六年级奥数精选题

合集下载

小学六年级奥数题及解答(五篇)

小学六年级奥数题及解答(五篇)

【导语】在解奥数题时,经常要提醒⾃⼰,遇到的新问题能否转化成旧问题解决,化新为旧,透过表⾯,抓住问题的实质,将问题转化成⾃⼰熟悉的问题去解答。

转化的类型有条件转化、问题转化、关系转化、图形转化等。

以下是整理的《⼩学六年级奥数题及解答(五篇)》相关资料,希望帮助到您。

⼩学六年级奥数题及解答篇⼀ 3箱苹果重45千克.⼀箱梨⽐⼀箱苹果多5千克,3箱梨重多少千克? 考点:整数、⼩数复合应⽤题。

专题:简单应⽤题和⼀般复合应⽤题。

分析:可先求出3箱梨⽐3箱苹果多的重量,再加上3箱苹果的重量,就是3箱梨的重量.据此解答 解答:解:45+5×3 =45+15 =60(千克) 答:3箱梨重60千克。

点评:本题的关键是先求出3箱梨⽐3箱苹果多的重量,然后再根据加法的意义求出3箱梨的重量。

⼩学六年级奥数题及解答篇⼆ 题⽬: ⼀块牧场长满了草,每天均匀⽣长。

这块牧场的草可供10头⽜吃40天,供15头⽜吃20天。

可供25头⽜吃多少天? 答案与解析: 假设1头⽜1天吃草的量为1份 (1)每天新⽣的草量为:(10×40-15×20)÷(40-20)=5(份); (2)原来的草量为:10×40-40×5=200(份); (3)安排5头⽜专门吃每天新长出来的草,这块牧场可供25头⽜吃:200÷(25-5)=10(天)。

⼩学六年级奥数题及解答篇三 我⼈民解放军追击⼀股逃窜的敌⼈,敌⼈在下午16点开始从甲地以每⼩时10千⽶的速度逃跑,解放军在晚上22点接到命令,以每⼩时30千⽶的速度开始从⼄地追击。

已知甲⼄两地相距60千⽶,问解放军⼏个⼩时可以追上敌⼈? 解答案与解析:是[10×(22-6)]千⽶,甲⼄两地相距60千⽶。

由此推知 追及时间=[10×(22-6)+60]÷(30-10)=220÷20=11(⼩时) 答:解放军在11⼩时后可以追上敌⼈。

六年级奥数必考50道题

六年级奥数必考50道题

六年级奥数必考50道题1、停车场共停24辆车,其中汽车有4个轮子,摩托车有3个轮子,车轮共86个,求汽车和摩托车各几辆?2、一辆汽车共坐50人,其中部分人买A种票,每张0.80元,另一部分买B种票,每张0.30元,售票员统计买A种票比B种票多收18元,求买A种票和B种票各几个人买?3、十元币和五元币共45张,合计350元,求十元币和5元币各几张?4、数学考试共有5题,全班52人参加,共做对181道题,已知每人至少做对一题,对一题的有7人,5题全对有6人,做对二题和三题的人数一样多,求做对4题有几人?5、买4元8元10元的笔记本58本,用去468元,已知4元和8元笔记本数量一样多,三种笔记本各买了几本?6、数学测试原卷共15题,对一题得8分,做错倒扣4分,小英得了72分,她做对了几题?7、买故事书50本,连环画30本,一共花310元,每本故事书比连环画多3元,求故事书和连环画各几元?8、小明骑车晴天每天行35千米,雨天每天行22千米,13天共行403千米,求共有雨天几天?9、六年级数学竞赛共20题,做一题5分,不写或写错扣3分,小建得了60分,他做对了几道题?10、工人植树晴天每天栽20棵,雨天每天栽12棵,几天共栽112棵,平均每天栽14棵,求共有几个雨天?11、小明用40元买14张贺年卡和明信片,贺年卡每张3元5角,明信片每张2元5角,贺年卡和明信片各几张?12、小王用汽车运了500个花瓶,每个运费40元,损坏一个倒赔200元,小王共得了8000元,损坏了几个瓶子?13、有一桶油,用大瓶装要72个瓶子,用小瓶装要90个瓶子,已知每个小瓶比大瓶少装4kg,求这桶油多少kg?14、有大小鸡蛋共100个,大鸡蛋每个6角,小鸡蛋每个4角,已知大鸡蛋比小鸡蛋多卖12元,大小鸡蛋各几个?15、4轮车小车和6轮车小车共18辆96个轮子,两种小车各有几辆?16、鸡兔共40只,110只脚,鸡兔各几只?17、两轮自行车和三轮摩托车共32辆6个轮子,求自行车和摩托车各多少量?18、小红家有鸡和兔35只,100只脚,鸡兔各几只?19、动物园中养龟和鹤共84只,240条腿,求龟鹤各几只?20、小明养了鸡和兔共24只,60条腿,求鸡兔各几只?21、ABCDE参赛,AB平均95分,CDE平均85分,5个平均分是多少?22、小明9次考试成绩分别为:92,88,84,96,99,81,100,80,90问平均分是多少分?23、小红7次考试分别为:96,95,89,90,91,100,97问7次平均分?24、小明第一次考了82分,第二次85分,第三次84分,第四次89分,第五次分数比五次平均分多9.6分,问第五次考多少分?25、小明做题,第一周做了83道,第二周做了74道,第三周做了71道,第四周做64道,第五周做的比前四周平均多4道,问第五周做了几道?26、小华7次考试分别得98,87,94,100,95,96,93.6,求每次考试的平均分?27、小明5次考试竞赛的平均分是91分,第六次考了96分,求6次得考试平均成绩?28、小亮游泳第一次游325米,第二次游的比两次游的平均多8米,小亮第2次游了几米?29、5个学生平均考94分,其中3个学生平均为92分,求另2个人的平均成绩?30、农机站有960kg的柴油,用了6天还剩240kg,照这样算剩下的柴油还可以用几天?31、小梅做跳绳练习,第一次跳了67下,第二次跳了76下,她要想三次平均成绩达到80下,跳多少下?32、两人的身高是123cm,另外四人的身高平均132cm,求6人平均身高?33、小刚计划4天做15道题,结果4天多做了9道题,平均每天做了多少道?34、一班有40人,二班有42人,三班有45人,开学后,又转来11个学生,怎么分才能使每班人数相等?35、小华8次测验得:99,92,79,85,95,86,94,90求每次的平均分?36、小明6次数学测验分别得88,89,95,87,97,96分求每次测验得平均分?37、小明今年13岁,小聪9岁,当两人年龄和是40岁时,两人各是多少岁?38、林下小学购买的排球是篮球的3倍,排球比篮球多18只,购买的排球和篮球各有多少只?购买的排球和篮球共有多少只?39、有大小两个书架,大书架上书的本数是小书架上的4倍,如果从大书架上取出150本放到小书架上,这时,两书架上的书的本数相等。

小学六年级奥数题(六篇)

小学六年级奥数题(六篇)

【导语】在解奥数题时,经常要提醒⾃⼰,遇到的新问题能否转化成旧问题解决,化新为旧,透过表⾯,抓住问题的实质,将问题转化成⾃⼰熟悉的问题去解答。

转化的类型有条件转化、问题转化、关系转化、图形转化等。

以下是整理的《⼩学六年级奥数题(六篇)》相关资料,希望帮助到您。

【篇⼀】⼩学六年级奥数题 1、哥哥今年18岁,弟弟今年12岁。

当两⼈的年龄和是40岁时,兄弟两⼈各多少岁? 2、甲、⼄、丙三⼈各有若⼲本故事书,甲拿出⾃⼰的⼀部分书给⼄、丙,例⼄、丙两⼈的书增加⼀倍,⼄拿出⼀部分书给甲、丙,使甲、丙两⼈的书增加⼀倍,丙也拿出⼀部分书给甲、⼄,使甲、⼄两⼈的书也增加⼀倍,这时甲、⼄、丙三⼈的书都是16本。

甲、⼄、丙原来各有多少本故事书? 3、有⼀只⽔桶装满了8千克⽔,如果把这桶⽔平均分装在两只⽔桶内,两只⽔桶分别可装5千克与3千克。

最少需要倒多少次? 4、甲、⼄、丙三校在体育⽤品商店买了不同数⽬的⾜球,共48个。

第⼀次从甲校的⾜球中拿出与⼄校个数相同的⾜球并⼊⼄校;第⼆次再从⼄校现有的⾜球中拿出与丙校个数相同的⾜球并⼊丙校;第三次⼜从丙校现有的'⾜球中拿出与这时甲校个数相同的⾜球并⼊甲校。

经过这样的变动后,三校⾜球的个数正好相等。

已知每个⾜球的售价是12元,问三校原来买的⾜球各值多少元? 5、甲、⼄两个油桶各装了15千克油,售货员卖了14千克。

后来,售货员从剩下较多油的甲桶倒⼀部分给⼄桶,使⼄桶的油增加⼀倍;然后⼜从⼄桶倒⼀部分给甲桶,使甲桶的油也增加⼀倍;这时甲桶的油恰好是⼄桶油的3倍。

问售货员从两个油桶⾥各卖了多少千克油?【篇⼆】⼩学六年级奥数题 1、求下列时刻的时针与分针所形成的⾓的度数。

(1)9点整 (2) 2点整 (3)5点30分 (4)10点20分 (5)7点36分 2、从时针指向4点开始,再经过多少分钟,时针正好与分针重合? 3、某⼈下午6点多外出时,看⼿表上两指针的夹⾓为1100,下午7点前回家时发现两指针夹⾓仍为1100,问:他外出多长时间? 4、⼀点到两点之间,分针与时针在什么时候成直⾓? 5、在3点⾄4点之间的什么时刻,钟表的时针和分针分别相互重合和相互垂直。

小学六年级数学奥数题100题附答案(完整版)

小学六年级数学奥数题100题附答案(完整版)

小学六年级数学奥数题100题附答案(完整版)题目1甲、乙两车分别从A、B 两地同时相向而行,在距A 地80 千米处相遇,相遇后两车继续前进,甲车到达B 地、乙车到达A 地后均立即按原路返回,第二次在距B 地60 千米处相遇。

A、B 两地相距多少千米?答案:第一次相遇时,甲、乙两车共行了A、B 两地的距离,其中甲行了80 千米。

第二次相遇时,甲、乙两车共行了A、B 两地距离的3 倍,则甲车行了80×3 = 240 千米。

此时甲行的路程是一个A、B 两地的距离加上60 千米,所以A、B 两地相距240 - 60 = 180 千米。

题目2一项工程,甲单独做12 天完成,乙单独做18 天完成。

两人合作多少天可以完成这项工程的2/3 ?答案:甲的工作效率为1/12,乙的工作效率为1/18,两人合作的工作效率为1/12 + 1/18 = 5/36 。

完成工程的2/3 需要的时间为2/3 ÷5/36 = 24/5 = 4.8 天。

题目3一个分数,分子与分母的和是68,约分后是8/9,原来这个分数是多少?答案:设分子为8x,分母为9x,则8x + 9x = 68,17x = 68,x = 4 。

分子为8×4 = 32,分母为9×4 = 36,原来的分数是32/36 。

题目4在一个周长为62.8 米的圆形花坛周围铺一条 2 米宽的小路,这条小路的面积是多少平方米?答案:花坛的半径:62.8÷3.14÷2 = 10 米加上小路后的半径:10 + 2 = 12 米小路的面积:3.14×(12²- 10²) = 138.16 平方米题目5有浓度为20%的糖水300 克,要使其浓度变为40%,需要加糖多少克?答案:原来糖水中糖的质量:300×20% = 60 克设加糖x 克,(60 + x)÷(300 + x) = 40% ,解得x = 100 克题目6一本书,第一天看了全书的1/4,第二天看了120 页,这时已看的页数与未看的页数比是2:3,这本书共有多少页?答案:已看的页数占全书的2/(2 + 3) = 2/5第二天看的占全书的2/5 - 1/4 = 3/20全书页数:120÷3/20 = 800 页题目7一个长方体的棱长总和是120 厘米,长、宽、高的比是5:3:2,这个长方体的体积是多少立方厘米?答案:一组长、宽、高的和:120÷4 = 30 厘米长:30×5/(5 + 3 + 2) = 15 厘米宽:30×3/(5 + 3 + 2) = 9 厘米高:30×2/(5 + 3 + 2) = 6 厘米体积:15×9×6 = 810 立方厘米题目8甲、乙两个仓库共存粮90 吨,其中甲仓库的存粮是乙仓库的4/5。

小学六年级超难奥数题

小学六年级超难奥数题

小学六年级超难奥数题1、(鸡兔同笼问题)小丽买回0.8元一本和0.4元一本的练习本共50本,付出人民币32元。

0.8元一本的练习本有多少本?2、(年龄问题)5年前父亲的年龄是儿子的7倍。

15年后父亲的年龄是儿子的二倍,父亲和儿子今年各是多少岁?3、(盈亏问题)王老师播发笔记本给学生们,每人6本则剩41本,每人8本则高29本。

Morena多少个学生?存有多少个笔记本?4、(还原问题)便民水果店卖芒果,第一次卖掉总数的一半多2个,第二次卖掉剩下的一半多1个,第三次卖掉第二次卖后剩下的一半少1个,这时只剩下11个芒果。

求水果店里原来一共有多少个芒果?5、(转让问题)学校买来6张桌子和6把椅子共用去元。

未知3张桌子的价钱和5把椅子的价钱成正比,每张桌子和每把椅子各就是多少元?6、(安排)烤面包的架子上一次最多只能烤两个面包,烤一个面包每面需要2分钟,那么烤三个面包最少需要多少分钟?7、(油和桶问题)一桶油连桶共重18千克,用回去油的一半后,连桶还轻9.75千克,旧有油多少千克?桶轻多少千克?8、(和倍)青青农场一共养鸡、鸭、鹅共只,鸭的只数是鸡的2倍,鹅的只数是鸭的'4倍,问鸡、鸭、鹅各有多少只?9、(鸡兔同笼)实验小学举办数学竞赛,每搞对一题些9分后,做错一题上边3分后,共计12道题,大受高得了84分后,小旺做错了几道题?10、(相遇问题)甲、乙两人同时从相距20xx米的两地相向而行,甲每分钟行55米,乙每分钟行45米,如果一只狗与甲同时同向而行,每分钟行米,遇到乙后,立即回头向甲跑去,遇到甲再向乙跑去。

这样不断来回,直到甲和乙相遇为止,狗共行了多少米?1、一个整数除以13后,乘积的最后三位数就是,那么这样的整数中最轻的就是多少?2、将37拆成若干个不同的质数之和,使得这些质数的乘积尽可能大,那么,这个乘积等于多少?3、一个五位数,五个数字各相同,且是13的倍数,则合乎以上条件的最轻的数是多少?4、一把钥匙只能开一把锁,现在有4把锁,但不知道哪把钥匙开哪把锁,最多要试几次能配好全部的钥匙和锁?5、用长和阔就是4公分和3公分的长方形大木块,拆成一个正方形,最少必须用这样的木块多少块?6、个自然数,他们的总和是,在这些数里,奇数的个数比偶数是个数多,那么这些数里至多有多少个偶数?7、×××(),必须并使这个连乘积的最后四个数字都就是零,在括号内最轻应填多少?8、有三个连续自然数,他们依次是12、13、14的倍数,这三个连续自然数中(除13外)是13倍数的那个数最小是多少?9、将发货的单价为40块的商品按50块卖出时,每个的利润就是10块,但就可以买进个,未知这种商品每个涨价1块,其销售量就增加10个,为了赚取最少的利润,售价应当订为多少?10、一个三角形的三条边长是三个两位的连续偶数,他们的末位数字和能被7整除,这个三角形的周长等于多少?1、(归属于一问题)工程队计划用60人5天修通一条短米的公路,实际上减少了20人,每人每天比计划多修成了4米,实际修完这条路譬如了几天?2、(相遇问题)甲、乙两辆汽车同时从东西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。

小学六年级奥数题及答案

小学六年级奥数题及答案

小学六年级奥数题及答案精选小学六年级奥数题及答案9篇六年级的奥数学习,是巩固加强的阶段,这个时候要多做奥数题,进行训练。

要提高做奥数的速度和正确率。

以下是店铺整理的小学六年级奥数题及答案,希望对大家有所帮助。

小学六年级奥数题及答案篇1六年级的同学们马上就要面临小升初的考试了,所以一定要在这段时间不能松懈,把每天的练习坚持到底你才能有更大的收获。

两地相距900米,甲、乙二人同时、同地向同一方向行走,甲每分钟走80米,乙每分钟走100米,当乙到达目标后,立即返回,与甲相遇,从出发到相遇共经过多少分钟?答案与解析:甲、乙二人开始是同向行走,乙走得快,先到达目标.当乙返回时运动的方向变成了相向而行,把相同方向行走时乙用的时间和返回时相向而行的时间相加,就是共同经过的时间.乙到达目标时所用时间:900100=9(分钟),甲9分钟走的路程:80x9=720(米),甲距目标还有:900-720=180(米),相遇时间:180(100+80)=1(分钟),共用时间:9+1=10(分钟).另解:观察整个行程,相当于乙走了一个全程,又与甲合走了一个全程,所以两个人共走了两个全程,所以从出发到相遇用的时间为:900x2(100+80)=10分钟.小学六年级奥数题及答案篇2内容概述较为复杂的以成本与利润、溶液的浓度等为内容的分数与百分数应用题.要利用整数知识,或进行分类讨论的综合性和差倍分问题.典型问题1.某店原来将一批苹果按100%的利润(即利润是成本的100%)定价出售.由于定价过高,无人购买.后来不得不按38%的利润重新定价,这样出售了其中的40%.此时,因害怕剩余水果腐烂变质,不得不再次降价,售出了剩余的全部水果.结果,实际获得的总利润是原定利润的30.2%.那么第二次降价后的价格是原定价的百分之多少?【答案解析】第二次降价的利润是:(30.2%-40%×38%)÷(1-40%)=25%,价格是原定价的(1+25%)÷(1+100%)=62.5%.2.某商品76件,出售给33位顾客,每位顾客最多买三件.如果买一件按原定价,买两件降价10%,买三件降价20%,最后结算,平均每件恰好按原定价的85%出售.那么买三件的顾客有多少人?【答案解析】3×(1-20%)+1×100%=340%=4×85%,所以1个买一件的与1个买三件的平均,正好每件是原定价的85%.由于买2件的,每件价格是原定价的1-10%=90%,所以将买一件的与买三件的一一配对后,仍剩下一些买三件的人,由于3×(2×90%)+2×(3×80%)=12×85%.所以剩下的买三件的人数与买两件的人数的比是2:3。

六年级奥数必考30道题

六年级奥数必考30道题1.一件工程,甲独做15天完成,乙独做10天完成,如果甲先做了这项工程的1/3,剩下的由甲、乙合做,还要几天才能完成?2.某商店经销一种品牌的空调,其中某一型号的空调每台进价为m元,商店将进价提高30%后作为零售价进行销售,一段时间后,商店又以9 $折优惠价促销,这时该型号空调的零售价为____元.3.一个长方体,如果高增加2厘米,就成为一个正方体,这时表面积比原来增加了48平方厘米.原来的长方体的体积是多少立方厘米.4.一个长方体的长、宽、高分别是5cm、4cm、6cm,从中截取一个最大的正方体,剩下部分的体积是( )cm³。

5.一项工程,甲单独做20天完成,乙单独做30天完成,甲先做了这项工程的(1/3),剩下的由甲、乙合做,还要几天才能完成?6.一项工程,甲单独做40天完成,乙单独做60天完成.现在由甲先做若干天后,乙来替甲.已知乙比甲多做了10天.问:甲做了几天?7.一项工程,甲独做20天完成,乙独做30天完成.现在由两人合做完成.已知甲因病休息了一天.问:从开始到完工共用了多少天?8.一项工程,甲独做15天可以完成,乙独做10天完成.如果由甲先做了3天后,剩下的由乙来做完.还要几天才能完成?9.某水泥厂原计划生产水泥2160吨,实际生产了25天就完成了任务.实际平均每天生产水泥多少吨?10.一件工程,甲独做要15天完成,乙独做要10天完成.如果由甲先做了若干天后,再由乙接替.从开始到完工共用了6天.让甲做了几天?11.某车间要生产900个零件,计划用20天完成.由于技术改进,实际每天比计划多生产了5个零件.完成这项任务实际用了多少天?12.已知某厂生产一批零件,每2个装一盒,每5盒装一箱,一共需要196个箱子才能装下这批零件.问这批零件共有多少个?13.某工地用3种型号的卡车运送土方.已知甲、乙、丙三种卡车载重量之比为10:7:9,各种卡车载重量的总和是320吨,三种卡车各运送多少吨土?14.一项工程,甲独做要20天完成,乙独做要30天完成.如果由甲先做了若干天后,再由乙接替.从开始到完工共用了25天完成.让甲做了几天?15.某水泥厂要生产一批水泥.原计划每天生产水泥180吨,可以提前8天完成任务;实际每天生产水泥168吨,可以提前12天完成任务.实际与计划每天相差( )吨.16.一项工程,甲独做要30天完成,乙独做要20天完成.如果由甲先做了若干天后,再由乙接替.从开始到完工共用了24天完成.让甲做了几天?17.一项工程,甲独做要30天完成,乙独做要45天完成.如果由甲先做了若干天后,再由乙接替.从开始到完工共用了48天完成.让甲做了几天?18.一项工程,甲独做要45天完成,乙独做要30天完成.如果由甲先做了若干天后,再由乙接替.从开始到完工共用了38天完成.让甲做了几天?19.某车间要生产950个零件,计划用30天完成。

六年级奥数练习题

[16]. 8 时到 9 时之间,在什么时候时针与分针的夹角是 60 度?
4.分数应用题之工程问题
[1]. 一项工程,甲、乙合作需要 20 天完成,乙、丙合作需要 15 天,如果由乙单独做需要 30 天完成, 求如果甲、乙、丙合作,完成这项工程需要多少天?
[2]. 一项工程,甲单独做 20 天完成,乙单独做 30 天完成。甲、乙合作了几天后,乙因事请假,甲继 续做,从开工到完成任务共用了 16 天。乙请假多少天?
[7]. 某工厂的一个生产小组,生产一批零件,当每个工人在自己原岗位工作时,10 小时可完成这项工 作。如果交换工人 A 和 B 的工作岗位,其他工人生产效率不变时,就会晚 1 小时完成;如果交换 工人 C 和 D 的工作岗位,其他工人生产效率不变时,就会提前 1 小时完成;问:如果同时交换 工人 A 和 B,C 和 D 的工作岗位,其他工人生产效率不变,多久可以完成这项工作?
[5]. 对自然数 a 和 n,规定 an =an+an-1,例如 32 =32+3=12,那么: ⑴12+ 22 + 32 +…+ 992 = ⑵ 21+ 22 + 23 +…+ 299=
[6]. 计算1+23+33+...+20063 1+2+3+...+2006
1
[7].
的面积。
A
D
E
G
H
B
C F
[15]. 如图,在直角三角形中有一个正方形,已知 BD=10 厘米,DC=7 厘米,求阴影部分的面积?
[16]. 如图,正方形 ABCD 和 DEFG 有一个公共点 D,试比较三角形 ADG 和三角形 CDE 的面积。
A
G
B
D
F
E
C
3.行程之多人多次相遇

六年级奥数习题精选——同余

六年级奥数习题精选——同余[学法点拨]同余,从字面上理解,就是余数相同.解答好此类题的前提是要很好地理解和掌握整除、公约数的一些知识,这样运用起来才能得心应手.1.求2008除以7的余数.(你们知道2008年是什么日子吗?)解:同学们也许会问,同余、同余,怎么求一个数除以另一个数的余数呢,它们两个数相除余数只有一个,谈不上"相同",你不要着急.因为只有你明白了这道题的来龙去脉,那么后面的题你也就会迎刃而解了.可以先去掉7的倍数1400余608,再去掉560还余下48,再去掉42最后余下6.这个过程可简单地记成:2008→608→48→6.从这几个数我们可以看出,它们除以7都余6.答:2008除以7的余数是6.因为2008、608、48、6除以7的余数相同,所以2008-608、608-48、2008-6、608-6这几个算式的结果能被7整除.由此不难得出这样十分有用的结论:如果若干的数被同一个数除余数相同,那么这若干个数两两之差(大减小)必能被这个数整除.1.试一试:求2008除以13的余数2.有一个大于1的整数,它除1000,2001,967得到相同的余数(不为0),那么这个整数是多少?解:由上面的结论,所求整数应能整除967,1000,2001的两两之差,即2001-1000=1001=7×11×131000-967=33=3×112001-967=1034=2×11×47这个整数是这三个差的公约数11.答:这个整数是11.你们想一想,只求出两个差行不行呢?2.试一试:有一个整数,用它去除300、262、205,得到的余数相同.这个数是多少?3. 数2001,2232除以整数n,得到相同的余数,而且这个余数是合数,求n.解:根据余数相同,所求的数应能整除2001与2232的差,即2232-2001=231=3×7×11由此我们知道n可能是3或7或11,究竟哪个符全合条件呢,这我们得认真对待,千万不能手懒.只要试一试即可,得7和11、21、33、77都符合条件.答:n是7或11或21或33或77.3.试一试:有141、206、271分别除以m,余数相同并且都是奇数.m最大是几?4.用一个自然数去除715和903所得余数相同,且商相差4.求这个数.解:根据两个数除以同一个数余数相同的特点,我们可以得到903 -715的差能被这个数整除,又因为所得的商相差4,也就是903 -715的差除以这个数应该得4,要求这个数,即可用(903-715)÷4=47,即所求的数为47.答:这个数是47.此类题可以归结为:甲乙两个数除以一个相同的数,余数相同,且商相差n(n>1),则这个相同的数为(甲-乙)÷n.4.试一试:某个大于1的整数,除1975,2008所得的余数相同,且商相差11.求这个数.5.若2836,4582,5146,6522四个自然数被一个自然数相除,所得余数相同且为两位数,除数和余数的和为多少?解:根据若干个自然数除以同一个自然数所得余数相同,那么它们两两的差定能被这个自然数整除.于是得:4582-2836=17465164-4582=5826522-5164=1358因为(1746,582,1358)=194,所以除数是194的大于10的约数.符合条件的只有97和194.如果除数=194,5164÷194=26……120(此处可以用原题中四个自然数中的任意一个都可,为什么?)余数不是两位数,与题意不符.如果除数是97,经检验,余数都是23,除数+余数=97+23=120.答:除数与余数的和是120.5.试一试:有一个整数,除1200,1314,1048所得的余数相同且大于5.问:这个数与余数的和是多少?6.有三个不同的三位数,它们分别除以a ,得到的余数相同而且是最大二位偶数,当a 为两位数时,这三个数最小的和是多少?解:这道题看似很难,但我们不妨换个角度去考虑.我们先从相同的余数入手,因为余数是最大的两位偶数,我们马上意识到余数是98,既然余数为98,a只能得99.这样此题便可很轻松的完成.最小的三位数是1×99+98=197,另外的两个三位数分别为296和395.(仔细看这三个数,有什么规律吗?对!相邻的两个数相差99)于是得到此题结果为197+396+395=1188.答:三个数的最小和是1188.如果给的不是三个三位数而是其它的任意情况,同样可以采取这种方法去解题.6.试一试:已知四个四位数分别去除以y,所得的余数相同并且是三位奇数,当y最小时这四个数的和最大是多少?7.将一批货物共375千克装入纸箱,每箱装10千克,最后余多少千克?解:此题我们不可能将求出来,然后去除以10,求出余数.但我们可以借助同余的办法来求,我们首先看下面一组说明:3 除以10的余数是3;32除以10的余数是9;33除以10的余数是7;34除以10的余数是1;35除以10的余数是3;36除以10的余数是9;37除以10的余数是7;38除以10的余数是1;……这就说明每隔4个数除以10的余数就相同.又因为75÷4=18……3即375除以10的余数与33除以10所得余数相同,得7.答:每箱装10千克最后余下7千克.7.试一试:粮库有771千克大米,用每袋50千克的袋子装,最后余下多少千克?8.在1~500的自然数中,除以16,40余数(0除外)相同的数有多少个?解:因为16与40的最小公倍数是80,1~500的自然数除以16与40相同的余数情况有:1,2,3,4……15,共15种,也就是在连续的80个数中有15个数符合条件,500个自然中有的个数为:500÷80=6……20,在余下的20个数中有15个余数相同.这证明有7个15,所以在1~500中除以16与40余数相同的数有15×7=105个.列式:[16,40]=80500÷80=6 (20)(6+1)×15=105答:在1~500的自然数中,除以16,40余数相同的数共有105个.8.试一试:在小于1000的自然数中,除以15及33而余数(0除外)相同的数有多少个?9.希望小学六年级和五年级去春游,每辆车可乘36人.六年级先坐满几车,剩下的16人与五年级坐满一车,五年级又坐满若干车.到达目的地后,每一个五年级的学生和每一个六年级学生合影一张,每个胶卷可拍36张.全部学生照相完毕,最后一个胶卷还剩几张未拍?解:解答此题的关键是求出最后一个胶卷归了几张,即以全影张数为被除数,36为除数,求余数.假如将五、六年级合乘一车的16名学生和20(36-16=20)人去掉,那么其余五、六年级的学生合影正好可以用掉整数卷胶卷.这样一来我们只考虑五年级那16人与六年级那么20人即可.因为每人都要与不同年级的人合影,所以这16人与20人要合影320(根据乘法原理16×20=320)张.所有人都拍完后的总张数除以36所得的余数与320除以36余数相同,为32,所以最后一个胶卷照了32张.于是有36-32=4张,即最后一个胶卷还剩4张.列式:36-16=20(人)16×20=320(张)320÷36=8 (32)36 - 32 = 4(张)答:最后一个胶卷还剩4张.9.试一试:甲、乙两个旅游团乘车参观,每辆车可乘35人,两团成员坐满若干辆车后,甲团余下的15人与乙团余下的成员正好又坐满一辆车.为了纪念这次参观,甲乙两团的每个成员都与不同团的每人合拍一张照片留念.如果每个胶卷可拍35张照片,那么拍完最后一张照片后,相机里的胶卷还可拍几张照片?10.甲、乙、丙、丁四个学校分别有69人、85人、93人、97人旅行.现在要把这四校学生分别进行分组,并使每组的人数尽可能多,以便乘车参观游览.已知甲、乙、丙三个学校分组后,所剩的人数相同,问丁校分组后还剩下几个人?分析:从表面上看,这道题目问的是"剩余"人数,但我们知道"剩余"是因为不能被整除而产生的,所以,解答这道题目的关键是求"每组有几人"(即求除数)这个除数在何处找呢?其实呀,它远在天边,近在眼前,这个除数就藏在它的"差"里.这是为什么呢?我们可以这样想:既然甲、乙、丙三个学校人数被某数除的余数相同,那么这三个数的两两之差一定能被这个数整除(因为它们相减时,余数恰好相互"抵消"了).懂得了以上这个道理之后,再来解答这个问题就不困难了.甲、乙、丙三校人数的差分别是:93-69=2485-69=1693-85=8不难看出,它们的最大公约数是8.这也正是我们所要寻找的"除数".验证如下:69÷8=8……5(分成8组,剩下5人)85÷8=10……5(分成10组,剩下5人)93÷8=11……5(分成11组,乘下5人)最后来推算丁校分组情况:97÷8=12 (1)答:丁校分组后剩下1人.10.试一试:乐乐玩具店有大小相同的红、蓝、黄、绿四种颜色的小球各344个、277个、411个和555个.现在要用一种精致的小盒分别去装这些小球,每只盒子里装的小球同样多.真巧!剩下的红、蓝、黄三色小球也恰好同样多.小剩下的绿球有多少个?[方法归纳]如果若干个自然数除以同一个自然数,余数相同,那么这些自然数两两之差必能被这个自然数整除.参考答案1. 6.2. 1或19.3. 65.4. 3.仿例4.5. 60.提示:这个整数为38,余数为22.6. 39368.提示:y为102,余数为101.这四个数分别是9995,9893,9791,9689.7. 43千克.提示:7的1次方开始除以50的余数分别是7,49,43,1,7,49,43,……8. 93.仿例89. 15张.仿例910. 19个。

(完整版)六年级奥数图形问题精选

圆和组合图形(1)一、填空题1.算出圆内正方形的面积为 .2.右图是一个直角等腰三角形,直角边长2厘米,图中阴影部分面积是 平方厘米.120,以扇形的半径为边长画一个正方形,这个正方形的面积是120平方厘米.这个扇形面积是 .4.如图所示,以B 、C 为圆心的两个半圆的直径都是2厘米,则阴影部分的周长是 厘米.(保留两位小数)5.三角形ABC 是直角三角形,阴影部分①的面积比阴影部分②的面积小28长 厘米.6.如右图,阴影部分的面积为2平方厘米,等腰直角三角形的面积7.扇形的面积是31.4平方厘米,它所在圆的面积是157平方厘米,这个扇形的圆心角是 度.8.图中扇形的半径OA =OB =6厘米.45=∠AOB , AC 垂直OB 于C ,那么图中阴影部分的面积是 平方厘米.)14.3(=π9.右图中正方形周长是20厘米.图形的总面积是 平方厘米.10.在右图中(单位:厘米),两个阴影部分面积的和是 平方厘米.45二、解答题11. ABC 是等腰直角三角形. D 是半圆周的中点, BC 是半圆的直径,已知: AB =BC =10,那么阴影部分的面积是多少?(圆周率14.3=π)12.如图,半圆S 1的面积是14.13平方厘米,圆S 2的面积是19.625平方厘米.那么长方形(阴影部分的面积)是多少平方厘米?13.如图,已知圆心是O ,半径r =9厘米,1521=∠=∠,那么阴影部分的面积是多少平方厘米?)14.3(≈π14.右图中4个圆的圆心是正方形的4个顶点,它们的公共点是该正方形的中心.如果每个圆的半径都是1厘米,那么阴影部分的总面积是多少平方厘米?———————————————答 案——————————————————————1. 18平方厘米.由图示可知,正方形两条对角线的长都是6厘米,正方形由两个面积相等的三角形构成.三角形底为6厘米,高为3厘米,故正方形面积为1822136=⨯⨯⨯(平方厘米).2. 1.14平方厘米.由图示可知,图中阴影部分面积为两个圆心角为45的扇形面积减去直角三角形的面积.即14.12122236045214.32=⨯⨯-⨯⨯⨯(平方厘米).3. 125.6平方厘米.由已知条件可知圆的半径的平方为120平方厘米.故扇形面积为6.12536012012014.3=⨯⨯(平方厘米).4. 3.09厘米.边结BE 、CE ,则BE=CE=BC=1(厘米),故三角形BCE 为等边三角形.于是60=∠=∠BCE EBC .BE=CE=045.136060214.3=⨯⨯(厘米).于是阴影部分周长为09.312045.1=+⨯(厘米).5. 32.8厘米.从图中可以看出阴影部分①加上空白部分的面积是半圆的面积,阴影部分②加上空白部分的面积是三角形ABC 的面积.又已知①的面积比②的面积小28平方厘米,故半圆面积比三角形ABC 的面积小28平方厘米.半圆面积为6282124014.32=⨯⎪⎭⎫ ⎝⎛⨯(平方厘米),三角形ABC 的面积为628+28=656(平方厘米).BC 的长为8.32402656=÷⨯(厘米).6. 13937平方厘米.将等腰直角三角形补成一个正方形,设正方形边长为x 厘米,则圆的半径为2x 厘米.图中阴影部分面积是正方形与圆的面积之差的81,于是有282114.322⨯=⎪⎭⎫⎝⎛⨯-x x ,解得1332002=x .故等腰直角三角形的面积为1393721133200=⨯(平方厘米). ⌒⌒7. 72.扇形面积是圆面积的511574.31=÷,故扇形圆心角为360的51即72.8. 5.13.三角形ACO 是一个等腰直角三角形,将AO 看作底边,AO 边上的高为3262=÷=÷AO (厘米),故三角形ACO 的面积为93621=⨯⨯(平方厘米).而扇形面积为13.1436045614.32=⨯⨯(平方厘米),从而阴影部分面积为14.13-9=5.13(平方厘米).9. 142.75.由正方形周长是20厘米,可得正方形边长也就是圆的半径为5420=÷(厘米).图形总面积为两个43圆面积加上正方形的面积,即75.1425243514.322=+⨯⨯⨯(平方厘米).10. 90平方厘米.图中阴影部分的面积是从两个以直角三角形直角边为直径的半圆及一个直角三角的面积和中减去一个以直角三角形斜边为直径的半圆的面积即()902114.3)220(2115122114.3)216(2114.3212222=⨯⨯÷-⨯⨯+⨯⨯÷+⨯⨯÷(平方厘米).11. 如图作出辅助线,则阴影部分的面积为三角形AED 的面积减去正方形BEDO 三角形AED 的面积是21)210()21010(⨯÷⨯÷+;积是2)210(÷,圆面积的41是2)210(14.341÷⨯⨯,故阴影部分面积为:22)210(14.341)210(21)210()21010(÷⨯⨯+÷-⨯÷⨯÷+125.32625.19255.37=+-=(平方厘米).12. 由已知半圆S 1的面积是14.13平方厘米得半径的平方为914.3213.14=÷⨯(平方厘米),故半径为3厘米,直径为6厘米. 又因圆S 2的面积为19.625平方厘米,所以S 2半径的平方为25.614.3625.19=÷(平方厘米),于是它的半径为2.5厘米,直径为5厘米. 阴影部分面积为55)56(=⨯-(平方厘米).13. 因OA=OB ,故三角形OAB 为等腰三角形,即 150215180,151=⨯-=∠=∠=∠AOB OBA , 同理150=∠AOC ,于是602150360=⨯-=∠BOC . 扇形面积为:39.42914.3360602=⨯⨯(平方厘米).14. 正方形可以分割成两个底为2,高为1的三角形,其面积为221221=⨯⨯⨯(平方厘米).正方形内空白部分面积为4个41圆即一个圆的面积与正方形面积之差,即2212-=-⨯ππ(平方厘米),所有空白部分面积为)2(2-π平方厘米. 故阴影部分面积为四个圆面积之和与两个空白面积之和的差,即为 8)2(22412=-⨯-⨯⨯ππ(平方厘米).十二、圆和组合图形(2)一、填空题1.如图,阴影部分的面积是 .2.大圆的半径比小圆的半径长6厘米,且大圆半径是小圆半径的4倍.大圆的面积比小圆的面积大 平方厘米.3.在一个半径是4.5厘米的圆中挖去两个直径都是2厘米的圆.剩下的图形的面积是 平方厘米.(π取3.14,结果精确到1平方厘米)4.右图中三角形是等腰直角三角形,阴影部分的面积是 (平方厘米).5.如图所求,圆的周长是16.4厘米,圆的面积与长方形的面积正好相等.图中阴影部分的周长是 厘米.)14.3(=π6.如图,151=∠的圆的周长为62.8厘米,平行四边形的面积为100平方厘米.阴影部分的面积是 .2 1 27.有八个半径为1厘米的小圆,用它们的圆周的一部分连成一个花瓣图形(如图).图中黑点是这些圆的圆心.如果圆周率1416.3=π,那么花瓣图形的面积是 平方厘米.8.已知:ABC D 是正方形, ED =DA =AF =2厘米,阴影部分的面积是 .9.图中,扇形BAC 的面积是半圆ADB 的面积的311倍,那么,CAB ∠是 度.10.右图中的正方形的边长是2厘米,以圆弧为分界线的甲、乙两部分的面积差(大减小)是 平方厘米.(π取3.14)二、解1.如图:阴影部分的面积是多少?四分之一大圆的半径为r .(计算时圆周率取722)12.已知右图中大正方形边长是6厘米,中间小正方形边长是4厘米.求阴影部分的面积.13.有三个面积都是S 的圆放在桌上,桌面被圆覆盖的面积是2S +2,并且重合的两块是等面积的,直线a 过两个圆心A 、B , 如果直线a 下方被圆覆盖的面积是9,求圆面积S 的值.14.如图所示,1的位置沿线段AB 、BC 、CD 滚到2的位置,如果AB 、BC 、C D 的长都是20厘米,那么圆板的正面滚过的面积是多少平方厘米?———————————————答 案——————————————————————1. 6.两个扇形面积相等,故阴影部分面积等于一个长为3,宽为2的长方形面积,为6个平方单位.2. 188.4.小圆的半径为2)14(6=-÷(厘米),大圆的半径为842=⨯(厘米).大圆的面积比小圆的面积大4.18814.3)28(22=⨯-(平方厘米).3. 57.305.57214.3)22(14.35.422=⨯⨯÷-⨯(平方厘米)≈57(平方厘米).4. 10.26.从圆中可以看出,阴影部分的面积是两个半圆的面积与三角形面积之差,即26.10621)26(14.322=⨯-÷⨯(平方厘米).5. 20.5.设圆的半径为r ,则圆面积即长方形面积为2r π,故长方形的长为r DC π=.阴影部分周长r r r r r r AD BA BC DC ππππ245241)(⨯=⨯+-++=+++=5.204.1645=⨯=(厘米).6. 6548(平方厘米).如图,连结OA 、AC ,过A 点作CD 的垂线交CD 于E .三角形ACD 的面积为502100=÷(平方厘米).又圆半径为10)214.3(28.6=⨯÷(厘米),因为151=∠又OA=OD ,故30215=⨯=∠AOC ,扇形AOC 的面积为61261014.3360302=⨯⨯(平方厘米).三角形AOC 的面积为25250=÷(平方厘米).方形面积为611256126=-(平方厘米),从而阴影部分的面积为654861150=-(平方厘米).7. 19.1416.⌒花瓣图形的结构是正方形的面积,加上四个43圆面积后,再割去四个半圆的面积.圆的半径为1厘米,正方形边长为4厘米.故花瓣图形的面积是1416.1916421144314222=+=⨯⨯⨯-⨯⨯⨯+πππ(平方厘米).8. 2.43平方厘米.如图,将①移到②得:阴影部分面积等于梯形CEFB 的 面积减去三角形CED 、三角形CDA 、扇形AFG 的面积,即43.236045214.32122122212)322(22=⨯⨯-⨯-⨯⨯-⨯⨯⨯+(平方厘米).9. 60.设扇形ABC 圆心角的度数是x ,半圆的半径OA=r ,有2221311)2(360r r x⨯⨯⨯=⨯⨯ππ,解得x=60.10. 0.14.扇形面积为14.341214.32=⨯⨯(平方厘米),甲部分面积为43.0214.32122=÷-⨯(平方厘米),乙部分面积为57.04122214.3=⨯⨯-÷(平方厘米),甲乙两部分面积差为14.043.057.0=-(平方厘米11. 如图,小正方形的边长为2r,则①的面积为:72227224122r rr r =⨯-⎪⎭⎫ ⎝⎛⨯⨯, ②的面积为222417272221r r r =-⎪⎭⎫ ⎝⎛⨯⨯,2227224172241r r r =⨯⨯-⨯⨯.即阴影部分面积为272r .12. 将阴影部分旋转后,可以看出所求阴影部分面积为大正方形面积的一半减去小正形的一半,即阴影部分面积等于10242622=÷-÷(平方厘米).13. 设一个阴影部分的面积为x ,则有:2223+=-S x S ,于是22+=x S (1)又9232=-x S ,于是有23184+-=Sx ,解得S=6.D14. 圆板的正面滚过的部分如右图阴影部分所求,它的面积为: )420(4614)220(22122-+⨯⨯+⨯-+⨯⨯ππ 07.228323204221)24(414)220(4222≈+=⨯⨯+⨯-⨯-⨯-+⨯πππ(平方厘米).面积计算(三)专题简析:对于一些比较复杂的组合图形,有时直接分解有一定的困难,这时,可以通过把其中的部分图形进行平移、翻折或旋转,化难为易。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学六年级奥数专题之方阵问题 1.学校为庆祝“十一”,用盆花摆了一个中实方阵,最外一层有36盆花。求这个方阵共有花多少盆?

2.解放军进行排队表演,组成一个外层有48人,内层有16人的多层中空方阵,这个方阵有几层?一共有多少人?

3.有一个用圆片摆成的两层中空方阵,外层每边有16个圆片,如果把内层的圆片取出来,在外层再摆一层,变成一个新的中空方阵,应再增加多少圆片?

4.有一中空方阵,小明计算总人数为146人,问小明算的对吗?为什么? 5.有学生若干名,排成中实的方阵则多2人,若在这正方阵纵横两个方向个增加一行还缺五人,问有学生多少人?

6.最外层每边16人的中空方阵,共5层,求总人数及最内层的人数。 7.一张桌子四周可以坐4人,两张桌子并排起来可以坐6人,三张桌子可以坐8人,……,问20张桌子并起来可以坐多少人?如果有78人要坐下,须多少张桌子并起来?

8.用若干棋子摆成中实方阵,再把这个中实方阵拆开,用这些棋子摆成一个只有一层的中空方阵,求棋子有多少个?

9.仪仗队员组成两个实心方阵,甲方阵每边12人,后来两队合在一起排成一个中空方阵的丙方阵,丙方阵最外层一边人数比乙方阵最外层一边人数多4人,又原来甲方阵的人正好填满丙方阵空心。求原乙方阵每边的人数(指最外层一边人数)。

10.原排成方阵的若干同学,改排成每边4行的中空方阵,改编后最外面一行的人数比原来方阵每边人数多16人,求学生人数。

11.运动员入场式要求排成一个9行9列的正方形方阵,如果去掉2行2列,要减少多少运动员?

12.学校为庆祝“十一”,用盆花摆了一个中实方阵,最外一层有36盆花。求这个方阵共有花多少盆? 13.一个由圆片摆成的中实方阵,最外一层有12个圆片,把4个这样的中实方阵拼成一个大的中实方阵,那么最外层应该有多少个圆片?

14.有一个用圆片摆成的两层中空方阵,外层每边有16个圆片,如果把内层的圆片取出来,在外层再摆一层,变成一个新的中空方阵,应再增加多少圆片?

15.解放军进行排队表演,组成一个外层有48人,内层有16人的多层中空方阵,这个方阵有几层?一共有多少人?

16.一个圆形池塘,它的周长是150米,每隔3米栽种一棵树.问:共需树苗多少株? 1.一个七层空心方阵最外一层共有80人,则最内层共有()人。 2.一个四层空心方阵最内一层共有10人,则最外层共有()人。 3.运动员入场式要求排成一个9行9列的正方形方阵,如果去掉2行2列,要减少多少运动员?

4.学校为庆祝“十一”,用盆花摆了一个中实方阵,最外一层有36盆花。求这个方阵共有花多少盆?

5.一个由圆片摆成的中实方阵,最外一层有12个圆片,把4个这样的中实方阵拼成一个大的中实方阵,那么最外层应该有多少个圆片?

6.有一个用圆片摆成的两层中空方阵,外层每边有16个圆片,如果把内层的圆片取出来,在外层再摆一层,变成一个新的中空方阵,应再增加多少圆片?

7.解放军进行排队表演,组成一个外层有48人,内层有16人的多层中空方阵,这个方阵有几层?一共有多少人?

8.有一队士兵,排成了一个方阵,最外层一周共有240人,问这个方阵共有多少人? 9.某校少先队员可以排成一个四层空心方阵如果最外层每边有20个学生,问这个空心方阵最里边一周有多少个学生?这个四层空心方阵共有多少个学生? 10.六一儿童节前夕,在校园雕塑的周围,用204盆鲜花围成了一个每边三层的方阵求最外面一层每边有鲜花多少盆?

1.要排成一个4行4列的正方形方阵,需要( )名同学。 2.学生进行军训队列表演,排成一个7行7列,如果去掉一行一列,要去掉( )人,还剩下( )人。

3.某年级同学参加广播操比赛,因服装问题要横竖各减少一排,这样共去掉了19人,则此年级原准备( )人参加比赛。

4.某校学生站成25行25列方阵,现去掉5行5列,要减少()人。 5.正方形广场四周均匀挂彩灯,四个角上都挂一盏,每边挂了20盏,则这块广场的四周共需挂()盏彩灯。

6.在一个正方形场地四周插入彩旗,四个角都插一面,共插了24面彩旗,问四周每边插彩旗( )面。

7.游乐场用木桩排一个四层的空心方阵,最外边一层每边15根木桩,则共需( )根木桩。 8.小红用围棋字摆了一个八层空心方阵,共享了424个,则最外层每边有( )个棋子。 9.一个五层空心方阵最外层每边有20人,则最内层每边有( )人。 10.一个六层空心方阵最内层每边有6人,则最外层每边有( )人。 1.有一正方形操场,每边都栽种17棵树,四个角各种1棵,共种树多少棵? 2.在一条路上按相等的距离植树.甲乙二人同时从路的一端的某一棵树出发.当甲走到从自己这边数的第22棵树时,乙刚走到从乙那边数的第10棵树.已知乙每分钟走36米.问:甲每分钟走多少米?

3.有一个等边三角形的花坛,边长20米。每个顶点都要栽一棵月季花,每相隔2米再栽一棵月季花,花坛一周能栽多少棵月季花? 4.有一个正方形水池,外沿边长40米。沿着外沿围一圈铁栏杆,每个角上都要埋一根竖铁管,每相隔2米再埋一根竖铁管,可埋竖铁管多少根?(请用不同的方法解答)

5.马路的每边相隔7米有一棵国槐,小军乘无轨电车3分看到马路的一边有国槐151棵,无轨电车每小时行多少千米?(1千米=1000米)

6.庆祝建国40周年,接受检阅的一列彩车车队共52辆,每辆车长4米,前后每辆车相隔6米,车队每分行驶105米。这列车队要通过536米长的检阅场地,需要多少分?

7.某学校五年级学生排成一个方阵,最外一层的人数为60人。问方阵外层每边有多少人?这个方阵共有五年级的学生多少人?

8.一个街心花园如右图所示,它由四个大小相等的等边三角形组成。已知从每个小三角形 的顶点开始到下一个顶点均匀载有9棵花。问大三角形边上载有多少棵花?整个花园共有多少棵花?

9.在一根长100厘米的木棍上,从左向右每隔6厘米点一个红点,从右向左每隔5厘米点一个红点,在两个红点之间长为4厘米的间距有几段?

10.一堆棋子,排成正方形,多余4只棋子,若正方形纵横两个方向各增加一层,则缺少9只棋子,问棋子有多少只?

1.团体操表演,少先队员排成4层的中空方阵,最外层每边人数是10人,问参加团体操表演的少先队员共有多少人?

2.用棋子摆成方阵,恰好每边24粒的实心方阵,若改为3层的空心方阵,它的最外层每边应改放多少粒?

3.将棋子排成正方形,甲、乙两人自其外周起,轮流取一周,结果甲比乙多得24粒,问棋子总数有多少粒?

4.有一队士兵,排成了一个方阵,最外层一周共有240人,问这个方阵共有多少人? 5.某校少先队员可以排成一个四层空心方阵如果最外层每边有20个学生,问这个空心方阵最里边一周有多少个学生?这个四层空心方阵共有多少个学生? 6.六一儿童节前夕,在校园雕塑的周围,用204盆鲜花围成了一个每边三层的方阵求最外面一层每边有鲜花多少盆?

7.三年级(1)班的学生参加体操表演,排成队形正好是由每7个人为一边的6个三角形组成的一个正六边形,求正六边形一周共有多少名学生?三(1)班参加体操表演的共有多少人?

8.现有松树和柏树以隔株相间的种法,种成9行9列的方阵,问这个方阵最外层有松树和柏树各多少棵?方阵中共有松树柏树各多少棵?

9.有一条2000米的公路,在路两边每相隔50米埋设一根路灯杆,从头到尾需要埋设路灯杆多少根?

10.某大学从校门口的门柱到教学楼墙根,有一条1000米的甬路,每边相隔8米栽一棵白杨,可以栽白杨多少棵?

1.幼儿园小朋友在老师指导下,把棋子排成2个正方形方阵,如果在这个方阵中去掉横竖各一排,则这个方阵少了9枚棋子,那么这个方阵共有多少枚棋子?

2.活动中,老师把学生组成一个正方形方队,其中有两行、两列都是男生,男生共有36人,其余是女生,问参加这个方队的学生共有多少人?

3.在一块正方形草地四周种树,四个角上都种上一棵,每边种10棵,这块草地四周共种树多少棵?

4.晶晶用围棋子摆成一个三层空心方阵,最外一层每边有围棋子11枚。晶晶摆这个方阵共享围棋子多少枚?

5.某班抽出一些学生参加节日活动表演,想排成一个正方形方阵,结果多出7人;如果每行每列增加一个再排,却少了4人,问共抽出学生多少人?

6.棋子若干粒,恰好可排成每边8粒的正方形,棋子的总数是多少?棋子最外层有多少粒? 7.有学生若干人,排成5层的中空方阵,最外层每边人数是12人,问有多少学生? 8.设计一个团体操表演队,想排成6层的中空方阵,已知参加表演的有360人,问最外层每边应安排多少人? 9.在第五届运动会上,红星小学组成了一个大型方块队,方块队最外层每边30人,共有10层,中间5层的位置由20个同学抬着这次运动会的会徽,问这个方块队共有多少同学组成?

10.有一队学生,排成中空方阵,最外层的人数共56人,最内层的人数共32人,这一队学生共有多少人?

1.某班抽出一些学生参加节日活动表演,想排成一个正方形方阵,结果多出7人;如果每行每列增加一个再排,却少了4人,问共抽出学生多少人?

2.将棋子排成正方形,甲、乙两人自其外周起,轮流取一周,结果甲比乙多得24粒,问棋子总数有多少粒?

3.某班抽出一些学生参加节日活动表演,想排成一个正方形方阵,结果多出7人;如果每行每列增加一个再排,却少了4人,问共抽出学生多少人?

4.棋子若干粒,恰好可排成每边8粒的正方形,棋子的总数是多少?棋子最外层有多少粒? 5.有学生若干人,排成5层的中空方阵,最外层每边人数是12人,问有多少学生? 6.设计一个团体操表演队,想排成6层的中空方阵,已知参加表演的有360人,问最外层每边应安排多少人?

7.在第五届运动会上,红星小学组成了一个大型方块队,方块队最外层每边30人,共有10层,中间5层的位置由20个同学抬着这次运动会的会徽,问这个方块队共有多少同学组成?

8.有一队学生,排成中空方阵,最外层的人数共56人,最内层的人数共32人,这一队学生共有多少人?

9.团体操表演,少先队员排成4层的中空方阵,最外层每边人数是10人,问参加团体操表演的少先队员共有多少人?

10.用棋子摆成方阵,恰好每边24粒的实心方阵,若改为3层的空心方阵,它的最外层每边应改放多少粒11将棋子排成正方形,甲、乙两人自其外周起,轮流取一周,结果甲比乙多得24粒,问棋子总数有多少粒?

相关文档
最新文档