探索勾股定理1

合集下载

1-1探索勾股定理(1)

1-1探索勾股定理(1)
2 2
2
46
58
74 5476 ∵ 58 46 5480 荧屏对角线大约为74厘米 ∴售货员没搞错
1、一个圆桶,底面直径为24厘米,高为32厘米,则 桶内所能容下的最长木棒是( 40厘米 ) 2、等腰三角形的腰长为25,底为48,则它的 面积是( 168 ). 3、甲轮船以每小时16海里的速 度离开港口向东南方向航行,乙 O 轮船在同时同地向西南方向航行, 已知 他们离开港口一个半小时后 相距30海里,问乙轮船每小时航 B 行多少海里? 12海里 A 4、一个直角三角形的三边为三个连续偶数,则它的三 边长分别为 . 6、8、10
2.一天,小明买了一张底面是边长为260cm正 方形,厚30cm的床垫回家。到了家门口, 才发现门口只有242cm高,宽100cm。你认 为小明能拿进屋吗,为什么?
242
30
260
100
小结
由学生从以下方面进行总结:
1. 对自己本节课的学习情况进行评价。 2. 在探索问题过程中遇到挫折,你会怎么办? 3.对于本节课你还有疑问的地方吗?
八年级数学(上册)
探索勾股定理
大望学校 钟锋声
探索勾股定理
如图所示,一棵大树在一次强烈台风中于 离地面9米处折断倒下,树顶落在离树根 12米处. 大树在折断之前高多少米?
在直角三角形中,任意两边确定了,另 外一条边也就随之确定,三边之间存在 着一个特定的数量关系。让我们一起去 探索吧。
(1)观察图1-1
A
C
B
图1-3
C
A
B
图1-4
SA+SB=SC
即:两条直角边上的正方形面积之和等于 斜边上的正方形的面积
幻灯片 7
议一议

数学:第一章 探索勾股定理(一)教案(北师大版八年级上)

数学:第一章 探索勾股定理(一)教案(北师大版八年级上)

第一章勾股定理1.探索勾股定理(一)一、学生起点分析八年级学生已经具备一定的观察、归纳、探索和推理的能力.在小学,他们已学习了一些几何图形面积的计算方法(包括割补法),但运用面积法和割补思想解决问题的意识和能力还远远不够.部分学生听说过“勾三股四弦五”,但并没有真正认识什么是“勾股定理”.此外,学生普遍学习积极性较高,探究意识较强,课堂活动参与较主动,但合作交流能力和探究能力有待加强.二、教学任务分析本节课是义务教育课程标准北师大版实验教科书八年级(上)第一章《勾股定理》第一节第1课时.勾股定理揭示了直角三角形三边之间的一种美妙关系,将形与数密切联系起来,在数学的发展和现实世界中有着广泛的作用.本节是直角三角形相关知识的延续,同时也是学生认识无理数的基础,充分体现了数学知识承前启后的紧密相关性、连续性.此外,历史上勾股定理的发现反映了人类杰出的智慧,其中蕴涵着丰富的科学与人文价值.三、教学目标分析●知识与技能目标用数格子(或割、补、拼等)的办法体验勾股定理的探索过程并理解勾股定理反映的直角三角形的三边之间的数量关系,会初步运用勾股定理进行简单的计算和实际运用.●数学思考让学生经历“观察—猜想—归纳—验证”的数学思想,并体会数形结合和特殊到一般的思想方法.●解决问题进一步发展学生的说理和简单推理的意识及能力;进一步体会数学与现实生活的紧密联系.●情感与态度在探索勾股定理的过程中,体验获得成功的快乐;通过介绍勾股定理在中国古代的研究,激发学生热爱祖国,热爱祖国悠久文化的思想,激励学生发奋学习.四、教法学法1.教学方法:引导—探究—发现法.2.学习方法:自主探究与合作交流相结合.五、教学过程设计本节课设计了五个教学环节:第一环节:创设情境,引入新课;第二环节:探索发现勾股定理;第三环节:勾股定理的简单应用;第四环节:课堂小结;第五环节:布置作业.第一环节:创设情境,引入新课内容:2002年世界数学家大会在我国北京召开,投影显示本届世界数学家大会的会标:会标中央的图案是一个与“勾股定理”有关的图形,数学家曾建议用“勾股定理”的图来作为与“外星人”联系的信号.今天我们就来一同探索勾股定理.(板书课题)意图:紧扣课题,自然引入,同时渗透爱国主义教育.效果:激发起学生的求知欲和爱国热情.第二环节:探索发现勾股定理1.探究活动一:内容:(1)投影显示如下地板砖示意图,让学生初步观察:(2)引导学生从面积角度观察图形:问:你能发现各图中三个正方形的面积之间有何关系吗?学生通过观察,归纳发现:结论1 以等腰直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积.意图:从观察实际生活中常见的地板砖入手,让学生感受到数学就在我们身边.通过对特殊情形的探究得到结论1,为探究活动二作铺垫.效果:1.探究活动一让学生独立观察,自主探究,培养独立思考的习惯和能力;2.通过探索发现,让学生得到成功体验,激发进一步探究的热情和愿望.2.探究活动二:内容:由结论1我们自然产生联想:一般的直角三角形是否也具有该性质呢? (1)观察下面两幅图:(2)填表:(3)你是怎样得到正方形C 的面积的?与同伴交流.(学生可能会做出多种方法,教师应给予充分肯定.)图1 图2 图3 学生的方法可能有: 方法一:如图1,将正方形C 分割为四个全等的直角三角形和一个小正方形, 13132214=+⨯⨯⨯=C S .如图2,在正方形C 外补四个全等的直角三角形,形成大正方形,用大正方形的面积减去四个直角三角形的面积,133221452=⨯⨯⨯-=C S . 方法三:如图3,正方形C 中除去中间5个小正方形外,将周围部分适当拼接可成为正方形,如图3中两块红色(或两块绿色)部分可拼成一个小正方形,按此拼法,13542=+⨯=C S . (4)分析填表的数据,你发现了什么? 学生通过分析数据,归纳出:结论2 以直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积. 意图:探究活动二意在让学生通过观察、计算、探讨、归纳进一步发现一般直角三角形的性质.由于正方形C 的面积计算是一个难点,为此设计了一个交流环节.效果:学生通过充分讨论探究,在突破正方形C 的面积计算这一难点后得出结论2. 3.议一议:内容:(1)你能用直角三角形的边长a 、b 、c 来表示上图中正方形的面积吗? (2)你能发现直角三角形三边长度之间存在什么关系吗?(3)分别以5厘米、12厘米为直角边作出一个直角三角形,并测量斜边的长度.2中发现的规律对这个三角形仍然成立吗?勾股定理(gou-gu theorem ):如果直角三角形两直角边长分别为a 、b ,斜边长为c ,那么222c b a =+.即直角三角形两直角边的平方和等于斜边的平方.数学小史:勾股定理是我国最早发现的,中国古代把直角三角形中较短的 直角边称为勾,较长的直角边称为股,斜边称为弦,“勾股定理”因此而得名. (在西方称为毕达哥拉斯定理)意图:议一议意在让学生在结论2的基础上,进一步发现直角三角形三边关系,得到勾股定理. 效果:1.让学生归纳表述结论,可培养学生的抽象概括能力及语言表达能力.2.通过作图培养学生的动手实践能力.第三环节:勾股定理的简单应用弦股勾例 如图所示,一棵大树在一次强烈台风中于离地面10m 处折断倒下, 树顶落在离树根24m 处. 大树在折断之前高多少?(教师板演解题过程) 练习:1、基础巩固练习:(口答)求下列图形中未知正方形的面积或未知边的长度:2、生活中的应用:小明妈妈买了一部29英寸(74厘米)的电视机. 小明量了电视机的屏幕后,发现屏幕只有58厘米长和46厘米宽,他觉得一定是售货员搞错了.你同意他的想法吗?你能解释这是为什么吗?意图:练习第1题是勾股定理的直接运用,意在巩固基础知识.效果:例题和练习第2题是实际应用问题,体现了数学来源于生活,又服务于生活,意在培养学生“用数学”的意识.运用数学知识解决实际问题是数学教学的重要内容.第四环节:课堂小结内容:教师提问:1.这一节课我们一起学习了哪些知识和思想方法? 2.对这些内容你有什么体会?请与你的同伴交流. 在学生自由发言的基础上,师生共同总结:1.知识:勾股定理:如果直角三角形两直角边长分别为a 、b ,斜边长为c ,那么222c b a =+. 2.方法:① 观察—探索—猜想—验证—归纳—应用; ② 面积法;③ “割、补、拼、接”法.3.思想:① 特殊—一般—特殊; ② 数形结合思想.意图:鼓励学生积极大胆发言,可增进师生、生生之间的交流、互动.效果:通过畅谈收获和体会,意在培养学生口头表达和交流的能力,增强不断反思总结的意识.?225100x17第五环节:布置作业内容:作业:1.教科书习题1.1; 2.阅读《读一读》——勾股世界;3.观察下图,探究图中三角形的三边长是否满足222c b a =+.意图:课后作业设计包括了三个层面:作业1是为了巩固基础知识而设计;作业2是为了扩展学生的知识面;作业3是为了拓广知识,进行课后探究而设计,通过此题可让学生进一步认识勾股定理的前提条件.效果:学生进一步加强对本课知识的理解和掌握.六、教学设计反思(1)设计理念依据“学生是学习的主体”这一理念,在探索勾股定理的整个过程中,本节课始终采用学生自主探索和与同伴合作交流相结合的方式进行主动学习.教师只在学生遇到困难时,进行引导或组织学生通过讨论来突破难点.(2)突出重点、突破难点的策略为了让学生在学习过程中自我发现勾股定理,本节课首先情景创设激发兴趣,再通过几个探究活动引导学生从探究等腰直角三角形这一特殊情形入手,自然过渡到探究一般直角三角形,学生通过观察图形,计算面积,分析数据,发现直角三角形三边的关系,进而得到勾股定理.(3)分层教学,拓展资源 基础训练1.为迎接新年的到来,同学们做了许多拉花布置教室,准备召开新年晚会,小刚搬来一架高为2.5a bcabc CB米的木梯,准备把拉花挂到2.4米的墙上,则梯脚与墙角的距离应为 米.2.如图,小张为测量校园内池塘A ,B 两点的距离,他在池塘边选定一点 C ,使∠ABC =90°,并测得AC 长26m ,BC 长24m ,则A ,B 两点间的距离 为 m .3.如图,阴影部分是一个半圆,则阴影部分的面积为 .(π不取 近似值)4.底边长为16cm ,底边上的高为6cm 的等腰三角形的腰长为 cm .5.一艘轮船以16km/h 的速度离开港口向东北方向航行,另一艘轮船同时离开港口以12km/h 的速度向东南方向航行,它们离开港口半小时后相距 km .提高训练6.一个长为10m 为梯子斜靠在墙上,梯子的顶端距地面的垂直高度为8m ,梯子的顶端下滑2m 后,底端滑动 m .7.如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角 三角形,其中最大的正方形的边长为7cm ,则正方形A ,B ,C ,D 的面积的和 是 cm 2.8.已知Rt △ABC 中,∠C =90°,若14=+b a cm ,10=c cm ,则Rt △ABC 的面积为( ). (A )24cm 2(B )36cm 2(C )48cm 2(D )60cm 29.如图,分别以直角三角形的三边为边长向外作正方形,然后分别以三个 正方形的中心为圆心,正方形边长的一半为半径作圆,记三个圆的面积分别为S 1,S 2,S 3,则S 1,S 2,S 3之间的关系是( ).(A )321S S S >+ (B )321S S S =+ (C )321S S S <+ (D )无法确定10.暑假中,小明和同学们到某海岛去探宝旅游,按照如图所示的 路线探宝. 他们登陆后先往东走8km ,又往北走2km ,遇到障碍后又往 西走3km ,再折向北走6km 处往东一拐,仅走1km 就找到了宝藏,则 登陆点到埋宝藏点的直线距离为 km .知识拓展11.如图,已知直角△ABC 的两直角边分别为6,8,分别以其三边为直径作半圆,求图中阴影部分的面积.321S S S 32168埋宝藏点登陆点7cmDACB 86C25712.如图,有一块直角三角形纸片,两直角边AC =6cm ,BC =8cm ,现将直角边AC 沿直线AD 折叠,使它恰好落在斜边AB 上,且与AE 重合,求CD 的长.意图:进行分层训练,既满足了不同学生的需求,同时也便于老师及时地了解学生的情况.老师可以根据学生的情况选择上述题目进行练习,也可留作家庭作业.效果:通过分层练习,充分激发学生的学习热情,教师应留给学生充分的时间思考,在独立思考的基础上,鼓励学生相互讨论,得出结果.(4)评价方式根据新课标的评价理念,在本课主要从以下几个方面对学生学习情况进行评价:首先,在探索勾股定理的过程中,对学生的参与热情、情感态度、探究的积极性、探究的效果等学习情况进行评价.其次,在“勾股定理的简单应用”这一教学环节中,通过例题和练习,可有效地评价学生理解和掌握知识的情况.第三,在“课堂小结”这一环节中,教师可从学生的自由发言和交流中,了解到各个教学目标的达成情况.第四,通过课后作业的完成情况,进一步了解学生对勾股定理的理解和掌握的程度.教师根据这些评价结果做出相应的反馈和调节,调整、设计下节课或下阶段的教学内容,以达到尽可能好的教学效果.B ADE。

2.6探索勾股定理(一)-

2.6探索勾股定理(一)-
C D
B
A
7cm
例2、 如图所示是一个长方形零件的 平面图,尺寸如图所示, 求两孔中心A, B 之间的距离.(单位:毫米)
40
A 90
B
C 40
160
议一议
以直角三角形三边为边作等边三角形, 这3个等边三角形的面积之间有什么关系?
F
A
D C B
E
算一算
1. 一高为2.5米的木梯,架在高为2.4米的墙上 (如图),这时梯脚与墙的距离是多少? A
ab 4• 2
c2

+(b- a)2
c2=
∵ a c a b a
=2ab+b2-2ab+a2 =a2+b2 ∴a2+b2=c2
c
ab 4• +(b-a)2 2caFra bibliotekb bb
c
2 (a+b) 大正方形的面积可以表示为 ;
也可以表示为 c2 +4•ab/2 b a b c c a c ∵ (a+b)2 = c2 + 4•ab/2 a2+2ab+b2 = c2 +2ab ∴a2+b2=c2 a a
a b c
b
即 直角三角形两直角边的平方和等 于斜边的平方。 在西方又称毕达 哥拉斯定理!
勾 弦

读一读
勾股世界
我国是最早了解勾股定理的国家之一。早在三千多年 前,周朝数学家商高就提出,将一根直尺折成一个直角三 角形,如果勾等于三,股等于四,那么弦就等于五。即 “勾三、股四、弦五”。它被记载于我国古代著名的数学 著作《周髀算经》中。在这本书中的另一处,还记载了勾 股定理的一般形式。 1945年,人们在研究古巴比伦人遗留下的一块数学泥 板时,惊讶地发现上面竟然刻有15组能构成直角三角形三 边的数,其年代远在商高之前。 相传二千多年前,希腊的毕达哥拉斯学派首先证明了 勾股定理,因此在国外人们通常称勾股定理为毕达哥拉斯 定理。

探索勾股定理(第一课时)教案

探索勾股定理(第一课时)教案

课题:1、1探索勾股定理(第一课时)教学目标1、知识与技能目标用数格子(或割、补、拼等)的办法体验勾股定理的探索过程并理解勾股定理反映的直角三角形的三边之间的数量关系,会初步使用勾股定理实行简单的计算和实际使用.让学生经历“观察—猜想—归纳—验证”的数学思想,并体会数形结合和特殊到一般的思想方法.进一步发展学生的说理和简单推理的意识及水平;进一步体会数学与现实生活的紧密联系.3、情感态度与价值观在探索勾股定理的过程中,体验获得成功的快乐;通过介绍勾股定理在中国古代的研究,激发学生热爱祖国,热爱祖国悠久文化的思想,激励学生发奋学习.教学重点:了结勾股定理的由来,并能用它来解决一些简单的问题。

教学难点:勾股定理的发现教学准备:多媒体课件教学过程:第一环节:创设情境,引入新课(3分钟,学生观察、欣赏)内容:2002年世界数学家大会在我国北京召开,投影显示本届世界数学家大会的会标:会标中央的图案是一个与“勾股定理”相关的图形,数学家曾建议用“勾股定理”的图来作为与“外星人”联系的信号.今天我们就来一同探索勾股定理.(板书课题)第二环节:探索发现勾股定理(15分钟,学生独立观察,自主探究)1.探究活动一:内容:(1)投影显示如下地板砖示意图,让学生初步观察:(2)引导学生从面积角度观察图形:问:你能发现各图中三个正方形的面积之间有何关系吗? 学生通过观察,归纳发现:结论1 以等腰直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积. 2.探究活动二:由结论1我们自然产生联想:一般的直角三角形是否也具有该性质呢? (1)观察下面两幅图:(2)填表:A 的面积(单位面积)B 的面积(单位面积)C 的面积(单位面积)左图 右图(3)你是怎样得到正方形C 的面积的?与同伴交流.(学生可能会做出多种方法,教师应给予充分肯定.)(4)分析填表的数据,你发现了什么? 学生通过度析数据,归纳出:结论2 以直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积. 3.议一议:内容:(1)你能用直角三角形的边长a 、b 、c 来表示上图中正方形的面积吗?AB CC BA(2)你能发现直角三角形三边长度之间存有什么关系吗?(3)分别以5厘米、12厘米为直角边作出一个直角三角形,并测量斜边的长度.2中发现的规律对这个三角形仍然成立吗?勾股定理(gou-gu theorem ):如果直角三角形两直角边长分别为a 、b ,斜边长为c ,那么222c b a =+.即直角三角形两直角边的平方和等于斜边的平方.数学小史:勾股定理是我国最早发现的,中国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦,“勾股定理”所以而得名. (在西方称为毕达哥拉斯定理)第三环节:勾股定理的简单应用(7分钟,学生合作探究)内容:例 如图所示,一棵大树在一次强烈台风中于离 地面10m 处折断倒下,树顶落在离树根24m 处. 大树在折断之前高多少?(教师板演解题过程)第四环节:巩固练习(10分钟,学生先独立完成,后全班交流) 1、列图形中未知正方形的面积或未知边的长度:2、生活中的应用:小明妈妈买了一部29英寸(74厘米)的电视机. 小明量了电视机的屏幕后,发现屏幕只有58厘米长和46厘米宽,他觉得一定是售货员搞错了.你同意他的想法吗?你能解释这是为什么吗?第五环节:课堂小结(3分钟,师生对答,共同总结)内容:教师提问:弦股勾?225100x15171.这个节课我们一起学习了哪些知识和思想方法? 2.对这些内容你有什么体会?请与你的同伴交流. 在学生自由发言的基础上,师生共同总结:1.知识:勾股定理:如果直角三角形两直角边长分别为a 、b ,斜边长为c ,那么222c b a =+. 2.方法:① 观察—探索—猜想—验证—归纳—应用; ② 面积法;③ “割、补、拼、接”法.3.思想:① 特殊—一般—特殊; ② 数形结合思想.第六 环节:布置作业(2分钟,学生分别记录)内容:作业:1.教科书习题1.1; 2.阅读《读一读》——勾股世界;3.观察下图,探究图中三角形的三边长是否满足222c b a =+.要求:A 组(学优生):1、2、3 B 组(中等生):1、2 C 组(后三分之一生):1a bcabc。

1.1 探索勾股定理(第1课时)教学设计

1.1 探索勾股定理(第1课时)教学设计

第一章勾股定理1.探索勾股定理(第 1 课时)教学目标:1.用数格子(或割、补、拼等)的办法体验勾股定理的探索过程并理解勾股定理反映的直角三角形的三边之间的数量关系,会初步运用勾股定理进行简单的计算和实际运用.2.让学生经历“观察—猜想—归纳—验证”的数学思想,并体会数形结合和特殊到一般的思想方法.3.进一步发展学生的说理和简单推理的意识及能力;进一步体会数学与现实生活的紧密联系.4.在探索勾股定理的过程中,体验获得成功的快乐;通过介绍勾股定理在中国古代的研究,激发学生热爱祖国,热爱祖国悠久文化历史,激励学生发奋学习.教学过程设计第一环节:创设情境,引入新课内容:2002 年世界数学家大会在我国北京召开,投影显示本届世界数学家大会的会标:会标中央的图案是一个与“勾股定理”有关的图形,数学家曾建议用“勾股定理”的图来作为与“外星人”联系的信号.今天我们就来一同探索勾股定理.(板书课题)第二环节:探索发现勾股定理1.探究活动一内容:投影显示如下地板砖示意图,引导学生从面积角度观察图形:问:你能发现各图中三个正方形的面积之间有何关系吗?学生通过观察,归纳发现:结论 1 以等腰直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积.2.探究活动二内容:由结论 1 我们自然产生联想:一般的直角三角形是否也具有该性质呢?(1)观察下面两幅图:(2)填表:A 的面积B 的面积C 的面积(单位面积)(单位面积)(单位面积)左图右图( 4)分析填表的数据,你发现了什么?学生通过分析数据,归纳出:结论 2以直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积.3.议一议内容:( 1)你能用直角三角形的边长 a ,b, c 来表示上图中正方形的面积吗?( 2)你能发现直角三角形三边长度之间存在什么关系吗?( 3)分别以 5 厘米、 12 厘米为直角边作出一个直角三角形,并测量斜边的长度. 2 中发现的规律对这个三角形仍然成立吗?勾股定理:直角三角形两直角边的平方和等于斜边的平方.如果用 a ,b, c 分别表示直角三角形的两直角边和斜边,那么a2b2 c 2.第三环节:勾股定理的简单应用例题如图所示,一棵大树在一次强烈台风中于离地面10m处折断倒下,树顶落在离树根24m处.大树在折断之前高多少?171001.基础巩固练习:求下列图形中未知正方形的面积或未知边的长度(口答):x15225?2.生活中的应用:小明妈妈买了一部29 in ( 74 cm)的电视机 .小明量了电视机的屏幕后,发现屏幕只有58 cm 长和 46 cm 宽,他觉得一定是售货员搞错了.你同意他的想法吗?你能解释这是为什么吗?第四环节:课堂小结教师提问:1.这一节课我们一起学习了哪些知识和思想方法?2.对这些内容你有什么体会?与同伴进行交流.在学生自由发言的基础上,师生共同总结:1.知识:勾股定理:直角三角形两直角边的平方和等于斜边的平方.如果用a,b,c分别表示直角三角形的两直角边和斜边,那么 a 2 b 2c2.2.方法:( 1)观察—探索—猜想—验证—归纳—应用;(2)“割、补、拼、接”法 .3.思想:( 1)特殊—一般—特殊;(2)数形结合思想.。

探索勾股定理 (1)

探索勾股定理 (1)

C
B
∴ AB2=62+82 ∴ AB2 ∴ AB2
=36+64 =100
∵AB>0 ∴ AB=10
问题三
美丽的勾股树
1
1
美丽的勾股树
趣味探索
如图, 正方形Ⅰ的面积为7,你能求出正方形Ⅱ、 Ⅲ面积之和吗?A、B、C、D的面积之和呢?
规律:在勾股树中,每一层的正方形面积和都相等。
1. 课本67-68页,第1、2、3题;
5cm
.
(2)再画一个两直角边为6和8的Rt△ABC,
用刻度尺量AB的长为 10cm .
探究新知(二):
如图,小方格的面积为1.
P C A
正方形P 正方形Q 正方形R 的面积 的面积 的面积 9 16 ?
Q R B
怎么求SR的大小?
有几种方法?
P Q C R
(1)用“补”的方法
1 SR = 49 - 4 创 ( 4 3) 2 = 25
P Q C R
(2)用“割”的方法
1 ( 创 4 3) SR = 4 +1 2
=25
归纳总结
通过计算正方形的面积为:
P C A
正方形P 正方形Q 正方形R 的面积 的面积 的面积
9 16 25
Q R B
(1) SP+SQ=SR (2)你能用文字语言总结 一下直角三角形三边之间 存在的关系吗?
勾股定理
A
b c
——直角三角形三边关系
B
济宁学院附中 李涛
C
a
情景引入:
在一个施工工地,工人师傅需要从电线杆 离地面8m处向地面拉一条钢索,这条钢索在 地面的固定点距离电线杆底部6m,那么他需 要准备多长的钢索?Aຫໍສະໝຸດ 8 米CB

八年级数学优质教案 《探索勾股定理》第一课时教学设计及教学反思 (1)

2002
荷花问题
平平湖水清可鉴,荷花半尺出水面。 忽来一阵狂风急,吹倒荷花水中偃。 湖面之上不复见,入秋渔翁始发现。 残花离根二尺远,试问水深尺若干。
聪明的同学们,你能就此画出示意图吗?
一等腰直角三角形三边之间的关系
如图所示是正方形瓷砖拼成的地面,观察图中阴影画出 的三个正方形,回答下列问题:
(1)设每个小正方形的边长为1个单位,则小正方形P的 面积=_1____,小正方形Q的面积=__1____,两者之和=__2____, 大正方形R的面积=_2____.
∴ x=12
3、在直角三角形ABC中, ∠C=900, (1)已知: a=5, b=12, 求c; (2)已知: b=6,•c=10 , 求a; (3)已知: a=7, c=25, 求b.
4 、一直角三角形的一直角边长为7, 另两条边 长为两个连续整数,求这个直角三角形的周长.
5 、如果一个直角三角形的三条边长是三个连续 整数,求这个直角三角形各边的长.
6. 一高为2.5米的木梯,架在高为2.4米的墙上 (如图),这时梯脚与墙的距离是多少?
A
C
B
小结: 1、利用数格子的方法,探索了以直角三角形三边 为边长的正方形面积的关系(即两个小正方形的 面积之和等于大正方形的面积)
2、探索了直角三角形的三边关系,得到勾股定理:
即直角三角形两直角边的平方和等于斜边的平方 平方
正方形B中含
有 9 个小方格,即 B的面积是 9 个单
位面积;
正方形C中含
有 18个小方格,即 C的面积是 18 个单
位面积。
正方形A,B,C 的面积之间有什么 关系吗?

C

A

B
C

探索勾股定理(一)PPT课件

探索勾股定理
(第1课时)
1
如图,受台风麦莎影响,一旗杆在离地面9米处断 裂,旗杆的顶部落在离旗杆底部12米处,这旗杆 折断前有多高?
2
C A
B
图1-1
(1)观察图1-1 正方形A中含有 16 个
小方格,即A的面积是 16 个单位面积。 正方形B的面积是 9 个单位面积。 正方形C的面积是 25 个单位面积。
225
400
81
B =144
225
9
2、求出下列直角三角形中未知边的长度
x 6
8
x
5 13
解:由勾股定理得: ∵ x2+52=132
x2=62+82
∴ x2=132-52
x2 =36+64
x2 =169-25
x2 =100 ∵x>0 ∴ x=10
x2 =144 ∵x>0
∴ x=12
10
课堂练习: 1.填空题 在 ABC中,C=90°, (1)若a=8,b=6,则c= _1_0__ (2)c=20,b=12,则a= _1_6__
(3)若c=10,a:b=3:4,则a=_6___,b=_8__.
11
2. 一高为2.5米的木梯,架在高为2.4米的墙上 (如图),这时梯脚与墙的距离是多少?
A
C
B
12
学习总结
经常不断地学习,你就什么都知道。你知道得越多,你就越有力量 Study Constantly, And You Will Know Everything. The More
14
斜边上的正方形的面积
4
勾股定理(gou-gu theorem)
如果直角三角形两直角边分别为a、b, 斜边为c,那么

1.1探索勾股定律(一)

第一章 勾股定律 课题 第一节:探索勾股定律(一)

教学目标 1、掌握直角三角形三边之间的数量关系,学会用符号表示。学生在经历用数格子与割补等办法探索勾股定理的过程中,体会数形结合的思想,体验从特殊到一般的逻辑推理过程。 2、通过分层训练,使学生学会熟练运用勾股定理进行简单的计算,在解决实际问题中掌握勾股定理的应用技能。 3、通过数学史上对勾股定理的介绍,激发学生学数学,爱数学,做数学的情感。使学生从经历定理探索的过程中,感受数学之美,探究之趣。

教学重点 用面积法探索勾股定理,理解并掌握勾股定理。

教学难点 计算以斜边为边长的大正方形C面积及割补思想的理解与应用。

教学用具 三角板,直尺,方格纸

教学方法 选择引导探索法,采用“问题情境----建立模型----解释、应用与拓展”的模式进行教学。

教学过程 教学内容 活动设计 备注 新课引入:强大的台风使得一跟旗杆在离地面9米处折断倒下,旗杆顶部落在离旗杆底部12米处。旗杆折断之前有多高? 用一段生动有趣的画面,点燃学生的求知欲,以景激情,以情激思,引领学生进入学习情境。 1.师生互动,探究新知 活动1:(观察图1)你知道正方形C的面积是多少吗? 你是怎样得出上面结果的呢? 独立思考后交流,采用直接数方格的办法,或者是分割成几个等腰直角三角形的方法计算正方形C的面积。 同学们用数格子的方法发现了正方形C的面积,那么对于下面图2中的正方形C, “数方格子”的方法还行得通吗?下面我们一起来研究。

独立思考,在预先准备的方格纸上将图形剪一剪、拼一拼,用分割成四个全等直角三角形的方法或将正方形C补成边长为整数的大正方形的方法求出斜边上的正方形C的面积。接着将成果与同伴交流,学生代表发言。 2、等腰直角三角形 观察图,对于等腰直角三角形,将正方形A、正方形B和已计算的正方形C的面积填入下表,它们的面积有什么关系?

结论:正方形A面积 + 正方形B面积 = 正方形C面积

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档