DNA测序测序方法双脱氧链终止法自动化DNA测序焦磷酸测序1

DNA测序测序方法双脱氧链终止法自动化DNA测序焦磷酸测序1
DNA测序测序方法双脱氧链终止法自动化DNA测序焦磷酸测序1

DNA 测序

测序方法:

双脱氧链终止法

自动化DNA测序

焦磷酸测序

1、双脱氧链终止法

原理:

ddNTP由于缺乏3’-OH ,可以终止DNA链的延长

利用变性的聚丙烯酰胺凝胶电泳可以将不同长度的核苷酸链分离步骤:

(1)双链DNA-------加热----------单链DNA

(2)加引物--------退火

(3)取四支试管A、B、C、D加入dNTP、耐热的DNA聚合酶(4)将ddNTP标记,A加入ddATP、B加入ddTTP、C加入ddCTP、D加入ddGTP

(5)得到结构如下

5’—X—A*

5’—X—AG*

5’—X—AGG*

5’—X—AGGC*

5’—X—AGGCT*

5’—X—AGGCTA*

5’—X—AGGCTAG*

5’—X—AGGCTAGC*

5’—X—AGGCTAGCA*

5’—X—AGGCTAGCAG*

5’—X—AGGCTAGCAGC*

5’—X—AGGCTAGCAGCA*

5’—X—AGGCTAGCAGCAT*

5’—X—AGGCTAGCAGCATG*

5’—X—AGGCTAGCAGCATGA*

(6)用尿素处理变性的聚丙烯凝胶电泳,依次读出核苷酸序列

2、自动化DNA测序

原理:

(1)用四种不同的荧光染料分别标记不同的ddNTP

(2)在同一试管中加入ddNTP、NTP、DNA单链-引物、DNA聚合

(3)生成的系列单链DNA片段在琼脂糖凝胶进行电泳

(4)用光子检测器接受被激光激发的DNA上的标记荧光素发出的

光子,因生成的DNA依据片段由短到长依次经过,便可得到待测DNA的核苷酸序列

3、焦磷酸测序

原理:

(1)将单一链DNA-引物、DNA聚合酶、ATP硫酶化酶、荧光素酶、荧光素、APS加入试管

(2)加入一种dNTP,如果其为合成下游核苷酸所需要的核苷酸种类,则发生反应生成PPi

(3)P pi在ATP硫酶化酶作用下生成ATP

(4)A TP在荧光素氧化酶的作用下将荧光素氧化生成氧化荧光素

(5)氧化荧光素释放光子恢复形成荧光素,

(6)剩余的dNTP在APS作用下继续分解

(7)加入另一轮dNTP,进行新一轮反映

DNA测序原理和方法.

DNA测序原理和方法 DNA序列测定分手工测序和自动测序,手工测序包括Sanger双脱氧链终止法和Maxam-Gilbert化学降解法。自动化测序实际上已成为当今DNA序列分析的主流。美国PE ABI公司已生产出373型、377型、310型、3700和3100型等DNA测序仪,其中310型是临床检测实验室中使用最多的一种型号。本实验介绍的是ABI PRISM 310型DNA测序仪的测序原理和操作规程。 【原理】ABI PRISM 310型基因分析仪(即DNA测序仪),采用毛细管电泳技术取代传统的聚丙烯酰胺平板电泳,应用该公司专利的四色荧光染料标记的ddNTP(标记终止物法),因此通过单引物PCR测序反应,生成的PCR产物则是相差1个碱基的3''''末端为4种不同荧光染料的单链DNA混合物,使得四种荧光染料的测序PCR产物可在一根毛细管内电泳,从而避免了泳道间迁移率差异的影响,大大提高了测序的精确度。由于分子大小不同,在毛细管电泳中的迁移率也不同,当其通过毛细管读数窗口段时,激光检测器窗口中的CCD(charge-coupled device)摄影机检测器就可对荧光分子逐个进行检测,激发的荧光经光栅分光,以区分代表不同碱基信息的不同颜色的荧光,并在CCD摄影机上同步成像,分析软件可自动将不同荧光转变为DNA序列,从而达到DNA测序的目的。分析结果能以凝胶电泳图谱、荧光吸收峰图或碱基排列顺序等多种形式输出。 它是一台能自动灌胶、自动进样、自动数据收集分析等全自动电脑控制的测定DNA片段的碱基顺序或大小和定量的高档精密仪器。PE公司还提供凝胶高分子聚合物,包括DNA测序胶(POP 6)和GeneScan胶(POP 4)。这些凝胶颗粒孔径均一,避免了配胶条件不一致对测序精度的影响。它主要由毛细管电泳装置、Macintosh电脑、彩色打印机和电泳等附件组成。电脑中则包括资料收集,分析和仪器运行等软件。它使用最新的CCD摄影机检测器,使DNA 测序缩短至2.5h,PCR片段大小分析和定量分析为10~40min。 由于该仪器具有DNA测序,PCR片段大小分析和定量分析等功能,因此可进行DNA测序、杂合子分析、单链构象多态性分析(SSCP)、微卫星序列分析、长片段PCR、RT-PCR(定量PCR)等分析,临床上可除进行常规DNA测序外,还可进行单核苷酸多态性(SNP)分析、基因突变检测、HLA配型、法医学上的亲子和个体鉴定、微生物与病毒的分型与鉴定等。【试剂与器材】 1.BigDye测序反应试剂盒主要试剂是BigDye Mix,内含PE专利四色荧光标记的ddNTP 和普通dNTP,AmpliTaq DNA polymerase FS,反应缓冲液等。 2.pGEM-3Zf (+) 双链DNA对照模板0.2g/L,试剂盒配套试剂。 3.M13(-21)引物TGTAAAACGACGGCCAGT,3.2μmol/L,即3.2pmol/μl,试剂盒配套试剂。 4.DNA测序模板可以是PCR产物、单链DNA和质粒DNA等。模板浓度应调整在PCR 反应时取量1μl为宜。本实验测定的质粒DNA,浓度为0.2g/L,即200ng/μl。 5.引物需根据所要测定的DNA片段设计正向或反向引物,配制成3.2μmol/L,即3.2pmol/μl。如重组质粒中含通用引物序列也可用通用引物,如M13(-21)引物,T7引物等。 6.灭菌去离子水或三蒸水。 7.0.2ml或和0.5ml的PCR管盖体分离,PE公司产品。 8.3mol/L 醋酸钠(pH5.2) 称取40.8g NaAc·3H2O溶于70ml蒸馏水中,冰醋酸调pH至5.2,定容至100ml,高压灭菌后分装。 9.70%乙醇和无水乙醇。 10.NaAc/乙醇混合液取37.5ml无水乙醇和2.5ml 3mol/L NaAc混匀,室温可保存1年。11.POP 6测序胶ABI产品。

几种常见的基因测序技术的优缺点及应用复习过程

几种常见的基因测序技术的优缺点及应用

随着人类基因组计划的完成,人类对自身遗传信息的了解和掌握有了前所未有的进步。与此同时,分子水平的基因检测技术平台不断发展和完善,使得基因检测技术得到了迅猛发展,基因检测效率不断提高。从最初第一代以 Sanger 测序为代表的直接检测技术和以连锁分析为代表的间接测序技术,到 2005 年,以 Illumina 公司的 Solexa技术和 ABI 公司的 SOLiD 技术为标志的新一代测序(next-generation sequencing,NGS) 的相继出现,测序效率明显提升,时间明显缩短,费用明显降低,基因检测手段有了革命性的变化。其技术正向着大规模、工业化的方向发展,极大地提高了基因检测的检出率,并扩展了疾病在基因水平的研究范围。2009 年 3 月,约翰霍普金斯大学的研究人员在《Science》杂志上发表了通过 NGS外显子测序技术,发现了一个新的遗传性胰腺癌的致病基因PALB2,标志着 NGS 测序技术成功应用于致病基因的鉴定研究。同年,《Nature》发表了采用 NGS 技术发现罕见弗里曼谢尔登综合征MYH3 致病基因突变和《Nat Genet》发表了遗传疾病米勒综合征致病基因。此后,通过 NGS 技术,与遗传相关的致病基因不断被发现,NGS 技术已成为里程碑式的进步。2010 年,《Science》杂志将这一技术评选为当年“十大科学进展”。 近两年,基因检测成为临床诊断和科学研究的热点,得到了突飞猛进和日新月异的发展,越来越多的临床和科研成果不断涌现出来。同时,基因检测已经从单一的遗传疾病专业范畴扩展到复杂疾病和个体化应用更加广阔的领域,其临床检测范围包括高危疾病的新生儿筛查、遗传疾病的诊断和基因携带的检测以及基因药物检测用于指导个体化用药剂量、选择和药物反应等诸多方面的研究。目前,基因检测在临床诊断和医学研究的应用正越来越受到医生的普遍重视和引起研究人员的极大的兴趣。 本文介绍了几种 DNA 水平基因检测常见的方法,比较其优缺点和在临床诊断和科学研究中的应用,对指导研究生和临床医生课外学习,推进临床科研工作和提升科研教学水平有着指导意义。 1、第一代测序 1.1 Sanger 测序采用的是直接测序法。1977年,Frederick Sanger 等发明了双脱氧链末端终止法,这一技术随后成为最为常用的基因测序技术。2001 年,Allan Maxam 和 Walter Gibert 发明了 Sanger 测序法,并在此后的 10 年里成为基因检测的金标准。其基本原理即双脱氧核苷三磷酸(dideoxyribonucleoside triphosphate,ddNTP) 缺乏PCR 延伸所需的 3'-OH,因此每当 DNA 链加入分子 ddNTP,延伸便终止。每一次 DNA 测序是由 4个独立的反应组成,将模板、引物和 4 种含有不

基因测序技术的优缺点及应用

基因测序技术的优缺点及应用 随着人类基因组计划的完成,人类对自身遗传信息的了解和掌握有了前所未有的进步。与此同时,分子水平的基因检测技术平台不断发展和完善,使得基因检测技术得到了迅猛发展,基因检测效率不断提高。从最初第一代以 Sanger 测序为代表的直接检测技术和以连锁分析为代表的间接测序技术,到 2005 年,以Illumina 公司的 Solexa技术和 ABI 公司的 SOLiD 技术为标志的新一代测序 (next-generation sequencing,NGS) 的相继出现,测序效率明显提升,时间明显缩短,费用明显降低,基因检测手段有了革命性的变化。其技术正向着大规模、工业化的方向发展,极大地提高了基因检测的检出率,并扩展了疾病在基因水平的研究范围。2009 年 3 月,约翰霍普金斯大学的研究人员在《Science》杂志上发表了通过 NGS外显子测序技术,发现了一个新的遗传性胰腺癌的致病基因PALB2,标志着 NGS 测序技术成功应用于致病基因的鉴定研究。同年,《Nature》发表了采用 NGS 技术发现罕见弗里曼谢尔登综合征MYH3 致病基因突变和《Nat Genet》发表了遗传疾病米勒综合征致病基因。此后,通过 NGS 技术,与遗传相关的致病基因不断被发现,NGS 技术已成为里程碑式的进步。2010 年,《Science》杂志将这一技术评选为当年“十大科学进展”。 近两年,基因检测成为临床诊断和科学研究的热点,得到了突飞猛进和日新月异的发展,越来越多的临床和科研成果不断涌现出来。同时,基因检测已经从单一的遗传疾病专业范畴扩展到复杂疾病和个体化应用更加广阔的领域,其临床检测范围包括高危疾病的新生儿筛查、遗传疾病的诊断和基因携带的检测以及基因药物检测用于指导个体化用药剂量、选择和药物反应等诸多方面的研究。目前,基因检测在临床诊断和医学研究的应用正越来越受到医生的普遍重视和引起研究人员的极大的兴趣。 本文介绍了几种 DNA 水平基因检测常见的方法,比较其优缺点和在临床诊断和科学研究中的应用,对指导研究生和临床医生课外学习,推进临床科研工作和提升科研教学水平有着指导意义。 1、第一代测序 1.1 Sanger 测序采用的是直接测序法。1977年,Frederick Sanger 等发明了双脱氧链末端终止法,这一技术随后成为最为常用的基因测序技术。2001 年,Allan Maxam 和 Walter Gibert 发明了 Sanger 测序法,并在此后的 10 年里成为基因检测的金标准。其基本原理即双脱氧核苷三磷酸(dideoxyribonucleoside triphosphate,ddNTP) 缺乏PCR 延伸所需的 3'-OH,因此每当 DNA 链加入分子 ddNTP,延伸便终止。每一次 DNA 测序是由 4个独立的反应组成,将模板、引物和 4 种含有不同的放射性同位素标记的核苷酸的ddNTP 分别与DNA 聚合酶混合形成长短不一的片段,大量起始点相同、终止点不同的 DNA 片段存在于反应体系中,具有单个碱基差别的 DNA 序列可以被聚丙烯酰胺变性凝胶电泳分离出来,得到放射性同位素自显影条带。依据电泳条带读取DNA 双链的碱基序列。 人类基因组的测序正是基于该技术完成的。Sanger 测序这种直接测序方法具有高度的准确性和简单、快捷等特点。目前,依然对于一些临床上小样本遗传疾病基因的鉴定具有很高的实用价值。例如,临床上采用 Sanger 直接测序 FGFR 2 基因证实单基因 Apert 综合征和直接测序 TCOF1 基因可以检出多达 90% 的

测序结果处理方法及聚类分析(DOC)

一、测得序列的拼接及处理 1、送样类型 a非克隆法(如PCR产物、PCR产物纯化回收等) 由于此类型样品,两端的引物序列一般在测序的过程中会有缺失,很难找全引物序列,仅能找到部分引物序列,因此对于此类型样品的测序结果可以不做引物序列的查找,后续需要可再做引物序列的查找。 b克隆法(片段通过TA克隆或其他载体构建等) 此类型样品,目的片段两端的引物可以很完整的保存在载体中,引物序列亦是测序片段,所以引物序列比较完整,可以找到引物的完整序列,因此可以通过查找引物序列而找到目的片段的起始位置。 2、测序方法 观察峰值图可用软件“bioedit” a单向测通 对于此种测序结果基本上单条序列不需要拼接,通过观察序列峰值图来初步判断序列结果的准确性,一般来说峰越尖越好,套峰越少越好。 b双向测通 对于此种测序结果,除了要观察峰值图的好坏外,要得到完整的序列,还需要对双向序列进行拼接,利用DNASTAR中seqMan进行拼接,点击“NEW”、“add sequence”(一般为abi格式,选择双向测序结果)、“assemble”,“contig”,一般保存完整的片段长度即选择“All”,亦可保存其中的片段长度,保存格式一般选择“fas”格式以便在不同的编辑软件中使用。具体步骤如下图。

3、对测得的序列进行比对及聚类分析 一般来讲,可以将所有需要进行比对的序列粘贴在一个记事本中,保存的格式最好 为“fas”格式,,利用软件“MEGA”中“Align”打开所需序列,依据序列的特性进行选择如DNA或protein,然后添加所有需要进行比对的序列。

可根据序列的具体情况进行选择比对的方法,本教程选择“ClustalW”法。 析,可保存为该软件格式,或其他格式。

序列拼接

序列拼接 * 为了保证测序结果的准确性,单基因短片段(700pd左右)测序一般应采用双向测序,然后将双向测序的结果拼接在一起,从而获得一致性序列。线粒体基因组测序和DNA长片段测序一般是通过分段测序来完成的,最后也需要将测出的短片段拼接成一条完整的序列。序列拼接可以在不同的软件中进行。 一、使用“组装批处理文件byLHM.pg4”进行拼接 1. 在预定的位置建立一个文件夹“gap”,将需要使用的3个软件“组装批处理文件byLHM.pg4”、“V ector_primer4pMD18-T.vec_pri”、“pMD18-T_Vector.seq”拷贝到该文件夹下,再将需要拼接的测序文件拷贝到该文件夹下。 2. 双击运行“组装批处理文件byLHM.pg4”程序。 3. 在程序运行后出现的界面右侧点击“Add files”按钮,打开要拼接的序列文件。为了保证 拼接后输出的是正向序列,最好先添加上游引物序列,然后添加下游引物序列,因为在一般情况下软件将添加的第一条序列默认为正向参照序列;有时由于测序效果等因素的影响,有时即使首先添加的是上游引物序列,但拼接后仍然会以测序效果明显更好的下游引物序列为正向参照序列,此时需要按照后面介绍的方法将上游引物序列转换为正向参照序列再输出一致性序列。 4. 点击界面上方第二行的“Configure Modules”,在弹出的窗口左边的任务栏中点击“[x] Sequencing vector Clip”,再点击右边的“Browse”按钮,通过弹出的窗口打开“Vector_primer4pMD18-T.vec_pri”程序;点击左边任务栏中的“[] Cloning Vector Clip”,再点击右边的“Browse”按钮,通过弹出的窗口打开“pMD18-T_Vector.seq”程序;点击左下角的“Run”按钮,即开始数据处理,处理结果将自动保存到“gap”文件夹中。 5. 在“gap”文件夹中双击“AssMit_tmp.o.aux”文件,将鼠标移到弹出的“Contig Selector” 窗口中的直线上,点击右键,选择“Edit Contig”,即弹出“Contig Editor”窗口,点击最右边的“setting”按钮,在下拉菜单中选择“By background colour”,即可显示比对结果的有差异碱基;双击某一序列,即可显示该序列的测序峰图,以检查核对该位点碱基的测序情况。 * 注:执行此操作时一定要检查正向序列是否为上游引物序列;如果不是,则需要将上游引物序列转换成正向序列后再执行下面的“输出及保存序列”操作;具体的操作步骤是:点击“GAPv4.10 AssMit_tmp.o”窗口中的“Edit”菜单,在下拉菜单中选择“Complement a contig”命令,在弹出来的“Complement contig”小窗口中检查确认“Contig identifier” 框中的序列为上游引物序列,然后点击“OK”即将完成序列转换。 6. 点击“GAPv4.10 AssMit_tmp.o”窗口中的“File”菜单,在下拉菜单中选择“Save consensus”可保存一致序列,nomors------ok ,序列即保存在刚刚使用过的那个文件夹中,然后把文件名改成用“*.txt”形式,以便保存的文件成为文本文件,若忘记在文件名后加“.txt”,则保存完毕后可将文件的扩展名改成“.txt”;只有拼接好的一致序列才可用于后面的序列分析。 7.然后把在ncbi里查到的相近种的序列放到一起,也可以直接放到刚才那个cons.txt文本文 档中,然后打开clustalx.exe进行序列比对,file------load sequence ------G盘-----004文件夹-----cons.txt-----aligenment-----do complete aligenment,这时如果发现两条序列的保守区域很不对,极可能是刚刚测得这个种的序列反了,需要用Bioedit把它正过来, 8.在程序里打开已经安装好的Bioedit,例如找file---------open----G盘---004----cons.txt,打开, 选sequence--------下拉菜单中找Nuclic acid,在菜单中找reverse complement,点击它 然后在另一对话框中例如G:/004/CONS.TXT中点击保存save Aligenment. 这样序列即

掌握双脱氧链终止法测定DNA序列的原理与方法

[目的] 掌握双脱氧链终止法测定DNA序列的原理与方法 [原理] DNA聚合酶催化的DNA链延伸是在3’-OH末端上进行的。由于2’,3’-双脱氧三磷酸核苷酸(ddNTP)的3’-位脱氧而失去游离-OH,当它参入到DNA链后,3’-OH末端消失,使DNA链的延伸终止。 本实验根据此原理,将待测DNA片段插入单链噬菌体M13载体,并用合成的寡聚核苷酸引物与该载体上插入待测片段的上游顺序退火,随后在T7DNA聚合酶催化下进行延伸反应。实际操作中同时进行,分别终止于A、G、C和T的4个反应体系。每个反应体系均含4种脱氧三磷酸核苷酸(dNTP)底物,其中—种dATP为32P标记物,以便能用放射自显影法读序。但在这4个反应体系中,分别加一种低浓度的ddNTP(ddATP、ddGTP、ddCTP或ddTTP),这样ddN TP可随机参入正在延伸的DNA链上,使链延伸终止。例如在“A”管中加ddATP,反应结束时,管内所有新合成的DNA链都是以A结尾的不同长度的片段,而且这些片段都带放射性。将反应物加在高分辨凝胶上电泳,DNA片段则因其长度不同(分子量大小不同)被分离,短的走在前端,长的泳动在后面。其他3管则分别为以G,C或T结尾的不同长度DNA片段。 由于:①即使是长短相差一个核苷酸的DNA片段,亦可根据其电泳距离的差异而加以区分; ②A、G、C和T4种反应体系的产物在电泳凝胶中相邻排列。故而在阅读凝胶电泳的放射自显影图像时,由下至上按前后顺序即可将DNA的核苷酸顺序读出。 [操作] 1.单链模板与引物退火

(1)用无菌蒸馏水按1:5稀释通用引物(约4.44μg/ml)。 (2)取1.5ml微量离心管1只,加入下列试剂:模板DNA(1.5-2ugDNA/10μl)10μl;稀释通用引物2μl;退火缓冲液2μl,总体积14μl。 2.链延伸/终止反应 (1)稀释T7DNA聚合酶:取2μl(或4μl)冷的酶稀释缓冲液至1只微量离心管中,加入0.5μl(或lμl)T7DNA聚合酶,用加样器轻轻抽吸和排出而混匀,置冰浴中待用。 (2)另取4只微量离心管,分别用记号笔标明“A”、“G”、“C”和“T”。依次将A-Mix、G-Mix、C-Mi x和T-Mix液各2.5μl分别加入这4只微量离心管中,置37℃预温1分钟以上(说明:4种mix 液各又分为short和long两种,前者中ddNTP浓度较高,用于<500bp的DNA片段的测序,后者用于50-1000bp片段的测序。一般应用short即可)。 (3)标记反应:在操作(1)的微量离心管中加入下列试剂:模板/引物14μl(已有);标记用混合物(1abellingmix)3μ1;已标记混合物(1abelled mix)1μ1,T7DNA聚合酶稀释液2μ1。总体积2 0μ1。 轻轻混匀,简短离心,置室温5分钟,立即接下步反应。 (4)从“标记反应”混合物中,分别取4.5μl加于4只预温的反应液中(注意:每一次转移均应换用新的吸头),轻轻混匀。简短离心,37℃保温5分钟。 (5)向每只离心管中加入5μl反应终止液,混匀,简短离心。 (6)变性反应:在电泳前进行。在上述链延伸反应终止后,最好即时进行变性反应并电泳,如不能及时电泳,终止反应后样品可储于冰浴或4℃。

双脱氧法

双脱氧链终止法 概述:双脱氧链终止法是现在应用最多的核酸测序技术,由Sanger等1977年提出。主要用于DNA基因分析。 原理:核酸模板在核酸聚合酶、引物、四种单脱氧碱基存在条件下复制或转录时,如果在四管反应系统中分别按比例引入四种双脱氧碱基,只要双脱氧碱基掺入链端,该链就停止延长,链端掺入单脱氧碱基的片段可继续延长。如此每管反应体系中便合成以共同引物为5'端,以双脱氧碱基为3'端的一系列长度不等的核酸片段。反应终止后,分四个泳道进行电泳。以分离长短不一的核酸片段(长度相邻者仅差一个碱基),根据片段3'端的双脱氧碱基,便可依次阅读合成片段的碱基排列顺序。 Sanger双脱氧链终止法(酶法)测序程序:(注:RNA部分不看)(一) Sanger双脱氧链终止法(酶法)测序程序操作程序是按DNA复制和RNA反转录的原理设计的。 1.分离待测核酸模板,模板可以是DNA,也可以是RNA,可以是双链,也可以是单链。 2.在4只试管中加入适当的引物、模板、4种dNTP(包括放射性标记的ddNTP,例如P ddNTP 和DNA聚合酶(如以RNA为模板,则用反转录酶),再在上述4只管中分别加入一种一定浓度的ddNTP(双脱氧核苷酸)。 3.与单链模板(如以双链作模板,要作变性处理)结合的引物,在DNA聚合酶作用下从5'端向3'端进行延伸反应,32P随着引物延长掺入到新合成链中。当ddNTP掺入时,由于它在3'位置没有羟基,故不与下一个dNTP结合,从而使链延伸终止。ddNTP在不同位置掺入,因而产生一系列不同长度的新的DNA链。 4.用变性聚丙烯酰胺凝胶电泳同时分离4只反应管中的反应产物,由于每一反应管中只加一种ddNTP(如ddATP),则该管中各种长度的DNA都终止于该种碱基(如A)处。所以凝胶电泳中该泳道不同带的DNA 3' 末端都为同一种双脱氧碱基。 5.放射自显影。根据四泳道的编号和每个泳道中DNA带的位置直接从自显影图谱上读出与模板链互补的新链序列。 双脱氧法原理示意图:如下图

几种常见的基因测序技术的优缺点及应用

几种常见的基因测序技术的优缺点及应用 发布时间:2014-07-19 来源:毕业论文网 随着人类基因组计划的完成,人类对自身遗传信息的了解和掌握有了前所未有的进步。与此同时,分子水平的基因检测技术平台不断发展和完善,使得基因检测技术得到了迅猛发展,基因检测效率不断提高。从最初第一代以Sanger 测序为代表的直接检测技术和以连锁分析为代表的间接测序技术,到2005 年,以Illumina 公司的Solexa技术和ABI 公司的SOLiD 技术为标志的新一代测序(next-generation sequencing,NGS) 的相继出现,测序效率明显提升,时间明显缩短,费用明显降低,基因检测手段有了革命性的变化。其技术正向着大规模、工业化的方向发展,极大地提高了基因检测的检出率,并扩展了疾病在基因水平的研究范围。2009 年 3 月,约翰霍普金斯大学的研究人员在《Science》杂志上发表了通过NGS外显子测序技术,发现了一个新的遗传性胰腺癌的致病基因PALB2,标志着NGS 测序技术成功应用于致病基因的鉴定研究。同年,《Nature》发表了采用NGS 技术发现罕见弗里曼谢尔登综合征MYH3 致病基因突变和《Nat Genet》发表了遗传疾病米勒综合征致病基因。此后,通过NGS 技术,与遗传相关的致病基因不断被发现,NGS 技术已成为里程碑式的进步。2010 年,《Science》杂志将这一技术评选为当年“十大科学进展”。 近两年,基因检测成为临床诊断和科学研究的热点,得到了突飞猛进和日新月异的发展,越来越多的临床和科研成果不断涌现出来。同时,基因检测已经从单一的遗传疾病专业范畴扩展到复杂疾病和个体化应用更加广阔的领域,其临床检测范围包括高危疾病的新生儿筛查、遗传疾病的诊断和基因携带的检测以及基因药物检测用于指导个体化用药剂量、选择和药物反应等诸多方面的研究。目前,基因检测在临床诊断和医学研究的应用正越来越受到医生的普遍重视和引起研究人员的极大的兴趣。 本文介绍了几种DNA 水平基因检测常见的方法,比较其优缺点和在临床诊断和科学研究中的应用,对指导研究生和临床医生课外学习,推进临床科研工作和提升科研教学水平有着指导意义。 1、第一代测序 1.1 Sanger 测序采用的是直接测序法。1977年,Frederick Sanger 等发明了双脱氧链末端终止法,这一技术随后成为最为常用的基因测序技术。2001 年,Allan Maxam 和Walter Gibert 发明了Sanger 测序法,并在此后的10 年里成为基因检测的金标准。其基本原理即双脱氧核苷三磷酸(dideoxyribonucleoside triphosphate,ddNTP) 缺乏PCR 延伸所需的 3'-OH,因此每当DNA 链加入分子ddNTP,延伸便终止。每一次DNA 测序是由4个独立的反应组成,将模板、引物和 4 种含有不同的放射性同位素标记的核苷酸的ddNTP 分别与DNA 聚合酶混合形成长短不一的片段,大量起始点相同、终止点不同的DNA 片段存在于反应体系中,具有单个碱基差别的DNA 序列可以被聚丙烯酰胺变性凝胶电泳分离出来,得到放射性同位素自显影条带。依据电泳条带读取DNA 双链的碱基序列。 人类基因组的测序正是基于该技术完成的。Sanger 测序这种直接测序方法具有高度的准确性和简单、快捷等特点。目前,依然对于一些临床上小样本遗传疾病基因的鉴定具有很高的实用价值。例如,临床上采用Sanger 直接测序FGFR 2 基因证实单基因Apert 综合征和直接测序TCOF1 基因可以检出多达90% 的与Treacher Collins 综合征相关的突变。值得注意的是,Sanger 测序是针对已知致病基因的突变位点设计引物,进行PCR 直接扩增测序。

双脱氧末端终止法测序

快速序列测定:双脱氧末端终止法 06级生科A班苏狄 064120202 摘要:核酸的序列分析,即核酸一级结构的测定,是现代分子生物学中一项重要技术。目前应用的两种快速序列测定技术是Sanger等(1977年)提出的双脱氧链终止法及Maxam和Gilbert(1977年)提出的化学降解法,其中双脱氧链终止法是目前应用最多,最好的技术。 关键词:快速序列测定、双脱氧末端终止法 目前应用的两种快速序列测定技术是Sanger等(1977)提出的酶法(双脱氧链终止法)和Maxam(1977)提出的化学降解法。虽然其原理大相径庭,但这两种方法都同样生成相互独立的若干组带放射性标记的寡核苷酸,每组核苷酸都有共同的起点,却随机终止于一种(或多种)特定的残基,形成一系列以某一特定核苷酸为末端的长度各不相同的寡核苷酸混合物,这些寡核苷酸的长度由这个特定碱基在待测DNA片段上的位置所决定。然后通过高分辨率的变性聚丙烯酰胺凝胶电泳,经放射自显影后,从放射自显影胶片上直接读出待测DNA上的核苷酸顺序。 高分辨率变性聚丙烯酰胺凝胶电泳亦是DNA序列测定技术的重要基础,可分离仅差一个核苷酸、长度达300~500个核苷酸的单链DNA分子。DNA序列测定的简便方法为详细分析大量基因组的结构和功能奠定了基础,时至今日,绝大多数蛋白质氨基酸序列都是根据基因或cDNA的核苷酸序列推导出来的。 除传统的双脱氧链终止法和化学降解法外,自动化测序实际上已成为当今DNA序列分析的主流。此外,新的测序方法亦在不断出现,如上世纪90年代提出的杂交测序法(sequencing by hybridization,SBH)等。 双脱氧末端终止法测序 一、原理 双脱氧末端终止法是Sanger等在加减法测序的基础上发展而来的。其原理是:利用大肠杆菌DNA聚合酶Ⅰ,以单链DNA为模板,并以与模板事先结合的寡聚核苷酸为引物,根据碱基配对原则将脱氧核苷三磷酸(dNTP)底物的5′-磷

利用SeqMan进行序列拼接

利用SeqMan进行序列拼接 Step1:打开Seqman软件 Step2:加入你要拼接的序列 点击Add sequences 查找并选中要拼接的序列(可按住control键进行多选) 点击Add按钮填加选择的序列 填加完后点击done 注:最好用测序的图谱尽量不要直接用测序得到的序列 Step3:去除末端序列 主要是去除序列末端测序质量差或是载体序列 有两种方法可以用来去除这类末端序列 其一:利用Seqman自带的去除工具自动去除(利用Trim ends按钮进行) 其二:手工去除 个人感觉手工去除方法最有效,因此下边我们以后工去除为例进行演示 手工去除侧翼序列 双击要去除侧翼序列的目标序列 将鼠标放到测序图谱左边的一个黑色的竖线上,此时鼠标会变成一个有两个箭头的水平线按住左键拖动黑竖线,那么你就会发现侧翼序列的颜色变浅,这部分变浅的序列则就被去除,不再参加后面的拼接

此步请将测序不准确或认为是载体的序列用这种方法去除。 测序准确的峰形图 峰形规则,一般在序列的中部,如下图所示 测序不准确的峰形图 峰形较乱,很难判断是哪个碱基,一般位于序列两端,如下图所示

Step4:进行序列拼接 点击Assemble按钮 在新出现窗口处点击拼接好的contig1 在出现的Alignment of contig1 窗口中点击左三角显示序列的测序图谱点击菜单contig->strategy view可以观察序列拼接的宏观图 Step5:查找拼接错误 find conflict 点击菜单Edit 点击Find Previous或Find Next查找接接中出现的错误 还可以通过Seqman左下角的快捷按钮查找错误的拼接

宏基因组测序技术检测方法

宏基因组测序技术检测标准 简介: 宏基因组测序介绍 宏基因组学是以环境样品中的微生物群体基因组为研究对象,通过现代基因组技术手段包括功能基因的筛选和测序分析,对环境中微生物多样性、种群结构、进化关系、功能活性、相互协作关系以及环境之间的关系进行研究的新的微生物研究方法。随着高通量测序技术的发展,为宏基因组学研究提供了新的理想研究方法。高通量测序的方法无需分离环境中各种微生物,也无需构建克隆文库就可以直接对环境中所有微生物进行测序。可以真实客观的反映环境中微生物的多样性、种群结构、进化关系等。目前又可以分为针对16s DNA/18sDNA/ITS测序和针对宏基因组全序列的测序研究。下面就是对这两者的具体介绍。 一、16s DNA/18s DNA/ITS测序 16sDNA是最常用的微生物物种分子鉴定的标签,,通过对样品中16sDNA测序可以鉴定其中微生物物种的丰度和分布情况。目前,普遍使用Roche 454平台来对环境样品进行16s DNA测序。因为16s DNA序列比较相似,读长短的话,难以进行有效的比对,而454平台的平均读长在400bp左右,可以很好的避免此类问题。 二、宏基因组全测序 在这种测序方式中,我们可以假定一个环境中的所有微生物就是一个整体,然后对其中所有的微生物进行测序。这样我们就可以研究样品中的功能基因以及其在环境中所起的作用而不用关心其来自哪个微生物。可以发现新的基因,可以进行基因的预测,甚至有可能得到某个细菌基因组的全序列。此外,该项测序不单可以针对DNA水平,也可以针对全RNA进行基因表达水平的研究。 样品处理:

宏基因组样品收集主要有口腔,下呼吸道痰液,下呼吸道灌洗液,皮肤和粪便。样品采集遵照样品采集规范(人)所规定的操作来进行。尽量留足备份样品。核酸提取: 宏基因组核酸提取主要有两种方法:膜过滤法和直接裂解提取。对于液体样品如痰液,灌洗液两种方法都适用,对于固体样品如粪便宜采用直接裂解的方法。核酸提取后用NanoDrop ND-1000测定,260/280 = , 260/230 = ,电泳检测DNA 应是完整的一条带。 测序Sequencing 1)16S/18S测序: Sanger测序: 用于低通量的16S/18S DNA测序,提取宏基因组后,首先通过PCR将16S/18S 序列扩增出来,再将其连接到克隆载体上,导入感受态细胞,涂平板做蓝白斑筛选,选出阳性克隆提质粒,对质粒进行测序反应,测序反应后纯化后用ABI 3130或ABI 3730进行毛细管电泳测序。 由于其测序准确率比较高,而通量非常低,现通常用做二代测序结果的验证。454 Platform: 454平台主要包括两种测序系统:454 GS FLX+ System和454 GS Junior System。454 GS FLX+ System测序读长可以达到600-1000bp,通量450-700M,GS Junior System测序读长在400bp左右,通量在35M。

DNA测序方法

DNA 测序 黄宝福枫岭生物 雅睿生物f b hoyear@https://www.360docs.net/doc/d52111676.html,

双脱氧法测序(Sanger法) 双脱氧法又称末端终止法,用于单链测序 1982年Sanger 利用此原理建立了双脱氧测序法。原理和加减法相似,但不再是加一种dNTP或减一种dNTP,而是加入某一种双脱氧核苷,来终止聚合反应。用此法测得越南伯克霍尔德氏菌Burkholderia vietnamiensis G4含5577bp.

双脱氧法测序原理 ?DNA链中的核苷酸是以3`,5`-磷酸二酯键相连接,合成DNA所用的底物是2`-脱氧核苷三磷酸(dNTP),在Sanger 双脱氧链终止法中被掺入了2`,3`-双脱氧核苷三磷酸(ddNTP),当ddNTP位于链延伸末端时, 由于它没有3`- OH,不能再与其它的脱氧核苷酸形成3′,5′-磷酸二酯键,DNA合成便在此处终止,如果此处掺入的是一个ddATP,则新生链的末端就是A,依次类推可以通过掺入ddTTP、ddCTP、 ddGTP ,则新生链的末端为T、C或G。

双脱氧法测序原理 脱氧核甘酸与双脱氧核甘酸结构比较

双脱氧法测序原理 ?在测序反应中通常设置4个反应,各反应管中同时加入一种DNA模板和引物、DNA聚合酶I(失去5′ 3′外切核酸酶活性)、其中一管中分别加入1种 ddNTP(如ddTTP 、dTTP)以及4种dNTP( dATP 、dCTP 、dGTP 、dTTP ),引物末端用放射性核素标记, ddTTP的比例很小(1:10),因此掺入的位点是随机的,经过适当的条件下温育,将会有不同长度的DNA片段合成。它们都具有相同的5′末端,3′末端都因掺入了ddTTP而以T结尾。在其它三管中同理加入相应的ddNTP。

靶向测序

DNA靶向测序 靶向测序(Target region sequencing),也称目标区域测序,是利用PCR或探针杂交的方法对感兴趣的基因组区域进行捕获和富集并进行高通量测序的一种技术手段,它能针对目的基因组区域进行遗传变异位点检测,获得指定目标区域的变异信息。 与传统的一代测序、全基因组测序以及全外显子测序相比,目标区域测序能够获得更深的覆盖度和更高的数据准确性,提高了对目标区域的检测效率。同时缩短了研究周期、降低了测序成本,适合对大量样本进行研究,有助于发现和验证疾病相关的候选基因或相关位点,在临床诊断和药物开发方面有着巨大的应用潜力。 技术参数 样品准备测序策略测序深度周期 10~100ng DNA 300bp DNA文库 HiSeq PE150测序 500~1000X 30个工作日 建库方法 技术流程 技术特征 (1)高度灵活:定制引物,可检测基因组中任何感兴趣的区域;

(2)微量建库:建库起始量低至10ng; (3)超高测序深度:500~1000X; (4)超低检出限:0. 1%; (5)经济高效:适合大样本量的分析。 部分结果展示 融合基因Circos图Transfic预测驱动基因统计 案例解析 靶向测序发现神经发育紊乱相关基因 破坏性的基因突变可引起神经发育紊乱(neurodevelopmental-disorder ,NDDs),但与之相关的致病基因仍未能确定。这项研究中,作者对11730例神经发育紊乱(包括自闭症、智力缺陷、智力发育迟缓)病例的208个NDD风险基因的编码和拼接区域进行了靶向测序,并与2867例正常对照样本对比,鉴定出91个相关基因,其中包括38个新发现的、存在大量新发突变或个别突变的NDD基因。孤独症(Autism Spectrum Disorder ,ASD)和智力障碍(Intellectual Disabilities,ID)都与基因突变相关,在这里作者发现有25个基因与与孤独症的关联比智力障碍更密切,并据此绘制了IQ>100的高智商孤独症相关的网络。

新一代测序技术组装拼接软件velvet使用简介

新一代测序技术组装拼接软件velvet使用简介 目前用于新一代的测序的主要仪器有Illumina/Solexa的Genome Analyzer、ABI的Solid和Roche的454,它们都能高通量的测序,产生大量的测序结果,接下来就要对序列进行拼接,用于拼接的软件也有很多,比如velvet、soap、abyss、maq等,454的还有专门的newbler。平时用velvet比较多,就简单介绍一下。 velvet对短序列的拼接效果比较好,所以多用于对Illumina等产生的短序列片段进行组装拼接。下面以Illumina的GAII产生的结果为例进行说明。 一、单端测序 单端测序可以直接对fastq格式的原始文件进行处理,首先是用velveth 命令建立hash表子集 输入./velveth会出来使用帮助: Usage: ./velveth directory hash_length {[-file_format][-read_type] filename} [options] directory : directory name for output files hash_length : odd integer (if even, it will be decremented) <= 75 (if above, will be reduced) filename : path to sequence file or – for standard input File format options: -fasta -fastq -fasta.gz -fastq.gz -eland

四色荧光末端终止法测序简介

四色荧光末端终止法测序简介 DNA测序技术主要依据Sanger的双脱氧链终止法。以DNA单链为模板,在特定条 件下,用特异的引物在测序级DNA聚合酶的作用下,根据碱基互补配对原则,不断将 4种脱氧核糖核苷酸(dNTP)加到引物的3'-羟基末端并使引物链得到延伸。这种链的延 伸是通过引物的3'-羟基和脱氧核糖核苷酸底物的5'-磷酸基团形成磷酸二酯键来完成 的。如果这种反应体系中加入双脱氧核糖核苷酸(ddNTP),这种2'3'ddNTP的5'-磷酸基 团是正常的,而3'位置缺少羟基,因此在DNA聚合酶作用下,仍然可以通过5'-磷酸 基团与引物链的3'-羟基反应掺入到引物链中,但是由于ddNTP没有3'-羟基,不能继 续与下一个5'-磷酸基团形成磷酸二酯键而导致引物链延伸的终止。这样,在测序反应 体系中,DNA引物链不断合成与偶然终止,产生一系列的长短不等的核苷酸链。然后 将这些测序反应产物进行电泳。ABI公司的测序试剂中使用了在4种ddNTP上标记了 4种不同颜色的荧光染料,而使得通过测序仪器可以分辨出每一条链被终止时的碱基种 类来逐一判读被测序的DNA模板序列。 对于双链DNA模板,在测序反应过程,我们只加入一条引物,这条引物只与双链 DNA模板任意一条链配对进行测序反应,与引物不配对的另一条DNA单链在反应中 不会干扰序列反应的测定。 DNA测序常见问题答复 1.为什么需要5ml菌液? 测序需要的DNA模板量较大,每次测序反应一般需要400ng(载体及插入片断大于10K则需要更多),并且样品准备需要鉴定、遇到一次测序实验不理想还需要重做、有些样品还需要进行多次测序等等。 2.如何提供菌液? 您可以提供4-5ml新鲜菌液,用封口膜封口以免泄漏;最好是将菌体沉淀下来(5000转/分钟),倒去上清以方便邮寄。同时邮寄时最好用盒子以免邮寄过程中压破。 3.如何制作穿刺菌? 用灭菌过1.5ml或2ml离心管加入LB琼脂(7g/L)斜面凝固,用接种针挑取分散良好的单菌落穿过琼脂直达管底,不完全盖紧管盖适当温度培养过夜,然后盖紧盖子加封口膜,室温或4oC保存。 4.PCR产物直接测序有什么要求? 1).扩增产物必须特异性扩增,如果扩增产物中有非特异性扩增产物,一般难以得到测序结果;2).必须进行胶纯化;3.长度200-500左右比较合适。小余200碱基对,大于500碱基对的样品进行直接测序不合算。 5.为什么PCR产物直接测序必须进行Agarose胶纯化? 如果不进行胶纯化而直接用试剂盒回收,经常会导致测序出现双峰甚至乱峰。这主要是非特异性扩增产物或者原来的PCR引物去除不干净所导致。大多所谓的PCR"纯化试剂盒"实际上只是回收产物而不能起到纯化的作用的。对于非特异性扩增产物肯定无法去除,而且通常他们不能够完全去除所有的PCR引物,这会造成残留的引物在测序反应过程中参与反应而导致乱峰。

DNA测序结果中常见的几个问题

1 、为什么开始一段序列的信号很杂乱,几乎难以辨别? 这主要是因为残存的染料单体造成的干扰峰所致,该干扰峰和正常序列峰重叠在一起;另外,测序电泳开始阶段电压有一个稳定期,所以经常有20-50 bp 的紧接着引物的片段读不清楚,有时甚至更长。 2 、为什么在序列的末端容易产生N 值,峰图较杂? 由于测序反应的信号是逐渐减弱的,所以序列末端的信号会很弱,峰图自然就会杂乱,加上测序胶的分辨率问题,如果碱基分不开,就会产生N 值,正常情况下ABI377测序仪能正确读出500个碱基的有效序列。 3 、测序结果怎么找不到我的引物序列? 如果找不到测序所用的引物序列。这是正常的,因为引物本身是不被标记的,所以在测序报告中是找不到的;如果找不到克隆片段中的扩增引物,可能是您克隆的酶切位点距离您的测序引物太近,开始一段序列很杂,几乎难以辨别,有可能看不清或看不到扩增引物;另外插入片段的插入方向如果是反的,此时需找引物的互补序列。 4 、测序结果怎么看不到我克隆的酶切位点? 可能的原因同上,您克隆的酶切位点距离您的测序引物太近,开始一段序列很杂,几乎难以辨别,有可能看不清或看不到酶切位点。通常我们会尽量选择距离酶切位点远点的引物,当然,若是样品出现意外原因,如空载、载体自连等,克隆的酶切位点也是看不到的。 5 、你测出的结果与我预想的不一致,给我的结果与我需要的序列有差距,这是怎么回事? 首先,我们会核实给您的测序结果是否对应您的样品编号,如果对应的是您的样品,由于不知您的实验背景,测得的序列是否与您预想的结果一致我们无法判断,我们能做到的是检查发送给您的测序结果和您提供来的样品是否一致。 6 、序列图为什么会有背景噪音(杂带)?是否会影响测序结果? 序列图的背景杂带是由荧光染料引起,如果太强会影响测序结果,要看信噪比,我们给的结果信噪比大都在98%以上。 7 、测序结果为什么与标准序列有差别? 原因可能有:样品个体之间的差别、测序准确率的问题,自动测序仪分析序列的准确并非100%,建议至少测一次双向,通过双向测序可以最大限度减少测序的错误。当然尽管我们有时做了最大努力,但还是保证不了和文献序列完全一致,但我们测序报告是客户样品序列的真实结果。 8 、PCR 产物测序与克隆后测序序列为什么有差别? PCR 产物克隆到载体中进行测序,有两个方面可能序列有变化:首先,PCR 扩增过程中可能产生错配。将片段克隆到载体中也有可能发生突变;其次,测序的准确率并非100%。 9 、有杂合位点,但你们的报告上看不到杂合的信号! 如果在您认为应该出现杂合信号的位置上只出现单一的信号,那么可能是您样品突变的模板与正常的模板的比例没达到可以测出的浓度。测序反应的信号强度直接与模板的量有关,如果突变的模板所占的比例很低,仪器会自动将它作为背景信号了,很难检测出来。只有当测序反应体系中正常的和突变的模板量比较接近时,才能较可靠地检测到突变体的存在。其次,在同一位置,不同碱基的信号强度一般是不一样的,这样即使突变的模板所占的比例较高时,也不一定能准确检测到突变的存在,因为,测序仪是主要用来测序正常的碱基序列的,软件分析结果时,会尽量提高主峰而将背景信号尽量压低,以得到尽可能好的结果。尊重结果,我们是不会人为将出现单一的信号修改为杂合位点的。 10 、DNA测序样品用TE 溶液溶解好不好? 由于EDTA是Taq 聚合酶的一种潜在的抑制物, DNA的测序反应也是Taq 酶的聚合反应,需要一个最佳的酶反应条件,因此DNA测序样品溶解时,最好用灭菌水溶解。

相关文档
最新文档