Improved Rock-Physics Model for Shale Gas Reservoirs
页岩渗透率测定方法及影响因素研究进展

第30卷第5期油气地质与采收率Vol.30,No.5 2023年9月Petroleum Geology and Recovery Efficiency Sep.2023—————————————收稿日期:2022-04-25。
作者简介:杨术刚(1993—),男,四川广元人,工程师,博士,从事气田采出水回注、CO2地质封存、地下水环境保护等方面的研究工作。
E-mail:*****************.cn。
基金项目:中国石油科学研究与技术开发项目“高含盐污水低成本脱盐外排与回注风险监控技术研究”(2021DJ6602)、“高效贫水吸收剂开发与采出水回注协同CO2封存技术研究”(2021DQ03-A2)和“CCUS/CCS埋存地质体选区评价及监测关键技术研究”(2021ZZ01-05)。
引用格式:杨术刚,张坤峰,刘双星,等.页岩渗透率测定方法及影响因素研究进展[J].油气地质与采收率,2023,30(5):31-40. YANG Shugang,ZHANG Kunfeng,LIU Shuangxing,et al.Research progress on measurement methods and influencing factors of shale permeability[J].Petroleum Geology and Recovery Efficiency,2023,30(5):31-40.页岩渗透率测定方法及影响因素研究进展杨术刚1,2,张坤峰1,2,刘双星1,2,赵兴雷1,2(1.中国石油集团安全环保技术研究院有限公司,北京102206;2.石油石化污染物控制与处理国家重点实验室,北京102206)摘要:页岩渗透率及其分布关系页岩油气开发、常规油气藏储量评估、地下储气库及CO2地质封存盖层封闭性、核废料地质处置与气田采出水回注安全性等能源环境领域重点课题,其渗透率特征研究具有广泛的理论与工程实践意义。
页岩气水平井固井趾端压裂滑套的研制

2 理论计算和分析
2.1 滑套开启压力计算
固井压裂滑套的开启压力至关重要,若设计开
启压力值过低易使滑套在固井过程中提前开启,造成
固井不能碰压,水泥浆被替空等井下事故 ;而设计
压力值过高也会造成固井后,压裂开启滑套过程的地 面压力过高,滑套不易开启,甚至无法开启等问题 。 [10]
根据固井、压裂各阶段的施工压力可得 :
(1. CNPC Engineering Technology R&D Company Limited, Beijing 102206, China; 2. PetroChina Zhejiang Oilfield Company, Hangzhou, Zhejiang 310023, China) Natural Gas Industry, Vol.41, SUPPLEMENTARY1, p.192-196, 3/25/2021. (ISSN 1000-0976; In Chinese) Abstract: In order to reduce the workload of using coiled tubing for the first stage perforation in the completion and fracturing process of shale gas horizontal wells, avoid various risks brought by this operation, and solve the problem that the coiled tubing and subsequent operation tools for the first stage perforation of horizontal wells such as long horizontal section, upward inclined well, deep well and casing change well cannot go down to the bottom of the well, the fluid isolation shielding blasting technology is adopted in this paper DRCFT type cementing toe fracturing sleeve was developed and applied in Zhaotong national shale gas demonstration area. The laboratory test results show that the cementing toe fracturing sleeve has good sealing performance, which can be normally opened even when the downhole environment is solidified by cement slurry, and the opening pressure is accurate, which can meet the requirements of cementing and fracturing. It has been used in more than 30 wells with a success rate of 100%, which shows that the developed fracturing sleeve is reliable. It is concluded that DRCFT toe fracturing sleeve solves the problem that perforating gun, coiled tubing and other late operation tools in long horizontal wells cannot go down to the bottom of the well, and can effectively replace the first section of coiled tubing transmission perforating operation in horizontal wells; The tool reduces the fracturing cost of unconventional oil and gas horizontal wells such as shale gas, and provides technical support for the effective development, cost reduction and efficiency increase of unconventional oil and gas reservoirs such as low permeability, tight gas and shale gas. Keywords: Shale gas; Unconventional oil and gas; Cementing; Perforation; Toe fracturing sliding sleeve; Opening; Zhaotong National Shale Gas Demonstration Area
页岩油藏提高采收率技术及展望

西南石油大学学报(自然科学版)2021年6月第43卷第3期Journal of Southwest Petroleum University (Science & Technology Edition )Vol. 43 No. 3 Jun. 2021DOI : 10.11885/j.issn.1674 —5086.2020.04.07.01文章编号:1674—5086(2021)03—0101 — 10 中图分类号:TE357文献标志码:A页岩油藏提高采收率技术及展望李一波1 *,何天双】,胡志明2,李亚龙2,蒲万芬1*收稿日期:2020-04-07 网络出版时间:2021-05-11通信作者:李一波,E-mail : ***************.cn基金项目:中国石油创新基金(2019D-5007-0212);四川省科技计划(2021YFH0081)1.西南石油大学石油与天然气工程学院,四川成都6105002.中国石油勘探开发研究院廊坊分院,河北廊坊065007摘要:通过调研近二十年国内外页岩油藏提高采收率技术的室内研究和现场应用,结合页岩油藏储层特征,总结了 开发过程中的难点,并针对各类提高页岩油藏采收率技术的作用机理,讨论了对页岩油藏的适应性。
研究表明,注气是页岩油藏补充地层能量的最佳方法,二氧化碳和天然气是常用的注入介质,但其作用机理还有待深入探讨;通过改善储层润湿性来提高渗吸效果是表面活性剂和低矿化度水的主要机理;泡沫驱拥有良好注入性的同时能够有效调整裂缝性油藏的非均质性,但是其在裂缝中的稳定性有待加强;热力采油可以改变储层的热应力,诱导裂缝扩张,增大注入介质的波及范围。
溶剂和纳米材料在机理上有改善页岩储层润湿性的作用,但是其在页岩油藏开发中的可行性还 有待验证。
关键词:页岩油藏;提高采收率;非常规油气;机理研究;综述A Comprehensive Review of Enhanced Oil Recovery Technologiesfor Shale OilLI Yibo 1*, HE Tianshuang 1, HU Zhiming 2, LI Yalong 2, PU Wanfen 11. Petroleum Engineering School, Southwest Petroleum University, Chengdu, Sichuan 610500, China2. Langfang Branch, PetroChina Research Insittute of Petroleum Exploration & Development, Langfang, Hebei 065007, ChinaAbstract: Through the investigation of the indoor research and field application of EOR technologies in shale oil reservoirs at home and abroad in the past 20 years, the difficulties in the development process are summarized in combination with the characteristics of shale oil reservoirs, and the adaptability of various EOR mechanisms to shale oil reservoirs. The results show: The gas injection is the best way to supply energy for shale reservoir. Carbon dioxide and natural gas are the normal injection media and the displacement mechanism needs further investigation. The wettability alteration to enhance the performance of imbibition effect is the main mechanism for surfactant and low salinity water flooding. Foam has the good performance in adjusting the heterogeneity but its stability needs to be enhanced. Thermal methods can change the thermal stress of the shale formation and thus induce the propagation of fracture to increase the sweep efficiency. In theory, solvent and nano-based material can also improve the wettability of shale reservoir, but its adaptation needs further discussion.Keywords: shale reservoir; enhanced oil recovery; unconventional resource; mechanism investigation; review网络出版地址:http :///kcms/detail/51.1718.TE.20210510.1809.002.html李一波,何天双,胡志明,等.页岩油藏提高采收率技术及展望[〕]•西南石油大学学报(自然科学版),2021,43(3): 101-110.LI Yibo, HE Tianshuang, HU Zhiming, et al. A Comprehensive Review of Enhanced Oil Recovery Technologies for Shale Oil[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2021, 43(3):101-110.102西南石油大学学报(自然科学版)2021年引言随着世界能源需求的不断增加以及常规油气资源开发难度日益加大,以页岩油气为代表的非常规油气资源作为接替能源受到了广泛的关注。
多级水平井压裂注CO2开采页岩气影响因素分析

多级水平井压裂注CO2开采页岩气影响因素分析郭玉杰;刘平礼;郭肖;贾春生;杨新划【摘要】水平井和多级压裂是开采页岩气等非常规油气资源的关键技术,根据微地震图,页岩中的水力压裂通常会产生非常复杂的裂缝网络,这就是所谓的"体积压裂".为了更好地模拟页岩气在复杂孔隙中的流动情况,以煤层气模块(Eclipse2011)为主要平台,采用LS-LR-DR方法,通过改变主裂缝周围的导流能力来模拟SRV.在上述模型的基础上,研究了注CO2开采页岩气的3个方案.结果表明,注CO2能够提高页岩气的采收率,注入量和注入时机在CO2注气开发中,存在最优值;同时,随着裂缝条数的增加,注CO2开采页岩气的采收率效果越不明显.【期刊名称】《油气藏评价与开发》【年(卷),期】2016(006)002【总页数】5页(P64-68)【关键词】数值模拟;页岩气;多级裂缝;CO2;采收率【作者】郭玉杰;刘平礼;郭肖;贾春生;杨新划【作者单位】西南石油大学油气藏地质与开发工程国家重点实验室,四川成都610500;西南石油大学油气藏地质与开发工程国家重点实验室,四川成都 610500;西南石油大学油气藏地质与开发工程国家重点实验室,四川成都 610500;西南石油大学油气藏地质与开发工程国家重点实验室,四川成都 610500;中国石油青海油田公司一号作业区,青海格尔木 816000【正文语种】中文【中图分类】TE357页岩气的开发已经在全世界得到了广泛的关注。
得益于先进的水平井和多级压裂技术,页岩气正逐渐成为一种经济的天然气。
然而,来自油田的数据和数值模拟的研究结果[1-4]表明:压裂之后的短短几年里,产能快速地下降,高产时期并不能维持很长一段时间。
为了保证裂缝的高导流能力,水力压裂通常会泵入大量的支撑剂,一般裂缝中产生的缝网裂缝(SRV),除了具有较宽缝宽的主裂缝之外,还产生了大量的次级裂缝,这些裂缝包括沟通的天然裂缝和没有被支撑剂填充的水力裂缝[5-6](Fisher.etl 2005)。
改进的烃源岩生烃潜力模型及关键参数模板

ห้องสมุดไป่ตู้
0 引言
烃源岩生烃潜力及评价参数定量模型,是常规— 非常规油气资源评价及盆地与油气系统模拟等领域定
(1 中国石油勘探开发研究院;2中国石油大庆油田公司勘探开发研究院)
摘 要:岩石热解测试分析数据中最重要的参数——氢指数 IH 和原始氢指数 IHo 是衡量烃源岩生烃潜力的重要指 标。针对已有 IHo 模型存在的不足,提出一种改进模型,提高了计算结果与实测值的符合率,并推导出碳恢复系数、 原始有机碳含量、可转化碳含量、可转化碳百分比、转化率、降解率、产烃率、原始有机质孔隙度等参数的定量模型。 通过统计国内外 7 个盆地 1249 组岩石热解和 TOC 数据,拟合得出Ⅰ型、Ⅱ a 型、Ⅱ b 型和Ⅲ型 4 种有机质类型烃源 岩 IHo 模型的关键参数值,并建立 4 种类型烃源岩生烃潜力、碳恢复系数、转化率、降解率、产烃率、原始有机质孔 隙度等参数随 Tmax 变化的模板,弥补了有效烃源岩定量研究手段的不足,有望促进油气资源评价技术的发展。
Guo Qiulin1, Mi Jingkui1, Wang Jian1, Li Jingkun2, Li Yongxin1, Yang Zhi1
( 1 PetroChina Research Institute of Petroleum Exploration & Development; 2 Research Institute of Exploration and Development, PetroChina Daqing Oilfield Company )
页岩储层压裂液渗吸及返排机理研究进展

第49卷第11期 当 代 化 工 Vol.49,No.11 2020年11月 Contemporary Chemical Industry November,2020基金项目:“十三五”国家科技重大专项,涪陵页岩气水平井多段压裂效果与生产规律分析研究(项目编号:2016ZX05060-007)。
收稿日期: 2020-03-12页岩储层压裂液渗吸及返排机理研究进展屈亚光,巩旭,石康立,刘一凡,马国庆,王啸(长江大学 石油工程学院,武汉 430100)摘 要:中国页岩气可采资源量排名世界前列,但由于页岩气存在于致密的储层中,很难使用常规技术将其开采,需要经过大规模的压裂才可以得到较为可观的产量。
一般而言,页岩气的产量应与压裂液的返排量呈正相关。
然而,实际生产过程中普遍出现“万方液,千方砂”,甚至返排率越低产量越高的现象,这与理论分析结果相差较大。
通过调研前人文献,发现其主要是利用不同TOC 含量的岩样在常温常压下进行压裂液的渗吸与返排实验,并通过分析实验数据得出了储层岩石的含水饱和度、毛管压力、流体物性、润湿性等因素均会对压裂液的渗吸与返排产生不同程度的影响。
若能揭示压裂液在不同页岩储集层中的渗吸和返排机理,将会对优化页岩水平井设计和提高页岩气产量有很好的指导意义。
关 键 词:页岩气;压裂;渗吸;返排中图分类号:TE349 文献标识码: A 文章编号: 1671-0460(2020)11-2532-04Research Progress of Imbibition and Backflow Mechanism ofFracturing Fluids in Shale ReservoirsQU Ya-guang, GONG Xu, SHI Kang-li, LIU Yi-fan, MA Guo-qing, WANG Xiao(College of Petroleum Engineering, Yangtze University, Wuhan 430100, China )Abstract : China ranks top in the world in terms of recoverable shale gas resources. However, shale gas exists in tight reservoirs, making it difficult to extract using conventional techniques and requiring extensive fracturing to produce significant production. The yield of shale gas should be positively correlated with the backflow rate of fracturing fluid. In the actual production process, there is a general phenomenon of “ten thousand of liquid, thousands of sands ", and even the lower the flowback rate, the higher the output, which is quite different from the theoretical analysis results. On the basis of researching the literatures, it was found that permeability and flowback experiments of fracturing fluids were always carried out by using rock samples with different TOC contents, and the experimental data analysis has proved thatwater saturation, capillary pressure, fluid property, wettability and other factors all can affect the imbibition and backflow mechanism of fracturing fluidsto some extent. If the mechanism of percolation and flowback of fracturing fluids in different shale reservoirs can be revealed, it will be of great significance to optimize the design of horizontal shale wells and increase shale gas production. Key words : Shale gas; Fracturing; Imbibition; Backflow页岩气储层与常规油气层相比具有低孔、低渗、难开采的特点。
页岩气产量递减典型曲线中关键参数的确定方法
160000 140000
井1日生产数据
方法1得到的典型曲线
方法2 得到的典型曲线
q (m3/d)
80000 60000 40000 20000
0
200 150 100 50
0
q (m3/d)
100000
250
qw (m3/d)
160000 140000 120000 井1日生产数据(扣除产量为零的点) 井1日生产数据(包含产量为零的点)
160000 140000 方法1 方法2
3
3
3
3
q (m3/d)
100000
80000
q (m3/d)
120000
100000
80000 60000 40000 20000
0
60000 40000 20000 0 0 100 200 300 400 500 600 700 800 900
0
100
200
300
400
500
600
700
800
900
t (d)
t (d)
图 5 原始生产动态曲线和扣除产量为零点的动态曲线 图 6 2 种方法获得的典型曲线对比 表 3 2 种方法所得到的典型曲线及其相关参数对比 对比 参数 方法 1 方法 2
qi/(104m3/d) n D
相对误差/% 天数/d 累计产量/10 m
1000000 500000 0
0 0 100 200 300 400 500 600 700 800
0
5
10
15
20
25
30
页岩气多级压裂断层动态滑移规律研究
◀油气田开发工程▶页岩气多级压裂断层动态滑移规律研究∗刘豪1㊀刘怀亮2㊀刘宇2㊀曹伟3㊀连威4㊀李军1ꎬ4(1 中国石油大学(北京)㊀2 北京华美世纪国际技术有限公司3 四川宝石花鑫盛油气运营服务有限公司㊀4 中国石油大学(北京)克拉玛依校区)刘豪ꎬ刘怀亮ꎬ刘宇ꎬ等.页岩气多级压裂断层动态滑移规律研究[J].石油机械ꎬ2024ꎬ52(2):65-74.LiuHaoꎬLiuHuailiangꎬLiuYuꎬetal.Researchondynamicslipoffaultresultedfrommultistagefracturingofshalegasreservoir[J].ChinaPetroleumMachineryꎬ2024ꎬ52(2):65-74.摘要:泸州页岩气区块开发过程中套管变形现象严重ꎬ而多级压裂是诱发断层滑移并导致套管变形的主要因素ꎬ但目前缺乏对断层动态滑移演化规律的研究ꎮ在分析泸州地区套管变形失效特征和相关性的基础上ꎬ考虑水力裂缝沟通并激活断层实际ꎬ建立了多级压裂条件下断层滑移动态演化数值模型ꎮ研究结果表明:多级压裂导致近井筒位置孔隙压力随压裂逐级增加ꎬ有效地应力降低ꎻ模拟时间越长㊁注入点流量越大ꎬ断层滑移量越大ꎬ而压裂液黏度影响断层滑移量效果弱ꎻ断层长度㊁断层与井筒的夹角与其滑移量关系密切ꎬ断层长度越大ꎬ断层滑移量越大ꎻ断层与井筒夹角在一定范围内越大ꎬ断层滑移量越小ꎻ水平地应力差较大的地层断层滑移会越明显ꎮ研究成果可为页岩气多级压裂过程中控制压裂施工参数提供参考ꎮ关键词:页岩气ꎻ多级压裂ꎻ断层滑移ꎻ套管变形ꎻ数值模拟中图分类号:TE931㊀文献标识码:A㊀DOI:10 16082/j cnki issn 1001-4578 2024 02 010ResearchonDynamicSlipofFaultResultedfromMultistageFracturingofShaleGasReservoirLiuHao1㊀LiuHuailiang2㊀LiuYu2㊀CaoWei3㊀LianWei4㊀LiJun1ꎬ4(1 ChinaUniversityofPetroleum(Beijing)ꎻ2 BeijingHuameiCenturyInternationalTechnologyCo.ꎬLtd.ꎻ3 SichuanGemflow ̄erXinshengOil&GasServiceCo.ꎬLtd.ꎻ4 ChinaUniversityofPetroleum(Beijing)atKaramay)Abstract:IntheLuzhoushalegasblockꎬseverecasingdeformationoccursduringdevelopmentꎬandmulti ̄stagefracturingisthemainfactorinducingfaultslipandcausingcasingdeformation.Howeverꎬthereiscurrentlyalackofresearchontheevolutionofdynamicslipoffault.InthispaperꎬbasedontheanalysisofcasingdeformationandfailurecharacteristicsandcorrelationinLuzhouareaꎬconsideringthecommunicationandactivationoffaultsbyhydraulicfracturesꎬanumericalmodelforthedynamicevolutionoffaultslipundermultistagefracturingconditionswasbuilt.Theresultsshowthatmultistagefracturingleadstoanincreaseinnear ̄wellboreporepressurewithfractu ̄ringstagesꎬresultinginadecreaseineffectivein ̄situstress.Thelongerthesimulationtimeandthelargertheflowrateatinjectionpointꎬthegreaterthefaultslipisꎬwhilethefracturingfluidviscosityhasweakimpactonfaultslip.Thefaultlengthandtheanglebetweenthefaultandthewellborearecloselyrelatedtotheslip:thelargerthefaultlengthꎬthegreaterthefaultslipꎻthelargertheanglebetweenthefaultandthewellborewithinacertainrangeꎬthesmallerthefaultslip.Thegreaterthehorizontalin ̄situstressdifferenceoftheformationꎬthemoreob ̄56 ㊀2024年㊀第52卷㊀第2期石㊀油㊀机㊀械CHINAPETROLEUMMACHINERY㊀㊀㊀∗基金项目:国家自然科学基金青年科学基金项目 页岩气井多级压裂诱发断层滑移量化计算模型与套管变形控制方法研究(52204018)ꎻ国家自然科学基金联合基金重点支持项目 四川盆地深层超深层气井环空带压预防与管控基础研究 (U22A20164)ꎻ中国石油大学(北京)克拉玛依校区引进人才基金项目 页岩油气井全生命周期井筒完整性分析与优化体系构建 (XQZX20220019)ꎮviousthefaultslip.Theresearchfindingsprovidereferenceforcontrollingtheoperationparametersinthemulti ̄stagefracturingprocessofshalegasreservoirs.Keywords:shalegasꎻmultistagefracturingꎻfaultslipꎻcasingdeformationꎻnumericalsimulation0㊀引㊀言在页岩气勘探开发过程中ꎬ为了提高生产效率和降低作业成本ꎬ常采用 水平井+多级压裂 的方法ꎬ但这种工艺会使套管受力状态发生变化ꎬ严重时甚至会使套管发生变形ꎬ导致页岩气井产量下降ꎮ四川泸州页岩气区块多级压裂过程中套管变形现象严重ꎬ套管变形量最大可达55 78mmꎬ套管变形后桥塞无法下入指定位置ꎬ严重时造成丢段ꎬ影响了页岩气的高效开发[1-3]ꎮ基于以上问题ꎬ国内外学者开展了大量套管变形方面的研究ꎮ陈朝伟等[4-5]认为ꎬ压裂过程中压裂液沿天然裂缝或层理面进入断层ꎬ激活断层滑动ꎬ从而造成套管剪切变形ꎻ王素玲等[6]进行了页岩层剪切滑移对套管塑性应变的模拟ꎻ郭雪利等[7]基于震源机制原理ꎬ建立了断层滑移下套管变形机制ꎬ反演了断层滑移距离ꎬ认为断层滑移与套管剪切变形关系密切ꎻ刘鹏林等[8]建立了一种考虑断层上㊁下部地层对断层滑移影响的页岩断层滑移模型ꎬ并计算得到断层滑移量的变化规律ꎻA A DANESHY等[9]分析认为ꎬ压裂时形成不均匀地应力使得断层沿着弱界面㊁破裂面移动ꎬ导致套管受到不同程度的拉伸与剪切破坏ꎻ李军等[10]基于断裂力学理论ꎬ建立水力裂缝激活断层及滑移量的力学计算模型ꎬ认为压裂参数㊁地层性质以及断层性质对断层滑移量影响明显ꎻ张华礼等[11]认为套管穿越断层/裂缝是其剪切变形的内因ꎬ多级压裂导致地层活化是其剪切变形的诱因ꎻS T CHIPPERFIELD等[12]认为多级压裂过程中ꎬ形成的复杂裂缝网络会使套管受到剪切㊁滑移㊁错断等复杂的力学作用ꎬ并引起地应力场的改变ꎬ最终导致套管变形ꎮ国内外研究均指出套管变形与压裂引起的断层滑移存在密切联系ꎬ但对于断层激活和滑移量规律的研究还不够深入ꎬ并没有建立断层滑移量动态演化规律计算模型ꎮ笔者基于有限元模拟软件ꎬ建立了多级压裂激活断层的动态演化规律模型ꎬ并分析了压裂参数㊁断层性质㊁地层性质等对断层滑移量的影响ꎮ研究成果可为页岩气套管变形控制措施提供借鉴ꎮ1㊀泸州区块页岩气井套管变形失效特征分析㊀㊀泸州区块存在断层发育㊁地层倾角变化频繁等复杂地质条件ꎬ区块整体为走滑断层应力状态ꎬ压裂采用高泵压泵送压裂液ꎬ致使井底压力多在100MPa以上ꎬ极易引发断层滑移ꎮ现场资料显示ꎬ在多级压裂改造过程中ꎬ部分压裂井以及邻井的套管出现了多处不同程度的变形ꎬ导致后续压裂作业无法顺利泵送桥塞ꎬ迫使压裂改造段数缩减ꎬ严重影响了页岩气高效㊁安全开发ꎬ并增加了生产成本ꎮ1 1㊀套管变形形状特征使用井径成像测井仪MIT(Mutil ̄FingerImageTool)检测套管的变形形式以及变形程度ꎬ其主要原理是基于24条沿套管内壁均匀分布的半径曲线FING01~FING24数据来获取套管变形的特征[13]ꎮ图1为泸州X1-3井MIT测井结果ꎮ多臂井径曲线图结果显示存在典型的剪切变形曲线ꎬ说明套管在多级压裂过程中承受非均匀载荷ꎬ使其受到侧向力的作用发生挤压或者剪切变形导致套管内径减小ꎬ使得桥塞无法正常通过ꎮ变形点处最小内径58 52mmꎬ平均内径97 97mmꎬ最大内径135 82mmꎬ最大变形量55 78mmꎬ最大变形程度48 80%ꎬ变形长度大于10mꎬ从变形级别来讲ꎬ属于五级变形损伤ꎮ66 ㊀㊀㊀石㊀油㊀机㊀械2024年㊀第52卷㊀第2期图1㊀泸州X1-3井MIT24测井解释图Fig 1㊀MIT24loginterpretationofWellX1 ̄31 2㊀套管变形与工程因素相关性分析多级压裂过程中施工泵压㊁排量对套管受力状态影响较大[14-16]ꎬ巨大的施工压力加载到套管内壁上ꎬ会使套管在内壁上产生较大的应力集中ꎮ图2为最大等效应力随井口施工压力的变化曲线ꎮ从图2可以看出ꎬ随着井口施工压力增加ꎬ套管应力也呈现增加趋势ꎬ二者几乎呈线性增长关系ꎮ为此ꎬ本文分析了套管变形点与施工泵压和排量之间的关系ꎮ图2㊀最大等效应力随井口施工压力的变化曲线[14]Fig 2㊀Variationofmaximumequivalentstresswithwellheadpressure[14]对该区块已有资料的井进行统计分析ꎬ结果如图3㊁图4所示ꎮ从图3可以看出ꎬ压裂排量小于14m3/min时ꎬ套变点数量只有1个ꎻ但当排量大于14m3/min时ꎬ套变点数量呈线性增加ꎻ在16~17m3/min时套变点数量最多ꎬ排量最大时套边点数略微减少ꎮ由图4可知ꎬ随着泵压的增加ꎬ套变点数量增加ꎬ施工泵压由75MPa增加至90MPa过程中ꎬ套管变形点数量逐渐增加ꎬ同样在临近最大泵压时套变点数量达到最大ꎮ这是由于在水力压裂过程中大排量㊁高泵压使水力压裂缝网复杂度增加ꎬ导致水力裂缝可能与天然裂缝以及断层之间沟通ꎬ使得断层发生滑移的可能性急剧增加ꎮ因此ꎬ在压裂施工时应合理优化排量与泵压ꎬ避免激活断层ꎬ使断层产生滑移导致套管变形ꎬ影响页岩气高效开发ꎮ图3㊀套变点数量与排量关系Fig 3㊀Numberofcasingdeformationpointsvs.displacement图4㊀套变点数量与泵压关系Fig 4㊀Numberofcasingdeformationpointsvs.pumppressure页岩气多级压裂过程中套管承受地面泵压和静液柱压力ꎬ水泥环则对套管提供一定的保护和支撑ꎬ并减小地应力对套管的挤压作用ꎬ从而达到缓解套管载荷的目的[17]ꎮ当水泥环存在缺失㊁微裂隙㊁微环隙时ꎬ会使套管受力状态恶化ꎬ严重时使套管变形[18]ꎮ统计该区块套管变形点位置处固井质量ꎬ结果如表1所示ꎮ表1㊀泸州页岩气井套变位置及固井质量统计表Table1㊀Casingdeformationpositionandcementingquality76 2024年㊀第52卷㊀第2期刘豪ꎬ等:页岩气多级压裂断层动态滑移规律研究㊀㊀㊀从表1可以看出ꎬ套管变形位置处固井质量大部分为优质ꎬ部分为合格ꎮ因此ꎬ可以得出套管变形和固井质量相关性较弱ꎮ固井质量对套管应力状态影响较大ꎬ但固井质量的优劣并不是影响套管变形的决定性因素[19-21]ꎮ从力学角度看ꎬ套管变形的根本原因是由于套管承受了巨大的非均匀外挤载荷所致[22]ꎮ1 3㊀套管变形与断层滑移相关性分析大多数套管变形形状符合剪切变形特征ꎬ说明套管变形与断层裂缝㊁岩性界面和层理的相关性较高ꎮ经过泸州区块套变点与断层分布的统计发现该区块套变点与断层重合度较高ꎮ图5为泸X1~X4平台断层分布与套管变形点对比结果ꎮ总计有16口井ꎬ其中11口发生套管变形(占比68 75%)ꎮ12个套管变形点中有11个位于地层曲率异常或裂缝带处ꎬ重合比例高达91 6%ꎮ因此ꎬ可以认为套管变形与井筒穿过断层具有密切联系ꎬ进一步说明了套管变形与断层的相关性ꎮ图5㊀断层分布与套管变形对比结果Fig 5㊀Comparisonoffaultdistributionandcasingdeformation㊀㊀以泸州X1-3井为例ꎬ分析套管变形与断层㊁微地震信号分布之间的关系ꎬ结果如图6㊁图7所示ꎮ由图6和图7可知ꎬ天然裂缝发育带与图中所示水平井筒均呈大角度相交ꎬ同时多级压裂过程中套管变形位置处微地震信号与井筒呈大角度相交ꎮ主要原因是多级压裂过程导致近井筒地层地应力状态产生了显著变化ꎬ导致地层发生错动ꎬ从而引起套管变形ꎮ图6㊀泸X1-3井第8段微地震信号(左为俯视图ꎬ右为侧视图)Fig 6㊀MicroseismicsignalsofWellX1 ̄3atstage8(Left:topviewꎻRight:sideview)图7㊀泸州X1平台变形点与蚂蚁体预测㊁微地震叠结果Fig 7㊀DeformationpointꎬantbodypredictionandmicroseismicsuperpositionofX1platformintheLuzhoublock㊀㊀通过上述统计结果与现场套变资料分析ꎬ套管变形损坏多发生在某一级压裂后的未压裂段ꎬ且与断层位置重合度较高ꎮ可以认为多级压裂引起套管变形是一个不断累积的过程ꎬ压裂液在高泵压㊁大排量的条件下注入储层产生人造裂缝ꎬ人造裂缝与天然裂缝沟通ꎬ导致压裂液进入断层ꎮ因此在后续压裂过程中ꎬ压裂液源源不断进入断层内导致断层面内正应力不断降低ꎬ摩擦因数减小ꎬ达到临界值时断层激活ꎬ导致套管发生剪切变形ꎮ2㊀断层滑移量数值模型2 1㊀套管变形分析X1平台中1㊁2㊁4井完成压裂后采用多臂井径测量ꎬ发现X1-3井出现套管变形ꎬ如图8所示ꎮ从X1-1井的第3~5段压裂的微地震信号分布来看ꎬ微地震信号与断层高度重合ꎬ均分布在裂缝86 ㊀㊀㊀石㊀油㊀机㊀械2024年㊀第52卷㊀第2期带两侧ꎬ说明裂缝带被沟通ꎮX1-3井自身第4段压裂时的微地震监测发现微地震信号分布与裂缝走向重合ꎬ且发生了较大的震级ꎬ第5段套管处发生变形ꎬ如图9所示ꎮ这说明压裂从远端沟通裂缝造成断层激活ꎬ发生滑移引发第5段套管处变形ꎮ图8㊀X1-1井第3~5段微地震信号Fig 8㊀MicroseismicsignalsofWellX1 ̄1atstages3to5图9㊀X1-3井第4段微地震信号(左为俯视图ꎬ右为侧视图)Fig 9㊀MicroseismicsignalsofWellX1 ̄3atstage4㊀㊀泸203井区所在的福集向斜发育4组构造断裂:北东-南西向㊁北西-南东向㊁北北西-南南东向和近南北向ꎮ泸203井区内发育的复杂断裂系统为压裂激活断裂并引发套变提供了可能ꎮ引发严重套变的断裂方位角为60ʎ~80ʎꎮ60ʎ断裂引发套变频数最高ꎬ说明该井区套变与断裂方位角相关ꎬ且60ʎ方位角断裂为高套变风险断裂[23]ꎮ在上述对套管变形失效分析的基础上ꎬ建立二维水平井多级压裂断层滑移动态演化有限元模型ꎮ采用有限元软件ABAQUS分析多级压裂过程中断层动态滑移演化规律ꎮ2 2㊀网格模型为了消除边界对断层的影响ꎬ将模型尺寸设置为700mˑ500mꎬ储层厚度与盖层厚度之比为1ʒ5ꎬ使压裂改造区和断层远离模型边界ꎬ断层与井筒夹角为60ʎꎮ模型如图10所示ꎮ根据工程实际多级压裂工艺ꎬ按照图10中①~⑤的顺序模拟五级压裂ꎮ对模型嵌入Cohesive孔隙压力单元ꎬ利用Cohesive孔隙压力单元的损伤开裂模拟裂缝的扩展行为ꎮ模型的网格类型为流固耦合单元-CPE4Pꎬ模拟饱和多孔介质的页岩储层ꎬ预设水力裂缝和天然裂缝的单元类型为COH2D4Pꎬ以此来实现水力裂缝扩展过程ꎮ网格划分过程中选用自由网格和非均匀密度划分方式ꎮ以泸州区块X1-3井为例ꎬ根据现场压裂设计ꎬ该区块压裂段长为40~80mꎮ为方便计算ꎬ模型设定压裂段长为50mꎮ图10㊀数值模型示意图Fig 10㊀Schematicdiagramofnumericalmodel96 2024年㊀第52卷㊀第2期刘豪ꎬ等:页岩气多级压裂断层动态滑移规律研究㊀㊀㊀2 3㊀材料参数及边界条件2 3 1㊀材料参数地应力及初始孔隙压力由物理模型案例井所处区块的探井确定ꎮ根据钻井井史中的测量数据得到页岩地层中的初始孔隙压力为35MPaꎬ初始地应力如下:最小㊁最大和垂向地应力分别为90㊁100㊁93MPaꎮ模型相关的地质力学参数和压裂施工参数如表2所示ꎮ表2㊀有限元数值模型参数表模型的x和y方向施加法向位移为0的约束ꎬ使模型边界在3个方向上均不发生位移和旋转ꎮ采用有限元软件ABAQUS中Predefined功能施加地层地应力ꎮ共设置7个分析步:第1个分析步采用Geostatic模块平衡模型地应力ꎻ其余6个分析步采用Soil模块ꎬ设置5个分析步注入压裂液和1个分析步停止注入压裂液并泄压ꎮ采用集中注入点进行压裂ꎬ每段压裂结束后ꎬ停止注入压裂液ꎬ同时进行下一段压裂ꎬ完成五级压裂后ꎬ停止注入压裂液并泄压ꎮ注入压裂液时间设置为300sꎬ泄压时间设置为3600sꎮ3㊀结果分析3 1㊀多级压裂中地层孔隙压力动态变化页岩气水平井多级压裂过程中不同施工时间下的地层孔隙压力分布如图11所示ꎮ从图11可以发现ꎬ储层孔隙内被注入大量压裂液ꎬ地层孔隙压力不断变大ꎬ且随着压裂级数增加ꎬ近井筒储层地层孔隙压力表现出累积效应ꎮ多级压裂过程中ꎬ压裂流体在垂直井筒方向主要波及水力裂缝沟通区域ꎬ沿垂直井筒方向地层压力变化梯度明显ꎮ压裂级数越大ꎬ沿井筒轴向地层孔隙压力受压裂液 累积效应 影响愈发显著ꎮ在第3级压裂完成后ꎬ可以明显发现ꎬ沿井筒轴向方向压裂流体波及范围超出所在的水力压裂区域ꎮ受第3段残余压裂液影响ꎬ压裂时近井筒位置形成局部高压(最大处可达57MPa)ꎬ压裂液通过水泥环微环隙㊁近井筒天然裂缝㊁大尺度天然裂缝3种途径进入并沟通断层ꎬ压裂液沿断层带扩散致使断层活化[24-25]ꎮ图11㊀地层孔隙压力在不同压裂级数条件下的变化Fig 11㊀Variationofformationporepressureunderdifferentfracturingstages3 2㊀不同压裂施工条件下断层滑移演化规律3 2 1㊀注入点流量压裂时注入点的流量能够影响水力裂缝内流体压力ꎬ进而会影响裂缝尖端局部应力场ꎬ最终会影响断层的受力状态ꎮ考虑到数值模型的收敛性ꎬ在实际设置参数时将尽可能符合现场实际工况ꎬ因此ꎬ分别将注入点流量设定为0 005㊁0 010和0 015m2/sꎮ不同注入点流量下断层的滑移量动态07 ㊀㊀㊀石㊀油㊀机㊀械2024年㊀第52卷㊀第2期变化规律如图12所示ꎮ选取断层滑移激活点处作为研究对象ꎬ在压裂液进入断层面内的初始阶段会提取到明显的位移变化特征ꎬ随着压裂时间的增加ꎬ滑移量会小幅度的增加ꎬ最终趋于平稳ꎮ注入点流量越大ꎬ断层激活越早ꎬ且注入点流量每增加0 005m2/sꎬ断层滑移量大约会增加0 013mꎮ图12㊀不同注入点流量条件下对断层滑移量的影响Fig 12㊀Influenceofflowratesatdifferentinjectionpointsonfaultslip3 2 2㊀注入时间分别将模拟时间设定为15㊁20和25minꎬ计算得到不同压裂时间下断层滑移量的动态演化规律ꎬ如图13所示ꎮ由图13可知ꎬ断层滑移量随模拟时间的延长而增加ꎬ水力裂缝与断层相交位置滑移量最大可达50mmꎮ由于压裂液进入断层沿着水力裂缝方向流动ꎬ断层激活点处压力累积后压裂液向压力较小方向流动ꎬ所以在断层滑移激活点位置会出现两端滑移量突变的情况ꎮ压力累计导致断层下半部分的滑移量略大于上半部分ꎮ不同模拟时间下断层滑移量变化如图14所示ꎮ由图14可知ꎬ第三级压裂开始前断层被激活开始滑移ꎬ滑移初始阶段滑移量迅速增长ꎬ而后增长速率逐渐减小ꎬ最终趋于平稳ꎮ图15为断层滑移量数值计算结果ꎮ图15验证了上述分析ꎮ因此ꎬ在进行压裂作业时ꎬ应合理优化作业时间与注入量ꎬ降低侵入断层面内压裂液的体积ꎬ从而避免断层激活影响后续施工作业ꎮ图13㊀断层不同位置处滑移量动态变化规律Fig 13㊀Dynamicvariationofslipatdifferentpositionsoffault图14㊀不同压裂时间下断层滑移量的变化Fig 14㊀Variationoffaultslipunderdifferentfracturingtimes图15㊀断层滑移量数值计算结果Fig 15㊀Numericalcalculationoffaultslip3 2 3㊀压裂液黏度根据相关压裂设计资料ꎬ分别将压裂液黏度设定为1㊁3和5mPa sꎬ计算得到不同压裂液黏度下断层滑移量的动态演化规律ꎬ如图16所示ꎮ由图16可知ꎬ不同压裂液黏度条件下断层滑移量相差较小ꎬ在断层滑移量差距最大区域ꎬ仅相差117 2024年㊀第52卷㊀第2期刘豪ꎬ等:页岩气多级压裂断层动态滑移规律研究㊀㊀㊀mmꎬ断层滑移量差距并不明显ꎮ因此ꎬ压裂液黏度不是影响断层滑移量的主要因素ꎮ图16㊀压裂液黏度对断层滑移量的影响Fig 16㊀Influenceoffracturingfluidviscosityonfaultslip3 3㊀不同断层参数条件下断层滑移演化规律3 3 1㊀断层长度根据地震资料解释该断层长度约为160mꎬ将此数据作为模拟时基础断层参数ꎮ多级压裂影响下不同长度的断层滑移量动态变化规律如图17所示ꎮ由图17可知:断层长度越长ꎬ断层激活越晚ꎬ在激活的初始阶段位移量均迅速增加ꎻ断层长度越短时随着模拟时间的延长滑移量增长速率减小越快ꎬ最终趋于平稳ꎮ且不同长度的断层均最终均趋于平稳ꎮ断层长度越长ꎬ断层滑移量越大ꎮ断层长度从120m增加到160mꎬ断层滑移量平均增加5 4mmꎻ而断层长度从160m增加到200mꎬ断层滑移量平均增加7 5mmꎬ增长幅度为38 9%ꎮ图17㊀断层长度对断层滑移量的影响Fig 17㊀Influenceoffaultlengthonfaultslip3 3 2㊀断层与井筒夹角图18所示为断层与水平井筒夹角对断层滑移量的影响规律ꎮ由图18可知ꎬ断层与水平井筒夹角越小ꎬ断层越易滑动ꎮ选取断层与井筒的夹角分别为45ʎ㊁60ʎ和75ʎ分析可知ꎬ夹角增大30ʎ达到断层激活条件的时间增加81 5%ꎮ断层与井筒的夹角45ʎ时ꎬ断层滑移量最大可达48mmꎮ相同模拟时间下ꎬ随着夹角的增加ꎬ断层滑移量逐渐减小ꎬ且夹角越大ꎬ断层滑移量减小的幅度越大ꎮ由45ʎ增加到75ʎꎬ断层滑移量平均减小14 1mmꎮ这是由于在水力压裂过程中ꎬ裂缝扩展导致的地应力变化主要发生在水平方向ꎮ同时可以发现ꎬ模拟时间越长ꎬ不同断层与井筒夹角所对应的断层滑移量的变化趋势均逐渐增大ꎮ综上两者分析ꎬ在施工过程中应注意断层位置和长度ꎬ若井筒与断层夹角较小ꎬ且断层长度较长时ꎬ会使得断层产生较大的滑移量ꎮ图18㊀断层与井筒夹角对断层滑移量的影响Fig 18㊀Influenceofanglebetweenfaultandwellboreonfaultslip图19㊀水平地应力差对断层滑移量的影响Fig 19㊀Influenceofhorizontalin ̄situstressdifferenceonfaultslip3 4㊀不同地层特征条件下断层滑移演化规律根据资料显示ꎬ泸州区块页岩地层受构造运动影响ꎬ水平地应力存在明显差异(最小水平地应力为90MPaꎬ最大水平地应力为100MPa)ꎬ分析水平地应力差对断层滑移量的影响ꎬ结果如图19所示ꎮ由图19可知ꎬ在相同压裂时间下ꎬ水平地应力差越大ꎬ越易发生滑动ꎮ这是由于在水平地应力差较大时ꎬ水力压裂过程中ꎬ裂缝不均匀扩展产生的剪应力场导致断层面内正应力不足以平衡剪应力ꎮ因此ꎬ在达到临界值时会激活断层滑移ꎮ同时可以发现ꎬ水平地应力差越大ꎬ断层越早被激活ꎮ随着压裂时间的延长ꎬ不同水平地应力差所对应的断层滑移量的变化趋势均逐渐增大ꎮ高水平地应力差下断层滑移量与低水平地应力差下的滑移量相比ꎬ两者差值可达14 1mmꎮ27 ㊀㊀㊀石㊀油㊀机㊀械2024年㊀第52卷㊀第2期4㊀结㊀论在分析泸州地区套管变形失效特征和相关性的基础上ꎬ考虑水力裂缝沟通并激活断层的实际情况ꎬ建立了多级压裂条件下断层滑移动态演化数值模型ꎬ分析了压裂参数㊁断层参数及地应力与断层滑移量之间的动态演化规律ꎬ形成以下结论ꎮ(1)泸州区块套管变形呈剪切特征ꎬ且与断层位置重合度较高ꎻ套管变形点集中在高泵压㊁大排量压裂段ꎻ固井质量对套管变形影响程度较弱ꎮ(2)多级压裂导致近井筒位置孔隙压力随压裂逐级增加ꎬ有效地应力降低ꎬ地应力增加ꎮ(3)断层滑移量在断层滑移激活点处滑移量最大ꎬ沿两端逐渐减小ꎬ在断层末端趋近于0ꎮ断层滑移量随压裂时间延长㊁注入点流量变大而增加ꎬ控制压裂时间㊁压裂液体积可以有效降低断层滑移量ꎬ避免套管严重变形ꎻ压裂液黏度不是断层滑移量变化的主要影响因素ꎮ(4)断层长度㊁断层与井筒的夹角与其滑移量关系密切ꎮ对于断层长度较大储层ꎬ在压裂改造中需要注意压裂设计方案优化ꎻ优选钻井设计中井眼轨迹ꎬ避免与断层夹角过小ꎻ断层滑移量与水平地应力差具有正相关性ꎬ压裂改造应避开断层ꎮ参㊀考㊀文㊀献[1]㊀CHENZMꎬLIAOXWꎬZHAOXLꎬetal.Perform ̄anceofhorizontalwellswithfracturenetworksinshalegasformation[J].JournalofPetroleumScienceandEngineeringꎬ2015ꎬ133:646-664[2]㊀LIJꎬXIYꎬZHAOCJꎬetal.Recentprogressinun ̄derstandingmechanismsofshalegaswellboreintegrityfailure[J].ScienceFoundationinChinaꎬ2020ꎬ28(2):104-112[3]㊀童亨茂ꎬ张平ꎬ张宏祥ꎬ等.页岩气水平井开发套管变形的地质力学机理及其防治对策[J].天然气工业ꎬ2021ꎬ41(1):189-197.TONGHMꎬZHANGPꎬZHANGHXꎬetal.Geome ̄chanicalmechanismsandpreventioncountermeasuresofcasingdeformationinshalegashorizontalwells[J].NaturalGasIndustryꎬ2021ꎬ41(1):189-197 [4]㊀陈朝伟ꎬ石林ꎬ项德贵.长宁-威远页岩气示范区套管变形机理及对策[J].天然气工业ꎬ2016ꎬ36(11):70-75.CHENZWꎬSHILꎬXIANGDG.Mechanismofcas ̄ingdeformationintheChangning ̄Weiyuannationalshalegasprojectdemonstrationareaandcountermeasures[J].NaturalGasIndustryꎬ2016ꎬ36(11):70-75 [5]㊀陈朝伟ꎬ王鹏飞ꎬ项德贵.基于震源机制关系的长宁-威远区块套管变形分析[J].石油钻探技术ꎬ2017ꎬ45(4):110-114.CHENZWꎬWANGPFꎬXIANGDG.Casingde ̄formationanalysisofChangning ̄Weiyuanblockbasedonfocalmechanismrelationship[J].PetroleumDrillingTechniquesꎬ2017ꎬ45(4):110-114 [6]㊀王素玲ꎬ杨磊.页岩层剪切套损的数值模拟及影响因素分析[J].石油机械ꎬ2018ꎬ46(1):100-105.WANGSLꎬYANGL.Numericalsimulationandinflu ̄encingfactorsanalysisoncasingsheardamageinshalelayer[J].ChinaPetroleumMachineryꎬ2018ꎬ46(1):100-105[7]㊀刘鹏林ꎬ李军ꎬ席岩ꎬ等.页岩断层滑移量计算模型及影响因素研究[J].石油机械ꎬ2022ꎬ50(8):74-80.LIUPLꎬLIJꎬXIYꎬetal.Studyoncalculationmod ̄elofshalefaultslipanditsinfluencingfactors[J].ChinaPetroleumMachineryꎬ2022ꎬ50(8):74-80 [8]㊀郭雪利ꎬ李军ꎬ柳贡慧ꎬ等.基于震源机制的页岩气压裂井套管变形机理[J].断块油气田ꎬ2018ꎬ25(5):665-669.GUOXLꎬLIJꎬLIUGHꎬetal.Deformationmecha ̄nismofshalegaspressurecrackcasingbasedonfocalmechanism[J].Fault ̄BlockOilandGasFieldꎬ2018ꎬ25(5):665-669[9]㊀DANESHYAA.Impactofoff ̄balancefracturingonboreholestabilityandcasingfailure[C]ʊSPEWest ̄ernRegionalMeeting.Irvine:SPEꎬ2005:SPE93620-MS.[10]㊀李军ꎬ赵超杰ꎬ柳贡慧ꎬ等.页岩气压裂条件下断层滑移及其影响因素[J].中国石油大学学报(自然科学版)ꎬ2021ꎬ45(2):63-70.LIJꎬZHAOCJꎬLIUGHꎬetal.Assessmentoffaultslipinshaleformationduringhydraulicfracturinganditsinfluencefactors[J].JournalofChinaUniver ̄sityofPetroleum(EditionofNaturalScience)ꎬ2021ꎬ45(2):63-70[11]㊀张华礼ꎬ陈朝伟ꎬ石林ꎬ等.流体通道形成机理及在四川页岩气套管变形分析中的应用[J].钻采工艺ꎬ2018ꎬ41(4):8-11ꎬ5.ZHANGHLꎬCHENZWꎬSHILꎬetal.MechanismofhowfluidpassageformedandapplicationinSichuanshalegascasingdeformationanalysisdeformationanal ̄ysis[J].Drilling&ProductionTechnologyꎬ2018ꎬ41(4):8-11ꎬ5[12]㊀CHIPPERFIELDSTꎬWONGJRꎬWARNERDSꎬetal.Sheardilationdiagnostics:anewapproachfore ̄372024年㊀第52卷㊀第2期刘豪ꎬ等:页岩气多级压裂断层动态滑移规律研究㊀㊀㊀valuatingtightgasstimulationtreatments[C]ʊSPEHydraulicFracturingTechnologyConference.CollegeStation:SPEꎬ2007:SPE106289-MS.[13]㊀XIYꎬLIJꎬLIUGHꎬetal.Anewnumericalinves ̄tigationofcementsheathintegrityduringmultistagehy ̄draulicfracturingshalegaswells[J].JournalofNat ̄uralGasScienceandEngineeringꎬ2018ꎬ49:331-341[14]㊀连威ꎬ李军ꎬ柳贡慧ꎬ等.水力压裂过程中水平段不同位置处套管应力差异性分析[J].钻采工艺ꎬ2020ꎬ43(2):11-14.LIANWꎬLIJꎬLIUGHꎬetal.Analysisofcasingstressdifferenceatdifferentpositionsinhorizontalseg ̄mentofshalegaswellduringfracturingprocess[J].Drilling&ProductionTechnologyꎬ2020ꎬ43(2):11-14[15]㊀聂荣国ꎬ蔡明杰ꎬ毛良杰ꎬ等.压裂工况对页岩气套管应力分布的影响[J].石油机械ꎬ2019ꎬ47(12):139-146.NIERGꎬCAIMJꎬMAOLJꎬetal.Effectoffrac ̄turingconditionsonthestressdistributionofshalegaswellcasing[J].ChinaPetroleumMachineryꎬ2019ꎬ47(12):139-146[16]㊀郭雪利ꎬ李军ꎬ柳贡慧ꎬ等.页岩气压裂井瞬态温-压耦合对套管应力的影响[J].石油机械ꎬ2018ꎬ46(5):89-94ꎬ98.GUOXLꎬLIJꎬLIUGHꎬetal.Influenceoftransi ̄entthermo ̄pressurecouplingoncasingstressforshalegasfracturingwells[J].ChinaPetroleumMachineryꎬ2018ꎬ46(5):89-94ꎬ98[17]㊀刘奎ꎬ高德利ꎬ王宴滨ꎬ等.局部载荷对页岩气井套管变形的影响[J].天然气工业ꎬ2016ꎬ36(11):76-82.LIUKꎬGAODLꎬWANGYBꎬetal.Effectsoflo ̄calloadonshalegaswellcasingdeformation[J].NaturalGasIndustryꎬ2016ꎬ36(11):76-82 [18]㊀苏东华ꎬ黄盛ꎬ李早元ꎬ等.页岩油水平井压裂水泥环力学性能设计方法[J].石油勘探与开发ꎬ2022ꎬ49(4):798-805.SUDHꎬHUANGSꎬLIZYꎬetal.Mechanicalpropertydesignmethodofcementsheathinahorizontalshaleoilwellunderfracturingconditions[J].Petrole ̄umExplorationandDevelopmentꎬ2022ꎬ49(4):798-805[19]㊀李军ꎬ席岩ꎬ付永强ꎬ等.利用分段固井方法提高页岩气井筒完整性[J].钻采工艺ꎬ2017ꎬ40(4):21-24.LIJꎬXIYꎬFUYQꎬetal.Toimprovewellborein ̄tegrityofshalegaswellswithstagecementingmethod[J].Drilling&ProductionTechnologyꎬ2017ꎬ40(4):21-24[20]㊀刘伟ꎬ陶长洲ꎬ万有余ꎬ等.致密油储层水平井体积压裂套管变形失效机理数值模拟研究[J].石油科学通报ꎬ2017ꎬ2(4):466-477.LIUWꎬTAOCZꎬWANYYꎬetal.Numericala ̄nalysisofcasingdeformationduringmassivehydraulicfracturingofhorizontalwellsinatight ̄oilreservoir[J].PetroleumScienceBulletinꎬ2017ꎬ2(4):466-477[21]㊀LIYꎬLIUWꎬYANWꎬetal.Mechanismofcasingfailureduringhydraulicfracturing:lessonslearnedfromatight ̄oilreservoirinChina[J].EngineeringFailureAnalysisꎬ2019ꎬ98:58-71[22]㊀韩玲玲ꎬ李熙喆ꎬ刘照义ꎬ等.川南泸州深层页岩气井套变主控因素与防控对策[J].石油勘探与开发ꎬ2023ꎬ50(4):853-861.HANLLꎬLIXZꎬLIUZYꎬetal.Influencingfac ̄torsandpreventionmeasuresofcasingdeformationindeepshalegaswellsinLuzhoublockꎬsouthernSi ̄chuanBasinꎬSWChina[J].PetroleumExplorationandDevelopmentꎬ2023ꎬ50(4):853-861 [23]㊀李军ꎬ吴继伟ꎬ谢士远ꎬ等.吉木萨尔页岩油井筒完整性失效特点与控制方法[J].新疆石油天然气ꎬ2021ꎬ17(3):37-43.LIJꎬWUJWꎬXIESYꎬetal.Characteristicsandcontrolmethodsofwellboreintegrityfailureforjimsarshaleoil[J].XinjiangOil&Gasꎬ2021ꎬ17(3):37-43[24]㊀江铭ꎬ李志强ꎬ段贵府ꎬ等.水力裂缝导流能力对深层页岩气产能的影响规律[J].新疆石油天然气ꎬ2023ꎬ19(1):35-41.JIANGMꎬLIZQꎬDUANGFꎬetal.Effectofhydrau ̄licfractureconductivityondeepshalegasproduction[J].XinjiangOil&Gasꎬ2023ꎬ19(1):35-41 [25]㊀张慧ꎬ李军ꎬ张小军ꎬ等.页岩气井压裂液进入断层的途径及防控措施[J].断块油气田ꎬ2021ꎬ28(6):750-754ꎬ760.ZHANGHꎬLIJꎬZHANGXJꎬetal.Leakagepathoffracturingfluidintofaultsandpreventionandcontrolmeasuresinshalegaswells[J].Fault ̄BlockOilandGasFieldꎬ2021ꎬ28(6):750-754ꎬ760㊀㊀第一作者简介:刘豪ꎬ生于1999年ꎬ在读硕士研究生ꎬ研究方向为油气田钻采力学与控制工程ꎮ地址: (102200)北京市昌平区ꎮemail:lh18590506286@163 comꎮ通信作者:李军ꎬemail:lijun446@vip.163 comꎮ㊀收稿日期:2023-09-25(本文编辑㊀刘㊀锋)47 ㊀㊀㊀石㊀油㊀机㊀械2024年㊀第52卷㊀第2期。
缝洞型岩溶热储流动传热耦合数值模拟
天 然 气 工 业Natural Gas Industry第42卷第4期
2022年4月· 107 ·
引文:姚军,张旭,黄朝琴,等.缝洞型岩溶热储流动传热耦合数值模拟[J].天然气工业, 2022, 42(4): 107-116.YAO Jun, ZHANG Xu, HUANG Zhaoqin, et al. Numerical simulation of thermo–hydraulic coupling process in fractured–vuggy karst geothermal reservoirs[J]. Natural Gas Industry, 2022, 42(4): 107-116.
缝洞型岩溶热储流动传热耦合数值模拟
姚 军 张 旭 黄朝琴 巩 亮 杨文东 李 阳中国石油大学(华东)油气渗流研究中心
摘要:缝洞型岩溶热储是一种典型的地热能储层,具有出水量大且地热利用后尾水易于回灌的优势,是我国最具开发利用潜力的地热储层类型之一,但由于其储集空间类型多样(孔缝洞),且具有复杂的多尺度、强非均质性、多流态特征,因此对于热采过程中所涉及的流动、传热过程及热采动态等特征的认识尚不清晰。为此,基于缝洞型岩溶热储的特点,提出了基于离散缝洞网络方法的热流耦合数值模拟方法,并进行了模型准确性验证。研究结果表明:①提出了多孔介质渗流区采用达西定律描述,溶洞自由流区域采用Navier-Stokes方程描述,两区域间采用Beavers-Joseph-Saffman边界条件进行耦合的流动传热耦合数值模型;②裂缝网络连通性是控制和评价缝洞型热储流动传热效果的关键参数,而溶洞的存在对热储内的流动传热效果起重要影响;③离散缝洞网络热流耦合模型能够有效地描述缝洞型热储的流动传热过程,并发现裂缝网络连通性控制着缝洞型热储的热流耦合过程;④溶洞的存在会严重影响热储的热流耦合过程,一是增多系统内贯穿的高速流动通道数量,甚至使系统从不连通变为连通,二是增大系统内局部流动通道速度。结论认为,该方法对于研究缝洞型岩溶热储开发特征及其热采性能优化具有重要意义。关键词:地热;缝洞型岩溶热储;离散缝洞网络模型;数值模拟;热流耦合;连通性;裂缝;溶洞DOI: 10.3787/j.issn.1000-0976.2022.04.010
页岩气藏综合地质建模技术
页岩气藏综合地质建模技术龙胜祥1,2 张永庆2 李菊红3 孙志宇1,2 商晓飞2 戴城1,21.中国石化页岩油气勘探开发重点实验室2. 中国石化石油勘探开发研究院3. Paradigm Technology(Beijing) Co. Ltd.摘 要 目前,页岩气藏地质建模采用的技术思路和实现方式主要源于常规油气藏,对页岩气藏并不适用,而可资借鉴的国内外相关成果则鲜见。
为此,首先针对页岩气藏的特殊性,确定相配套的地质建模技术流程;再结合测录井资料解释、地震叠前叠后资料解释及采样地质实验分析等结果,建立工区构造和页岩小层发育模型;并在此格架体模型下应用地质统计学建模方法建立了页岩气储层厚度、孔隙度、含气饱和度、总有机碳含量、硅质含量、脆性指数等属性模型;综合应用地震AFE属性、构造曲率、应变体积膨胀资料,结合地质认识与钻井显示,采用目标建模方法,建立天然裂缝DFN模型;在人工压裂缝展布模式判断及参数拟合分析的基础上,建立了人工压裂缝模型;最后,采取逐级叠加的方法,建立了页岩气藏综合地质模型并进行气井的生产史拟合与动态预测。
研究结果表明:①与常规油气藏相比,页岩气藏地质建模更为复杂,主要表现在小层划分与对比困难、基质参数多且存在着相互约束关系、天然裂缝成因和尺度多样以及天然裂缝干扰和影响下人工压裂缝分布复杂;②天然裂缝模型实现了对裂缝系统几何形态和分布的有效细致描述,人工压裂缝模型能较好地体现人工裂缝分布状况及压裂改造体积,通过逐级融合叠加页岩气藏构造和小层发育模型、多种基质属性参数模型、多尺度天然裂缝模型及其约束下的人工压裂缝模型,可以完成页岩气藏综合地质模型的建立;③气井生产史拟合结果显示,在井底压力误差小于3.3%的情况下,所建立的页岩气藏综合地质模型是可靠的。
关键词 页岩气藏 综合地质模型 建模技术 框架模型 基质属性模型 天然裂缝模型 人工压裂缝模型 逐级融合叠加DOI: 10.3787/j.issn.1000-0976.2019.03.006Comprehensive geological modeling technology for shale gas reservoirsLong Shengxiang1,2, Zhang Yongqing2, Li Juhong3, Sun Zhiyu1,2, Shang Xiaofei2 & Dai Cheng1,2(1. Sinopec Key Laboratory of Shale Oil/Gas Exploration and Production Technology, Beijing 100083, China; 2. Sino-pec Petroleum Exploration and Production Research Institute, Beijing 100083, China; 3. Paradigm Technology <Bei-jing> Co., Ltd., Beijing 100004, China)NATUR. GAS IND. VOLUME 39, ISSUE 3, pp.47-55, 3/25/2019. (ISSN 1000-0976; In Chinese)Abstract: At present, the technical ideas and implementation modes adopted in the geological modeling of shale gas reservoirs are mainly derived from those used in conventional oil and gas reservoirs, so they are not applicable to shale gas reservoirs. Moreover, there are few reports on the results of shale gas geological modeling at home and abroad. In view of this, a technical process of geological modeling for shale gas reservoirs was firstly established according to its particularity. Secondly, a structure and shale sublayer development model for the working area was established based on logging interpretation results, pre-stack and post-stack seismic interpretation data and geolog-ical test analysis results of samples. Thirdly, property models of shale gas reservoirs, including thickness, porosity, gas saturation, TOC, silicon content and brittleness index, were established using geostatistic modeling method in the frame model. Fourthly, a natural fracture DFN model was established using the object-based modeling method, based on seismic AFE attribute, structural curvature and strain and dilatation data, combined with geological knowledge and drilling display. Fifthly, a hydraulic fracture model was established based on the estimate of hydraulic fracture distribution pattern and the parameter fitting analysis. Finally, a comprehensive geological model for shale gas reservoirs was established by virtue of step-by-step superposition. What’s more, it was applied to the production history matching and performance prediction of shale gas wells. And the following research results were obtained. First, the geological modeling of shale gas reservoirs is more complex than that of conventional oil and gas reservoirs, and the complexities are presented as difficult classification and correlation of sublayers, multiple matrix parameters restricting each other, diverse geneses and sizes of natural fractures, and compli-cated distribution of hydraulic fractures under the interference and influence of natural fractures. Second, the natural fracture DFN model is capable of describing the geometrical shape and distribution of fracture system effectively and finely, and the hydraulic fracture model can better embody the distribution of hydraulic fractures and the stimulated reservoir volume (SRV). The establishment of the compre-hensive geological model for shale gas reservoirs can be realized by progressively integrating and superposing the structure and sublayer development model, the multi-matrix property parameter model, the multi-scale natural fracture model and the hydraulic fracture model under the constraint of multi-scale natural fracture model. Third, production history matching results of gas wells show that the error of bottomhole pressure is lower than 3.3%, which indicates that the newly established comprehensive geological model of shale gas reser-voirs is reliable. In conclusion, the modeling process and method developed in this paper can be used as reference in the establishment of a comprehensive geological model for shale gas reservoirs.Keywords: Shale gas reservoir; Comprehensive geological model; Modeling technology; Frame model,Matrix property model; Nature fracture model; Hydraulic fracture model; Step-by-step integration and superposition基金项目:国家科技重大专项“涪陵页岩气测井评价、地质建模与可采储量评价技术研究”(编号:2016ZX05060-002)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
DOI /10.1190/segam2012-0927.1 Page 1
Shale-gas rock physics
Downloaded 01/22/13 to 61.50.142.28. Redistribution subject to SEG license or copyright; see Terms of Use at /
Summary Unconventional resources such as shale gas are becoming increasingly important exploration, development, and production targets. However, geophysical characterization of these unconventional reservoirs remains challenging because of limited understanding of geophysical responses to reservoir properties such as total organic carbon (TOC). We have developed an improved anisotropic rock-physics model to incorporate TOC effects, in addition to effects of mineralogy, porosity, and fluid content, on seismic and electrical properties of shale gas. The modeling results suggest that an increase in the organic content generally reduces P-impedance, and Vp/Vs ratio, while increasing the velocity anisotropy and resistivity. This general trend is further modified by mineralogical compositions. Introduction While much US natural gas production comes from conventional resources, recent growth is dominantly from unconventional resources such as shale gas and tight gas. As a potentially large resource for future gas production, shale gas is garnering increasing attention from the industry. All shale-gas rocks are not alike, and some are better producers than others. Despite having quite different geologic settings, many shale-gas formations share features such as heterogeneity, low matrix porosity and permeability, and in some cases, brittleness. For example, fine-grained rock properties may change significantly at the centimeter scale vertically and at the dekameter scale laterally, and many common attributes can be identified for fine-grained source, reservoir, and seal rocks. Economic shale-gas development candidates require ample organic matter to generate sufficient volumes of hydrocarbons, i.e., relatively high total organic carbon (TOC). Some of these reservoirs were buried deep enough to generate gas, and now are shallow enough for economic drilling. Some are also brittle enough to facilitate hydraulic fracturing. The complexity of shale-gas formations has prompted researchers to attempt to understand the controls on production from different disciplines, such as geochemistry, geology, geomechanics, seismic, and rock physics. We studied geophysical responses of shale-gas rocks by incorporating organic matter (e.g., kerogen) into an anisotropic rock-physics model, which allows us to predict elastic and electrical properties of shale gas and to characterize TOC from a suite of log measurements. Preliminary studies suggest that the presence of organic matter reduces both P- and S-wave velocities, density, and Vp/Vs, while increasing velocity anisotropy. The influence of organic matter on resistivity varies with the level of maturity. As the source rock matures, a portion of the solid organic matter is transformed into hydrocarbons that displace part of the formation water, thereby increasing effective resistivities. However, if the maturity becomes extremely high, organic matter may transform into electrically-conductive graphite, which can reduce the effective resistivity significantly. Studying the effective elastic and electric properties using the rock physics model helps to improve our understanding of various shale-gas formations. Rock physics model Rock-physics models provide crucial links between microscopic rock properties and macroscopic physical characteristics, such as seismic velocity and resistivity, and the basis for predicting rock/fluid properties from geophysical data. Among the many factors influencing the properties of shale gas, organic matter is of particular importance not only because it is indicative of gasproduction potential, but also because of its unique velocity, density, and resistivity characteristics. Organic matter differs from fluid in that it is solid-like material with non-zero bulk and shear moduli, while fluids typically do not resist shear deformation.
constituent minerals and fluids with different shapes, alignments, and physical properties. The solid background is estimated by mixing different minerals such as quartz, calcite, and clays using Reuss-Voigt-Hill averaging. A dry rock frame is then formed by introducing inclusions into the solid background, where for example the inclusion space contains inter-particle pores or pores within clay. In the new TOC rock-physics model, organic matter is treated as part of either solid mineral (background) or inclusion space, or both, depending on specific applications. Bayuk et al. (2008) discussed a physical model of organic-rich shale, where kerogen is considered to be load-bearing material and forms the background matrix, which is then embedded with clay, silt grains, and pore/cracks. Wu et al. (2012) also suggest mixing kerogen with shale to form a kerogen-shale composite in the calculation of effective rock properties. Note that in this study we use the term inclusion space instead of pore space to avoid confusion with the common usage of fluid-filled pores. Inclusion space refers to the space occupied by any in-fill material including fluids and solids (e.g., organic matter). Experiences from various shale gas formations suggest that modeled results using organic matter treated as inclusion-filling material generally match well with measured velocity and resistivity log data. If organic matter is considered as part of the inclusion space, inclusions (or voids) in the rock are partitioned into fluid-filled pores and solid-filled volumes (kerogen volumes). Thus two types of material substitutions, namely fluid substitution and solid substitution (Ciz and Shapiro, 2007), can be used to attain the effective elastic properties of the rocks (Figure 1). Observations from nano-scale images of various source rock samples suggest that the spatial distribution of fluidfilled pores (as well as organic matter-filled inclusions) can be very complicated. For example, fluid-filled pores can sit between different mineral grains (inter-particle), within mineral grains (intra-particle), or within organic matters. This has to be handled with care when calculating the effective rock properties. For fluid-filled pores within organic matter, they can be treated as a pore system independent of organic matter-filled inclusion space. Alternatively, this part of fluid can be mixed with organic matter to form an effective medium before being incorporated into the rock physics workflow. Compared to fluid substitution discussed in the literature (e.g., Gassmann, 1951; Biot, 1956; Brown and Korringa, 1975), solid substitution is relatively straightforward. Ciz and Shapiro (2007) extended Brown and Korringa’s (1975) results to the case of solid in-fills by assuming interconnected inclusion space for the material and stress