3-4相互独立的随机变量
概率论课程第四章

第四章 数字特征前面我们介绍了随机变量及其分布,对于一个随机变量,只要知道了它的分布(分布函数或分布律、分布密度),它取值的概率规律就全部掌握了。
但在实际问题中,一个随机变量的分布往往不易得到,且常常只需知道随机变量的某几个特征就够了。
例如检查棉花的质量时,我们关心的是棉花纤维的平均长度和纤维长度与平均长度的偏差大小,这些数字反映了随机变量的一些特性,我们称能够反映随机变量特征的数字为随机变量的数字特征。
本章将介绍几个最常用的数字特征:数学期望、方差、协方差和相关系数。
第一节 数学期望一、离散型随机变量的数学期望数学期望反映的是随机变量取值的集中位置的特征,能够满足这一要求的自然是随机变量的平均取值,那么这个平均取值如何得到呢?怎样定义,我们先看一个例题例1:全班40名同学,其年龄与人数统计如下:该班同学的平均年龄为:4092115201519118⨯+⨯+⨯+⨯=a8.194092140152040151940118=⨯+⨯+⨯+⨯=若令X 表示从该班同学中任选一同学的年龄,则X 的分布律为于是,X 取值的平均值,即该班同学年龄的平均值为4092140152040151940118)(⨯+⨯+⨯+⨯==a X E8.19==∑ii i p x定义1:设X 为离散型随机变量,其分布律为i i p x X P ==}{, ,2,1=i如果级数 绝对收敛,则此级数为X 的数学期望(或均值),记为 E(X),即 ∑=ii i p x X E )(意义:E(X)表示X 取值的(加权)平均值。
如果级数 不绝对收敛,则称数学期望不存在。
例2:甲、乙射手进行射击比赛,设甲中的环数为X1,乙中的环数为X2,已知 X1和X2的分布律分别为:问谁的平均击中环数高?解:甲的平均击中环数为 E(X1)=8 0.3+9 0.1+10 0.6=9.3 乙的平均击中环数为 E(X2)=8 0.2+9 0.5+10 0.3=9.1 可见E(X1)> E(X2),即甲的平均击中环数高于乙的平均击中环数。
概率论与数理统计课件第三章

f
(x,
y)
1
21 2
1
2
exp
1
2(1 2 )
(x
1)2
2 1
2
(x
1)( y 1 2
2 )
(y
2)2
2 2
其中1、2、1、 2、都是常数,且1 0, 2 0,1 1.
则称(X,Y)服从参数为1、2、1、的二2、维 正态分布,
记为
(X
,Y)
~
N (1,
2
,
2 1
,
2 2
2F(x, y) f (x, y) xy
(5)若(X,Y)为二维连续型随机向量,联合概率密度为f(x,y),则
F(x,y) P{X x,Y y}
返回
X
18
第
页
例5 设二维随机变量(X,Y)的概率密度为
Ae2(x y) , x 0, y 0
f (x, y)
0, 其他
(1)确定常数A;
分别为(X,Y)关于X和Y的边缘分布函数.
返回
X
25
第
页
例1 设二维随机向量(X,Y)的联合分布函数为
(1 e2x )(1 e3y ), x 0, y 0,
F(x, y)
0, 其他.
求边缘分布 FX (x), FY ( y)
当x
0时,FX
(x)
lim (1
y
e2 x
)(1
e3 y
)
1
e2 x
返回
X
14
第
例3 设随机变量Y~N(0,1),令
0, X 1 1,
| Y | 1
0,
|Y
|
概率论与数理统计第三章习题及答案

概率论与数理统计习题 第三章 多维随机变量及其分布习题3-1 盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球.以X 表示取到黑球的只数,以Y 表示取到红球的只数,求X 和Y 的联合分布律.(X ,Y )的可能取值为(i , j ),i =0,1,2,3, j =0,12,i + j ≥2,联合分布律为 P {X=0, Y=2 }=351472222=C C C P {X=1, Y=1 }=35647221213=C C C C P {X=1, Y=2 }=35647122213=C C C C P {X=2, Y=0 }=353472223=C C C P {X=2, Y=1 }=351247121223=C C C C P {X=2, Y=2 }=353472223=C C C P {X=3, Y=0 }=352471233=C C C P {X=3, Y=1 }=352471233=C C C P {X=3, Y=2 }=0习题3-2 设随机变量),(Y X 的概率密度为⎩⎨⎧<<<<--=其它,0,42,20),6(),(y x y x k y x f(1) 确定常数k ; (2) 求{}3,1<<Y X P (3) 求{}5.1<X P ; (4) 求{}4≤+Y X P . 分析:利用P {(X , Y)∈G}=⎰⎰⎰⎰⋂=oD G Gdy dx y x f dy dx y x f ),(),(再化为累次积分,其中⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<<<<=42,20),(y x y x D o解:(1)∵⎰⎰⎰⎰+∞∞-+∞∞---==2012)6(),(1dydx y x k dy dx y x f ,∴81=k (2)83)6(81)3,1(321⎰⎰=--=<<dy y x dxY X P (3)3227)6(81),5.1()5.1(425.10=--=∞<≤=≤⎰⎰dy y x dx Y X P X P (4)32)6(81)4(4020=--=≤+⎰⎰-dy y x dxY X P x习题3-3 将一枚硬币掷3次,以X 表示前2次出现H 的次数,以Y 表示3次中出现H 的次数,求Y X ,的联合分布律以及),(Y X 的边缘分布律。
概率论与数理统计浙江大学第四版盛骤概率论部分

浙江大学 盛骤
2019/3/16
1
概率论与数理统计是研究随机现象 数量规律的一门学科。
2
第一章
• • • • • • 1.1 1.2 1.3 1.4 1.5 1.6
概率论的基本概念
随机试验 样本空间 概率和频率 等可能概型(古典概型) 条件概率 独立性
第二章
• • • • • 2.1 2.2 2.3 2.4 2.5
第九章 方差分析及回归分析
• • • • 9.1 9.2 9.3 9.4 单因素试验的方差分析 双因素试验的方差分析 一元线性回归 多元线性回归
5
第十章 随机过程及其统计描述
• 10.1 随机过程的概念 • 10.2 随机过程的统计描述 • 10.3 泊松过程及维纳过程
第十一章 马尔可夫链
15
§3 频率与概率
(一)频率 n A; f ( A ) 定义:记 n n 其中 nA—A发生的次数(频数);n—总试验次 数。称fn ( A)为A在这n次试验中发生的频率。 例:
中国国家足球队,“冲击亚洲”共进行了n次,其中成功了
1 n; 一次,则在这n次试验中“冲击亚洲”这事件发生的频率为
nH
251 249 256 253 251 246 244 258 262 247
fn(H)
0.502 0.498 0.512 0.506 0.502 0.492 0.488 0.516 0.524 0.494
表 2
实验者
德·摩根 蒲丰
K·皮尔逊 K·皮尔逊
n
nH
fn(H)
2048 4040
12000 24000
关键词: 样本空间 随机事件 频率和概率 条件概率 事件的独立性
考研数学三(概率论与数理统计)历年真题试卷汇编5(题后含答案及解析)

考研数学三(概率论与数理统计)历年真题试卷汇编5(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.(03年)将一枚硬币独立地掷两次,引进事件:A1={掷第一次出现正面},A2={掷第二次出现正面},A3={正、反面各出现一次},A4={正面出现两次},则事件【】A.A1,A2,A3相互独立.B.A2,A3,A4相互独立.C.A1,A2,A3两两独立.D.A2,A3,A4两两独立.正确答案:C 涉及知识点:概率论与数理统计2.(07年)某人向同一目标独立重复射击,每次射击命中目标的概率为p(0<P<1),则此人第4次射击恰好第2次命中目标的概率为【】A.3p(1-p)2.B.6p(1-p)2.C.3p2(1-p)2.D.6p2(1-p)2.正确答案:C解析:P{第4次射击恰好第2次命中目标}=P{前3次射击恰中1枪,第4次射击命中目标} =P{前3次射击恰中1枪}.P{第4次射击命中目标}=C31p(1-p)2.P=3p2(1-p)2 知识模块:概率论与数理统计3.(09年)设事件A与事件B互不相容,则【】A.P()=0.B.P(AB)=P(A)P(B).C.P(A)=1-P(B).D.P()-1.正确答案:D 涉及知识点:概率论与数理统计4.(14年)设随机事件A与B相互独立,且P(B)=0.5,P(A-B)=0.3,则P(B-A)=【】A.0.1B.0.2C.0.3D.0.4正确答案:B解析:∵A与B独立,∴P(AB)=P(A)P(B).故0.3=P(A-B)=P(A)-P(AB)=P(A)-P(A)P(B) =P(A)[1-P(B)]=P(A)(1-0.5)=0.5(P(A) 得P(A)==06,P(B-A)=P(B)-P(AB)=P(B)-P(A)P(B)=0.5-0.6×0.5=0.2.知识模块:概率论与数理统计5.(15年)若A,B为任意两个随机事件,则【】A.P(AB)≤P(A)P(B).B.P(AB)≥P(A)P(B).C.P(AB)≤.D.P(AB)≥.正确答案:C解析:由ABA,ABB得P(AB)≤P(A),P(AB)≤P(B),两式相加即得:P(AB)≤.知识模块:概率论与数理统计6.(16年)设A,B为两个随机事件,且0<P(A)<1,0<P(B)<1,如果P(A|B)=1,则【】A.P()=1.B.P(A|)=0.C.P(A∪B)=1.D.P(B|A)=1.正确答案:A解析:由1=P(A|B)=,有P(B)=P(AB) 于是知识模块:概率论与数理统计7.(90年)设随机变量X和Y相互独立,其概率分布为则下列式子正确的是:【】A.X-YB.P{X-Y}=0C.P{X-Y}=D.P{X=Y}=1正确答案:C解析:P(X=Y)=P(X=-1,Y=-1)+P(X=1,Y=1) =P(X=-1)P(Y =-1)+P(X=1)P(Y=1) =知识模块:概率论与数理统计8.(93年)设随机变量X的密度函数为φ(χ),且φ(-χ)-φ(χ),F(χ)为X的分布函数,则对任意实数a,有【】A.F(-a)=1-∫0aφ(χ)dχB.F(-a)=-∫0aφ(χ)dχC.F(-a)=F(a)D.F(-a)=2F(a)-1正确答案:B解析:由概率密度的性质和已知,可得故选B.知识模块:概率论与数理统计9.(95年)设随机变量X~N(μ,σ2),则随着σ的增大,概率P(|X-μ|<σ) 【】A.单调增大.B.单调减小.C.保持不变.D.增减不定.正确答案:C解析:由已知X~N(μ,σ),得~N(0,1) 故P{|X-μ|<σ}==(1)Ф-Ф(-1) 故选C.知识模块:概率论与数理统计填空题10.(89年)设随机变量X的分布函数为则A=_______,P{|X|<}=_______.正确答案:1;解析:∵分布函数是右连续的,故得1=Asin ∴A=1 这时,F(χ)在(-∞,+∞)上都连续,于是知识模块:概率论与数理统计11.(91年)设随机变最X的分布函数为则X的概率分布为_______.正确答案:解析:F(χ)为一阶梯状函数,则X可能取的值为F(χ)的跳跃点:-1,1,3.P(X=-1)=F(-1)-F(-1-0)=0.4 P(X=1)=F(1)-F(1-0)=0.8-0.4=0.4 P(X=3)=F(3)-F(3-0)=1-0.8=0.2 知识模块:概率论与数理统计12.(94年)设随机变量X的概率密度为以Y表示对X的三次独立重复观察中事件{X≤}出现的次数P{Y=2}=_______.正确答案:解析:由题意,Y~B(3,p).其中p=故知识模块:概率论与数理统计13.(00年)设随机变量X的概率密度为若k使得P{X≥k}=,则k的取值范围是_______.正确答案:[1,3]解析:∵P(X≥k)=∫k+∞f(χ)dχ.可见:若k≤0,则P(X≥k)=1 若0<k<1,则P(X≥k)=若k>6,则P(X≥k)=0 若3<k≤6,则P(X ≥k)=若1≤k≤3,则P(X≥k)=综上,可知K∈[1,3].知识模块:概率论与数理统计14.(05年)从数1,2,3,4中任取一个数,记为X,再从1,…,X中任取一个数,记为Y,则P(Y=2}=_______.正确答案:解析:由题意,X的概率分布为而P(Y=2|X=1)=0,P(Y=2|X=2)=,P(Y=2|X=3)=,P(Y=2|X=4)=,故由全概率公式得知识模块:概率论与数理统计15.(05年)设二维随机变量(X,Y)的概率分布为若随机事件{X=0}与{X+Y=1}相互独立,则a=_______,b=_______.正确答案:0.4;0.1.解析:由题意知0.4+a+b+0.1=1,∴a+b=0.5 而P{X=0}=0.4+a,P{X+Y=1}=P{X=0,Y=1}+P{X=1,Y=0}=a+b=0.5,P{X =0,X+Y=1}=P{X=0,Y=1}=a 由P{X=0,X+Y=1)=P{X=0)P{X +Y=1} ∴a=(0.4+a)0.5,得a=0.4,从而b=0.1.知识模块:概率论与数理统计16.(06年)设随机变量X与Y相互独立,且均服从区间[0,3]上的均匀分布,则P{max(X,Y)≤1}=_______.正确答案:解析:由题意知X与Y的概率密度均为:则P(X≤1}=P{Y≤1}=∫-∞1f(χ)dχ=故P{max(X,Y)≤1}=P{X≤1,y≤1}=P{X≤1}P{y≤1}=知识模块:概率论与数理统计17.(99年)设随机变量Xij(i=1,2,…,n;n≥2)独立同分布,Eij=2,则行列式Y=的数学期望EY=_______.正确答案:0解析:由n阶行列式的定义知Y=,P1,…,Pn为(1,…,n)的排列,τ(p1p2…pn)为排列p1p2…pn的逆序数.而Xij(i,j=1,2,…,n)独立同分布且EXij=2,故知识模块:概率论与数理统计解答题解答应写出文字说明、证明过程或演算步骤。
《随机变量》学文档

为离散型r.v.的分布律或概率分布。 离散型 v 的分布律或概率分布。
6
性质: 性质:⑴ pi ≥ 0, i = 1,2,L
⑵
∑p
i =1
∞
i
=1
例4:求例1、例2中随机变量 ξ 的分布律。 的分布律。 解:⑴
ξ
P
-1 1/6
2 1/2
i −1
3 1/3
⑵ pi = P (ξ = i ) = (1 − p )
Pn (k) =
n次中指定哪 次 次中指定哪k次 次中指定哪
k Cn ⋅ pk ⋅ qn−k
(k = 0,1,2,L, n)
n-k次不成功 次不成功 其中q= 其中 =1-p
9
k次成功 次成功
显然, ⑶ 显然,Pn(k)>0,且 , P0 + P1 + L + Pn
0 1 k n = C n p 0 q n + C n p 1 q n −1 + L + C n p k q n − k + L + C n p n q 0 二项式 n
p = q i −1 p
1− p = q
∆
ξ
P
1 p
2 qp
… … i qi-1p
i qi-1p
… …
可简化为
ξ
P
(i = 1,2,3,L)
7
二、几个常用的离散型分布 1、离散型均匀分布
ξ
P
x1 1/n
x2 1/n
… …
xn 1/n
满足两性质 2、0-1分布 设事件A发生的概率为 发生的概率为p, 设事件 发生的概率为 ,即P(A)=p。 。 ξ 0 1 0 A未发生 随机变量 ξ 取 p P 1-p - 1 A发生
第10章 第3节 事件的相互独立性及条件概率 课件-山东省滕州市第一中学2022届高考数学一轮复习
中恰有一个地方降雨的概率为 C
A.0.2
B.0.3
C.0.38
D.0.56
解析 设甲地降雨为事件A,乙地降雨为事件B,
则两地恰有一地降雨为 A B + A B,
∴P(A B + A B)=P(A B )+P( A B) =P(A)P( B )+P( A )P(B)
1 1 1 15
=[1-P( A2 )·P( A3 )]P(A1)=1-4×4×2=32.
讲
课
人
:
邢
启
强
9
例2 (1)(2020·葫芦岛期末)对标有不同编号的6件正品和4件次品的产品进行检测,
不放回地依次摸出2件.在第一次摸出次品的条件下,第二次摸到正品的概率是 D
3
A.5
2
B.5
一等品,求取走的也是一等品的概率.
讲
课
人
:
邢
启
强
13
练习
1.某电视台的夏日水上闯关节目一共有三关,第一关与第二关的过关率分别
2 3
为3,4.只有通过前一关才能进入下一关,每一关都有两次闯关机会,且是否通
过每关相互独立.一选手参加该节目,则该选手能进入第三关的概率为 C
1
2
5
1
A.2
B.3
C.6
D.12
则 P(B)=1-P( B )=1-[1-P(A1)][1-P(A2)]=1-(1-0.1)(1-0.2)=1-0.9×0.8=0.28.
讲
课
人
:
邢
启
强
解由题意知,设备在一天的运转中需要调整的部件个数可能为0,1,2,3.
《概率论与数理统计》第4章作业题
补充作业
设 X 的方差为2.5, 试估计 P{ | X- E(X) | 7.5 } 的值.
解
利用切比雪夫不等式
P{| X E( X ) | 7.5} 2 7.5 1 22.5 0.0444.
2.5
第四章
第四章
Z 2 ~ N (80, 1525) , Z1 ~ N (2080, 652) ,
P{X Y } 0.9793, X Y ~ N (1360, 1525) , P{X Y 1400} 1 P{X Y 1400}
1400 1360 1 Φ 1525
X~N(720,302),Y~N(640,252), 求Z1=2X+Y, Z2=X-Y
的分布,并求概率P{X>Y},P{X+Y>1400}.
第四章
由数学期望的性质知,
1 E(Y) E(2X1 - X 2 3X 3 - X 4 ) 2
1 2E(X1 ) - E(X) 2 3E(X 3 ) - E(X 4 ) 2 1 2 1 - 2 3 3 - 4 7 2 又因为 X1 , X 2 , X3 , X 4 , 相互独立,则由方差的性质知 1 D(Y) D(2X1 - X 2 3X 3 - X 4 ) 4D(X1 ) D(X2 ) 2 1 9D(X3 ) D(X4 ) 37.25 4
12(b a)
x
3
|
b a
12
(b 2 ab a 2 )
第四章
4-22 (1)设随机变量X1, X2, X3, X4 相互独立,
且有E(Xi)=i,D(Xi)=5-i,i=1,2,3,4. 设Y=
概率论与统计课程学习讲义 (34)
X (t,2 ) a cos(t ) -a cos t, - t
其中常数a
0, 且P(1 )
2 3
P( X
(0)
a)
P(2 )
1 3
所以
10
0
F
(
x,
0)
1 3
1
x -a -a xa xa
同理,根据X(4 )可能取的值为
X(4
,1 )
a
cos
4
2a 2
X(4
,2 )
a
cos
4
2a 2
11
可得:
0
X 2a 2
F
(
X
,
4
)
1 3
- 2a 2
X
2a 2
1
X 2a 2
第二节 随机过程的概率分布
1
设{X (t),t T} 是一随机过程,对于参数集 T 中的任 意n个元素: 即过程的 n 个状态 t1, t2 , , tn
X (t1) X (e,t1), X (t2) X (e,t2), , X (tn) X (e,tn)
(n 个随机变量)的联合分布
称为随机过程 X (t) 的n 维分布函数, n 1,2,3, 一维分布函数 F(x1;t1) P{X (t1) x1}
12
再求二维分布。随机矢量(X (0), X ( ))可能的取值为
2
(
X
(0,
1
),
X
(
4
,
1
))
(a,
2 a) 2
(
X
(0,
2
),
X
(
4
,
2
))
高等数学3.4 随机变量的独立性与条件分布
2 3/15 3/15
0 1
(2) 由( X , Y ) 的联合分布律知 X 的边缘分布为 X P 0 1/15 1 10/15
由条件分布定义可知
P Y = 0 X = 0 = P Y = 1 X = 0 = P Y = 2 X = 0 =
P X = 0 , Y = 0 P X = 0 P X = 0 , Y = 1 P X = 0 P X = 0 , Y = 2 P X = 0
Y P
1 1/2
2 1/9 +α
3 1/18 +β
若X 与 Y 相互独立, 则有 1 = P X = 1, Y = 2 = P X= 1 9 1 1 = ( + ) 3 9 1 = P X = 1, Y= 3 = P X =1 18 1 1 = ( + ) 3 18
Y P = 2
dt
=
同理
x R
fY ( y ) =
( y 2 )2 exp , 2 2 2 2 2 1
y R
若 = 0 , 则对于任意实数 x 与 y 都有 f ( x, y ) = f X ( x )fY ( y ) 因此 X 与 Y 是相互独立的 . 反之, 若 X 与Y 相互独立, 则对于任意实数 x与 y 都有 f ( x, y ) = f X ( x )fY ( y ) 若取 x = 1 , y = 2 , 则有
1 2
2
2 2 ( x ) ( x ) 2 2 1 1 + 2 2 1 1
y 2 ( x 1 ) x 1 1 = 2 2 1 2 1 2(1 ) 2
2
所以( X , Y )关于X的边缘密度为