4d(a、b、c、d∈R)
图象关于原点对称,且x=1时,取极小值 2
(1)求a、b、c、d 的值;
3
.
(2)当x[-1,1]时,图象上是否存在两点,使

过此两点处的切线互相垂直?试 证明你的结论;
|
f ( x1 )
05一轮迎考复习
1.函数f(x)=x3+ax2+bx+c,其中a,b,c为实数, 当a2-3b<0时,f(x)在R上( ) A. 增函数 B. 减函数 C. 常数 D. 既不是增函数也不是减函数
2,(04浙江)设 f '(x)是函数(x)的导函
数 , y =f '(x) 的 图 象 如 右 图 所 示 , 则
形容长久安逸, 不得了(用在“得”字后做补语):累得~|大街上热闹得~。【;个人免签支付 个人免签支付; 】cèduó动推测; 【敝人】bìrén名对人谦称自己。【别】4bié副①表示禁止或劝阻,②(Chánɡ)名姓。【仓黄】cānɡhuánɡ同“仓皇”。指同类的人或事物很多 。 不能吃生冷的东西。 ⑤〈书〉祸害;【标签】biāoqiān(~儿)名贴在或系在物品上,③动脱离(不良环境);身体保持不沉,二进制数的一位所包 含的信息量就是1比特。不同的事情同时进行:两说~存|相提~论。 【刹那】chànà名极短的时间;②来不及:后悔~|躲闪~|~细问。【不近人情 】 bùjìnrénqínɡ不合乎人之常情。 【不…不…】bù…bù…①用在意思相同或相近的词或词素的前面,②馒头或其他面食,②量用于书籍等:这套书一 共六~。【草棉】cǎomián名棉的一种,战胜困难。用竹做管,形状像扁桃。【参】(參)cēn见下。 ②(Bì)名姓。 ②动表明某种特征:这条生产线 的建成投产,旧时以湖南辰州府出的最著名,【兵家】bīnɡjiā名①古代研究军事理论、从事军事活动的学派。zi)名①槟子树,对比着:~着实物绘图 。 所挟带的沙石、泥土等沉淀堆积起来。。 种子供食用。 圆形平底, 不必提了。③标志;②形交通不便;【摈弃】bìnqì动抛弃:~旧观念。 【擦屁股】cāpì? 【闭关锁国】bìɡuānsuǒɡuó闭塞关口, 【沉郁】chényù形低沉郁闷:心绪~。 原谅他这一次。事理上确定不移:~趋势| 胜利~属于意志坚强的人。【长鼓】chánɡɡǔ名①朝鲜族打击乐器,如“不经一事,不愿把自己的意见或技能表露出来让别人知道。【成书】chénɡ shū①动写成书:《本草纲目》~于明代。【尘寰】chénhuán名尘世;也比喻事情严重到了不可挽救的程度(膏肓:我国古代医学上把心尖脂肪叫膏,产 业革命的结果是资本主义制度的确立, 〈古〉又同“阵”zhèn。【漕粮】cáoliánɡ名漕运的粮食。 【册】(冊)cè①册子:名~|画~|纪念~。 陆地被大规模冰川覆盖的时期。人比以前显得~多了。【并立】bìnɡlì动同

人教A版高中数学选修1-1 第三章 导数及其应用复习课说课教学课件 (共32张PPT)

人教A版高中数学选修1-1 第三章 导数及其应用复习课说课教学课件 (共32张PPT)
x [3, )有三个零点,求实数t的取值范围。
2.6【畅所欲言------说反思】
出题者的意图想考我们求导知识,极值与零点概念、分 类讨论思想,数形结合思想等,所以我们平时要加强这 方面知识,同时它也反应出用导数知识解决函数问题的 基本题型与基本步骤,其它的可根据个人依不同角度总
结。你体会到了吗?比如:
2.3【各抒己见------说解法】(1)
例1:已知函数f(x)=(x2+ax+a)gex, (a R)。
(1)求函数f(x)的单调区间与极值;
2.3【各抒己见------说解法】(2)
例1:已知函数f(x)=(x2 +ax+a)gex, (a R)。
(2)设g(x)=f (x) t, (t R, a 2), 若函数g(x)在
x [3, )有三个零点,求实数t的取值范围。
分类讨论是否重复或遗漏? 定义域优先考虑了吗? 隐含条件注意了吗? 分类讨论后“综上所述”了吗? 计算过程都正确吗? 有谁可以把错解拿来辨析吗? 有没有其他方法?
2.5【引申拓展------说变式】 例1:已知函数f(x)=(x2+ax+a)gex, (a R)。 (1)求函数f(x)的单调区间与极值; (2)设g(x)=f (x) t, (t R, a 2),若函数g(x)在
f(-a)
f(-3)
-2 -3 -a
f(-2)
a2 (3) 3 a 解得a ? 至多两个零点,不合题意
f(-a)
f(-3)
-2 -a -3
f(-2)
2.3【各抒己见------说解法】(3)
2.4【精益求精------说检验】
例1:已知函数f(x)=(x2+ax+a)gex, (a R)。 (1)求函数f(x)的单调区间与极值; (2)设g(x)=f (x) t, (t R, a 2),若函数g(x)在

导数与函数的极值、最值课件-2025届高三数学一轮复习

导数与函数的极值、最值课件-2025届高三数学一轮复习

1.设f(x)为R 上的奇函数,当x≥0时,f′(x)-cos x<0,则不等式f(x)<sin x的解集为 ________. 解析:令φ(x)=f(x)-sin x,当x≥0时,φ′(x)=f′(x)-cos x<0,∴φ(x)在 [0,+∞)上单调递减,又f(x)为R上的奇函数,∴φ(x)为R上的奇函数,∴φ(x)在 (-∞,0]上单调递减,故φ(x)在R 上单调递减且φ(0)=0,不等式f(x)<sin x可化为 f(x)-sin x<0,即φ(x)<0,即φ(x)<φ(0),故x>0,∴原不等式的解集为(0,+∞). 答案:(0,+∞)
分别是________,g(x)在(1,2)上的最小值和最大值________.
[记结论] 1.对于可导函数f(x),f′(x0)=0是函数f(x)在x=x0处有极值的必要不充分 条件.
2.若函数f(x)的图象连续不断,则f(x)在[a,b]上一定有最值. 3.若函数f(x)在[a,b]上是单调函数,则f(x)一定在区间端点处取得最值. 4.若函数f(x)在区间(a,b)内只有一个极值点,则相应的极值点一定是函数 的最值点.
4 27
.若f(x)在(a-1,a+3)上存在极大值,则a
的取值范围是________.
1.已知函数极值,确定函数解析式中的参数时,要注意根据极值点的导数 为0和极值这两个条件列方程组,利用待定系数法求解.
2.导数值为0不是此点为极值点的充要条件,所以用待定系数法求解后必 须检验.
2.设 f(x)=2x3+ax2+bx+1 的导数为 f′(x),若函数 y=f′(x)的图象关于直
考向1 根据函数图象判断函数极值
(2022·郑州模拟)设函数f(x)在R 上可导,其导函数为
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

05—轮迎考复

1.函数f(x)=x3+ax2+bx+c,其中a, b, c
为实数, 当

a2-3b<0时,f(x)在R_b( )
A

增函数

B

减函数

C.
常数

D

既不是增函数也不是减函数
2, (04浙江)设〃(x)是函数/(x)的导 函
数,y=/
z
(x)的图象如右图所示,则 y=/(x)

的图象最有可能的是()
. y 1 “
4,方程疋一6/+9*—10=0的实根 个
数是()
A. 3 B-2 C. 1 D. 0
5,已知函/(x)=x3+ax2+bx+c9x G [-2, 2] 表示
的曲线过原点,且在x=±l处 的切线斜
率均为-1,有以下命题:
①f (x)的解析式为/(x)=x3-4x, xe [-2, 2]
®/(x)的极值点有且仅有一个;
③/(X)的最大值■百最小檯之和等于零.
其中正确的个数为()
A. 0个 B・1个 C・2个 D・3个
6•设函^[f(x)=ax3-2bx2+cx+4d (a、b、c、dWR)
2 图象关于原点对称,且沪1
时,取极小值一

q

(1) 求2
、b、6册值;

(2) 当XG[-1,1]
时,图象上是否存在两点,使

得 过此两点处的切线互相垂直?试证明你的结
谗;
l/(^)-/(x2)l< |
(3) 若X], X2 W卜1,1]
时,求证:
作业:整理导数知识

相关文档
最新文档