高三数学最新课件-高考数学选择题的解法[整理] 精品

合集下载

衡水课件:高考数学复习讲座 ppt

衡水课件:高考数学复习讲座 ppt

脑内投篮
Yao

一位心理学家曾做过这样的实验,把一些身 体状况基本相同的学生分成三组,进行不同方式 的投篮技巧训练: • 第一组学生坚持在20天内每天练习投篮,并 把第一天和最后的投篮成绩记录下来。中间练习 时,不提出任何要求,顺其自然。 • 第二组学生也记录下第一天和第二十天投篮 的成绩,但是在此期间不再做任何投篮练习。 • 第三组学生记录下第一天的投篮成绩,然后 每天花20分钟做想象中的投篮。如果投篮不中时, 他们便在想象中对此作相应的纠正。
所以四边形ACBE为正方形. 由PA⊥面ABCD得 ∠PEB=90° P E M 在Rt△PEB中 BE= 2 ,PB= 5 ,
A
BE 10 cos PBE . PB 5
B
D
C
AC与PB所成的角为 arccos
10
.
(Ⅲ)解:作AN⊥CM,垂足为N,连结BN. 在Rt△PAB中,AM=MB,又AC=CB, ∴△AMC≌△BMC, ∴BN⊥CM,故∠ANB为所求二面角的平面角. ∵CB⊥AC,由三垂线定理,得CB⊥PC, 在Rt△PCB中,CM=MB,所以CM=AM.
B.b 0且c 0, D.b 0且c 0.
y
x
0
1
2
• 中学数学中的数学思想方法定为三个层面: (1)一般的数学方法:如配方法,换元法, 消去法割补法,待定系数法,数学归纳法等。 (2)一般的逻辑方法:如综合法,分析法, 归纳法类比法,反证法等。 (3)数学的思想方法:如函数与方程的思想; 数形结合的思想;分类与整合的思想;转化 与化归的思想;特殊与一般的思想;有限与 无限的思想;或然与必然的思想等。
在等腰三角形AMC中, AC 2 AN· MC= 2 CM ( ) AC 2

高考数学复习考点知识讲解课件25 解三角形应用举例

高考数学复习考点知识讲解课件25 解三角形应用举例

— 15 —
(新教材) 高三总复习•数学
— 返回 —
测量距离问题的求解策略 (1)确定所求量所在的三角形,若其他量已知则直接求解;若有未知量,则把未知量 放在另外三角形中求解. (2)确定选用正弦定理还是余弦定理,如果都可用,就选择更便于计算的定理.
— 16 —
(新教材) 高三总复习•数学
— 返回 —
即 DE=si1n0705s°itna4n51°5°=sin17050°×sincs4oi5ns°1155°°=sin17050°s×inss4ii5nn°1755°°=10s0insi1n54°5°.
又 sin15°=sin(45°-30°)=
6- 4
2,所以 DE=10s0insi1n54°5°=100(
图形表示
— 返回 —
— 5—
(新教材) 高三总复习•数学
术语 名称
术语意义
图形表示 例:(1)北偏东 α:
方向角
正北或正南方向线与目标 方向线所成的__锐__角__,通
常表达为北(南)偏东(西)α
(2)南偏西 α:
— 返回 —
— 6—
(新教材) 高三总复习•数学
— 返回 —
术语 名称
术语意义
图形表示
术语 名称
术语意义
在目标视线与水平视线(两者在
同一铅垂平面内)所成的角中, 仰角与俯角 目标视线在水平视线__上__方__的
叫做仰角,目标视线在水平视线 _下__方__的叫做俯角
图形表示
— 返回 —
— 4—
(新教材) 高三总复习•数学
术语 名称
方位角
术语意义
从某点的指北方向线起按 _顺__时__针__方向到目标方向线 之间的夹角叫做方位角.方 位角 θ 的范围是0_°_≤__θ_<_3_6_0_°

高考大题规范解答系列——函数与导数高三数学新高考一轮复习优秀课件

高考大题规范解答系列——函数与导数高三数学新高考一轮复习优秀课件
第二章 函数、导数及其应用
高考一轮总复习 • 数学 • 新高考
若 a>0,则当 x∈(-∞,0)∪(a3,+∞)时,f′(x)>0;当 x∈(0,a3)时,f′(x)<0. 故 f(x)在(-∞,0),(a3,+∞)单调递增,在(0,a3)单调递减.3 分 得分点③
若 a=0,f(x)在(-∞,+∞)单调递增.4 分 得分点④ 若 a<0,则当 x∈(-∞,a3)∪(0,+∞)时,f′(x)>0;当 x∈(a3,0)时,f′(x)<0. 故 f(x)在(-∞,a3),(0,+∞)单调递增,在(a3,0)单调递减.5 分 得分点⑤
综上,当且仅当 a=0,b=-1 或 a=4,b=1 时,f(x)在[0,1]的最小值为-1,最 大值为 1.12 分 得分点⑩
高 考 大 题 规 范解答 系列1————函函数数与与导导数数高-三20数21 学版新高高三 考数一学轮( 复新习高优考 秀)一pp轮t课复件习课 件(共3 4张PPT )
第二章 函数、导数及其应用
高 考 大 题 规 范解答 系列1————函函数数与与导导数数高-三20数21 学版新高高三 考数一学轮( 复新习高优考 秀)一pp轮t课复件习课 件(共3 4张PPT )
高考一轮总复习 • 数学 • 新高考
(2)满足题设条件的 a,b 存在. (ⅰ)当 a≤0 时,由(1)知,f(x)在[0,1]单调递增,所以 f(x)在区间[0,1]的最小值为 f(0)=b,最大值为 f(1)=2-a+b.此时 a,b 满足题设条件当且仅当 b=-1,2-a+b =1,即 a=0,b=-1.7 分 得分点⑥ (ⅱ)当 a≥3 时,由(1)知,f(x)在[0,1]单调递减,所以 f(x)在区间[0,1]的最大值为 f(0)=b,最小值为 f(1)=2-a+b.此时 a,b 满足题设条件当且仅当 2-a+b=-1,b =1,即 a=4,b=1.9 分 得分点⑦

2022年全国新高考Ⅰ卷第18题解三角形说题-课件-2024届高三数学一轮复习

2022年全国新高考Ⅰ卷第18题解三角形说题-课件-2024届高三数学一轮复习

感悟
反思
2.加强教考衔接,注重通用方法,强调在深刻理解基础上的
融会贯通、灵活运用,让学生掌握原理、内化方法,主动进
行探究和深层次学习,帮助学生掌握探索的方法与解题的规
律,
3.在数学问题中,给出的条件有时会在量、形关系上显得较为杂
乱,要根据待解问题的表现形式,对所给的量、形关系做和谐统
一的化归,培养学生逻辑推理和数学运算的能力,注重学生核心
2

1 cos2 C
cos2 2 B 1 - cos2 B

1 sin 2 B
(2 cos2 B 1) 2 1 - cos2 B

cos2 B
2
4cos2 B
5
2
cos B
4 2 5
2
当且仅当cosB
2
时,等号成立.
2
反思感悟
原题呈现
命题立意
由第一问sinB -cosC 0,
2
cos x

设f ( x )
, x ( , )
1 sin x
2 2
1 sin x
得f ' ( x )
0
2
(1 sin x)
cos x

所以f ( x)
在( , )上单调递减
1 sin x
2 2

则f ( A) f ( 2 B )
2
所以A
内角之间的关系
学生的数学推理和运算能
力,以及转化和划归的数
学思想,分析,解决问题
的能力
本题设问由易到难,
重在培养学生的逻
辑推理,数学运算
这两大数学核心素

第1章 第1讲集合的概念与运算-2021版高三数学(新高考)一轮复习课件共45张PPT

第1章 第1讲集合的概念与运算-2021版高三数学(新高考)一轮复习课件共45张PPT

第一章 集合与常用逻辑用语
高考一轮总复习 • 数学 • 新高考
返回导航
[解析] (1)B={x|x∈A}={1,2,3}=A,故选 C.
(2)∵集合 A={x|x=sin n3π,n∈Z}={0, 23,- 23},且 B⊆A,∴集合 B 的个 数为 23=8,故选 C.
(3)解法一:(列举法),由题意知
高考一轮总复习 • 数学 • 新高考
返回导航
(2)(多选题)(2020·湖南长郡中学模拟改编)已知集合 M={y|y=x-|x|,x∈R},N
={y|y=(12)x,x∈R},则下列不正确的是(ABD )
A.M=N
B.N⊆M
C.M=∁RN
D.(∁RN)∩M=∅
(3)已知集合 A={x|x2-3x-10≤0},B={x|mx+10>0},若 A⊆B,则 m 的取值范
返回导航
(3)若 a+2=1,则 a=-1,A={1,0,1},不合题意;若(a+1)2=1,则 a=0 或-
2,当 a=0 时,A={2,1,3},当 a=-2 时,A={0,1,1},不合题意;若 a2+3a+3=1,
则 a=-1 或-2,显然都不合题意;因此 a=0,所以 2 0200=1.
∵1∉A,∴a+2≠1,∴a≠-1;(a+1)2≠1,解得 a≠0,-2;a2+3a+3≠1 解
A.(-1,1)
B.(1,2)
C.(-1,+∞)
D.(1,+∞)
[解析] 由题意得A∪B={x|x>-1},即A∪B=(-1,+∞),故选C.
第一章 集合与常用逻辑用语
高考一轮总复习 • 数学 • 新高考
返回导航
6. (2019·全国卷Ⅱ,5分)设集合A={x|x2-5x+6>0},B={x|x-1<0},则A∩B

吉林省吉林市高三数学《选择题》解题思路与方法

吉林省吉林市高三数学《选择题》解题思路与方法

吉林省吉林市高三数学《选择题》解题思路与方法一、数学选择题的特点(1)概念性强:数学中的每个术语、符号,乃至习惯用语,往往都有明确具体的含义,这个特点反映到选择题中,表现出来的就是试题的概念性强。

试题的陈述和信息的传递,都是以数学的学科规定与习惯为依据,绝不标新立异。

(2)量化突出:数量关系的研究是数学的一个重要的组成部分,也是数学考试中一项主要的内容。

在高考的数学选择题中,定量型的试题所占的比重很大。

而且,许多从形式上看为计算定量型选择题,其实不是简单或机械的计算问题,其中往往蕴涵了对概念、原理、性质和法则的考查,把这种考查与定量计算紧密地结合在一起,形成了量化突出的试题特点。

(3)充满思辨性:这个特点源于数学的高度抽象性、系统性和逻辑性。

作为数学选择题,尤其是用于选择性考试的高考数学试题,只凭简单计算或直观感知便能正确作答的试题不多,几乎可以说并不存在。

绝大多数的选择题,为了正确作答,或多或少总是要求考生具备一定的观察、分析和逻辑推断能力,思辨性的要求充满题目的字里行间。

(4)形数兼备:数学的研究对象不仅是数,还有图形,而且对数和图形的讨论与研究,不是孤立开来分割进行,而是有分有合,将它辨证统一起来。

这个特色在高中数学中已经得到充分的显露。

因此,在高考的数学选择题中,便反映出形数兼备这一特点,其表现是:几何选择题中常常隐藏着代数问题,而代数选择题中往往又寓有几何图形的问题。

因此,数形结合与形数分离的解题方法是高考数学选择题的一种重要且有效的思想方法与解题方法。

(5)解法多样化:与其他学科比较,“一题多解”的现象在数学中表现突出。

尤其是数学选择题,由于它有备选项,给试题的解答提供了丰富的有用信息,有相当大的提示性,为解题活动展现了广阔的天地,大大地增加了解答的途径和方法。

常常潜藏着极其巧妙的解法,有利于对考生思维深度的考查。

二、解题思路要想确保在有限的时间内,对十多道选择题作出有效的选择,清晰的解题思路是十分必要的.一般说来,数学选择题有着特定的解题思路,具体概括如下:1.仔细审题,吃透题意审题是正确解题的前提条件,通过审题,可以掌握用于解题的第一手资料——-已知条件,弄清题目要求.审题的关键在于:(1)将有关概念、公式、定理等基础加以集中整理,凡在题中出现的概念、公式、性质等内容都是平时理解、记忆、运用的重点,也是我们在解选择题时首先需要回忆的对象;(2)发现题目中的“机关”-—-题目中的隐含条件,往往是该题的“价值”之所在,也是我们失分的“隐患”.2.反复析题,去伪存真析题就是剖析题意,在认真审题的基础上,对题目进行反复的分析和解剖,从而为正确解题寻找路径,因此析题的过程就是根据题意,联系知识,形成思路的过程。

高三高考数学第一轮复习课件三角函数复习


]
20)在△ABC中,a、b、c分别为角A、B
、C的对边,4sin2
B
2
C
-cos2A=
7 2

(1)求角A的度数;
(2)若a= 3 ,b+c=3,求b和c的值。
解:∴c4∴ocsoc2Aos(21s=A+A2 c-b=co2os122csAb22c)Aa-∴22==c72oA12s=2A60+。1=b272+c2-a2=bc 又∵b+c=3 bc=2
22 3
选A
例4
函数f(x)=cos2(x-
2 3
)+sin2(x-
5 6
)
+msinxcosx的值域为[a,2](x∈R,m>a)求m
值和f(x)的单调增区间。
解 :1 f (x1 2 )[ = c 2 1 x c o o 2 2 4 3 x s ) 4 3 ()c s 1 2 co x ( o 2 2x 5 s 3 5 3 ) (s ) m ] 2 m 2( s s2 i2 x i x n
=sin(45。±35。). ∴ Sinα =sin 10。 ,sinβ=sin 80。
∴α=10。 β=80。 cos(2α-β)=cos60。= 1
2
〔三〕单元测试
一、选择题
1〕函数y=
coxs s
|cox|s |s
inx inx|
|ttaaxxnn|的值域是〔A〕
(A) |3,-1| (B) |3,1| (C) |-1,1,3| (D) |-1,1-3|
(2)若x∈[求a的值。
2
,
2
]时,f(x)的最大值为1,
解:(1)f(x)=sin(x+

新高考数学一轮复习考点知识专题讲解与练习 5 一元二次不等式的解法

新高考数学一轮复习考点知识专题讲解与练习考点知识总结5 一元二次不等式的解法 高考概览高考在本考点的常考题型为选择题、填空题,分值为5分,中、低等难度考纲研读1.会从实际问题的情境中抽象出一元二次不等式模型2.通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的联系3.会解一元二次不等式一、基础小题1.不等式-3<4x -4x 2≤0的解集是( )A .⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-12<x ≤0或1≤x <32 B .{x |x ≤0或x ≥1} C .⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-12<x <32 D .⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≤-12或x ≥32 答案 A解析 不等式可化为⎩⎨⎧4x (x -1)≥0,4x 2-4x -3<0,解得⎩⎪⎨⎪⎧x ≤0或x ≥1,-12<x <32,所以-12<x ≤0或1≤x <32.故选A.2.如果关于x 的不等式x 2<ax +b 的解集是{x |1<x <3},那么b a 等于( )A .-81B .81C .-64D .64答案 B解析 不等式x 2<ax +b 可化为x 2-ax -b <0,其解集为{x |1<x <3},所以1,3是方程x 2-ax -b =0的根,所以⎩⎨⎧1+3=a ,1×3=-b ,解得⎩⎨⎧a =4,b =-3,所以b a =(-3)4=81. 3.不等式5x -102x -3≤0的解集为( ) A .⎩⎨⎧⎭⎬⎫x ⎪⎪⎪32≤x ≤2 B .⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≥2或x <32 C .⎩⎨⎧⎭⎬⎫x ⎪⎪⎪32<x ≤2 D .⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <32 答案 C解析 不等式5x -102x -3≤0等价于(5x -10)(2x -3)≤0,且2x -3≠0,解得32<x ≤2.故选C.4.若关于x 的不等式x 2-ax -a ≤-3的解集不是空集,则实数a 的取值范围是( )A .[2,+∞)B .(-∞,-6]C .[-6,2]D .(-∞,-6]∪[2,+∞)答案 D解析 由关于x 的不等式x 2-ax -a ≤-3的解集不是空集,得对应方程x 2-ax -a +3=0有实数根,即Δ=a 2+4(a -3)≥0,解得a ≥2或a ≤-6,所以实数a 的取值范围是(-∞,-6]∪[2,+∞).故选D.5.若函数f (x )=kx 2-6kx +k +8的定义域为R ,则实数k 的取值范围是( )A .{k |0<k ≤1}B .{k |k <0或k >1}C .{k |0≤k ≤1}D .{k |k >1}答案 C解析 当k =0时,8>0恒成立;当k ≠0时,只需⎩⎨⎧k >0,Δ≤0,即⎩⎨⎧k >0,36k 2-4k (k +8)≤0,则0<k ≤1.综上,0≤k ≤1.6.已知点A (-3,-1)与点B (4,-6)在直线3x -2y -a =0的两侧,则实数a 的取值范围是( )A .(-∞,-24)∪(7,+∞)B .(-7,24)C .(-24,7)D .(-∞,-7)∪(24,+∞)答案 B解析 由题意可得(-9+2-a )(12+12-a )<0,所以-7<a <24.故选B.7.关于x 的不等式x 2-(m +2)x +2m <0的解集中恰有3个正整数,则实数m 的取值范围为( )A .(5,6]B .(5,6)C .(2,3]D .(2,3)答案 A解析 关于x 的不等式x 2-(m +2)x +2m <0可化为(x -m )(x -2)<0,∵该不等式的解集中恰有3个正整数,∴不等式的解集为{x |2<x <m },且5<m ≤6,即实数m 的取值范围是(5,6].故选A.8.对任意实数x ,不等式3x 2+2x +2x 2+x +1>k 恒成立,则正整数k 的值为( )A .1B .2C .3D .4答案 A解析 ∵x 2+x +1恒为正数,∴原不等式等价于3x 2+2x +2>kx 2+kx +k 对x ∈R 恒成立,即(k -3)x 2+(k -2)x +k -2<0恒成立,∵当k =3时,x +1<0不恒成立,∴⎩⎨⎧k -3<0,Δ<0,Δ=(k -2)2-4(k -3)(k -2)=(k -2)(k -2-4k +12)=(k -2)(10-3k ).由Δ<0,得k <2或k >103.又k <3,∴k <2,∵k 为正整数,∴k =1.9.(多选)设[x ]表示不小于实数x 的最小整数,则关于x 的不等式[x ]2+[x ]-12≤0的解可以为( )A .10B .3C .-4.5D .-5答案 BC解析 不等式[x ]2+[x ]-12≤0可化为([x ]+4)([x ]-3)≤0,解得-4≤[x ]≤3.又[x ]表示不小于实数x 的最小整数,且[10]=4,[3]=3,[-4.5]=-4,[-5]=-5,所以不等式[x ]2+[x ]-12≤0的解可以为3,-4.5.故选BC.10.(多选)关于下列四个不等式的说法,正确的有( )A .不等式2x 2-x -1>0的解集是(-∞,1)∪(2,+∞)B .不等式-6x 2-x +2≤0的解集是⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≤-23或x ≥12 C .若不等式ax 2+8ax +21<0的解集是{x |-7<x <-1},那么a 的值是3D .关于x 的不等式x 2+px -2<0的解集是(q ,1),则p +q 的值为-1答案 BCD解析 对于A ,由2x 2-x -1>0得(2x +1)·(x -1)>0,解得x >1或x <-12,∴不等式的解集为⎝ ⎛⎭⎪⎫-∞,-12∪(1,+∞),故错误;对于B ,∵-6x 2-x +2≤0,∴6x 2+x -2≥0,∴(2x -1)(3x +2)≥0,∴x ≥12或x ≤-23,故正确;对于C ,由题意可知-7和-1为方程ax 2+8ax +21=0的两个根,∴-7×(-1)=21a ,故a =3,故正确;对于D ,依题意得q ,1是方程x 2+px -2=0的两根,∴q +1=-p ,即p +q =-1,故正确.故选BCD.11.若a <0,则关于x 的不等式组⎩⎨⎧ax -a 2<0,x 2-ax -2a 2<0的解集为________.答案 (a ,-a )解析 因为a <0,所以由ax -a 2=a (x -a )<0,得x >a ,由x 2-ax -2a 2=(x -2a )(x +a )<0,得2a <x <-a .所以原不等式组的解集为(a ,-a ).12.已知三个不等式:①x 2-4x +3<0,②x 2-6x +8<0,③2x 2-9x +m <0.则同时满足①②的x 的取值范围为________.要使同时满足①②的所有x 的值满足③,则实数m 的取值范围为________.答案 (2,3) (-∞,9]解析 由①得1<x <3,由②得2<x <4,故同时满足①②的x 的取值范围为2<x <3.要使同时满足①②的所有x 的值满足③,即不等式2x 2-9x +m <0在x ∈(2,3)上恒成立,即m <-2x 2+9x 在x ∈(2,3)上恒成立,又-2x 2+9x 在x ∈(2,3)上大于9,所以实数m 的取值范围为m ≤9.二、高考小题13.(2022·天津高考)设x ∈R ,使不等式3x 2+x -2<0成立的x 的取值范围为________.答案 ⎝ ⎛⎭⎪⎫-1,23 解析 3x 2+x -2<0变形为(x +1)(3x -2)<0,解得-1<x <23,故使不等式成立的x 的取值范围为⎝ ⎛⎭⎪⎫-1,23. 14.(2015·广东高考)不等式-x 2-3x +4>0的解集为________(用区间表示).答案 (-4,1)解析 不等式-x 2-3x +4>0等价于x 2+3x -4<0,解得-4<x <1.15.(经典江苏高考)已知函数f (x )=x 2+mx -1,若对于任意x ∈[m ,m +1],都有f (x )<0,则实数m 的取值范围是________.答案 ⎝ ⎛⎭⎪⎫-22,0 解析 由题可得f (x )<0对于x ∈[m ,m +1]恒成立,等价于⎩⎨⎧f (m )=2m 2-1<0,f (m +1)=2m 2+3m <0,解得-22<m <0.三、模拟小题16.(2022·山东枣庄八中月考)若关于x 的不等式x 2-4x -2-a >0在区间(1,4)内有解,则实数a 的取值范围是( )A .(-∞,2)B .(-∞,-2)C .(-6,+∞)D .(-∞,-6)答案 B解析 令f (x )=x 2-4x -2-a ,则函数的图象为开口向上且以直线x =2为对称轴的抛物线,故在区间(1,4)上,f (x )<f (4)=-2-a ,若不等式x 2-4x -2-a >0在区间(1,4)内有解,则-2-a >0,解得a <-2,即实数a 的取值范围是(-∞,-2).故选B.17.(2022·北京房山区月考)已知函数f (x )=⎩⎨⎧x +2,x ≤0,-x +2,x >0,则不等式f (x )≥x 2的解集为( )A .{x |-1≤x ≤1}B .{x |-2≤x ≤2}C .{x |-2≤x ≤1}D .{x |-1≤x ≤2}答案 A解析 ∵函数f (x )=⎩⎨⎧x +2,x ≤0,-x +2,x >0,则不等式f (x )≥x 2,即⎩⎨⎧x ≤0,x +2≥x 2①或⎩⎨⎧x >0,-x +2≥x2②.解①可得-1≤x ≤0,解②可得0<x ≤1.综上可得,不等式f (x )≥x 2的解集为[-1,1].故选A.18.(2022·湖南湘潭高三模拟)在关于x 的不等式x 2-(a +1)x +a <0的解集中至多包含2个整数,则a 的取值范围是( )A .(-3,5)B .(-2,4)C .[-3,5]D .[-2,4]答案 D解析 因为关于x 的不等式x 2-(a +1)x +a <0可化为(x -1)(x -a )<0,当a >1时,不等式的解集为1<x <a ,要使得解集中至多包含2个整数,则a ≤4,即1<a ≤4;当a =1时,不等式的解集为∅,满足题意;当a <1时,不等式的解集为a <x <1,要使得解集中至多包含2个整数,则a ≥-2,即-2≤a <1.综上,实数a 的取值范围是[-2,4].故选D.19.(2022·山西运城模拟)某电商新售A 产品,售价每件50元,年销售量为11.8万件.为支持新品发售,第一年免征营业税,第二年需征收销售额x %的营业税(即每销售100元征税x 元).第二年,电商决定将A 产品的售价提高50·x %1-x %元,预计年销售量减少x 万件.要使第二年A 产品上交的营业税不少于10万元,则x 的最大值是( )A .2B .5C .8D .10答案 D解析 由题意,第二年A 产品年销售量为(11.8-x )万件,A 产品的售价为⎝ ⎛⎭⎪⎫50+50·x %1-x %元,所以第二年A 产品年销售额为⎝ ⎛⎭⎪⎫50+50·x %1-x %(11.8-x )万元,则第二年A 产品上交的营业税为⎝ ⎛⎭⎪⎫50+50·x %1-x %(11.8-x )x %万元.由题意可得⎝ ⎛⎭⎪⎫50+50·x %1-x %(11.8-x )x %≥10,化简得x 2-12x +20≤0,即(x -2)(x -10)≤0,所以2≤x ≤10,所以x 的最大值是10.故选D.20.(多选)(2022·湖北宜昌模拟)已知关于x 的不等式kx 2-2x +6k <0(k ≠0),则下列说法正确的是( )A .若不等式的解集为{x |x <-3或x >-2},则k =-25B .若不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ∈R ,x ≠1k ,则k =66 C .若不等式的解集为R ,则k <-66D .若不等式的解集为∅,则k ≥66答案 ACD解析 因为不等式的解集为{x |x <-3或x >-2},所以k <0,且-3与-2是方程kx 2-2x +6k =0的两根,所以(-3)+(-2)=2k ,解得k =-25,故A 正确;因为不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ∈R ,x ≠1k ,所以⎩⎨⎧k <0,Δ=4-24k 2=0,解得k =-66,故B 错误;由题意,得⎩⎨⎧k <0,Δ=4-24k 2<0,解得k <-66,故C 正确;由题意,得⎩⎨⎧k >0,Δ=4-24k 2≤0,解得k ≥66,故D 正确.故选ACD.21.(多选)(2022·江苏省淮安市清江浦区校级期末)若关于x 的一元二次方程(x -2)(x -3)=m 有实数根x 1,x 2,且x 1<x 2,则下列说法中正确的是( )A .当m =0时,x 1=2,x 2=3B .m >-14C .当m >0时,2<x 1<x 2<3D .当m >0时,x 1<2<3<x 2答案 ABD解析 当m =0时,方程为(x -2)(x -3)=0,解得x 1=2,x 2=3,所以A 正确;方程整理可得x 2-5x +6-m =0,有不同的两实数根的条件为Δ=25-4(6-m )>0,可得m >-14,所以B 正确;当m >0时,即(x -2)(x -3)>0,函数f (x )=(x -2)(x -3)-m 的图象与x 轴交于点(x 1,0),(x 2,0),可得x 1<2<3<x 2,所以C 不正确,D 正确.故选ABD.22.(2022·广西柳州模拟)若不等式a 2+8b 2≥λb (a +b )对任意的实数a ,b 均成立,则实数λ的取值范围为________.答案 [-8,4]解析 由已知可得a 2-λab +(8-λ)b 2≥0,若b =0,则a 2≥0恒成立;若b ≠0,对不等式两边同除以b 2可得⎝ ⎛⎭⎪⎫a b 2-λ·a b +8-λ≥0恒成立,故Δ=λ2-4(8-λ)≤0,解得-8≤λ≤4,故实数λ的取值范围为[-8,4].一、高考大题本考点在近三年高考中未涉及此题型.二、模拟大题1.(2022·河南信阳高三模拟)已知关于x 的不等式(ax -1)(x -1)<0.(1)当a =2时,解上述不等式;(2)当a <1时,解上述关于x 的不等式.解 (1)当a =2时,代入可得(2x -1)(x -1)<0,解不等式可得12<x <1,所以不等式的解集为⎝ ⎛⎭⎪⎫12,1. (2)关于x 的不等式(ax -1)(x -1)<0.若a <1,当a =0时,代入不等式可得-x +1<0,解得x >1;当0<a <1时,化简不等式可得a ⎝ ⎛⎭⎪⎫x -1a (x -1)<0,由1a >1,可得1<x <1a ; 当a <0时,化简不等式可得a ⎝ ⎛⎭⎪⎫x -1a (x -1)<0,解不等式可得x >1或x <1a . 综上可知,当a =0时,不等式的解集为{x |x >1};当0<a <1时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪1<x <1a ;当a <0时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x >1或x <1a . 2.(2022·湖北襄阳模拟)已知f (x )=ax 2+x -a ,a ∈R .(1)若不等式f (x )>(a -1)x 2+(2a +1)x -3a -1对任意的x ∈[-1,1]恒成立,求实数a 的取值范围;(2)若a <0,解不等式f (x )>1.解 (1)原不等式等价于x 2-2ax +2a +1>0对任意的x ∈[-1,1]恒成立, 设g (x )=x 2-2ax +2a +1=(x -a )2-a 2+2a +1,x ∈[-1,1],①当a <-1时,g (x )min =g (-1)=1+2a +2a +1>0,无解;②当-1≤a ≤1时,g (x )min =g (a )=-a 2+2a +1>0,得1-2<a ≤1;③当a >1时,g (x )min =g (1)=1-2a +2a +1>0恒成立.综上,实数a 的取值范围为(1-2,+∞).(2)f (x )>1,即ax 2+x -a -1>0,即(x -1)(ax +a +1)>0,因为a <0,所以(x -1)⎝⎛⎭⎪⎫x +a +1a <0, 因为1-⎝⎛⎭⎪⎫-a +1a =2a +1a , 所以当-12<a <0时,1<-a +1a ,解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1<x <-a +1a ; 当a =-12时,不等式可化为(x -1)2<0,不等式无解;当a <-12时,1>-a +1a ,解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-a +1a <x <1. 3.(2022·陕西咸阳高三阶段检测)设二次函数f (x )=ax 2+bx +c ,函数F (x )=f (x )-x 的两个零点为m ,n (m <n ).(1)若m =-1,n =2,求不等式F (x )>0的解集;(2)若a >0,且0<x <m <n <1a ,比较f (x )与m 的大小.解 (1)由题意知,F (x )=f (x )-x =a (x -m )·(x -n ).当m =-1,n =2时,不等式F (x )>0,即a (x +1)(x -2)>0.当a >0时,不等式F (x )>0的解集为{x |x <-1或x >2};当a <0时,不等式F (x )>0的解集为{x |-1<x <2}.(2)f (x )-m =F (x )+x -m=a (x -m )(x -n )+x -m=(x -m )(ax -an +1),因为a >0,且0<x <m <n <1a ,所以x -m <0,1-an +ax >0.所以f (x )-m <0,即f (x )<m .4.(2022·上海松江区高三检测)已知f (x )=2x 2+bx +c ,不等式f (x )<0的解集是(0,5).(1)求f (x )的解析式;(2)若不等式组⎩⎨⎧f (x )>0,f (x +k )<0的正整数解只有一个,求实数k 的取值范围; (3)若对于任意x ∈[-1,1],不等式tf (x )≤2恒成立,求实数t 的取值范围. 解 (1)因为不等式f (x )<0的解集是(0,5),所以0,5是一元二次方程2x 2+bx +c =0的两个实数根,可得⎩⎪⎨⎪⎧0+5=-b 2,0×5=c 2,解得⎩⎨⎧b =-10,c =0, 所以f (x )=2x 2-10x .(2)不等式组⎩⎨⎧f (x )>0,f (x +k )<0, 即⎩⎨⎧2x 2-10x >0,2(x 2+2kx +k 2)-10(x +k )<0, 解得⎩⎨⎧x <0或x >5,-k <x <5-k ,因为不等式组的正整数解只有一个,可得该正整数解就是6,可得6<5-k ≤7,解得-2≤k <-1, 所以实数k 的取值范围是[-2,-1).(3)tf (x )≤2,即t (2x 2-10x )≤2,即tx 2-5tx -1≤0, 当t =0时显然成立;当t >0时,有⎩⎨⎧t ·1-5t ·(-1)-1≤0,t ·1-5t ·1-1≤0, 即⎩⎨⎧t +5t -1≤0,t -5t -1≤0,解得-14≤t ≤16,所以0<t ≤16;当t <0时,函数y =tx 2-5tx -1在[-1,1]上单调递增,所以只要其最大值满足条件即可,所以有t -5t -1≤0,解得t ≥-14,即-14≤t <0.综上,实数t 的取值范围是⎣⎢⎡⎦⎥⎤-14,16.。

高考数学复习考点知识讲解课件7 函数的单调性与最值


以 f(x)的最大值为 f(2)=7.
— 26 —
(新教材) 高三总复习•数学
— 返回 —
求函数最值的五种常用方法 (1)单调性法:先确定函数的单调性,再由单调性求最值. (2)图象法:先作出函数的图象,再观察其最高点、最低点,求出最值. (3)换元法:对比较复杂的函数可通过换元转化为熟悉的函数,再用相应的方法求最 值. (4)基本不等式法:先对解析式变形,使之具备“一正二定三相等”的条件后用基本 不等式求出最值. (5)导数法:先求导,然后求出在给定区间上的极值,最后结合端点值,求出最值.
A.32
B.2
C.3
D.3.5
— 返回 —
[解析] ∵函数 y=x-x 1=1+x-1 1在[2,3]上单调递减,∴当 x=2 时,y 取得最大值 2.故选 B.
— 12 —
(新教材) 高三总复习•数学
4.函数 f(x)=12 x2-x-1 的单调递增区间为( A )
A.-∞,1-2
5
B.-∞,12
— 9—
(新教材) 高三总复习•数学
— 返回 —
诊断自测 1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)对于函数 f(x),x∈D,若对任意 x1,x2∈D,且 x1≠x2 有(x1-x2)[f(x1)-f(x2)]>0,则 函数 f(x)在区间 D 上是增函数.( √ ) (2)函数 y=1x的单调递减区间是(-∞,0)∪(0,+∞).( × ) (3)对于函数 y=f(x),若 f(1)<f(3),则 f(x)为增函数.( × ) (4)函数 y=f(x)在[1,+∞)上是增函数,则函数的单调递增区间是[1,+∞).( × )
— 25 —ຫໍສະໝຸດ (新教材) 高三总复习•数学

高三数学 名校尖子生培优大专题 选择题解法探讨6 筛选排除法教案 新人教A版

第1讲:选择题解法探讨选择题的题型构思精巧,形式灵活,知识容量大,覆盖面广,一般不拘泥于具体的知识点,而是将数学知识、方法等原理融于一体,突出对数学思想方法的考查,可以比较全面地考察学生的基础知识和基本技能,还能考查学生的思维敏捷性,是高考数学中的一种重要题型。

近年来,高考数学试题推出了一些思路开阔、情景新颖脱俗的选择题,解决这类问题主要注意三个方面:一是提高总体能力;二是要跳出传统思维定式,学会数学的合情推理;三是要熟练地进行数学图形、符号、文字三种语言的转换。

在全国各地高考数学试卷中,选择题约占总分的30%~40%,因此掌握选择题的解法,快速、准确地解答好选择题是夺取高分的关键之一。

选择题由题干和选项两部分组成,题干可以是由一个问句或一个半陈述句构成,选项中有四个答案,至少有一个正确的答案,这个正确的答案可叫优支,而不正确的答案可叫干扰支或惑支。

目前在高考数学试卷中,如果没有特别说明,都是“四选一”的选择题,即单项选择题。

选择题要求解题者从若干个选项中选出正确答案,并按题目的要求,把正确答案的字母代号填入指定位置。

笔者将选择题的解法归纳为应用概念法、由因导果法、执果索因法、代入检验法、特殊元素法、筛选排除法、图象解析法、待定系数法、分类讨论法、探索规律法十种,下面通过2012年全国各地高考的实例探讨这十种方法。

六、筛选排除法:筛选排除法是解选择题的一种常用方法,使用排除法的前提条件是答案唯一,它的解题方法是根据题设条件,结合选项,通过观察、比较、猜想推理和计算,进行排查,从四个选项中把不正确的答案一一淘汰,最后得出正确答案的方法。

筛选排除法可通过观察、比较、分析和判断,进行简单的推理和计算选出正确的答案,特别对用由因导果法解之较困难而答案又模棱两可者更有用。

典型例题:例1:已知{}n a为等比数列,下面结论中正确的是【 】A.132a a 2a +≥ B. 222132 a a 2a +≥ C.若a 1=a 3,则a 1=a 2 D.若a 3>a 1,则a 4>a 2 【答案】B 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档