高考一轮复习新课标数学(理)配套教材:5.2 平面向量的基本定理及坐标表示

合集下载

新高考数学一轮复习课件 平面向量基本定理及坐标表示

新高考数学一轮复习课件  平面向量基本定理及坐标表示
第五章 平面向量及其应用、复数
第二节 平面向量基本定理及坐标表示
第二节 平面向量基本定理及坐标表示
1
2
3
走进教材·夯实基础 细研考点·突破题型 课时分层作业
1.平面向量基本定理 (1)定理:如果 e1,e2 是同一平面内的两个不共线向量,那么对 于这一平面内的任一向量 a,有且只有一对实数 λ1,λ2,使 a=λ1e1 +λ2e2. (2)基底:若 e1,e2不共线,我们把{e1,e2}叫做表示这一平面内 所有向量的一个基底.
第二节 平面向量基本定理及坐标表示
1
2
3
走进教材·夯实基础 细研考点·突破题型 课时分层作业
[跟进训练] 1.(多选)(2021·惠州调研)设 a 是已知的平面向量且 a≠0,关于向量 a 的分解,有如下四个命题(向量 b,c 和 a 在同一平面内且两两不共线),则 真命题是( ) A.给定向量 b,总存在向量 c,使 a=b+c B.给定向量 b 和 c,总存在实数 λ 和 μ,使 a=λb+μc C.给定单位向量 b 和正数 μ,总存在单位向量 c 和实数 λ,使 a=λb +μc D.给定正数 λ 和 μ,总存在单位向量 b 和单位向量 c,使 a=λb+μc
(1)用 a 和 b 表示向量O→C,D→C; (2)若O→E=λO→A,求实数 λ 的值.
第二节 平面向量基本定理及坐标表示
1
2
3
走进教材·夯实基础 细研考点·突破题型 课时分层作业
[解] (1)由题意知,A 是 BC 的中点,且O→D=23O→B,由平行四边 形法则,
得O→B+O→C=2O→A, 所以O→C=2O→A-O→B=2a-b, D→C=O→C-O→D=(2a-b)-23b=2a-53b.

高考数学大一轮复习 第五章 平面向量 5.2 平面向量基本定理及坐标表示教师用书 文 新人教版-新人

高考数学大一轮复习 第五章 平面向量 5.2 平面向量基本定理及坐标表示教师用书 文 新人教版-新人

2018版高考数学大一轮复习 第五章 平面向量 5.2 平面向量基本定理及坐标表示教师用书 文 新人教版1.平面向量基本定理如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1、λ2,使a =λ1e 1+λ2e 2.其中,不共线的向量e 1、e 2叫做表示这一平面内所有向量的一组基底. 2.平面向量的坐标运算(1)向量加法、减法、数乘及向量的模 设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1),|a |=x 21+y 21.(2)向量坐标的求法①若向量的起点是坐标原点,则终点坐标即为向量的坐标. ②设A (x 1,y 1),B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1),|AB →|=x 2-x 12+y 2-y 12.3.平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0.a 、b 共线⇔x 1y 2-x 2y 1=0.【知识拓展】1.若a 与b 不共线,λa +μb =0,则λ=μ=0.2.设a =(x 1,y 1),b =(x 2,y 2),如果x 2≠0,y 2≠0,则a ∥b ⇔x 1x 2=y 1y 2.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)平面内的任何两个向量都可以作为一组基底.( × )(2)若a ,b 不共线,且λ1a +μ1b =λ2a +μ2b ,则λ1=λ2,μ1=μ2.( √ )(3)平面向量的基底不唯一,只要基底确定后,平面内的任何一个向量都可被这组基底唯一表示.( √ )(4)若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件可表示成x 1x 2=y 1y 2.( × ) (5)当向量的起点在坐标原点时,向量的坐标就是向量终点的坐标.( √ )1.设e 1,e 2是平面内一组基底,那么( )A .若实数λ1,λ2使λ1e 1+λ2e 2=0,则λ1=λ2=0B .空间内任一向量a 可以表示为a =λ1e 1+λ2e 2(λ1,λ2为实数)C .对实数λ1,λ2,λ1e 1+λ2e 2不一定在该平面内D .对平面内任一向量a ,使a =λ1e 1+λ2e 2的实数λ1,λ2有无数对 答案 A2.(教材改编)已知a 1+a 2+…+a n =0,且a n =(3,4),则a 1+a 2+…+a n -1的坐标为( ) A .(4,3) B .(-4,-3) C .(-3,-4) D .(-3,4) 答案 C解析 a 1+a 2+…+a n -1=-a n =(-3,-4).3.(2015·课标全国Ⅰ)已知点A (0,1),B (3,2),向量AC →=(-4,-3),则向量BC →等于( ) A .(-7,-4) B .(7,4) C .(-1,4) D .(1,4) 答案 A解析 AB →=(3,1),AC →=(-4,-3),BC →=AC →-AB →=(-4,-3)-(3,1)=(-7,-4). 4.已知向量a =(2,3),b =(-1,2),若m a +n b 与a -2b 共线,则m n=________. 答案 -12解析 由已知条件可得m a +n b =(2m,3m )+(-n,2n )=(2m -n,3m +2n ),a -2b =(2,3)-(-2,4)=(4,-1).∵m a +n b 与a -2b 共线,∴2m -n 4=3m +2n -1,即n -2m =12m +8n ,∴m n =-12.5.(教材改编)已知▱ABCD 的顶点A (-1,-2),B (3,-1),C (5,6),则顶点D 的坐标为________. 答案 (1,5)解析 设D (x ,y ),则由AB →=DC →,得(4,1)=(5-x,6-y ),即⎩⎪⎨⎪⎧4=5-x ,1=6-y ,解得⎩⎪⎨⎪⎧x =1,y =5.题型一 平面向量基本定理的应用例1 在平行四边形ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线与CD 交于点F .若AC →=a ,BD →=b ,则AF →等于( ) A.14a +12b B.12a +14b C.23a +13b D.13a +23b 答案 C解析 ∵AC →=a ,BD →=b , ∴AD →=AO →+OD → =12AC →+12BD →=12a +12b . ∵E 是OD 的中点,∴DE EB =13,∴DF =13AB .∴DF →=13AB →=13(OB →-OA →)=13×[-12BD →-(-12AC →)] =16AC →-16BD →=16a -16b ,∴AF →=AD →+DF →=12a +12b +16a -16b=23a +13b , 故选C.思维升华 平面向量基本定理应用的实质和一般思路(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.如图,在△ABC 中,AN →=13NC →,P 是BN 上的一点,若AP →=mAB →+211AC →,则实数m的值为________.答案311解析 设BP →=kBN →,k ∈R . 因为AP →=AB →+BP →=AB →+kBN → =AB →+k (AN →-AB →)=AB →+k (14AC →-AB →)=(1-k )AB →+k 4AC →,且AP →=mAB →+211AC →,所以1-k =m ,k 4=211,解得k =811,m =311.题型二 平面向量的坐标运算例2 (1)已知a =(5,-2),b =(-4,-3),若a -2b +3c =0,则c 等于( )A.⎝ ⎛⎭⎪⎫1,83B.⎝ ⎛⎭⎪⎫-133,83 C.⎝⎛⎭⎪⎫133,43D.⎝ ⎛⎭⎪⎫-133,-43(2)已知向量a =(1,-2),b =(m,4),且a ∥b ,则2a -b 等于( ) A .(4,0) B .(0,4) C .(4,-8) D .(-4,8) 答案 (1)D (2)C解析 (1)由已知3c =-a +2b=(-5,2)+(-8,-6)=(-13,-4). 所以c =⎝ ⎛⎭⎪⎫-133,-43.(2)因为向量a =(1,-2),b =(m,4),且a ∥b , 所以1×4+2m =0,即m =-2,所以2a -b =2×(1,-2)-(-2,4)=(4,-8).思维升华 向量的坐标运算主要是利用加、减、数乘运算法则进行计算.若已知有向线段两端点的坐标,则应先求出向量的坐标,解题过程中要注意方程思想的运用及正确使用运算法则.(1)(2016·东城区模拟)向量a ,b ,c 在正方形网格中的位置如图所示,若c =λa +μb (λ,μ∈R ),则λμ=________.(2)已知四边形ABCD 的三个顶点A (0,2),B (-1,-2),C (3,1),且BC →=2AD →,则顶点D 的坐标为( )A .(2,72)B .(2,-12)C .(3,2)D .(1,3) 答案 (1)4 (2)A解析 (1)以向量a 和b 的交点为原点建立如图所示的平面直角坐标系(设每个小正方形边长为1),则A (1,-1),B (6,2),C (5,-1),∴a =AO →=(-1,1),b =OB →=(6,2),c =BC →=(-1,-3). ∵c =λa +μb ,∴(-1,-3)=λ(-1,1)+μ(6,2),即⎩⎪⎨⎪⎧-λ+6μ=-1,λ+2μ=-3,解得λ=-2,μ=-12,∴λμ=4.(2)设D (x ,y ),AD →=(x ,y -2),BC →=(4,3),又BC →=2AD →,∴⎩⎪⎨⎪⎧4=2x ,3=2y -2,∴⎩⎪⎨⎪⎧x =2,y =72,故选A.题型三 向量共线的坐标表示命题点1 利用向量共线求向量或点的坐标例3 已知点A (4,0),B (4,4),C (2,6),则AC 与OB 的交点P 的坐标为________. 答案 (3,3)解析 方法一 由O ,P ,B 三点共线,可设OP →=λOB →=(4λ,4λ),则AP →=OP →-OA →=(4λ-4,4λ).又AC →=OC →-OA →=(-2,6),由AP →与AC →共线,得(4λ-4)×6-4λ×(-2)=0, 解得λ=34,所以OP →=34OB →=(3,3),所以点P 的坐标为(3,3).方法二 设点P (x ,y ),则OP →=(x ,y ),因为OB →=(4,4),且OP →与OB →共线,所以x 4=y 4,即x =y .又AP →=(x -4,y ),AC →=(-2,6),且AP →与AC →共线, 所以(x -4)×6-y ×(-2)=0,解得x =y =3, 所以点P 的坐标为(3,3). 命题点2 利用向量共线求参数例4 (2017·某某月考)已知向量a =(1-sin θ,1),b =(12,1+sin θ),若a ∥b ,则锐角θ=________. 答案 45°解析 由a ∥b ,得(1-sin θ)(1+sin θ)=12,所以cos 2θ=12,∴cos θ=22或cos θ=-22,又θ为锐角,∴θ=45°.思维升华 平面向量共线的坐标表示问题的常见类型及解题策略(1)利用两向量共线求参数.如果已知两向量共线,求某些参数的取值时,利用“若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件是x 1y 2=x 2y 1”解题比较方便.(2)利用两向量共线的条件求向量坐标.一般地,在求与一个已知向量a 共线的向量时,可设所求向量为λa (λ∈R ),然后结合其他条件列出关于λ的方程,求出λ的值后代入λa 即可得到所求的向量.(1)已知梯形ABCD ,其中AB ∥CD ,且DC =2AB ,三个顶点A (1,2),B (2,1),C (4,2),则点D 的坐标为________.(2)设OA →=(-2,4),OB →=(-a,2),OC →=(b,0),a >0,b >0,O 为坐标原点,若A ,B ,C 三点共线,则1a +1b的最小值为________.答案 (1)(2,4) (2)3+222解析 (1)∵在梯形ABCD 中,AB ∥CD ,DC =2AB , ∴DC →=2AB →.设点D 的坐标为(x ,y ),则DC →=(4,2)-(x ,y )=(4-x,2-y ), AB →=(2,1)-(1,2)=(1,-1),∴(4-x,2-y )=2(1,-1),即(4-x,2-y )=(2,-2),∴⎩⎪⎨⎪⎧4-x =2,2-y =-2,解得⎩⎪⎨⎪⎧x =2,y =4,故点D 的坐标为(2,4).(2)由已知得AB →=(-a +2,-2),AC →=(b +2,-4), 又AB →∥AC →,所以(-a +2,-2)=λ(b +2,-4),即⎩⎪⎨⎪⎧-a +2=λb +2,-2=-4λ,整理得2a +b =2,所以1a +1b =12(2a +b )(1a +1b )=12(3+2a b +b a )≥12(3+22a b ·b a )=3+ 222(当且仅当b =2a 时,等号成立).11.解析法(坐标法)在向量中的应用典例 (12分)给定两个长度为1的平面向量OA →和OB →,它们的夹角为2π3.如图所示,点C 在以O 为圆心的AB 上运动.若OC →=xOA →+yOB →,其中x ,y ∈R ,求x +y 的最大值.思想方法指导 建立平面直角坐标系,将向量坐标化,将向量问题转化为函数问题更加凸显向量的代数特征. 规X 解答解 以O 为坐标原点,OA →所在的直线为x 轴建立平面直角坐标系,如图所示,则A (1,0),B (-12,32).[4分]设∠AOC =α(α∈[0,2π3]),则C (cos α,sin α),由OC →=xOA →+yOB →,得⎩⎪⎨⎪⎧cos α=x -12y ,sin α=32y ,所以x =cos α+33sin α,y =233sin α,[8分] 所以x +y =cos α+3sin α=2sin(α+π6),[10分]又α∈[0,2π3],所以当α=π3时,x +y 取得最大值2.[12分]1.(2016·某某六校教育研究会二模)在平行四边形ABCD 中,AB →=a ,AC →=b ,DE →=2EC →,则BE →等于( )A .b -13aB .b -23aC .b -43aD .b +13a答案 C解析 因为BC →=AC →-AB →,DE →=2EC →, 所以BE →=BC →+CE →=BC →+13CD →=BC →-13AB →=AC →-AB →-13AB →=AC →-43AB →=b -43a ,故选C.2.已知点M (5,-6)和向量a =(1,-2),若MN →=-3a ,则点N 的坐标为( ) A .(2,0) B .(-3,6) C .(6,2) D .(-2,0) 答案 A解析 设N (x ,y ),则(x -5,y +6)=(-3,6), ∴x =2,y =0.3.已知向量a =(1,2),b =(1,0),c =(3,4).若λ为实数,(a +λb )∥c ,则λ等于( ) A.14 B.12 C .1 D .2 答案 B解析 ∵a +λb =(1+λ,2),c =(3,4), 且(a +λb )∥c ,∴1+λ3=24,∴λ=12,故选B.4.已知a =(1,1),b =(1,-1),c =(-1,2),则c 等于( ) A .-12a +32b B.12a -32bC .-32a -12bD .-32a +12b答案 B解析 设c =λa +μb ,∴(-1,2)=λ(1,1)+μ(1,-1),∴⎩⎪⎨⎪⎧ -1=λ+μ,2=λ-μ,∴⎩⎪⎨⎪⎧ λ=12,μ=-32,∴c =12a -32b . 5.(2017·某某质检)已知平行四边形ABCD 中,AD →=(3,7),AB →=(-2,3),对角线AC 与BD交于点O ,则CO →的坐标为( )A .(-12,5)B .(12,5) C .(12,-5) D .(-12,-5) 答案 D解析 ∵AC →=AB →+AD →=(-2,3)+(3,7)=(1,10),∴OC →=12AC →=(12,5), ∴CO →=(-12,-5). 6.在△ABC 中,点D 在BC 边上,且CD →=2DB →,CD →=rAB →+sAC →,则r +s 等于( )A.23B.43C .-3D .0 答案 D解析 因为CD →=2DB →,所以CD →=23CB →=23(AB →-AC →)=23AB →-23AC →,则r +s =23+⎝ ⎛⎭⎪⎫-23=0,故选D. 7.在▱ABCD 中,AC 为一条对角线,AB →=(2,4),AC →=(1,3),则向量BD →的坐标为__________.答案 (-3,-5)解析 ∵AB →+BC →=AC →,∴BC →=AC →-AB →=(-1,-1),∴BD →=AD →-AB →=BC →-AB →=(-3,-5).8.设0<θ<π2,向量a =(sin 2θ,cos θ),b =(cos θ,1),若a ∥b ,则tan θ=________. 答案 12解析 ∵a ∥b ,∴sin 2θ×1-cos 2θ=0,∴2sin θcos θ-cos 2θ=0,∵0<θ<π2,∴cos θ>0,∴2sin θ=cos θ, ∴tan θ=12. 9.在平行四边形ABCD 中,E 和F 分别是CD 和BC 的中点.若AC →=λAE →+μAF →,其中λ,μ∈R ,则λ+μ=________.答案 43解析 选择AB →,AD →作为平面向量的一组基底,则AC →=AB →+AD →,AE →=12AB →+AD →,AF →=AB →+12AD →, 又AC →=λAE →+μAF →=(12λ+μ)AB →+(λ+12μ)AD →, 于是得⎩⎪⎨⎪⎧ 12λ+μ=1,λ+12μ=1,解得⎩⎪⎨⎪⎧ λ=23,μ=23, 所以λ+μ=43. 10.如图所示,A ,B ,C 是圆O 上的三点,线段CO 的延长线与BA 的延长线交于圆O 外的一点D ,若OC →=mOA →+nOB →,则m +n 的取值X 围是________.答案 (-1,0)解析 由题意得,OC →=kOD →(k <0),又|k |=|OC →||OD →|<1,∴-1<k <0. 又∵B ,A ,D 三点共线,∴OD →=λOA →+(1-λ)OB →,∴mOA →+nOB →=kλOA →+k (1-λ)OB →,∴m =kλ,n =k (1-λ),∴m +n =k ,从而m +n ∈(-1,0).11.已知A (1,1),B (3,-1),C (a ,b ).(1)若A ,B ,C 三点共线,求a ,b 的关系式;(2)若AC →=2AB →,求点C 的坐标.解 (1)由已知得AB →=(2,-2),AC →=(a -1,b -1),∵A ,B ,C 三点共线,∴AB →∥AC →.∴2(b -1)+2(a -1)=0,即a +b =2.(2)∵AC →=2AB →,∴(a -1,b -1)=2(2,-2).∴⎩⎪⎨⎪⎧ a -1=4,b -1=-4,解得⎩⎪⎨⎪⎧ a =5,b =-3.∴点C 的坐标为(5,-3).12.已知A (-2,4),B (3,-1),C (-3,-4).设AB →=a ,BC →=b ,CA →=c ,且CM →=3c ,→=-2b .(1)求3a +b -3c ;(2)求满足a =m b +n c 的实数m ,n ;(3)求M ,N 的坐标及向量MN →的坐标.解 (1)由已知得a =(5,-5),b =(-6,-3),c =(1,8).3a +b -3c =3(5,-5)+(-6,-3)-3(1,8)=(15-6-3,-15-3-24)=(6,-42).(2)∵m b +n c =(-6m +n ,-3m +8n )=(5,-5),∴⎩⎪⎨⎪⎧ -6m +n =5,-3m +8n =-5, 解得⎩⎪⎨⎪⎧ m =-1,n =-1.(3)设O 为坐标原点,∵CM →=OM →-OC →=3c ,∴OM →=3c +OC →=(3,24)+(-3,-4)=(0,20),∴M (0,20).又∵→=ON →-OC →=-2b ,∴ON →=-2b +OC →=(12,6)+(-3,-4)=(9,2),∴N (9,2),∴MN →=(9,-18).13.如图所示,G 是△OAB 的重心,P ,Q 分别是边OA 、OB 上的动点,且P ,G ,Q 三点共线.(1)设PG →=λPQ →,将OG →用λ,OP →,OQ →表示;(2)设OP →=xOA →,OQ →=yOB →,证明:1x +1y是定值. (1)解 OG →=OP →+PG →=OP →+λPQ →=OP →+λ(OQ →-OP →)=(1-λ)OP →+λOQ →.(2)证明 一方面,由(1),得OG →=(1-λ)OP →+λOQ →=(1-λ)xOA →+λy OB →;①另一方面,∵G 是△OAB 的重心,∴OG →=23OM →=23×12(OA →+OB →)=13OA →+13OB →.② 由①②得⎩⎪⎨⎪⎧ 1-λx =13,λy =13.∴1x +1y =3(1-λ)+3λ=3(定值).。

第2节 平面向量基本定理及向量坐标运算--2025高中数学一轮复习课件基础版(新高考新教材)

第2节  平面向量基本定理及向量坐标运算--2025高中数学一轮复习课件基础版(新高考新教材)

2.平面向量的坐标运算
运算
加法
减法
数乘
已知 A(x1,y1),B(x2,y2) ,则=(x2-x1,y2-y1).
微点拨1. 的坐标是用点B的横、纵坐标减去点A的横、纵坐标,既有方
向的信息也有大小的信息.
2.若a=(x1,y1),b=(x2,y2),则a=b⇔x1=x2且y1=y2.
3.平面向量共线的坐标表示
(
,
).
3
3
自主诊断
题组一 思考辨析(判断下列结论是否正确,正确的画“√”,错误的画“×”)
1.平面内的任何两个非零向量都可以组成一个基底.( × )
2.同一向量在不同基底下的表示是相同的.( × )
3.若a与b不共线,且λa+μb=0,则λ=μ=0.( √ )
4.一个平面向量不论经过怎样的平移变换,其坐标不变.( √ )
所以 =
3
=4
1
(
2
1
+ 4
=
1
1
+ )=2 [ + 2 (
3
1
1 11
(2,6)+4(-4,4)=(2 , 2 ).
4
+ )]
因为 A 为坐标原点,所以向量 的坐标即为点 E 的坐标,
故点 E
1 11
的坐标为(2 , 2 ).
考点三
向量共线的坐标表示(多考向探究预测)
8
8.(2021·全国乙,文13)已知向量a=(2,5),b=(λ,4),若a∥b,则λ=__________.
5

4
8
解析 由 a∥b,可得2 = 5,解得 λ=5.
研考点
精准突破

高三数学大一轮复习 5.2平面向量基本定理及坐标表示教案 理 新人教A版

高三数学大一轮复习 5.2平面向量基本定理及坐标表示教案 理 新人教A版

§5.2 平面向量基本定理及坐标表示2014高考会这样考 1.考查平面向量基本定理的应用;2.考查向量的坐标表示和向量共线的应用.复习备考要这样做 1.理解平面向量基本定理的意义、作用;2.运用定理表示向量,然后再进行向量运算. 1. 平面向量基本定理如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.其中,不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底. 2. 平面向量的坐标运算(1)向量加法、减法、数乘向量及向量的模 设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1),|a |=x 21+y 21.(2)向量坐标的求法①若向量的起点是坐标原点,则终点坐标即为向量的坐标. ②设A (x 1,y 1),B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1),|AB →|=x 2-x 12+y 2-y 12.3. 平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0.a ∥b ⇔x 1y 2-x 2y 1=0. [难点正本 疑点清源] 1. 基底的不唯一性只要两个向量不共线,就可以作为平面的一组基底,对基底的选取不唯一,平面内任意向量a 都可被这个平面的一组基底e 1,e 2线性表示,且在基底确定后,这样的表示是唯一的.2. 向量坐标与点的坐标的区别在平面直角坐标系中,以原点为起点的向量OA →=a ,点A 的位置被向量a 唯一确定,此时点A 的坐标与a 的坐标统一为(x ,y ),但应注意其表示形式的区别,如点A (x ,y ),向量a =OA →=(x ,y ).当平面向量OA →平行移动到O 1A 1→时,向量不变即O 1A 1→=OA →=(x ,y ),但O 1A 1→的起点O 1和终点A 1的坐标都发生了变化.1. 在平行四边形ABCD 中,E 和F 分别是边CD 和BC 的中点,若AC →=λAE →+μAF →,其中λ,μ∈R ,则λ+μ=________.答案 43解析 因为AC →=AB →+AD →,又AE →=AD →+12AB →,AF →=AB →+12AD →,所以AC →=λAE →+μAF →=⎝ ⎛⎭⎪⎫λ+12μAD →+⎝ ⎛⎭⎪⎫12λ+μAB →,得到λ+12μ=1,12λ+μ=1,两式相加得λ+μ=43.2. 在▱ABCD 中,AC 为一条对角线,AB →=(2,4),AC →=(1,3),则向量BD →的坐标为__________.答案 (-3,-5)解析 ∵AB →+BC →=AC →,∴BC →=AC →-AB →=(-1,-1), ∴BD →=AD →-AB →=BC →-AB →=(-3,-5).3. 已知向量a =(1,2),b =(-3,2),若k a +b 与b 平行,则k =________.答案 0解析 由k a +b 与b 平行得-3(2k +2)=2(k -3),∴k =0. 4. 若向量a =(1,1),b =(-1,1),c =(4,2),则c 等于( ) A .3a +b B .3a -b C .-a +3bD .a +3b答案 B解析 由已知可设c =x a +y b ,则⎩⎪⎨⎪⎧4=x -y 2=x +y ,∴⎩⎪⎨⎪⎧x =3y =-1.5. (2011·广东)已知向量a =(1,2),b =(1,0),c =(3,4).若λ为实数,(a +λb )∥c ,则λ等于( )A.14B.12C .1D .2答案 B解析 a +λb =(1,2)+λ(1,0)=(1+λ,2),而c =(3,4),由(a +λb )∥c 得4(1+λ)-6=0,解得λ=12.题型一 平面向量基本定理的应用例1 已知点G 为△ABC 的重心,过G 作直线与AB 、AC 两边分别交于M 、N 两点,且AM →=xAB →,AN →=yAC →,求1x +1y的值.思维启迪:以AB →,AC →为基底来表示向量,建立x ,y 的关系. 解 根据题意知G 为三角形的重心, 故AG →=13(AB →+AC →),MG →=AG →-AM →=13(AB →+AC →)-xAB →=⎝ ⎛⎭⎪⎫13-x AB →+13AC →,GN →=AN →-AG →=yAC →-AG →=yAC →-13(AB →+AC →)=⎝ ⎛⎭⎪⎫y -13AC →-13AB →,由于MG →与GN →共线,根据共线向量定理知 MG →=λGN →⇒⎝ ⎛⎭⎪⎫13-x AB →+13AC →=λ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫y -13AC →-13AB →,∵AB →,AC →不共线, ∴⎩⎪⎨⎪⎧13-x =-13λ13=λ⎝ ⎛⎭⎪⎫y -13⇒13-x -13=13y -13⇒x +y -3xy =0, 两边同除以xy 得1x +1y=3.探究提高 利用基底表示未知向量,实质就是利用向量的加、减法及数乘进行线性运算;向量的表示是向量应用的前提.如图,在△ABC 中,AN →=13NC →,P 是BN 上的一点,若AP →=mAB →+211AC →,则实数m 的值为_____.答案311解析 设|BP →|=y ,|PN →|=x ,则AP →=AN →+NP →=14AC →-x x +yBN →,①AP →=AB →+BP →=AB →+y x +yBN →,②①×y +②×x 得AP →=x x +y AB →+y 4x +yAC →,令y 4x +y =211,得y =83x ,代入得m =311.题型二 向量坐标的基本运算例2 已知A (-2,4),B (3,-1),C (-3,-4).设AB →=a ,BC →=b ,CA →=c ,且CM →=3c ,CN→=-2b ,(1)求3a +b -3c ;(2)求满足a =m b +n c 的实数m ,n ; (3)求M 、N 的坐标及向量MN →的坐标.解 由已知得a =(5,-5),b =(-6,-3),c =(1,8). (1)3a +b -3c =3(5,-5)+(-6,-3)-3(1,8) =(15-6-3,-15-3-24)=(6,-42). (2)∵m b +n c =(-6m +n ,-3m +8n ),∴⎩⎪⎨⎪⎧-6m +n =5,-3m +8n =-5,解得⎩⎪⎨⎪⎧m =-1,n =-1.(3)设O 为坐标原点,∵CM →=OM →-OC →=3c , ∴OM →=3c +OC →=(3,24)+(-3,-4)=(0,20). ∴M (0,20).又∵CN →=ON →-OC →=-2b ,∴ON →=-2b +OC →=(12,6)+(-3,-4)=(9,2), ∴N (9,2).∴MN →=(9,-18).探究提高 向量的坐标运算主要是利用加、减、数乘运算法则进行.若已知有向线段两端点的坐标,则应先求出向量的坐标,解题过程中要注意方程思想的运用及正确使用运算法则.已知平行四边形的三个顶点分别是A (4,2),B (5,7),C (-3,4),则第四个顶点D 的坐标是__________________.答案 (-4,-1)或(12,5)或(-2,9) 解析 设顶点D (x ,y ).若平行四边形为ABCD ,则由AB →=(1,5), DC →=(-3-x,4-y ),得⎩⎪⎨⎪⎧-3-x =1,4-y =5,所以⎩⎪⎨⎪⎧x =-4,y =-1;若平行四边形为ACBD ,则由AC →=(-7,2), DB →=(5-x,7-y ),得⎩⎪⎨⎪⎧5-x =-7,7-y =2,所以⎩⎪⎨⎪⎧x =12,y =5;若平行四边形为ABDC ,则由AB →=(1,5), CD →=(x +3,y -4),得⎩⎪⎨⎪⎧x +3=1,y -4=5,所以⎩⎪⎨⎪⎧x =-2,y =9.综上所述,第四个顶点D 的坐标为(-4,-1)或(12,5)或(-2,9). 题型三 共线向量的坐标表示例3 平面内给定三个向量a =(3,2),b =(-1,2),c =(4,1),请解答下列问题:(1)求满足a =m b +n c 的实数m ,n ; (2)若(a +k c )∥(2b -a ),求实数k ;(3)若d 满足(d -c )∥(a +b ),且|d -c |=5,求d . 思维启迪:(1)向量相等对应坐标相等,列方程解之. (2)由两向量平行的条件列方程解之.(3)设出d =(x ,y ),由平行关系列方程,由模为5列方程,联立方程组求解. 解 (1)由题意得(3,2)=m (-1,2)+n (4,1),所以⎩⎪⎨⎪⎧-m +4n =32m +n =2,得⎩⎪⎨⎪⎧m =59n =89.(2)a +k c =(3+4k,2+k ),2b -a =(-5,2), ∵(a +k c )∥(2b -a ),∴2×(3+4k )-(-5)(2+k )=0, ∴k =-1613.(3)设d =(x ,y ),d -c =(x -4,y -1),a +b =(2,4),由题意得⎩⎪⎨⎪⎧4x -4-2y -1=0x -42+y -12=5,解得⎩⎪⎨⎪⎧x =3y =-1或⎩⎪⎨⎪⎧x =5y =3,∴d =(3,-1)或d =(5,3).探究提高 (1)运用向量的坐标表示,使向量的运算完全代数化,将数与形有机的结合. (2)根据平行的条件建立方程求参数,是解决这类题目的常用方法,充分体现了方程思想在向量中的应用.(2011·北京)已知向量a =(3,1),b =(0,-1),c =(k ,3).若(a -2b )与c 共线,则k =________. 答案 1解析 a -2b =(3,1)-2(0,-1)=(3,3), 又∵(a -2b )与c 共线,∴(a -2b )∥c , ∴3×3-3×k =0,解得k =1.忽视平面向量基本定理的使用条件致误典例:(12分)已知OA →=a ,OB →=b ,OC →=c ,OD →=d ,OE →=e ,设t ∈R ,如果3a =c,2b =d ,e=t (a +b ),那么t 为何值时,C ,D ,E 三点在一条直线上?易错分析 本题可以根据向量共线的充要条件列出等式解决,但在得出等式后根据平面向量基本定理列式解决时,容易忽视平面向量基本定理的使用条件,出现漏解,漏掉了当a ,b 共线时,t 可为任意实数这个解. 规范解答解 由题设,知CD →=d -c =2b -3a ,CE →=e -c =(t -3)a +t b ,C ,D ,E 三点在一条直线上的充要条件是存在实数k ,使得CE →=kCD →,即(t -3)a +t b =-3k a +2k b , 整理得(t -3+3k )a =(2k -t )b .[4分] ①若a ,b 共线,则t 可为任意实数;[7分]②若a ,b 不共线,则有⎩⎪⎨⎪⎧t -3+3k =0,2k -t =0,解之得t =65.[10分]综上,可知a ,b 共线时,t 可为任意实数;a ,b 不共线时,t =65.[12分]温馨提醒 平面向量基本定理是平面向量知识体系的基石,在解题中有至关重要的作用,在使用时一定要注意两个基向量不共线这个条件. 方法与技巧1.平面向量基本定理的本质是运用向量加法的平行四边形法则,将向量进行分解. 2.向量的坐标表示的本质是向量的代数表示,其中坐标运算法则是运算的关键,通过坐标运算可将一些几何问题转化为代数问题处理,从而向量可以解决平面解析几何中的许多相关问题.3.在向量的运算中要注意待定系数法、方程思想和数形结合思想的运用. 失误与防范1.要区分点的坐标和向量坐标的不同,向量的坐标等于表示向量的有向线段的终点坐标减始点坐标;向量坐标中既有大小的信息,又有方向的信息.2.若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件不能表示成x 1x 2=y 1y 2,因为x 2,y 2有可能等于0,所以应表示为x 1y 2-x 2y 1=0.A 组 专项基础训练 (时间:35分钟,满分:57分)一、选择题(每小题5分,共20分) 1. 与向量a =(12,5)平行的单位向量为( )A.⎝⎛⎭⎪⎫1213,-513B.⎝ ⎛⎭⎪⎫-1213,-513C.⎝ ⎛⎭⎪⎫1213,513或⎝ ⎛⎭⎪⎫-1213,-513D.⎝ ⎛⎭⎪⎫±1213,±513答案 C解析 设e 为所求的单位向量, 则e =±a |a |=±⎝ ⎛⎭⎪⎫1213,513. 2. 如图,在△OAB 中,P 为线段AB 上的一点,OP →=xOA →+yOB →,且BP →=2PA →,则( )A .x =23,y =13B .x =13,y =23C .x =14,y =34D .x =34,y =14答案 A解析 由题意知OP →=OB →+BP →,又BP →=2PA →,所以OP →=OB →+23BA →=OB →+23(OA →-OB →)=23OA →+13OB →,所以x =23,y =13.3. 已知a =(1,1),b =(1,-1),c =(-1,2),则c 等于( )A .-12a +32bB.12a -32b C .-32a -12bD .-32a +12b答案 B解析 设c =λa +μb ,∴(-1,2)=λ(1,1)+μ(1,-1),∴⎩⎪⎨⎪⎧-1=λ+μ2=λ-μ,∴⎩⎪⎨⎪⎧λ=12μ=-32,∴c =12a -32b .4. 在△ABC 中,点P 在BC 上,且BP →=2PC →,点Q 是AC 的中点,若PA →=(4,3),PQ →=(1,5),则BC →等于( )A .(-2,7)B .(-6,21)C .(2,-7)D .(6,-21)答案 B解析 BC →=3PC →=3(2PQ →-PA →)=6PQ →-3PA → =(6,30)-(12,9)=(-6,21). 二、填空题(每小题5分,共15分)5. 若三点A (2,2),B (a,0),C (0,b ) (ab ≠0)共线,则1a +1b的值为________.答案 12解析 AB →=(a -2,-2),AC →=(-2,b -2), 依题意,有(a -2)(b -2)-4=0, 即ab -2a -2b =0,所以1a +1b =12.6. 已知向量a =(1,2),b =(x,1),u =a +2b ,v =2a -b ,且u ∥v ,则实数x 的值为________.答案 12解析 因为a =(1,2),b =(x,1),u =a +2b ,v =2a -b , 所以u =(1,2)+2(x,1)=(2x +1,4),v =2(1,2)-(x,1)=(2-x,3),又因为u ∥v ,所以3(2x +1)-4(2-x )=0, 即10x =5,解得x =12.7. 在平面直角坐标系中,O 为坐标原点,A 、B 、C 三点满足OC →=23OA →+13OB →,则|AC →||AB →|=________.答案 13解析 ∵OC =23OA →+13OB →,∴OC →-OA →=-13OA →+13OB →=13(OB →-OA →),∴AC →=13AB →,∴|AC →||AB →|=13.三、解答题(共22分)8. (10分)已知a =(1,2),b =(-3,2),是否存在实数k ,使得k a +b 与a -3b 共线,且方向相反? 解 若存在实数k ,则k a +b =k (1,2)+(-3,2)=(k -3,2k +2).a -3b =(1,2)-3(-3,2)=(10,-4).若向量k a +b 与向量a -3b 共线,则必有(k -3)×(-4)-(2k +2)×10=0,解得k =-13. 这时k a +b =⎝ ⎛⎭⎪⎫-103,43,所以k a +b =-13(a -3b ). 即两个向量恰好方向相反,故题设的实数k 存在.9. (12分)如图所示,M 是△ABC 内一点,且满足条件AM →+2BM →+3CM →=0,延长CM 交AB 于N ,令CM →=a ,试用a 表示CN →. 解 因为AM →=AN →+NM →,BM →=BN →+NM →, 所以由AM →+2BM →+3CM →=0,得 (AN →+NM →)+2(BN →+NM →)+3CM →=0, 所以AN →+3NM →+2BN →+3CM →=0.又因为A ,N ,B 三点共线,C ,M ,N 三点共线,由平面向量基本定理,设AN →=λBN →,CM →=μNM →, 所以λBN →+3NM →+2BN →+3μNM →=0. 所以(λ+2)BN →+(3+3μ)NM →=0.由于BN →和NM →不共线,由平面向量基本定理,得⎩⎪⎨⎪⎧λ+2=0,3+3μ=0,所以⎩⎪⎨⎪⎧λ=-2,μ=-1.所以CM →=-NM →=MN →,CN →=CM →+MN →=2CM →=2a .B 组 专项能力提升 (时间:25分钟,满分:43分)一、选择题(每小题5分,共15分)1. 若平面向量b 与向量a =(1,-2)的夹角是180°,且|b |=35,则b 等于( ) A .(-3,6)B .(3,-6)C .(6,-3)D .(-6,3)答案 A解析 方法一 设b =(x ,y ),由已知条件⎩⎪⎨⎪⎧x 2+y 2=35,x -2y5 x 2+y2=-1,整理得⎩⎪⎨⎪⎧x 2+y 2=45,x -2y =-15.解得⎩⎪⎨⎪⎧x =-3,y =6,∴b =(-3,6).方法二 设b =(x ,y ),由已知条件⎩⎨⎧x 2+y 2=35,y +2x =0,解得⎩⎪⎨⎪⎧x =-3,y =6,或⎩⎪⎨⎪⎧x =3,y =-6,(舍去),∴b =(-3,6).方法三 ∵|a |=5,∴1|a |a =⎝ ⎛⎭⎪⎫15,-25,则b =-35⎝⎛⎭⎪⎫1|a |a =(-3,6). 2. 已知平面向量a =(1,2),b =(-2,m ),且a∥b ,则2a +3b 等于( )A .(-2,-4)B .(-3,-6)C .(-4,-8)D .(-5,-10)答案 C 解析 由a =(1,2),b =(-2,m ),且a∥b ,得1×m =2×(-2)⇒m =-4,从而b =(-2,-4),那么2a +3b =2(1,2)+3(-2,-4)=(-4,-8).3. 已知A (-3,0),B (0,2),O 为坐标原点,点C 在∠AOB 内,|OC |=22,且∠AOC =π4,设OC →= λOA →+OB →(λ∈R ),则λ的值为( ) A .1B.13C.12D.23答案 D解析 过C 作CE ⊥x 轴于点E (图略).由∠AOC =π4,知|OE |=|CE |=2, 所以OC →=OE →+OB →=λOA →+OB →,即OE →=λOA →,所以(-2,0)=λ(-3,0),故λ=23. 二、填空题(每小题5分,共15分)4. △ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若p =(a +c ,b ),q =(b -a ,c -a ),且p∥q ,则角C =________.答案 60°解析 因为p∥q ,则(a +c )(c -a )-b (b -a )=0,所以a 2+b 2-c 2=ab ,a 2+b 2-c 22ab =12, 结合余弦定理知,cos C =12, 又0°<C <180°,∴C =60°.5. 已知A (7,1)、B (1,4),直线y =12ax 与线段AB 交于C ,且AC →=2CB →,则实数a =________. 答案 2解析 设C (x ,y ),则AC →=(x -7,y -1),CB →=(1-x,4-y ),∵AC →=2CB →,∴⎩⎪⎨⎪⎧ x -7=21-x y -1=24-y ,解得⎩⎪⎨⎪⎧ x =3y =3.∴C (3,3).又∵C 在直线y =12ax 上,∴3=12a ·3,∴a =2. 6. 设OA →=(1,-2),OB →=(a ,-1),OC →=(-b,0),a >0,b >0,O 为坐标原点,若A 、B 、C三点共线,则1a +2b的最小值是________. 答案 8解析 据已知得AB →∥AC →,又∵AB →=(a -1,1),AC →=(-b -1,2),∴2(a -1)-(-b -1)=0,∴2a +b =1,∴1a +2b=2a +b a +4a +2b b =4+b a +4a b ≥4+2b a ·4a b=8, 当且仅当b a =4a b ,即a =14,b =12时取等号, ∴1a +2b的最小值是8. 三、解答题7. (13分)已知点O 为坐标原点,A (0,2),B (4,6),OM →=t 1OA →+t 2AB →.(1)求点M 在第二或第三象限的充要条件;(2)求证:当t 1=1时,不论t 2为何实数,A 、B 、M 三点都共线;(3)若t 1=a 2,求当OM →⊥AB →且△ABM 的面积为12时a 的值.(1)解 OM →=t 1OA →+t 2AB →=t 1(0,2)+t 2(4,4)=(4t 2,2t 1+4t 2).当点M 在第二或第三象限时,有⎩⎪⎨⎪⎧ 4t 2<0,2t 1+4t 2≠0,故所求的充要条件为t 2<0且t 1+2t 2≠0.(2)证明 当t 1=1时,由(1)知OM →=(4t 2,4t 2+2).∵AB →=OB →-OA →=(4,4),AM →=OM →-OA →=(4t 2,4t 2)=t 2(4,4)=t 2AB →,∴A 、B 、M 三点共线.(3)解 当t 1=a 2时,OM →=(4t 2,4t 2+2a 2).又AB →=(4,4),OM →⊥AB →,∴4t 2×4+(4t 2+2a 2)×4=0,∴t 2=-14a 2,故OM →=(-a 2,a 2). 又|AB →|=42,点M 到直线AB :x -y +2=0的距离 d =|-a 2-a 2+2|2=2|a 2-1|.∵S △ABM =12, ∴12|AB |·d =12×42×2|a 2-1|=12, 解得a =±2,故所求a 的值为±2.。

高考数学一轮复习学案:5.2 平面向量基本定理及坐标表示(含答案)

高考数学一轮复习学案:5.2 平面向量基本定理及坐标表示(含答案)

高考数学一轮复习学案:5.2 平面向量基本定理及坐标表示(含答案)5.2平面向量基本定理及坐标表示平面向量基本定理及坐标表示最新考纲考情考向分析1.了解平面向量基本定理及其意义2.掌握平面向量的正交分解及其坐标表示3.会用坐标表示平面向量的加法.减法与数乘运算4.理解用坐标表示的平面向量共线的条件.主要考查平面向量基本定理.向量加法.减法.数乘向量的坐标运算及平面向量共线的坐标表示,考查向量线性运算的综合应用,考查学生的运算推理能力.数形结合能力,常与三角函数综合交汇考查,突出向量的工具性一般以选择题.填空题形式考查,偶尔有与三角函数综合在一起考查的解答题,属于中档题.1平面向量基本定理如果e1,e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a,有且只有一对实数1,2,使a1e12e2.其中,不共线的向量e1,e2叫做表示这一平面内所有向量的一组基底2平面向量的坐标运算1向量加法.减法.数乘及向量的模设ax1,y1,bx2,y2,则abx1x2,y1y2,abx1x2,y1y2,ax1,y1,|a|x21y21.2向量坐标的求法若向量的起点是坐标原点,则终点坐标即为向量的坐标设Ax1,y1,Bx2,y2,则ABx2x1,y2y1,|AB|x2x12y2y12.3平面向量共线的坐标表示设ax1,y1,bx2,y2,其中b0.a,b共线x1y2x2y10.知识拓展1若a与b不共线,ab0,则0.2设ax1,y1,bx2,y2,如果x20,y20,则abx1x2y1y2.题组一思考辨析1判断下列结论是否正确请在括号中打“”或“”1平面内的任何两个向量都可以作为一组基底2若a,b不共线,且1a1b2a2b,则12,12.3平面向量的基底不唯一,只要基底确定后,平面内的任何一个向量都可用这组基底唯一表示4若ax1,y1,bx2,y2,则ab的充要条件可表示成x1x2y1y2.5当向量的起点在坐标原点时,向量的坐标就是向量终点的坐标6平面向量不论经过怎样的平移变换之后其坐标不变题组二教材改编2P97例5已知ABCD的顶点A1,2,B3,1,C5,6,则顶点D的坐标为________答案1,5解析设Dx,y,则由ABDC,得4,15x,6y,即45x,16y,解得x1,y5.3P119A组T9已知向量a2,3,b1,2,若manb与a2b共线,则mn________.答案12解析由向量a2,3,b1,2,得manb2mn,3m2n,a2b4,1由manb与a2b共线,得2mn43m2n1,所以mn12.题组三易错自纠4设e1,e2是平面内一组基底,若1e12e20,则12________.答案05已知点A0,1,B3,2,向量AC4,3,则向量BC________.答案7,4解析根据题意得AB3,1,BCACAB4,33,17,46xx全国已知向量am,4,b3,2,且ab,则m________.答案6解析因为ab,所以2m430,解得m6.题型一题型一平面向量基本定理的应用平面向量基本定理的应用1在下列向量组中,可以把向量a3,2表示出来的是Ae10,0,e21,2Be11,2,e25,2Ce13,5,e26,10De12,3,e22,3答案B解析方法一设ak1e1k2e2,A选项,3,2k2,2k2,k23,2k22,无解;B选项,3,2k15k2,2k12k2,k15k23,2k12k22,解得k12,k21.故B中的e1,e2可以把a表示出来;同理,C,D选项同A 选项,无解方法二只需判断e1与e2是否共线即可,不共线的就符合要求2xx 济南模拟如图,在ABC中,AN13NC,P是BN上的一点,若APmAB211AC,则实数m的值为________答案311解析AN13NC,AC4AN,ADmAB211ACmAB811AN,又P,B,N三点共线,m8111,即m311.思维升华平面向量基本定理应用的实质和一般思路1应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加.减或数乘运算2用平面向量基本定理解决问题的一般思路是先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决题型二题型二平面向量的坐标运算平面向量的坐标运算典例1已知a5,2,b4,3,若a2b3c0,则c等于A.1,83B.133,83C.133,43D.133,43答案D解析由已知3ca2b5,28,613,4所以c133,43.2xx北京西城区模拟向量a,b,c在正方形网格中的位置如图所示,若cab,R,则等于A1B2C3D4答案D解析以向量a和b的交点为原点建立如图所示的平面直角坐标系设每个小正方形边长为1,则A1,1,B6,2,C5,1,aAO1,1,bOB6,2,cBC1,3cab,1,31,16,2,即61,23,解得2,12,4.引申探究在本例2中,试用a,c表示b.解建立本例2解答中的平面直角坐标系,则a1,1,b6,2,c1,3,设bxayc,则6,2x1,1y1,3即xy6,x3y2,解得x4,y2,故b4a2c.思维升华向量的坐标运算主要是利用加.减.数乘运算法则进行计算若已知有向线段两端点的坐标,则应先求出向量的坐标,解题过程中要注意方程思想的运用及正确使用运算法则跟踪训练1已知四边形ABCD的三个顶点A0,2,B1,2,C3,1,且BC2AD,则顶点D的坐标为A.2,72B.2,12C3,2D1,3答案A解析设Dx,y,ADx,y2,BC4,3,又BC2AD,42x,32y2,x2,y72,故选A.2已知平面向量a1,1,b1,1,则向量12a32b等于A2,1B2,1C1,0D1,2答案D解析12a12,12,32b32,32,故12a32b1,2题型三题型三向量共线的坐标表示向量共线的坐标表示命题点1利用向量共线求向量或点的坐标典例已知点A4,0,B4,4,C2,6,则AC与OB的交点P的坐标为________答案3,3解析方法一由O,P,B三点共线,可设OPOB4,4,则APOPOA44,4又ACOCOA2,6,由AP与AC共线,得446420,解得34,所以OP34OB3,3,所以点P的坐标为3,3方法二设点Px,y,则OPx,y,因为OB4,4,且OP与OB共线,所以x4y4,即xy.又APx4,y,AC2,6,且AP与AC共线,所以x46y20,解得xy3,所以点P的坐标为3,3命题点2利用向量共线求参数典例已知向量a1sin,1,b12,1sin,若ab,则锐角________.答案45解析由ab,得1sin1sin12,cos212,cos22或cos22,又为锐角,45.思维升华平面向量共线的坐标表示问题的常见类型及解题策略1利用两向量共线求参数如果已知两向量共线,求某些参数的取值时,利用“若ax1,y1,bx2,y2,则ab的充要条件是x1y2x2y1”解题比较方便2利用两向量共线的条件求向量坐标一般地,在求与一个已知向量a共线的向量时,可设所求向量为aR,然后结合其他条件列出关于的方程,求出的值后代入a即可得到所求的向量跟踪训练1xx北京海淀区模拟已知向量a1,1,点A3,0,点B为直线y2x上的一个动点若ABa,则点B的坐标为________答案3,6解析设Bx,2x,则ABx3,2xABa,x32x0,解得x3,B3,62若三点A1,5,Ba,2,C2,1共线,则实数a的值为________答案54解析ABa1,3,AC3,4,根据题意ABAC,4a1330,即4a5,a54.解析法坐标法在向量中的应用典例12分给定两个长度为1的平面向量OA和OB,它们的夹角为23.如图所示,点C在以O为圆心的AB上运动若OCxOAyOB,其中x,yR,求xy的最大值思想方法指导建立平面直角坐标系,将向量坐标化,将向量问题转化为函数问题更加凸显向量的代数特征规范解答解以O为坐标原点,OA所在的直线为x轴建立平面直角坐标系,如图所示,则A1,0,B12,32.4分设AOC0,23,则Ccos,sin,由OCxOAyOB,得cosx12y,sin32y,所以xcos33sin,y233sin,8分所以xycos3sin2sin6,10分又0,23,所以当3时,xy取得最大值2.12分。

超实用高考数学专题复习教学课件:5.2平面向量基本定理及向量的坐标表示

超实用高考数学专题复习教学课件:5.2平面向量基本定理及向量的坐标表示
3
解得
2
3 = ,
3
= -1,
+2=
=
1 解得
,
2
1
− )=
3
=
=
1
P(x,y),则=(x-3,y+2),而
2
-3 = -4,
1
DF= FB,所以
2
3 所以点
- ,
2
=
1
,
3
所以
2
,
9
1
DF= DB,所以
3
2
+ ,又因为
3
1
2
x+y= +
3
9
1
1
×
(-8,1)=(-4,
),
2
2
3
P 的坐标为(-1,- ).
2
=
5
,故选
9
B.
=
(3)由题目条件,两向量如图所示:
可知
1 √3
b=(- , ),则|a+2b|=2,故选
2 2
C.
思考利用向量的坐标运算解决问题的一般思路是什么?
解题心得1.向量问题坐标化
向量的坐标运算,使得向量的线性运算都可用坐标来进行,实现了向量运算完全
,查漏补缺,纠正错误。总之,在最后的复习阶段,学生们不要加大练习量。
在这个时候,学生要尽快找到适合自己的答题方式,最重要的是以平常心去面
对考试。数学最后的复习要树立信心,考试的时候遇到难题要想“别人也难”
,遇到容易的则要想“细心审题”。越到最后,考生越要回归基础,单词最好
再梳理一遍,这样有利于提高阅读理解的效率。另附高考复习方法和考前30天
1

高考数学一轮复习第五章平面向量5.2平面向量基本定理及坐标表课件理新人教A版


(2)已知 A(1,3),B(4,-1),则与向量A→B共线的单位向量为 _____35_, __- __45__或__- __35_, __45_______.
解析:由已知得A→B=(3,-4),所以|A→B|=5,因此与A→B共线 的单位向量为15A→B=35,-45或-15A→B=-35,45.
[易错防范] 1.若 a,b 为非零向量,当 a∥b 时,a,b 的夹
角为 0°或 180°,求解时容易忽视其中一种情形而导致出错. 2.若 a=(x1,y1),b=(x2,y2),则 a∥b 的充要条件不能表
示成xx12=yy12,因为 x2,y2 有可能等于 0,所以应表示为 x1y2-x2y1 =0.
[点石成金] x2y1=0.
向量共线的充要条件用坐标可表示为 x1y2-
[方法技巧] 1.两向量平行的充要条件
若 a=(x1,y1),b=(x2,y2),其中 b≠0,则 a∥b 的充要条
件是 a=λb,这与 x1y2-x2y1=0 在本质上是没有差异的,只是形 式上不同.
2.三点共线的判断方法 判断三点是否共线,先求由三点组成的任两个向量,然后再 按两向量共线进行判定. 3.若 a 与 b 不共线且 λa+μb=0,则 λ=μ=0.
原点,点 C 在∠AOB 内,|OC|=2 2,且∠AOC=4π,设O→C=
λO→A+O→B(λ∈R),则 λ 的值为( D )
A.1
1 B.3
1
2
C.2
D.3
[解析] 过 C 作 CE⊥x 轴于点 E. 由∠AOC=π4知,|OE|=|CE|=2, 所以O→C=O→E+O→B=λO→A+O→B, 即O→E=λO→A, 所以(-2,0)=λ(-3,0),故 λ=23.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§5.2 平面向量的基本定理及坐标表示1.了解平面向量的基本定理及其意义. 2.掌握平面向量的正交分解及其坐标表示. 3.会用坐标表示平面向量的加法、减法与数乘运算.4.理解用坐标表示的平面向量共线的条件. 向量引入坐标表示后,向量的工具性作用得到了质的提升,向量运算代数化,因而在与几何相关的考题中,向量常常作为条件的载体出现;而对于平面向量的基本定理及坐标运算的考查,在近年高考中也常出现,如利用相关性质和定理求与向量坐标有关的未知量等.1.平面向量基本定理如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使___________.我们把不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组__________.2.向量的夹角(1)已知两个________向量a 和b ,作OA →=a ,OB →=b ,则∠AOB =θ叫做向量a 与b 的夹角(如图).(2)向量夹角θ的范围是_______________.a 与b 同向时,夹角θ=________;a 与b 反向时,夹角θ=____________.(3)如果向量a 与b 的夹角是____________,我们就说a 与b 垂直,记作____________.3.平面向量的正交分解及坐标表示 (1)平面向量的正交分解把一个向量分解为两个____________的向量,叫做向量的正交分解.(2)在平面直角坐标系内,分别取与x 轴、y 轴方向相同的两个单位向量i ,j 作为基底.任作一个向量a ,由平面向量基本定理知,有且只有一对实数x ,y ,使得a =x i +y j .则实数对__________叫做向量a 的(直角)坐标,记作a =__________,其中x 叫做a 在x 轴上的坐标,y 叫做a 在y 轴上的坐标,该式叫做向量的坐标表示.与a 相等的向量的坐标也为________.显然,i = , j = ,0= .4.平面向量的坐标运算(1)已知a =(x 1,y 1),b =(x 2,y 2),则a ±b =_____. (2)如果A (x 1,y 1),B (x 2,y 2),则AB →=_________. (3)若a =(x ,y ),则λa =____________. (4)如果a =(x 1,y 1),b =(x 2,y 2)(b ≠0),则a ∥b 的充要条件是____________________.※5.线段的分点坐标设点P 是线段P 1P 2上的一点,且P 1(x 1,y 1),P 2(x 2,y 2),P (x ,y ).当P 1P →=λPP 2→时, 点P 的坐标(x ,y )=⎝⎛⎭⎪⎫x 1+λx 21+λ,y 1+λy 21+λ.特别地:①当λ=1时,点P 为线段P 1P 2的中点,其坐标为P ⎝⎛⎭⎫x 1+x 22,y 1+y 22. ②G (x ,y )为△ABC 的重心,若A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),则AB 中点D 的坐标为⎝⎛⎭⎫x 1+x 22,y 1+y 22.再由CG →=2GD →,我们便得到了三角形的重心坐标G (x 1+x 2+x 33,y 1+y 2+y 33).【自查自纠】1.a =λ1e 1+λ2e 2 基底2.(1)非零 (2)0°≤θ≤180° 0° 180° (3)90° a ⊥b3.(1)互相垂直(2)(x ,y ) (x ,y ) (x ,y ) (1,0) (0,1) (0,0) 4.(1)(x 1±x 2,y 1±y 2) (2)(x 2-x 1,y 2-y 1) (3)(λx ,λy ) (4)x 1y 2-x 2y 1=0(2013·辽宁)已知点A (1,3),B (4,-1),则与向量AB →同方向的单位向量为( )A.⎝⎛⎭⎫35,-45 B.⎝⎛⎭⎫45,-35 C.⎝⎛⎭⎫-35,45D.⎝⎛⎭⎫-45,35 解:AB →=(3,-4),|AB →|=5,AB →|AB →|=⎝⎛⎭⎫35,-45.故选A .如果e 1,e 2是平面α内所有向量的一组基底,那么以下表述正确的是( )A .若实数λ1,λ2使λ1e 1+λ2e 2=0,则λ1=λ2=0B .空间任一向量a 可以表示为a =λ1e 1+λ2e 2,这里λ1,λ2是实数C .对实数λ1,λ2,λ1e 1+λ2e 2不一定在平面α内D .对平面α内的任一向量a ,使a =λ1e 1+λ2e 2的实数λ1,λ2有无数对解:依平面向量基本定理,选项B ,C ,D 都错,只有A 的表述是正确的,故选A .已知点A (-1,1),点B (2,y ),向量a =(1,2),若AB →∥a ,则实数y 的值为( )A .5B .6C .7D .8解:AB →=(3,y -1),a =(1,2),AB →∥a ,则2×3=1×(y -1),解得y =7,故选C .(2013·北京模拟)已知向量a =(1,3),b =(-2,1),c =(3,2).若向量c 与向量k a +b 共线,则实数k =________.解:k a +b =k (1,3)+(-2,1)=(k -2,3k +1),因为向量c 与向量k a +b 共线,所以2(k -2)-3(3k +1)=0,解得k =-1.故填-1.(苏教版教材练习题)已知O 是坐标原点,A (2,-1),B (-4,8),且AB →+3BC →=0,则向量OC →的坐标是________.解:设C (x ,y ),由题意有(-6,9)+3(x +4,y -8)=(0,0),解得x =-2,y =5,即OC →=(-2,5),故填(-2,5).类型一 向量共线充要条件的坐标表示(1)(2012·厦门高三期末质检)已知向量a =(1,2),b =(2,0),若向量λa +b 与向量c =(1,-2)共线,则实数λ等于( )A .-2B .-13C .-1D .-23解:λa +b =(λ+2,2λ),向量λa +b 与向量c =(1,-2)共线,∴(λ+2)×(-2)-2λ×1=0,∴λ=-1,故选C .(2)(2012·合肥质检)已知向量a =(3,1),b =(1,m ),若2a -b 与a +3b 共线,则m = ____________.解:2a -b =(5,2-m ),a +3b =(6,1+3m ),由2a -b 与a +3b 共线得5(1+3m )-6(2-m )=0,解得m =13.故填13.【评析】此类题目在近几年高考中多次出现,既考查了向量的线性运算及向量的坐标表示,又考查了学生对向量共线充要条件的理解及计算能力.解决此类题目,我们只需要牢记向量共线充要条件的坐标表示形式:a =(x 1,y 1),b =(x 2,y 2)(b ≠0),a ∥b ⇔x 1y 2-x 2y 1=0即可.(1)已知向量a =(1,2),b =(1,0),c=(3,4).若λ为实数,(a +λb )∥c ,则λ=( ) A .14 B .12 C .1 D .2 解:因为a +λb =(1,2)+λ(1,0)=(1+λ,2),又因为(a +λb )∥c ,所以(1+λ)×4-2×3=0,解得λ=12.故选B .(2)设向量a ,b 满足|a |=25,b =(2,1),且a 与b 的方向相反,则a 的坐标为________.解:由于a 与b 的方向相反,且b =(2,1),不妨设a =(2m ,m ),m <0,则由|a |=25可得4m 2+m 2=25,解得m =-2,故填(-4,-2).类型二 平面向量基本定理的应用在平行四边形ABCD 中,E ,F 分别是BC ,CD 的中点,DE 交AF 于H ,记AB →,BC →分别为a ,b ,则AH →=( )A .25a -45bB .25a +45bC .-25a +45bD .-25a -45b解:设AH →=λAF →,DH →=μDE →.而DH →=DA →+AH →=-b +λAF →=-b +λ⎝⎛⎭⎫b +12a , DH →=μDE →=μ⎝⎛⎭⎫a -12b . 因此,μ⎝⎛⎭⎫a -12b =-b +λ⎝⎛⎭⎫b +12a . 由于a ,b 不共线,因此由平面向量的基本定理有 ⎩⎨⎧μ=12λ,-12μ=-1+λ. 解之得⎩⎨⎧λ=45,μ=25.故AH →=λAF →=λ⎝⎛⎭⎫b +12a =25a +45b .故选B . 【评析】①结合平面向量基本定理我们发现,一个平面向量方程相当于两个普通方程.②若e 1,e 2是平面内的一组基底,则对该平面内的任一向量a ,有且只有一对实数λ1,λ2使a =λ1e 1+λ2e 2,简单地说,就是平面内任一向量均可由该平面内的两个不共线向量线性表示,且表示方式惟一.特别地,当a =0即λ1e 1+λ2e 2=0时,必有λ1=λ2=0.③此题利用的是“基底方式”,即用a ,b 作为基底,选择两个参数λ,μ,然后将同一向量DH →作两种表示,由平面向量基本定理知系数对应相等,即可得关于λ,μ的方程组.应注意这种题型及相应的解法,它在近几年各地模拟题中频繁出现.(2013·北京)向量a ,b ,c 在正方形网格中的位置如图所示.若c =λa +μb (λ,μ∈R ),则λμ=________.解:设i ,j 分别为水平方向 和竖直方向上的正方向单位向量,则a =-i +j ,b =6i +2j ,c =-i -3j ,所以-i -3j =λ(-i +j )+μ(6i +2j ),即-i -3j =(-λ+6μ)i +(λ+2μ)j ,根据平面向量基本定理得⎩⎪⎨⎪⎧-1=-λ+6μ,-3=λ+2μ, 解得⎩⎪⎨⎪⎧λ=-2,μ=-12.所以λμ=4.故填4. 类型三 求向量的坐标设向量a =(1,-3),b =(-2,4),c=(-1,-2),若表示向量4a ,4b -2c ,2(a -c ),d 的有向线段首尾相接能构成四边形,则向量d 为( )A .(2,6)B .(-2,6)C .(2,-6)D .(-2,-6)解:设d =(x ,y ).因为4a =(4,-12),4b -2c =(-6,20),2(a -c )=(4,-2),依题意,有4a +(4b -2c )+2(a -c )+d =0,解得x =-2,y =-6.故选D .【评析】将三角形法则推广后,便可得:在如图所示的n 边形A 0A 1…A n 中,有A 0A 1→+A 1A 2→+A 2A 3→+…+n n A A 1-=A 0A n →,A 0A 1→+A 1A 2→+A 2A 3→+…+n n A A 1-+A n A 0→=0.在平行四边形ABCD 中,AC 为一条对角线,AB →=(2,4),AC →=(1,3),则BD →=( )A .(2,4)B .(3,5)C .(-3,-5)D .(-2,-4)解:如图,BD →=BC →+CD →=(AC →-AB →)+BA →=AC →+2BA →=(1,3)+2(-2,-4)=(-3,-5).故选C .1.对平面向量基本定理的理解(1)平面向量基本定理实际上是向量的分解定理,并且是平面向量正交分解的理论依据,也是向量坐标表示的基础.(2)平面向量的一组基底是两个不共线向量,平面向量基底可以有无穷多组.(3)用平面向量基本定理可将平面中任一向量分解成形如a=λ1e1+λ2e2(λ1,λ2∈R,e1,e2为同一平面内不共线的两个向量)的形式,它是向量线性运算知识的延伸.(4)如果e1,e2是同一平面内的一组基底,且λ1e1+λ2e2=0(λ1,λ2∈R),那么λ1=λ2=0.2.向量的坐标表示向量用坐标表示后,向量的计算和证明都归结为数的运算,这使问题大大简化.一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标,当且仅当向量的起点为原点时,向量的坐标才等于其终点的坐标.两个向量相等,当且仅当其坐标相同.。

相关文档
最新文档