非线性回归的线性化

04非线性回归模型的线性化 (3)

非线性回归模型的线性化 以上介绍了线性回归模型。但有时候变量之间的关系是非线性的。例如 y t = α 0 + α11βt x + u t y t = α 0 t x e 1α+ u t 上述非线性回归模型是无法用最小二乘法估计参数的。可采用非线性方法进行估计。估计过程非常复杂和困难,在20世纪40年代之前几乎不可能实现。计算机的出现大大方便了非线性回归模型的估计。专用软件使这种计算变得非常容易。但本章不是介绍这类模型的估计。 另外还有一类非线性回归模型。其形式是非线性的,但可以通过适当的变换,转化为线性模型,然后利用线性回归模型的估计与检验方法进行处理。称此类模型为可线性化的非线性模型。下面介绍几种典型的可以做线性化处理的非线性模型。 ⑴ 指数函数模型 y t = t t u bx ae + (4.1) b >0 和b <0两种情形的图形分别见图4.1和4.2。显然x t 和y t 的关系是非线性的。对上式等号两侧同取自然对数,得 Lny t = Lna + b x t + u t (4.2) 令Lny t = y t *, Lna = a *, 则 y t * = a * + bx t + u t (4.3) 变量y t * 和x t 已变换成为线性关系。其中u t 表示随机误差项。 图4.1 y t =t t u bx ae +, (b > 0) 图4.2 y t =t t u bx ae +, (b < 0) ⑵ 对数函数模型 y t = a + b Ln x t + u t (4.4) b >0和b <0两种情形的图形分别见图4.3和4.4。x t 和y t 的关系是非线性的。令x t * = Lnx t , 则 y t = a + b x t * + u t (4.5) 变量y t 和x t * 已变换成为线性关系。

非线性回归分析

SPSS—非线性回归(模型表达式)案例解析 2011-11-16 10:56 由简单到复杂,人生有下坡就必有上坡,有低潮就必有高潮的迭起,随着SPSS 的深入学习,已经逐渐开始走向复杂,今天跟大家交流一下,SPSS非线性回归,希望大家能够指点一二! 非线性回归过程是用来建立因变量与一组自变量之间的非线性关系,它不像线性模型那样有众多的假设条件,可以在自变量和因变量之间建立任何形式的模型非线性,能够通过变量转换成为线性模型——称之为本质线性模型,转换后的模型,用线性回归的方式处理转换后的模型,有的非线性模型并不能够通过变量转换为线性模型,我们称之为:本质非线性模型 还是以“销售量”和“广告费用”这个样本为例,进行研究,前面已经研究得出:“二次曲线模型”比“线性模型”能够更好的拟合“销售量随着广告费用的增加而呈现的趋势变化”,那么“二次曲线”会不会是最佳模型呢? 答案是否定的,因为“非线性模型”能够更好的拟合“销售量随着广告费用的增加而呈现的变化趋势” 下面我们开始研究: 第一步:非线性模型那么多,我们应该选择“哪一个模型呢?” 1:绘制图形,根据图形的变化趋势结合自己的经验判断,选择合适的模型 点击“图形”—图表构建程序—进入如下所示界面:

点击确定按钮,得到如下结果:

放眼望去, 图形的变化趋势,其实是一条曲线,这条曲线更倾向于"S" 型曲线,我们来验证一下,看“二次曲线”和“S曲线”相比,两者哪一个的拟合度更高! 点击“分析—回归—曲线估计——进入如下界面

在“模型”选项中,勾选”二次项“和”S" 两个模型,点击确定,得到如下结果: 通过“二次”和“S “ 两个模型的对比,可以看出S 模型的拟合度明显高于

线性回归推导及实例

数据点基本落在一条直线附近。这告诉我们,变量X与Y的关系大致可看作是线性关系,即它们之间的相互关系可以用线性关系来描述。但是由于并非所有的数据点完全落在一条直线上,因此X与Y的关系并没有确切到可以唯一地由一个X值确定一个Y值的程度。其它因素,诸如其它微量元素的含量以及测试误差等都会影响Y的测试结果。如果我们要研究X与Y的关系,可以作线性拟合 (2-1-1) 我们称(2-1-1)式为回归方程,a与b是待定常数,称为回归系数。从理论上讲,(2-1-1)式有无穷多组解,回归分析的任务是求出其最佳的线性拟合。 二、最小二乘法原理 如果把用回归方程计算得到的i值(i=1,2,…n)称为回归值,那么实际测量值y i与回归值i之间存在着偏差,我们把这种偏差称为残差,记为e i(i=1,2,3,…,n)。这样,我们就可以用残差平方和来度量测量值与回归直线的接近或偏差程度。残差平方和定义为: (2-1-2) 所谓最小二乘法,就是选择a和b使Q(a,b)最小,即用最小二乘法得到的回归直线是在所 有直线中与测量值残差平方和Q最小的一条。由(2-1-2)式可知Q是关于a,b的二次函数,所以它的最小值总是存在的。下面讨论的a和b的求法。 三、正规方程组 根据微分中求极值的方法可知,Q(a,b)取得最小值应满足 (2-1-3) 由(2-1-2)式,并考虑上述条件,则 (2-1-4) (2-1-4)式称为正规方程组。解这一方程组可得 (2-1-5) 其中 (2-1-6)

(2-1-7) 式中,L xy称为xy的协方差之和,L xx称为x的平方差之和。 如果改写(2-1-1)式,可得 (2-1-8) 或 (2-1-9) 由此可见,回归直线是通过点的,即通过由所有实验测量值的平均值组成的点。从力学观点看, 即是N个散点的重心位置。 现在我们来建立关于例1的回归关系式。将表2-1-1的结果代入(2-1-5)式至(2-1-7)式,得出 a=1231.65 b=-2236.63 因此,在例1中灰铸铁初生奥氏体析出温度(y)与氮含量(x)的回归关系式为 y=1231.65-2236.63x 四、一元线性回归的统计学原理 如果X和Y都是相关的随机变量,在确定x的条件下,对应的y值并不确定,而是形成一个分布。当X 取确定的值时,Y的数学期望值也就确定了,因此Y的数学期望是x的函数,即 E(Y|X=x)=f(x) (2-1-10) 这里方程f(x)称为Y对X的回归方程。如果回归方程是线性的,则 E(Y|X=x)=α+βx (2-1-11) 或 Y=α+βx+ε(2-1-12) 其中 ε―随机误差 从样本中我们只能得到关于特征数的估计,并不能精确地求出特征数。因此只能用f(x)的估计 式来取代(2-1-11)式,用参数a和b分别作为α和β的估计量。那么,这两个估计量是否能够满足要求呢? 1. 无偏性 把(x,y)的n组观测值作为一个样本,由样本只能得到总体参数α和β的估计值。可以证明,当满足下列条件: (1)(x i,y i)是n个相互独立的观测值 (2)εi是服从分布的随机变量 则由最小二乘法得到的a与b分别是总体参数α和β的无偏估计,即 E(a)= α E(b)=β 由此可推知 E()=E(y)

可线性化的回归分析

1.2可线性化的回归分析学案备注【学习目标】 1.能直观的判断两个变量是否满足线性相关 2.用非线性的函数关系来描述不好用线性关系刻画的两个 变量之间的关系 【重点、难点】用非线性的函数关系来描述不好用线性关系 刻画的两个变量之间的关系 【自主学习】 1.若两个变量不呈现线性关系,不能直接利用线性回归方程 建立两个变量的相关关系,那我们应如何建立两个变量的 关系?例如bx y=怎么化成线性相关问题解决?(阅读教 ae 材第9页到13页) 2. 在具体问题中,我们首先应该作出原始数据) x , (y 的,从中看出数据的大致规律,再 根据这个规律选择适当的函数进行拟合。 3. 对于非线性回归模型一般可转化为模 型从而得到相应的回归方程。 4.几种能转化为线性回归模型的非线性回归模型 (1)幂函数曲线x ab y=,作变换____________,得线性函数__________________ (2)指数曲线bx ae y=,作变换______________,得线性函数_______________

(3)倒指数曲线x b ae y =,作变换______________得线性函数 ________________ (4)对数曲线x b a y ln +=,作变换_______________得线性函数_____________ 【例题分析】 例1.(1)有5组(x,y )数据(1,3),(2,4),(4,5),(3,10),(10,12),去掉一组______数据后,剩下的四组数据的线性相关系数最大。 (2)已知幂函数曲线b ax y =做线性变换后得到的回归方程为v u 4.02+=,则a=_______,b=__________ 例2.为了研究某种细菌随时间x 变化,繁殖的个数,收集数据如下: 天数 x /天 1 2 3 4 5 繁殖个数y /个 6 12 25 49 95 (1)用天数作解释变量,繁殖个数作预报变量,作出这些数据的散点图; (2)试求出预报变量对解释变量的回归方程.(答案:所求 非线性回归方程为0.69 1.112?y =e x +.) 小结:利用回归方程探究非线性回归问题,可按“作散点图→建模→确定方程”这三个步骤进行. 其关键在于如何通过适当的变换,将非线性回归问题转化成线性回归问题.

(完整版)线性回归方程——非线性方程转化为线性方程

线性回归方程——非线性方程转化为线性方程 例1.(2015·高考全国卷Ⅰ)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的宣传费x i 和年销售量y i (i =1,2,?,8)数据作了初步处理,得到下面的散点图及一些统计量的值. x? y ? w ? 46.6 563 6.8 289.8 1.6 1469 108.8 表中w i =√x i ,w ? =1 8 ∑w i 8i=1, ,I )根据散点图判断,y =a +bx 与y =c +d √x ,哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型(给出判断即可,不必说明理由); ,II )根据(I )的判断结果及表中数据,建立y 关于x 的回归方程; (III )已知这种产品的年利润z 与x ,y 的关系为z =0.2y ?x ,根据(II )的结果回答下列问题: (i )年宣传费x =49时,年销售量及年利润的预报值是多少? (ii )年宣传费x 为何值时,年利润的预报值最大? 附:对于一组数据(u 1,v 1) (u 2,v 2) ,…,(u n ,v n ) 其回归直线v =α+βu 的斜率和截距的最小二乘估计分别为:β ?=∑ (u i ?u)(v i ?v) n i=1∑(u i ?u)2 n i=1,α?=v ?β ?u . 【答案】(Ⅰ)y =c +d √x 适宜作为年销售量y 关于年宣传费x 的回归方程类型;(Ⅱ)y ?=100.6+68√x ;(Ⅲ)(i)答案见解析;(ii)46.24千元. 【解析】(I )由散点图可以判断,y =c +d √x 适宜作为年销售量y 关于年宣传费x 的回归方程类型. (II )令w =√x ,先建立y 关于w 的线性回归方程,由于d ?=∑(w i ?w)(y i ?y) 8 i=1∑(w i ?w)28 i=1= 108.81.6 =68, ∴c?=y ?d ?w =563?68×6.8=100.6, ∴y 关于w 的线性回归方程为y ?=100.6+68w , 因此y 关于x 的回归方程为y ?=100.6+68√x . (III )(ⅰ)由(II )知,当x =49时,年销售量y 的预报值y ?=100.6+68√49=576.6, 年利润z 的预报值为z?=576.6×0.2?49=66.32. ,ⅱ)根据(II )的结果知,年利润z 的预报值z?=0.2(100.6+68√x)?x =?x +13.6√x +20.12, 所以当√x =13.62 =6.8,即x =46.24时,z?取得最大值. 故年宣传费为46.24千元时,年利润的预报值最大.

常见非线性回归模型

常见非线性回归模型 1.简非线性模型简介 非线性回归模型在经济学研究中有着广泛的应用。有一些非线性回归模型可以通 过直接代换或间接代换转化为线性回归模型,但也有一些非线性回归模型却无 法通过代换转化为线性回归模型。 柯布—道格拉斯生产函数模型 y AKL 其中L和K分别是劳力投入和资金投入, y是产出。由于误差项是可加的, 从而也不能通过代换转化为线性回归模型。 对于联立方程模型,只要其中有一个方程是不能通过代换转化为线性,那么这个联立方程模型就是非线性的。 单方程非线性回归模型的一般形式为 y f(x1,x2, ,xk; 1, 2, , p) 2.可化为线性回归的曲线回归 在实际问题当中,有许多回归模型的被解释变量y与解释变量x之间的关系都不是线性的,其中一些回归模型通过对自变量或因变量的函数变换可以转化为

线性关系,利用线性回归求解未知参数,并作回归诊断。如下列模型。 (1)y 0 1e x (2)y 0 1x2x2p x p (3)y ae bx (4)y=alnx+b 对于(1)式,只需令x e x即可化为y对x是线性的形式y01x,需要指出的是,新引进的自变量只能依赖于原始变量,而不能与未知参数有关。 对于(2)式,可以令x1=x,x2=x2,?,x p=x p,于是得到y关于x1,x2,?, x p 的线性表达式y 0 1x12x2 pxp 对与(3)式,对等式两边同时去自然数对数,得lnylnabx ,令 y lny, 0 lna, 1 b,于是得到y关于x的一元线性回归模型: y 0 1x。 乘性误差项模型和加性误差项模型所得的结果有一定差异,其中乘性误差项模型认为yt本身是异方差的,而lnyt是等方差的。加性误差项模型认为yt是等 方差的。从统计性质看两者的差异,前者淡化了y t值大的项(近期数据)的作用, 强化了y t值小的项(早期数据)的作用,对早起数据拟合得效果较好,而后者则 对近期数据拟合得效果较好。 影响模型拟合效果的统计性质主要是异方差、自相关和共线性这三个方面。 异方差可以同构选择乘性误差项模型和加性误差项模型解决,必要时还可以使用 加权最小二乘。

多元线性回归模型的案例分析

1. 表1列出了某地区家庭人均鸡肉年消费量Y 与家庭月平均收入X ,鸡肉价格P 1,猪肉价格P 2与牛肉价格P 3的相关数据。 年份 Y/千 克 X/ 元 P 1/(元/千克) P 2/(元/千克) P 3/(元/千克) 年份 Y/千克 X/元 P 1/(元/ 千克) P 2/(元/ 千克) P 3/(元/千克) 1980 2.78 397 4.22 5.07 7.83 1992 4.18 911 3.97 7.91 11.40 1981 2.99 413 3.81 5.20 7.92 1993 4.04 931 5.21 9.54 12.41 1982 2.98 439 4.03 5.40 7.92 1994 4.07 1021 4.89 9.42 12.76 1983 3.08 459 3.95 5.53 7.92 1995 4.01 1165 5.83 12.35 14.29 1984 3.12 492 3.73 5.47 7.74 1996 4.27 1349 5.79 12.99 14.36 1985 3.33 528 3.81 6.37 8.02 1997 4.41 1449 5.67 11.76 13.92 1986 3.56 560 3.93 6.98 8.04 1998 4.67 1575 6.37 13.09 16.55 1987 3.64 624 3.78 6.59 8.39 1999 5.06 1759 6.16 12.98 20.33 1988 3.67 666 3.84 6.45 8.55 2000 5.01 1994 5.89 12.80 21.96 1989 3.84 717 4.01 7.00 9.37 2001 5.17 2258 6.64 14.10 22.16 1990 4.04 768 3.86 7.32 10.61 2002 5.29 2478 7.04 16.82 23.26 1991 4.03 843 3.98 6.78 10.48 (1) 求出该地区关于家庭鸡肉消费需求的如下模型: 01213243ln ln ln ln ln Y X P P P u βββββ=+++++ (2) 请分析,鸡肉的家庭消费需求是否受猪肉及牛肉价格的影响。 先做回归分析,过程如下: 输出结果如下:

计量经济学基础_非线性回归模型

第四节 非线形回归模型 一、 可线性化模型 在非线性回归模型中,有一些模型经过适当的变量变换或函数变换就可以转化成线性回归模型,从而将非线性回归模型的参数估计问题转化成线性回归模型的参数估计,称这类模型为可线性化模型。在计量经济分析中经常使用的可线性化模型有对数线性模型、半对数线性模型、倒数线性模型、多项式线性模型、成长曲线模型等。 1.倒数模型 我们把形如: u x b b y ++=110;u x b b y ++=1110 (3.4.1) 的模型称为倒数(又称为双曲线函数)模型。 设:x x 1*=,y y 1*=,即进行变量的倒数变换,就可以将其转化成线性回归模型。 倒数变换模型有一个明显的特征:随着x 的无限扩大,y 将趋于极限值0b (或0/1b ),即有一个渐进下限或上限。有些经济现象(如平均固定成本曲线、商品的成长曲线、恩格尔曲线、菲利普斯曲线等)恰好有类似的变动规律,因此可以由倒数变换模型进行描述。 2.对数模型 模型形式: u x b b y ++=ln ln 10 (3.4.2) (该模型是将u b e Ax y 1=两边取对数,做恒等变换的另一种形式,其中A b ln 0=)。 上式lny 对参数0b 和1b 是线性的,而且变量的对数形式也是线性的。因此,我们将以上模型称为双对数(double-log)模型或称为对数一线性(log-liner)模型。 令:x x y y ln ,ln **==代入模型将其转化为线性回归模型: u x b b y ++=*10* (3.4.3) 变换后的模型不仅参数是线性的,而且通过变换后的变量间也是线性的。 模型特点:斜率1b 度量了y 关于x 的弹性:

非线性回归分析

非线性回归问题, 知识目标:通过典型案例的探究,进一步学习非线性回归模型的回归分析。 能力目标:会将非线性回归模型通过降次和换元的方法转化成线性化回归模型。 情感目标:体会数学知识变化无穷的魅力。 教学要求:通过典型案例的探究,进一步了解回归分析的基本思想、方法及初步应用. 教学重点:通过探究使学生体会有些非线性模型通过变换可以转化为线性回归模型,了解在解决实际问题的 过程中寻找更好的模型的方法. 教学难点:了解常用函数的图象特点,选择不同的模型建模,并通过比较相关指数对不同的模型进行比较. 教学方式:合作探究 教学过程: 一、复习准备: 对于非线性回归问题,并且没有给出经验公式,这时我们可以画出已知数据的散点图,把它与必修模块《数学1》中学过的各种函数(幂函数、指数函数、对数函数等)的图象作比较,挑选一种跟这些散点拟合得最好的函数,然后采用适当的变量代换,把问题转化为线性回归问题,使其得到解决. 二、讲授新课: 1. 探究非线性回归方程的确定: 1. 给出例1:一只红铃虫的产卵数y 和温度x 有关,现收集了7组观测数据列于下表中,试建立y 与x 之间 2. 讨论:观察右图中的散点图,发现样本点并没有分布在某个带状区域内,即两个变量不呈线性相关关系,所以不能直接用线性回归方程来建立两个变量之间的关系. ① 如果散点图中的点分布在一个直线状带形区域,可以选线性回归模型来建模;如果散点图中的点分布在一个曲线状带形区域,就需选择非线性回归模型来建模. ② 根据已有的函数知识,可以发现样本点分布在某一条指数函数曲线y =2C 1e x C 的周围(其中12,c c 是待定的参数),故可用指数函数模型来拟合这两个变量. ③ 在上式两边取对数,得21ln ln y c x c =+ ,再令ln z y =,则21ln z c x c =+, 可以用线性回归方程来拟合. ④ 利用计算器算得 3.843,0.272a b =-=,z 与x 间的线性回归方程为0.272 3.843z x =-$,因此红铃虫的产卵数对温度的非线性回归方程为$0.272 3.843x y e -=. ⑤ 利用回归方程探究非线性回归问题,可按“作散点图→建模→确定方程”这三个步骤进行. 其关键在于如何通过适当的变换,将非线性回归问题转化成线性回归问题. 三、合作探究 例 2.:炼钢厂出钢时所用的盛钢水的钢包,在使用过程中,由于钢液及炉渣对包衬耐火材料的侵蚀,使其容积不断增大,请根据表格中的数据找出使用次数x 与增大的容积y 之间的关系.

第三章1.3可线性化的回归分析

1.3 可线性化的回归分析 [学习目标] 1.进一步体会回归分析的基本思想. 2.通过非线性回归分析,判断几种不同模型的拟合程度. [知识链接] 1.有些变量间的关系并不是线性相关,怎样确定回归模型? 答首先要作出散点图,如果散点图中的样本点并没有分布在某个带状区域内,则两个变量不呈现线性相关关系,不能直接利用线性回归方程来建立两个变量之间的关系,这时可以根据已有函数知识,观察样本点是否呈指数函数关系或二次函数关系,选定适当的回归模型. 2.如果两个变量呈现非线性相关关系,怎样求出回归方程? 答可以通过对解释变量进行变换,如对数变换或平方变换,先得到另外两个变量间的回归方程,再得到所求两个变量的回归方程. [预习导引] 1.非线性回归分析 对不具有线性相关关系的两个变量做统计分析,通过变量代换,转化为线性回归模型. 2.非线性回归方程 曲线方程曲线图形公式变换变换后的线性函数

y=ax b c=ln a v=ln x u=ln y u=c+bv y=a e bx c=ln a u=ln y u=c+bx y=a e b x c=ln a v= 1 x u=ln y u=c+bv y=a+b ln x v=ln x u=y u=a+bv 要点一线性回归分析 例1 某产品的广告费用x与销售额y的统计数据如下表: 广告费用x(万元)423 5 销售额y(万元)49263954 (1)由数据易知y与x具有线性相关关系,若b=9.4,求线性回归方程y=a+bx; (2)据此模型预报广告费用为4万元时的销售额. 解(1)x-= 4+2+3+5 4 =3.5,y-= 49+26+39+54 4 =42, ∴a=y--b x-=42-9.4×3.5=9.1

非线性回归分析(教案)

1.3非线性回归问题, 知识目标:通过典型案例的探究,进一步学习非线性回归模型的回归分析。 能力目标:会将非线性回归模型通过降次和换元的方法转化成线性化回归模型。 情感目标:体会数学知识变化无穷的魅力。 教学要求:通过典型案例的探究,进一步了解回归分析的基本思想、方法及初步应用. 教学重点:通过探究使学生体会有些非线性模型通过变换可以转化为线性回归模型,了解在解决实际问题的 过程中寻找更好的模型的方法. 教学难点:了解常用函数的图象特点,选择不同的模型建模,并通过比较相关指数对不同的模型进行比较. 教学方式:合作探究 教学过程: 一、复习准备: 对于非线性回归问题,并且没有给出经验公式,这时我们可以画出已知数据的散点图,把它与必修模块《数学1》中学过的各种函数(幂函数、指数函数、对数函数等)的图象作比较,挑选一种跟这些散点拟合得最好的函数,然后采用适当的变量代换,把问题转化为线性回归问题,使其得到解决. 二、讲授新课: 1. 探究非线性回归方程的确定: 1. 给出例1:一只红铃虫的产卵数y 和温度x 有关,现收集了7组观测数据列于下表中,试建立y 与x 之间的/y 个 2. 讨论:观察右图中的散点图,发现样本点并没有分布在某个带状区域内,即两个变量不呈线性相关关系,所以不能直接用线性回归方程来建立两个变量之间的关系. ① 如果散点图中的点分布在一个直线状带形区域,可以选线性回归模型来建模;如果散点图中的点分布在一个曲线状带形区域,就需选择非线性回归模型来建模. ② 根据已有的函数知识,可以发现样本点分布在某一条指数函数曲线y =2C 1e x C 的周围(其中12,c c 是待定的参数),故可用指数函数模型来拟合这两个变量. ③ 在上式两边取对数,得21ln ln y c x c =+,再令ln z y =,则21ln z c x c =+,可以用线性回归方程来拟合. ④ 利用计算器算得 3.843,0.272a b =-=,z 与x 间的线性回归方程为 0.272 3.843z x =-,因此红铃虫的产卵数对温度的非线性回归方程为0.272 3.843x y e -=. ⑤ 利用回归方程探究非线性回归问题,可按“作散点图→建模→确定方程”这三个步骤进行. 其关键在于如何通过适当的变换,将非线性回归问题转化成线性回归问题. 三、合作探究 例 2.:炼钢厂出钢时所用的盛钢水的钢包,在使用过程中,由于钢液及炉渣对包衬耐火材料的侵蚀,使其容积不断增大,请根据表格中的数据找出使用次数 x 与增大的容积y 之间的关系.

浅谈非线性回归模型的线性化

浅谈非线性回归模型的线性化 广东省惠州市惠阳区崇雅中学高中部 卢瑞勤(516213) 回归分析在各个领域中都有十分重要的作用,比如:在财务中可以用回归分析进行财务预测;在医疗检验中可以用回归分析进行病理预报等等。高中新课标教材就在《必修3》和《选修2-3》中分别增加了《线性回归》和《回归分析》的内容,介绍了求线性回归方程的方法。但在实际问题中,变量间的关系并非总是线性关系,本文结合本人的教学实践,对教材中的这两部分内容进行适当延伸,谈谈对一些可线性化的非线性回归模型的线性化问题,供各位同行在教学时参考。 一、什么是可线性化的非线性回归模型 线性回归模型的基本特征是预报变量可以表示成解释变量和一个系数相乘的和,即预报变量y 可以表示成解释变量i x (i =1,2,3,……)的如下形式:0112233y a a x a x a x =++++ ,其中变量i x 是以其原型(而不是以n i x 或其它)的形式出现,变量y 是各变量i x 的线性函数。而有些回归模型不具备这个特点,但是可以通过适当的代数变换转化成这种形式,我们称这类回归模型为可线性化的回归模型。 在本文中,我们只讨论只有一个解释变量可线性化的非线性回归模型的线性化。 二、非线性回归模型的线性化的基本思路 非线性回归模线性化的基本思路是:由已知数据,确定解释变量和预报变量,作出散点图,根据经验,确定回归曲线的类型,然后作适当的代数变换,若变换后散点图体现较好的线性关系,即可将其化成线性形式求解,最后还原到原来的回归曲线。如果回归曲线可用多种形式表示,可以各自将其线性化后求解,再用相关系数2 R 进行拟合效果分析,2 R 越大,拟合效果越好,所求的回归方程也就越精确。 三、非线性回归模型的线性化的常用方法 可线性化的非线性回归模型有以下几种常见类型: (1)双曲线型,其形式为 1a b y x =+,其变换为1y y '=, 1 x x '=,变换后的形式为y b ax ''=+ (2)幂函数型,其形式为b y ax = ,可以变形为ln ln ln y a b x =+,作变换ln y y '= ,ln x x '= ,变换后的形式为y a bx ''=+ (3)指数函数型,其形式为bx y ae = ,以变形为ln ln y a bx =+,作变换ln y y '=,ln a a '= ,变换后的形式为y a bx ''=+ (4)对数函数型,其形式为ln y a b x =+,作变换ln x x '=,变换后的形式为y a bx '=+ 下面以高中新课标数学教材《选修2-3》一道习题为例加以说明 【例】在某地区的一段时间内观察到的不小于某震级x 的地震个数y 数据如下表,试建立回归方程表述二者之间的关系。

多元线性回归模型案例

我国农民收入影响因素的回归分析 本文力图应用适当的多元线性回归模型,对有关农民收入的历史数据和现状进行分析,探讨影响农民收入的主要因素,并在此基础上对如何增加农民收入提出相应的政策建议。?农民收入水平的度量常采用人均纯收入指标。影响农民收入增长的因素是多方面的,既有结构性矛盾因素,又有体制性障碍因素。但可以归纳为以下几个方面:一是农产品收购价格水平。二是农业剩余劳动力转移水平。三是城市化、工业化水平。四是农业产业结构状况。五是农业投入水平。考虑到复杂性和可行性,所以对农业投入与农民收入,本文暂不作讨论。因此,以全国为例,把农民收入与各影响因素关系进行线性回归分析,并建立数学模型。 一、计量经济模型分析 (一)、数据搜集 根据以上分析,我们在影响农民收入因素中引入7个解释变量。即:2x -财政用于农业的支出的比重,3x -第二、三产业从业人数占全社会从业人数的比重,4x -非农村人口比重,5x -乡村从业人员占农村人口的比重,6x -农业总产值占农林牧总产值的比重,7x -农作物播种面积,8x —农村用电量。

资料来源《中国统计年鉴2006》。 (二)、计量经济学模型建立 我们设定模型为下面所示的形式: 利用Eviews 软件进行最小二乘估计,估计结果如下表所示: DependentVariable:Y Method:LeastSquares Sample: Includedobservations:19 Variable Coefficient t-Statistic Prob. C X1 X3 X4 X5 X6 X7 X8 R-squared Meandependentvar AdjustedR-squared 表1最小二乘估计结果 回归分析报告为: () ()()()()()()()()()()()()()()() 2345678 2? -1102.373-6.6354X +18.2294X +2.4300X -16.2374X -2.1552X +0.0100X +0.0634X 375.83 3.7813 2.066618.37034 5.8941 2.77080.002330.02128 -2.933 1.7558.820900.20316 2.7550.778 4.27881 2.97930.99582i Y SE t R ===---=230.99316519 1.99327374.66 R Df DW F ====二、计量经济学检验 (一)、多重共线性的检验及修正 ①、检验多重共线性 (a)、直观法 从“表1最小二乘估计结果”中可以看出,虽然模型的整体拟合的很好,但是x4x6

计量第3章(7节)非线性回归实例

非线性回归实例 例1:此模型用来评价台湾农业生产效率。用台湾1958-1972年农业生产总值(Y t ),劳动力(X 1t ),资本投入(X 2t )数据为样本得到估计模型: = -3.4 + 1.50 LnX 1t + 0.49 LnX 2t (2.78) (4.80) R 2 = 0.89, F = 48.45 还原后得, = 0.713X 1t 1.50 X 2t 0.49 因为1.50 + 0.49 = 1.99,所以,此生产函数属规模报酬递增函数。当劳动力和资本投入都增加1%时,产出增加近2%。 例2:用天津市工业生产总值(Y t ),职工人数(L t ),固定资产净值与流动资产平均余额(K t )数据 (1949-1997年) 为样本得估计模型如下: Ln Y t = 0.7272 + 0.2587 Ln L t + 0.6986 LnK t (3.12) (3.08) (18.75) R 2 = 0.98, s.e. = 0.17, DW = 0.42, F = 1381.4 因为0.2587 + 0.6986 = 0.9573,所以此生产函数基本属于规模报酬不变函数。 例3: 中国铅笔需求预测模型 中国从上个世纪30年代开始生产铅笔。1985年全国有22个厂家生产铅笔。产量居世界首位(33.9亿支),占世界总产量的1/3。改革开放以后,铅笔生产增长极为迅速。1979-1983年平均年增长率为8.5%。铅笔销售量时间序列见图1。1961-1964年的销售量平稳状态是受到了经济收缩的影响。文革期间销售量出现两次下降,是受到了当时政治因素的影响。1969-1972年的增长是由于一度中断了的中小学教育逐步恢复的结果。1977-1978年的增长是由于高考正式恢复的结果。1981年中国开始生产自动铅笔,对传统铅笔市场冲击很大。1979-1985年的缓慢增长是受到了自动铅笔上市的影响。 初始确定的影响铅笔销量的因素有全国人口、各类在校人数、设计

非线性回归分析

非线性回归分析(转载) (2009-10-23 08:40:20) 转载 分类:Web分析 标签: 杂谈 在回归分析中,当自变量和因变量间的关系不能简单地表示为线性方程,或者不能表示为可化为线性方程的时侯,可采用非线性估计来建立回归模型。 SPSS提供了非线性回归“Nonlinear”过程,下面就以实例来介绍非线性拟合“Nonlinear”过程的基本步骤和使用方法。 应用实例 研究了南美斑潜蝇幼虫在不同温度条件下的发育速率,得到试验数据如下: 表5-1 南美斑潜蝇幼虫在不同温度条件下的发育速率 温度℃17.5 20 22.5 25 27.5 30 35 发育速率0.0638 0.0826 0.1100 0.1327 0.1667 0.1859 0.1572 根据以上数据拟合逻辑斯蒂模型: 本例子数据保存在DATA6-4.SAV。 1)准备分析数据 在SPSS数据编辑窗口建立变量“t”和“v”两个变量,把表6-14中的数据分别输入“温度”和“发育速率”对应的变量中。 或者打开已经存在的数据文件(DATA6-4.SAV)。 2)启动线性回归过程 单击SPSS主菜单的“Analyze”下的“Regression”中“Nonlinear”项,将打开如图5-1

所示的线回归对话窗口。 图5-1 Nonlinear非线性回归对话窗口 3) 设置分析变量 设置因变量:从左侧的变量列表框中选择一个因变量进入“Dependent(s)”框。本例子选“发育速率[v]”变量为因变量。 4) 设置参数变量和初始值 单击“Parameters”按钮,将打开如图6-14所示的对话框。该对话框用于设置参数的初始值。 图5-2 设置参数初始值

实验六 用SPSS进行非线性回归分析

实验六用SPSS进行非线性回归分析 例:通过对比12个同类企业的月产量(万台)与单位成本(元)的资料(如图1),试配合适当的回归模型分析月产量与单位成本之间的关系 图1原始数据和散点图分析 一、散点图分析和初始模型选择 在SPSS数据窗口中输入数据,然后插入散点图(选择Graphs→Scatter命令),由散点图可以看出,该数据配合线性模型、指数模型、对数模型和幂函数模型都比较合适。进一步进行曲线估计:从Statistic下选Regression菜单中的Curve Estimation命令;选因变量单位成本到Dependent框中,自变量月产量到Independent框中,在Models框中选择Linear、Logarithmic、Power和Exponential四个复选框,确定后输出分析结果,见表1。 分析各模型的R平方,选择指数模型较好,其初始模型为 但考虑到在线性变换过程可能会使原模型失去残差平方和最小的意义,因此进一步对原模型 模型汇总和参数估计值 因变量: 单位成本 方程模型汇总参数估计值 R 方 F df1 df2 Sig. 常数b1 线性.912 1 10 .000 对数.943 1 10 .000 幂.931 1 10 .000 指数.955 1 10 .000 自变量为月产量。 表1曲线估计输出结果 二、非线性模型的优化 SPSS提供了非线性回归分析工具,可以对非线性模型进行优化,使其残差平方和达到最小。从Statistic下选Regression菜单中的Nonlinear命令;按Paramaters按钮,输入参数A:和B:;选单位成本到Dependent框中,在模型表达式框中输入“A*EXP(B*月产量)”,确定。SPSS输出结果见表2。 由输出结果可以看出,经过6次模型迭代过程,残差平方和已有了较大改善,缩小为,误差率小于, 优化后的模型为: 迭代历史记录b 迭代数a残差平方和参数 A B +133 .087

非线性回归分析(常见曲线与方程)

非线性回归分析 回归分析中,当研究的因果关系只涉及因变量和一个自变量时,叫做一元回归分析;当研究的因果关系涉及因变量和两个或两个以上自变量时,叫做多元回归分析。此外,回归分析中,又依据描述自变量与因变量之间因果关系的函数表达式是线性的还是非线性的,分为线性回归分析和非线性回归分析。通常线性回归分析法是最基本的分析方法,遇到非线性回归问题可以借助数学手段化为线性回归问题处理 两个现象变量之间的相关关系并非线性关系,而呈现某种非线性的曲线关系,如:双曲线、二次曲线、三次曲线、幂函数曲线、指数函数曲线(Gompertz)、S型曲线(Logistic)对数曲线、指数曲线等,以这些 变量之间的曲线相关关系,拟合相应的回归曲线,建立非线性回归方程,进行回归分析称为非线性回归分析 常见非线性规划曲线 1.双曲线1b a yx 2.二次曲线 3.三次曲线 4.幂函数曲线 5.指数函数曲线(Gompertz) 6.倒指数曲线y=a b/ x e 其中 a>0, 7.S型曲线(Logistic) y 1 abe x 8.对数曲线y=a+blogx,x>0 b x 9.指数曲线y=ae 其中参数a>0 1.回归: (1)确定回归系数的命令 [beta,r,J]=nlinfit(x,y,’model’,beta0) (2)非线性回归命令:nlintool(x,y,’model’,beta0,alpha) 2.预测和预测误差估计: [Y,DELTA]=nlpredci(’model’,x,beta,r,J) 求nlinfit或lintool所得的回归函数在x处的预测值Y及预测值的显著性水平为1-alpha的置信区间Y,DELTA. 例2观测物体降落的距离s与时间t的关系,得到数据如下表,求s 关于t的回归方程s?a btct2. t(s)1/302/303/304/305/306/307/30 s(cm)11.8615.6720.6026.6933.7141.9351.13 t(s)8/309/3010/3011/3012/3013/3014/30 s(cm)61.4972.9085.4499.08113.77129.54146.48 解: b/x,建立M文件volum.m如下:e 1.对将要拟合的非线性模型y=a

第2章(8)非线性回归模型的线性化

第4章非线性回归模型的线性化(1)多项式函数模型 (2)双曲线函数模型 (3)对数函数模型 (4)生长曲线(logistic) 模型 (比教材中的模型复杂些) (5)指数函数模型 (6)幂函数模型 (7)不可线性化的非线性回归模型估计方法(不要求掌握)

第4章非线性回归模型的线性化 有时候变量之间的关系是非线性的。虽然其形式是非线性的,但可以通过适当的变换,转化为线性模型,然后利用线性回归模型的估计与检验方法进行处理。称此类模型为可线性化的非线性模型。 以下非线性回归模型是无法用最小二乘法估计参数的。可采用非线性方法进行估计。估计过程非常复杂和困难,计算机的出现大大方便了非线性回归模型的估计。专用软件使这种计算变得非常容易。但本章不是介绍这类模型的估计。 y t = α0 + α11β x+ u t t y t = α0t x e1α+ u t 下面介绍几种典型的可以做线性化处理的非线性模型。

(1)多项式函数模型(1) (第2版教材第111页)(第3版教材第90页) 一种多项式方程的表达形式是 y t = b 0+b 1 x t + b 2 x t 2+ b 3 x t 3+ u t 令x t 1 = x t ,x t 2 = x t 2,x t 3 = x t 3,上式变为 y t = b 0+b 1 x t 1+ b 2 x t 2+ b 3 x t 3+ u t 这是一个三元线性回归模型。如经济学中的 总成本与产品产量曲线与左图相似。 (b 1>0, b 2>0, b 3>0) (b 1<0, b 2>0, b 3<0)

(1)多项式函数模型(1) 例4.1:总成本与产品产量的关系(课本91页) y t= b0+b1 x t+ b2 x t2+ b3 x t3+ u t (第2版教材第112页) (第3版教材第91页)

高考数学复习点拨-非线性回归问题

非线性回归问题 两个变量不呈线性关系,不能直接利用线性回归方程建立两个变量的关系,可以通过变换的方法转化为线性回归模型。分析非线性回归问题的具体做法是: (1)若问题中已给出经验公式,这时可以将变量x 进行置换(换元),将变量的非线性关系转化为线性关系,将问题化为线性回归分析问题来解决. (2)若问题中没有给出经验公式,需要我们画出已知数据的散点图,通过与各种已知函数(如指数函数、对数函数、幂函数等)的图象作比较,选择一种与这些散点拟合得最好的函数,然后采用适当的变量置换,将问题化为线性回归分析问题来解决. 下面举例说明非线性回归分析问题的解法. 例1 在彩色显影中,由经验可知:形成染料光学密度y 与析出银的光学密度x 由公式 e b x y A =(b <0)表示,现测得实验数据如下: 试求对的回归方程. 分析:该例是一个非线性回归分析问题,由于题目中已给定了要求的曲线为e b x y A =(b <0)类型,我们只要通过所给的11对样本数据求出A 和b ,即可确定x 与y 的相关关系的曲线方程. 解:由题意可知,对于给定的公式e b x y A =(b <0)两边取自然对数,得ln ln b y A x =+. 与线性回归方程对照可以看出,只要取1 u x = ,ln v y =,ln a A =,就有v a bu =+,这是v 对u 的线性回归直线方程,对此我们再套用相关性检验,求回归系数b 和a . 题目中所给数据由变量置换1 u = ,ln v y =变为如表所示的数据: 由于|r |=0.998>0.602,可知u 与v 具有很强的线性相关关系. 再求得0.146b =-$,$0.548a =, ∴v =$0.5480.146u -,把u 和v 置换回来可得$0.146 ln 0.548y x =-, ∴$ 0.146 0.1460.1460.5480.548 e 1.73x x x y e e e - - - ===g , ∴回归曲线方程为$ 0.146 1.73e x y - =. 点评:解决本题的思路是通过适当的变量置换把非线性回归方程转化为线性回归方程,然后再套用线性回归分析的解题步骤. 例2 为了研究某种细菌随时间x 变化的繁殖个数,收集数据如下:

相关文档
最新文档