高一数学北师大版必修4第一章4.4 单位圆的对称性与诱导公式

合集下载

高中数学第一章三角函数4.4单位圆的对称性与诱导公式(二)学案北师大版必修4(2021年整理)

高中数学第一章三角函数4.4单位圆的对称性与诱导公式(二)学案北师大版必修4(2021年整理)

2018-2019学年高中数学第一章三角函数4.4 单位圆的对称性与诱导公式(二)学案北师大版必修4编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018-2019学年高中数学第一章三角函数4.4 单位圆的对称性与诱导公式(二)学案北师大版必修4)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018-2019学年高中数学第一章三角函数4.4 单位圆的对称性与诱导公式(二)学案北师大版必修4的全部内容。

4。

4 单位圆的对称性与诱导公式(二)学习目标 1.掌握诱导公式1.13~1。

14的推导,并能应用它解决简单的求值、化简与证明问题.2。

对诱导公式1。

8~1.14能作综合归纳,体会出七组公式的共性与个性,培养由特殊到一般的数学推理意识和能力。

3.继续体会知识的“发生”“发现”过程,培养研究问题、发现问题、解决问题的能力.知识点一π2±α的诱导公式思考1 角α与错误!+α的正弦函数、余弦函数有何关系?答案sin错误!=cos α,cos错误!=-sin α.思考2 能否利用公式sin错误!=cos α,cos错误!=-sin α得出错误!-α的正弦、余弦与角α的正弦、余弦的关系?答案以-α代换公式中的α得到sin错误!=cos(-α)=cos α,cos错误!=-sin(-α)=sin α。

梳理对任意角α,有下列关系式成立:sin错误!=cos α, cos错误!=-sin α(1.13)sin错误!=cos α,cos错误!=sin α(1。

14)诱导公式1。

13~1.14的记忆:错误!-α,错误!+α的正(余)弦函数值,等于α的余(正)弦三角函数值,前面加上一个把α看成锐角时原函数值的符号,记忆口诀为“函数名改变,符号看象限”。

高中数学第一章三角函数1.4.4单位圆的对称性与诱导公式二学案北师大必修4201808223186

高中数学第一章三角函数1.4.4单位圆的对称性与诱导公式二学案北师大必修4201808223186

4.4 单位圆的对称性与诱导公式(二)学习目标 1.掌握诱导公式1.13~1.14的推导(重点).2.能应用公式1.13~1.14解决简单的求值,化简与证明问题(难点).知识点1π2±α的诱导公式 对任意角α,有下列关系式成立:sin(π2+α)=cos α,cos(π2+α)=-sin α.(1.13)sin(π2-α)=cos α,cos(π2-α)=sin α.(1.14)诱导公式1.13~1.14的记忆:π2-α,π2+α的正(余)弦函数值,等于α的余(正)弦三角函数值,前面加上一个把α看成锐角时原函数值的符号,记忆口诀为“函数名改变,符号看象限”. 【预习评价】请你根据上述规律,完成下列等式.sin(32π-α)=-cos_α,cos(32π-α)=-sin_α.sin(32π+α)=-cos_α,cos(32π+α)=sin_α.知识点2 诱导公式的记忆方法记忆诱导公式的方法:奇变偶不变,符号看象限. (1)函数名不变,符号看象限“函数名不变,符号看象限”指的是对于角2k π+α(k ∈Z ),-α,2π-α,π-α,π+α的正弦函数、余弦函数值等于角α的同名正弦函数、余弦函数值,前面加上一个把α看作锐角时原函数值的符号. (2)函数名改变,符号看象限“函数名改变,符号看象限”指的是对于角k π2+α,k π2-α(k 为奇数)的函数值等于角α的异名正弦函数、余弦函数值,前面加上一个把α看作锐角时原函数值的符号. 【预习评价】(1)cos(α-π2)=________.(2)sin(α+5π2)=________.(3)cos(3π-α)=________. (4)sin(2π+α)=________.答案 (1)sin α (2)cos α (3)-cos α (4)sin α题型一 条件求值【例1】 已知cos ⎝ ⎛⎭⎪⎫α+π6=35,π2≤α≤3π2,求sin ⎝ ⎛⎭⎪⎫α+2π3的值. 解 ∵α+2π3=⎝⎛⎭⎪⎫α+π6+π2,∴sin(α+2π3)=sin ⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫α+π6+π2=cos ⎝ ⎛⎭⎪⎫α+π6=35.规律方法 利用诱导公式1.13和诱导公式1.14求值时,要注意已知条件中的角和问题结论中角之间的联系,注意π6+α与π3-α,π4-α与π4+α等互余角关系的识别和应用.【训练1】 已知sin ⎝ ⎛⎭⎪⎫π6+α=33,求cos ⎝ ⎛⎭⎪⎫α-π3的值.解 ∵cos ⎝ ⎛⎭⎪⎫α-π3=cos ⎝ ⎛⎭⎪⎫π3-α=cos ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π6+α=sin ⎝ ⎛⎭⎪⎫π6+α=33.题型二 利用诱导公式化简和证明【例2】 求证:π-θcos θ⎣⎢⎡⎦⎥⎤32π-θ-1+π-θπ+θπ2+θ-3π2+θ=21-cos 2θ. 证明 左边=-cos θcos θ-cos θ-+cos θ-cos θcos θ+cos θ=11+cos θ+11-cos θ=1-cos θ+1+cos θ+cos θ-cos θ=21-cos 2θ=右边, 所以原式得证.规律方法 利用诱导公式证明等式问题,关键在于公式的灵活应用,其证明的常用方法有:(1)从一边开始,使得它等于另一边,一般由繁到简.(2)左右归一法:即证明左右两边都等于同一个式子.(3)凑合法:即针对题设与结论间的差异,有针对性地进行变形,以消除其差异,简言之,即化异为同.【训练2】 设sin(α+8π7)=a cos(α+8π7),求证:15π7+α+α-13π720π7-α-α+22π7=a +3a +1. 证明 ∵sin(α+8π7)=a cos(α+8π7).∴左边=sin[π+α+8π7+α+8π7-3π]sin[4π-α+8π7-cos[2π+α+8π7=-α+8π7-α+8π7-α+8π7-α+8π7=-a α+8π7-α+8π7-a α+8π7-α+8π7=a +3a +1=右边. ∴原等式得证.【例3】 已知sin(α-3π)=2cos(α-4π),求π-α+π-α2sin ⎝ ⎛⎭⎪⎫3π2-α--α的值.解 由sin(α-3π)=2cos(α-4π) 得sin(α-π)=2cos α, 即sin α=-2cos α. ∴π-α+π-α2sin ⎝ ⎛⎭⎪⎫3π2-α--α=sin α+5cos α-2cos α+sin α =-2cos α+5 cos α-2cos α-2cos α=-34.【迁移1】 若例3中的条件不变改为求sin ⎝ ⎛⎭⎪⎫π2+απ+απ2+απ-α的值,则结果如何?解 原式=cos α-sinα-sin α-α=-sin αcos αsin αsin α=12. 【迁移2】 若例3中的条件不变改为求π-α-sin ⎝ ⎛⎭⎪⎫π2+α3π2-α+-π+α的值.解 由例题知,sin α=-2cos α. 原式=sin α-cos α-sin α-cos α=-2cos α-cos α2cos α-cos α=-3cos αcos α=-3. 【迁移3】 若将例3中的条件“sin(α-3π)=2cos(α-4π)”改为“已知α= -31π3”.求原式的值.解 ∵α=-31π3,∴sin α=sin(-31π3)=-sin(5×2π+π3)=-sin π3=-32,cos α=cos(-31π3)=cos(5×2π+π3)=cos π3=12,∵π-α+π-α3π2-α--α=sin α+5cos α-2cos α+sin α=-32+52-1-32=5-3-2-3=-13+7 3.规律方法 所谓化简,就是使表达式经过某种变形,使结果尽可能的简单,也就是项数尽可能的少,次数尽可能的低,函数的种类尽可能的少,分母中尽量不含三角函数符号,能求值的一定要求值.利用诱导公式解决化简求值问题的关键是诱导公式的灵活选择,当三角函数式中含有k π±α,k2π±α(k ∈Z )时,要注意讨论k 为奇数或偶数.课堂达标1.若sin α=12,则cos(π2+α)的值为( )A.12 B.32 C .-12D .-32解析 ∵sin α=12,∴cos(π2+α)=-sin α=-12.答案 C2.已知sin ⎝ ⎛⎭⎪⎫α-π6=13,则cos ⎝ ⎛⎭⎪⎫α+π3的值为( ) A .-233B.233C.13D .-13解析 cos ⎝ ⎛⎭⎪⎫α+π3=cos ⎣⎢⎡⎦⎥⎤π2+⎝ ⎛⎭⎪⎫α-π6 =-sin ⎝ ⎛⎭⎪⎫α-π6=-13.答案 D3.代数式sin 2(A +45°)+sin 2(A -45°)的化简结果是________.(注:对任意角α有sin 2α+cos 2α=1成立)解析 原式=sin 2(A +45°)+sin 2(45°-A ) =sin 2(A +45°)+cos 2(A +45°)=1. 答案 14.若sin(α+π12)=13,则cos(α+7π12)=________.解析 cos(α+7π12)=cos[π2+(α+π12)]=-sin(α+π12)=-13.答案 -135.已知sin(π+α)=-13.计算:(1)cos ⎝ ⎛⎭⎪⎫α-3π2; (2)sin ⎝⎛⎭⎪⎫π2+α. 解 ∵sin(π+α)=-sin α=-13,∴sin α=13.(1)cos ⎝ ⎛⎭⎪⎫α-3π2=cos ⎝ ⎛⎭⎪⎫3π2-α=-sin α=-13.(2)sin ⎝⎛⎭⎪⎫π2+α=cos α,cos 2α=1-sin 2α=1-19=89. ∵sin α=13,∴α为第一或第二象限角.①当α为第一象限角时,sin ⎝ ⎛⎭⎪⎫π2+α=cos α=223. ②当α为第二象限角时,sin ⎝⎛⎭⎪⎫π2+α=cos α=-223. 课堂小结1.诱导公式的选择方法:先将-α化为正角,再用2k π+α(k ∈Z )把角化为[0,2π)内的角,再用π±α,π2+α,2π-α化为锐角的三角函数,还可继续用π2-α化为⎣⎢⎡⎭⎪⎫0,π4内的角的三角函数.由此看,利用诱导公式能将任意角的三角函数化为锐角的三角函数,这也正是:诱导公式真是好,负化正后大化小.2.解决给式求值问题的常见思路有:若条件简单,结论复杂,可从化简结论入手,用上条件;若条件复杂,结论简单,可从化简条件入手,转化出结论的形式;若条件、结论都比较复杂,可同时化简它们,直到找出它们间的联系为止.无论使用哪种方法都要时刻瞄准目标,根据需要变形.基础过关1.若sin(3π+α)=-12,则cos(7π2-α)等于( )A .-12B.12C.32D .-32解析 ∵sin(3π+α)=-sin α,∴sin α=12,∴cos(7π2-α)=cos(3π2-α)=-cos(π2-α)=-sin α=-12.答案 A2.已知sin ⎝ ⎛⎭⎪⎫α-π4=13,则cos ⎝ ⎛⎭⎪⎫π4+α的值等于( ) A .-13B.13 C .-223D.223解析 cos ⎝ ⎛⎭⎪⎫π4+α=sin ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π4+α=sin ⎝ ⎛⎭⎪⎫π4-α=-sin ⎝ ⎛⎭⎪⎫α-π4=-13. 答案 A3.若sin(π+α)+cos ⎝ ⎛⎭⎪⎫π2+α=-m ,则cos ⎝ ⎛⎭⎪⎫32π-α+2sin(2π-α)的值为( )A .-2m3B.2m3 C .-3m 2D.3m 2解析 ∵sin(π+α)+cos ⎝ ⎛⎭⎪⎫π2+α=-sin α-sin α=-m , ∴sin α=m2.故cos ⎝ ⎛⎭⎪⎫32π-α+2sin(2π-α)=-sin α-2sin α =-3sin α=-32m .答案 C4.已知sin α=12,则cos(π2+α)的值为________.解析 cos(π2+α)=-sin α=-12.答案 -125.化简:θ-5π-π2-θπ-θθ-3π2-θ-π=________.解析 原式=θ-ππ2+θ-θθ+π2-θ+π=-sin θ-sin θθcos θsin θ=sin θ.答案 sin θ6.已知角α终边经过点P (-4,3),求π2+α-π-α11π2-α9π2+α的值.解 ∵角α终边经过点P (-4,3), ∴sin α=35,cos α=-45,∴π2+α-π-α11π2-α9π2+α=-sin αsin α-sin αcos α =-34.7.求证:θ-32πθ+π2-11-2cos2θ+32π=sin θ+cos θsin θ-cos θ.(注:对任意角α有sin 2α+cos 2α=1成立) 证明 ∵左边=-32π-θ-sin θ-11-2sin 2θ=-2sin[π+π2-θ-sin θ-11-2sin 2θ=π2-θ-sin θ-11-2sin 2θ=-2sin θcos θ-1sin 2θ+cos 2θ-2sin 2θ=θ+cos θ2sin 2θ-cos 2θ=sin θ+cos θsin θ-cos θ=右边. ∴原式成立.能力提升8.已知cos(75°+α)=13,则sin(α-15°)+cos(105°-α)的值是( )A.13B.23 C .-13D .-23解析 sin(α-15°)+cos(105°-α)=sin[(75°+α)-90°]+cos[180°-(75°+α)] =-sin[90°-(75°+α)]-cos(75°+α) =-cos(75°+α)-cos(75°+α) =-2cos(75°+α)=-23.答案 D9.cos 1°+cos 2°+cos 3°+…+cos 179°+cos 180°=________. 解析 cos 179°=cos(180°-1°)=-cos 1° cos 178°=cos(180°-2°)=-cos 2° ……cos 91°=cos(180°-89°)=-cos 89°∴原式=(cos 1°+cos 179°)+(cos 2°+cos 178°)+…+(cos 89°+cos 91°)+ (cos 90°+cos 180°)=cos 90°+cos 180°=0+(-1)=-1. 答案 -110.已知α为第二象限角,化简1+π-αα-πα-3π2-1-sin 23π2+α=________.(注:对任意角α有sin 2α+cos 2α=1成立)解析 原式=1+2sin α-cos αcos α-3π2+α=|sin α-cos α|cos α-|sin α|.∵α为第二象限角,∴sin α>0,cos α<0, ∴原式=sin α-cos αcos α-sin α=-1.答案 -111.若k ∈{4,5,6,7} ,且sin ⎝ ⎛⎭⎪⎫k π2-α=-sin α,cos ⎝⎛⎭⎪⎫k π2-α=cos α,则k =________.解析 利用验证法,当k =4时,sin(2π-α)=-sin α,cos(2π-α)=cos α符合条件;当k =5,6,7时,不符合条件.故k =4. 答案 4 12.化简求值:(1)cos π5+cos 2π5+cos 3π5+cos 4π5;(2)sin(2n π-2π3)·cos(n π+4π3)(n ∈Z ).解 (1)cos π5+cos 2π5+cos 3π5+cos 4π5=cos π5+cos 2π5+cos(π-2π5)+cos(π-π5)=cos π5+cos 2π5- cos 2π5-cos π5=0.(2)①当n 为奇数时,原式=sin(-2π3)·(-cos 4π3)=sin(π-π3)·cos(π+π3)=-sin π3·cos π3=-32×12=-34;②当n 为偶数时, 原式=-sin 2π3·cos 4π3=-sin(π-π3)·cos(π+π3)=sin π3·cos π3=34. 13.(选做题)是否存在角α,β,α∈⎝⎛⎭⎪⎫-π2,π2,β∈(0,π),使等式⎩⎪⎨⎪⎧ sin 3π-α=2cos ⎝ ⎛⎭⎪⎫π2-β,3cos -α=-2cos π+β同时成立.若存在,求出α,β的值;若不存在,说明理由.(注:对任意角α有sin 2α+cos 2α=1成立)解 由条件,得⎩⎨⎧ sin α=2sin β, ①3cos α=2cos β. ②①2+②2,得sin 2α+3cos 2α=2,③又因为sin 2α+cos 2α=1,④由③④得sin 2α=12,即sin α=±22, 因为α∈⎝ ⎛⎭⎪⎫-π2,π2,所以α=π4或α=-π4. 当α=π4时,代入②得cos β=32,又β∈(0,π), 所以β=π6,代入①可知符合. 当α=-π4时,代入②得cos β=32,又β∈(0,π), 所以β=π6,代入①可知不符合. 综上所述,存在α=π4,β=π6满足条件. 精美句子1、善思则能“从无字句处读书”。

高中数学第一章三角函数4.4单位圆的对称性与诱导公式(一)学案北师大版必修4(2021年整理)

高中数学第一章三角函数4.4单位圆的对称性与诱导公式(一)学案北师大版必修4(2021年整理)

2018-2019学年高中数学第一章三角函数4.4 单位圆的对称性与诱导公式(一)学案北师大版必修4编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018-2019学年高中数学第一章三角函数4.4 单位圆的对称性与诱导公式(一)学案北师大版必修4)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018-2019学年高中数学第一章三角函数4.4 单位圆的对称性与诱导公式(一)学案北师大版必修4的全部内容。

4.4 单位圆的对称性与诱导公式(一)学习目标 1.了解三角函数的诱导公式的意义和作用。

2.理解诱导公式的推导过程.3.能运用有关的诱导公式解决一些三角函数的求值、化简和证明问题。

知识点2kπ±α,-α,π±α的诱导公式思考1 设α为任意角,则2kπ+α,π+α,-α,2kπ-α,π-α的终边与α的终边有怎样的对应关系?答案它们的对应关系如表:相关角终边之间的对称关系2kπ+α与α终边相同π+α与α关于原点对称-α与α关于x轴对称2π-α与α关于x轴对称π-α与α关于y轴对称思考2 2kπ+α,π+α,-α,2kπ-α,π-α终边和单位圆的交点与α的终边和单位圆的交点有怎样的对称关系?试据此分析角α与-α的正弦函数、余弦函数的关系。

答案它们交点间对称关系如表:相关角终边与单位圆的交点间对称关系2kπ+α与α重合π+α与α关于原点对称-α与α关于x轴对称2π-α与α关于x轴对称π-α与α关于y轴对称设角α与角-α终边与单位圆的交点分别为P和P′,因为P和P′关于x轴对称,所以点P和P′的横坐标相等,纵坐标的绝对值相等且符号相反,即sin(-α)=-sin α,cos(-α)=cos α.梳理对任意角α,有下列关系式成立:sin(2kπ+α)=sin α,c os(2kπ+α)=cos α(1。

高中数学北师大版必修4 1.4 教学设计 《单位圆的对称性与诱导公式》(数学北师大高中必修4)

高中数学北师大版必修4 1.4 教学设计 《单位圆的对称性与诱导公式》(数学北师大高中必修4)

《单位圆的对称性与诱导公式》教学设计本课时编写:双辽一中张敏◆教材分析本节是根据在单位圆的对称性,结合正弦、余弦函数性质得到诱导公式,通过立体讲解加深对其性质的理解。

◆教学目标【知识与能力目标】理解诱导公式并能解决相关问题.【过程与方法目标】(1)通过诱导公式的学习及应用,提高三角恒等变形能力.(2)树立化归思想方法,将任意角的三角函数值问题转化为0°~90°间的角的三角函数值问题,培养学生化归转化能力。

【情感态度价值观目标】通过诱导公式的学习和应用,感受事物之间的普遍联系规律,运用化归原理,揭示事物的本质属性,培养学生辩证唯物主义的思想。

◆教学重难点【教学重点】掌握诱导公式及其应用。

【教学难点】借助单位圆推导正弦函数、余弦函数的诱导公式。

◆课前准备多媒体课件◆教学过程一、新课代入在上几节课中,我们已经学习了任意角的正弦函数的定义,以及终边相同的角的正弦函数值相等,即sin(2kπ+α)=sinα(k∈Z ),通过这个公式能把任意角的正弦函数值转化为求0°~360°的角的正弦函数值吗?如果能的话,那么任意角的三角函数求值,都可以转化为锐角三角函数求值,并通过查表方法而得到最终解决,本课就来讨论这一问题.二、课堂探究探究点1 角α与角-α的正弦函数、余弦函数关系思考1:对于任意给定的一个角α,-α的终边与α的终边有什么关系?思考2:设角α的终边与单位圆交于点P(x,y),则-α的终边与单位圆的交点坐标如何?提示:如图, -α的终边与单位圆的交点坐标为P(x,-y).思考3:根据三角函数定义,-α的正弦函数、余弦函数与α的正弦函数、余弦函数有什么关系?【设计意图】引出诱导公式,进行总结。

探究点2 角α与角α±π的正弦函数、余弦函数关系思考1:对于任意给定的一个角α,角α±π的终边与角α的终边有什么关系?提示:如图角α±π的终边与角α的终边关于原点对称。

高中数学第1章三角函数4.3单位圆与正弦函数、余弦函数的基本性质4.4单位圆的对称性与诱导公式

高中数学第1章三角函数4.3单位圆与正弦函数、余弦函数的基本性质4.4单位圆的对称性与诱导公式

12/12/2021
第九页,共十二页。
解:(1)f(α)=-sin-αccoossαα·s-incαosα=-cosα.
(2)∵cosα-32π=cos-2π+π2+α=cosπ2+α=-sinα=15, ∴sinα=-15,又 α 是第三象限角,
∴cosα=- 1-sin2α=- 1-215=-256,
第一章 三角函数(sānjiǎhánshù)
12/12/2021
第一页,共十二页。
§4 正弦函数和余弦函数的定义与诱导(yòudǎo)公式
4.3 单位圆与正弦函数、余弦函数的基本性质 4.4 单位圆的对称性与诱导公式
12/12/2021
第二页,共十二页。
基础知识点对点
课后拔高(bá ɡāo)提能练
又∵sin(π-α)=sinα,∴sinα=-23,
1又2/12∵/2021sin(4π-α)=sin(-α)=-sinα=23.
第八页,共十二页。
知识点三 化简求值 5.已知 f(α)=sinα-co3sπ-cπos-2απ-sinα-sinπ--αα+32π. (1)化简 f(α); (2)若 α 是第三象限角,且 cosα-32π=15,求 f(α)的值.
∴f(α)=-cosα=2
5
6 .
12/12/2021
第十页,共十二页。
12/12/2021
第十一页,共十二页。
内容(nèiróng)总结
第一章 三角函数(sānjiǎhánshù)。基础知识点对点
No Image
12/12/2021
第十二页,共十二页。
12/12/2021
第三页,共十二页。
基础知识点对点
12/12/2021

高中数学第一章三角函数1.4.4单位圆的对称性与诱导公式(二)学案北师大版必修4(2021年整理)

高中数学第一章三角函数1.4.4单位圆的对称性与诱导公式(二)学案北师大版必修4(2021年整理)

2018-2019学年高中数学第一章三角函数1.4.4 单位圆的对称性与诱导公式(二)学案北师大版必修4编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018-2019学年高中数学第一章三角函数1.4.4 单位圆的对称性与诱导公式(二)学案北师大版必修4)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018-2019学年高中数学第一章三角函数1.4.4 单位圆的对称性与诱导公式(二)学案北师大版必修4的全部内容。

4。

4 单位圆的对称性与诱导公式(二)学习目标1。

掌握诱导公式1。

13~1.14的推导(重点)。

2。

能应用公式1.13~1.14解决简单的求值,化简与证明问题(难点).知识点1 错误!±α的诱导公式对任意角α,有下列关系式成立:sin(π2+α)=cos α,cos(错误!+α)=-sin α。

(1.13)sin(错误!-α)=cos α,cos(错误!-α)=sin α.(1.14)诱导公式1。

13~1.14的记忆:错误!-α,错误!+α的正(余)弦函数值,等于α的余(正)弦三角函数值,前面加上一个把α看成锐角时原函数值的符号,记忆口诀为“函数名改变,符号看象限”.【预习评价】请你根据上述规律,完成下列等式.sin(错误!π-α)=-cos_α,cos(错误!π-α)=-sin_α.sin(32π+α)=-cos_α,cos(错误!π+α)=sin_α。

知识点2 诱导公式的记忆方法记忆诱导公式的方法:奇变偶不变,符号看象限.(1)函数名不变,符号看象限“函数名不变,符号看象限”指的是对于角2kπ+α(k∈Z),-α,2π-α,π-α,π+α的正弦函数、余弦函数值等于角α的同名正弦函数、余弦函数值,前面加上一个把α看作锐角时原函数值的符号.(2)函数名改变,符号看象限“函数名改变,符号看象限"指的是对于角错误!+α,错误!-α(k为奇数)的函数值等于角α的异名正弦函数、余弦函数值,前面加上一个把α看作锐角时原函数值的符号.【预习评价】(1)cos(α-π2)=________。

高中数学第一章三角函数1.4.31.4.4单位圆的对称性与诱导公式学案北师大必修4

4.3 单位圆与正弦函数、余弦函数的基本性质4.4 单位圆的对称性与诱导公式1.了解正弦函数、余弦函数的基本性质.2.会借助单位圆推导正弦函数、余弦函数的诱导公式.(难点)3.掌握诱导公式及其应用.(重点)[基础·初探]教材整理1 正弦函数、余弦函数的基本性质阅读教材P18~P19“思考交流”以上部分,完成下列问题.正弦函数、余弦函数的基本性质函数y=sin x y=cos x基本性质定义域R值域[-1,1]最大(小)值当x=2kπ+π2(k∈Z)时,函数取得最大值1;当x=2kπ-π2(k∈Z)时,函数取得最小值-1当x=2kπ(k∈Z)时,函数取得最大值1;当x=(2k+1)π(k∈Z)时,函数取得最小值-1基本性质周期性周期是2kπ(k∈Z),最小正周期为2π单调性在区间⎣⎢⎡⎦⎥⎤2kπ-π2,2kπ+π2(k∈Z)上是增加的,在区间⎣⎢⎡⎦⎥⎤2kπ+π2,2kπ+3π2(k∈Z)上是减少的在区间[2kπ-π,2kπ](k∈Z)上是增加的,在区间[2kπ,2kπ+π](k∈Z)上是减少的判断(正确的打“√”,错误的打“×”)(1)y=sin x在[-π,π]上是增加的.( )(2)y =sin x 在⎣⎢⎡⎦⎥⎤-π6,π上的最大值为1.( ) (3)y =cos x 在⎣⎢⎡⎦⎥⎤0,π2上的最小值为-1.( )【解析】 (1)y =sin x 在[-π,π]上不具有单调性,故(1)错误.(2)y =sin x 在⎣⎢⎡⎦⎥⎤-π6,π2上是增加的,在⎣⎢⎡⎦⎥⎤π2,π上是减少的,y max =sin π2=1,故(2)正确.(3)y =cos x 在⎣⎢⎡⎦⎥⎤0,π2上是减少的,故y min =cos π2=0,故(3)错误.【答案】 (1)× (2)√ (3)×教材整理2 诱导公式(-α,π±α)的推导 阅读教材P 19~P 21,完成下列问题. 1.诱导公式(-α,π±α)的推导 (1)在直角坐标系中α与-α角的终边关于x 轴对称; α与π+α的终边关于原点对称; α与π-α的终边关于y 轴对称.(2)公式sin(-α)=-sin_α,cos(-α)=cos_α; sin(π+α)=-sin_α,cos(π+α)=-cos_α; sin(π-α)=sin_α,cos(π-α)=-cos_α.2.诱导公式⎝ ⎛⎭⎪⎫π2±α的推导(1)π2-α的终边与α的终边关于直线y =x 对称.(2)公式sin ⎝ ⎛⎭⎪⎫π2-α=cos_α,cos ⎝ ⎛⎭⎪⎫π2-α=sin_α 用-α代替α↓并用前面公式sin ⎝ ⎛⎭⎪⎫π2+α=cos_α,cos ⎝ ⎛⎭⎪⎫π2+α=-sin α判断(正确的打“√”,错误的打“×”) (1)cos(2π-α)=cos α.( ) (2)sin(2π-α)=sin α.( )(3)诱导公式中的角α只能是锐角.( )【解析】 (1)正确.cos(2π-α)=cos(-α)=cos α. (2)错误.sin(2π-α)=sin(-α)=-sin α.(3)错误.诱导公式中角α不仅可以是锐角,还可以是任意角. 【答案】 (1)√ (2)× (3)×[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1:_________________________________________________________ 解惑:___________________________________________________________ 疑问2:_________________________________________________________ 解惑:___________________________________________________________ 疑问3:_________________________________________________________ 解惑:___________________________________________________________[小组合作型]正弦、余弦函数的性质求下列函数的单调区间、最大值和最小值以及取得最大值和最小值的自变量x的值.(1)y =sin x ,x ∈⎣⎢⎡⎦⎥⎤-π6,π; (1)y =cos x ,x ∈⎣⎢⎡⎦⎥⎤-π,π3.【精彩点拨】 画出单位圆,借助图形求解.【自主解答】 (1)由图①可知,y =sin x 在⎣⎢⎡⎦⎥⎤-π6,π2上是增加的,在⎣⎢⎡⎦⎥⎤π2,π上是减少的.且当x =π2时,y =sin x 取最大值1,当x =-π6时,y =sin x 取最小值-12.①(2)由图②可知,y =cos x 在[-π,0]上是增加的,在⎣⎢⎡⎦⎥⎤0,π3上是减少的.且当x =-π时取最小值-1,当x =0时,取最大值1.②利用单位圆研究三角函数性质的方法第一步:在单位圆中画出角x 的取值范围;第二步:作出角的终边与单位圆的交点P (cos x ,sin x ); 第三步:研究P 点横坐标及纵坐标随x 的变化而变化的规律; 第四步:得出结论.[再练一题]1.求下列函数的单调区间和值域,并说明取得最大值和最小值时的自变量x 的值.【导学号:66470010】(1)y =-sin x ,x ∈⎣⎢⎡⎦⎥⎤π3,π;(2)y =cos x ,x ∈[-π,π].【解】 (1)y =-sin x ,x ∈⎣⎢⎡⎦⎥⎤π3,π的单调递减区间为⎣⎢⎡⎦⎥⎤π3,π2,单调递增区间为⎣⎢⎡⎦⎥⎤π2,π.当x =π2时,y min =-1;当x =π时,y max =0,故函数y =-sin x 的值域为[]-1,0.(2)y =cos x ,x ∈[-π,π]的单调递减区间为[0,π],单调递增区间为[-π,0]. 当x =0时,y max =1;当x =-π或π时,y min =-1,故函数y =cos x ,x ∈[-π,π]的值域为[-1,1].给角求值求下列三角函数值. (1)sin 4π3·cos 25π6·sin 5π4;(2)sin ⎣⎢⎡⎦⎥⎤2n +1π-2π3.【精彩点拨】 利用诱导公式将所给的角化成锐角求解. 【自主解答】 (1)sin 4π3·cos 25π6·sin 5π4=sin ⎝ ⎛⎭⎪⎫π+π3·cos ⎝ ⎛⎭⎪⎫4π+π6·sin ⎝ ⎛⎭⎪⎫π+π4=-sin π3·cos π6·⎝ ⎛⎭⎪⎫-sin π4=32·32·22=34·22=328. (2)sin ⎣⎢⎡⎦⎥⎤2n +1π-2π3=sin ⎣⎢⎡⎦⎥⎤2n π+π-2π3=sin ⎝⎛⎭⎪⎫π-2π3=sin π3=32.利用诱导公式,把任意角的三角函数转化为锐角三角函数的基本步骤为:可简记为:负化正,大化小,化成锐角再求值.[再练一题]2.求下列各式的值.(1)sin 495°·cos(-675°);(2)sin ⎝ ⎛⎭⎪⎫2n π+2π3·cos ⎝ ⎛⎭⎪⎫n π+43π(n ∈Z ).【解】 (1)sin 495°·cos(-675°) =sin(360°+135°)·cos(360°+315°) =sin 135°·cos 315°=si n(180°-45°)cos(360°-45°)=sin 45°·cos 45°=22×22=12. (2)当n 为奇数时,原式=sin 23π·⎝ ⎛⎭⎪⎫-cos 43π=sin ⎝⎛⎭⎪⎫π-π3· ⎣⎢⎡⎦⎥⎤-cos ⎝ ⎛⎭⎪⎫π+π3=sin π3·cos π3=32×12=34;当n 为偶数时,原式=sin 23πcos 43π=sin ⎝ ⎛⎭⎪⎫π-π3·cos ⎝ ⎛⎭⎪⎫π+π3=sin π3·⎝ ⎛⎭⎪⎫-cos π3=32×⎝ ⎛⎭⎪⎫-12=-34.给值求值已知cos ⎝⎛⎭⎪⎫π6-α=3,求cos ⎝ ⎛⎭⎪⎫6+α·sin ⎝ ⎛⎭⎪⎫3-α.【精彩点拨】 解答本题要注意到⎝⎛⎭⎪⎫π6-α+⎝ ⎛⎭⎪⎫5π6+α=π,2π3-α=π-⎝ ⎛⎭⎪⎫π3+α,⎝ ⎛⎭⎪⎫π3+α+⎝ ⎛⎭⎪⎫π6-α=π2等角之间的关系,恰当运用诱导公式求值.【自主解答】 ∵⎝ ⎛⎭⎪⎫π3+α+⎝ ⎛⎭⎪⎫π6-α=π2,∴sin ⎝ ⎛⎭⎪⎫π3+α=sin ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π6-α=cos ⎝ ⎛⎭⎪⎫π6-α=13.∴sin ⎝⎛⎭⎪⎫2π3-α=sin ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π3+α=sin ⎝ ⎛⎭⎪⎫π3+α=13.∵⎝⎛⎭⎪⎫π6-α+⎝ ⎛⎭⎪⎫5π6+α=π,∴cos ⎝⎛⎭⎪⎫5π6+α=cos ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π6-α=-cos ⎝ ⎛⎭⎪⎫π6-α=-13,∴cos ⎝⎛⎭⎪⎫5π6+αsin ⎝ ⎛⎭⎪⎫2π3-α=-13×13=-19.1.观察已知角与未知角之间的关系,运用诱导公式将不同名的函数化为同名的函数,将不同的角化为相同的角,是解决问题的关键.2.对于有条件的三角函数求值题,求解的一般基本方法是从角的关系上寻求突破,找到所求角与已知角之间的关系,结合诱导公式,进而把待求式转化到已知式而完成求值.[再练一题]3.已知sin ⎝ ⎛⎭⎪⎫π6+α=33,求cos ⎝ ⎛⎭⎪⎫10π3-α的值.【解】 ∵103π-α=3π+⎝ ⎛⎭⎪⎫π3-α, ∴cos ⎝⎛⎭⎪⎫10π3-α=cos ⎣⎢⎡⎦⎥⎤3π+⎝ ⎛⎭⎪⎫π3-α=-cos ⎝ ⎛⎭⎪⎫π3-α. 又∵⎝ ⎛⎭⎪⎫π6+α+⎝ ⎛⎭⎪⎫π3-α=π2,∴cos ⎝⎛⎭⎪⎫10π3-α=-cos ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π6+α =-sin ⎝ ⎛⎭⎪⎫π6+α=-33.[探究共研型]三角函数式的化简探究1 三角函数式本着怎样的思路化简?【提示】 总体思路是利用诱导公式将任意角的三角函数化为锐角三角函数. 探究2 怎样处理含有k π±α的角?【提示】 含有k π±α形式的角的三角函数化简时,需对k 分是奇数还是偶数讨论确认选用的公式.化简下列各式. (1)cos2π-αsin 3π+αcos ⎝⎛⎭⎪⎫3π2-αcos ⎝ ⎛⎭⎪⎫-π2+αcos α-3πsin -π-α;(2)cos ⎝⎛⎭⎪⎫4n +14π+x +cos ⎝ ⎛⎭⎪⎫4n -14π-x (n ∈Z ).【精彩点拨】 (1)直接利用诱导公式化简. (2)对n 是奇数或偶数进行讨论.【自主解答】 (1)原式=cos α·-sin α·-sin αsin α·-cos αsin α=-1.(2)∵⎝⎛⎭⎪⎫4n +14π+x +⎝ ⎛⎭⎪⎫4n -14π-x =2n π,∴原式=cos ⎝ ⎛⎭⎪⎫4n +14π+x +cos ⎣⎢⎡⎦⎥⎤2n π-⎝ ⎛⎭⎪⎫4n +14π+x=2cos ⎝⎛⎭⎪⎫4n +14π+x =2cos ⎝ ⎛⎭⎪⎫n π+π4+x .①当n 为奇数时,即n =2k +1(k ∈Z )时,原式 =2cos ⎝ ⎛⎭⎪⎫2k π+π+π4+x =-2cos ⎝ ⎛⎭⎪⎫π4+x ; ②当n 为偶数时,即n =2k (k ∈Z )时, 原式=2 cos ⎝ ⎛⎭⎪⎫2k π+π4+x =2 cos ⎝ ⎛⎭⎪⎫π4+x .故原式=⎩⎪⎨⎪⎧-2 cos ⎝ ⎛⎭⎪⎫π4+x ,n 为奇数,2 cos ⎝ ⎛⎭⎪⎫π4+x ,n 为偶数.三角函数的化简,尽量化为2k π±α的形式,否则: (1)形如k π±α时,应对k 进行奇数和偶数两种情形讨论;(2)形如k3π±α时,应分k =3n ,k =3n +1,k =3n +2(n ∈Z )三种情形讨论.[再练一题] 4.化简:cos ⎝ ⎛⎭⎪⎫3k +13π+α+cos ⎝ ⎛⎭⎪⎫3k -13π-α,其中k ∈Z .【解】cos ⎝ ⎛⎭⎪⎫3k +13π+α+cos ⎝ ⎛⎭⎪⎫3k -13π-α=cos ⎝ ⎛⎭⎪⎫k π+π3+α+cos ⎝ ⎛⎭⎪⎫k π-π3-α.①当k =2n +1,n ∈Z 时, 原式=cos ⎣⎢⎡⎦⎥⎤2n +1π+π3+α+cos ⎣⎢⎡⎦⎥⎤2n +1π-π3-α=cos ⎝ ⎛⎭⎪⎫π+π3+α+cos ⎝ ⎛⎭⎪⎫π-π3-α=-cos ⎝ ⎛⎭⎪⎫π3+α-cos ⎝ ⎛⎭⎪⎫π3+α =-2cos ⎝ ⎛⎭⎪⎫π3+α; ②当k =2n ,n ∈Z 时,原式=cos ⎝ ⎛⎭⎪⎫2n π+π3+α+cos ⎝ ⎛⎭⎪⎫2n π-π3-α=cos ⎝ ⎛⎭⎪⎫π3+α+cos ⎝ ⎛⎭⎪⎫-π3-α=cos ⎝ ⎛⎭⎪⎫π3+α+cos ⎝ ⎛⎭⎪⎫π3+α =2cos ⎝⎛⎭⎪⎫π3+α.综上可知,原式=⎩⎪⎨⎪⎧2cos ⎝ ⎛⎭⎪⎫π3+α,k 为偶数,-2cos ⎝ ⎛⎭⎪⎫π3+α,k 为奇数.[构建·体系]1.当α∈R 时,下列各式恒成立的是( )A .sin ⎝⎛⎭⎪⎫π2+α=-cos αB .sin(π-α)=-sin αC .cos(π+α)=cos αD .cos(-α)=cos α【解析】 由诱导公式知D 正确. 【答案】 D2.cos 2π3的值是( )【导学号:66470011】A .-32B .32C.12D .-12【解析】 cos 2π3=-cos ⎝ ⎛⎭⎪⎫π-π3=-cos π3=-12. 【答案】 D3.y =sin x ,x ∈⎣⎢⎡⎦⎥⎤-π,π6的单调增区间为________,单调减区间为_______. 【解析】 在单位圆中,当x 由-π到π6时,sin x 由0减小到-1,再由-1增大到12.所以它的单调增区间为⎣⎢⎡⎦⎥⎤-π2,π6,单调减区间为⎣⎢⎡⎦⎥⎤-π,-π2.【答案】 ⎣⎢⎡⎦⎥⎤-π2,π6 ⎣⎢⎡⎦⎥⎤-π,-π24.已知cos(π+α)=-12,则sin ⎝ ⎛⎭⎪⎫π2-α=________.【解析】 cos(π+α)=-cos α=-12,∴cos α=12.又sin ⎝⎛⎭⎪⎫π2-α=cos α=12.【答案】 125.计算:sin π4·cos 19π6·sin 21π4.【解】 原式=sin π4·cos ⎝ ⎛⎭⎪⎫3π+π6·sin ⎝⎛⎭⎪⎫4π+54π11 =sin π4·cos ⎝ ⎛⎭⎪⎫π+π6·sin ⎝ ⎛⎭⎪⎫π+π4=sin π4·⎝ ⎛⎭⎪⎫-cos π6·⎝ ⎛⎭⎪⎫-sin π4=22·⎝ ⎛⎭⎪⎫-32·⎝ ⎛⎭⎪⎫-22=34.我还有这些不足:(1)______________________________________________________________(2)______________________________________________________________ 我的课下提升方案:(1)______________________________________________________________(2)______________________________________________________________。

高中数学 1.4.3+4 单位圆与正弦函数、余弦函数的基本性质 单位圆的对称性与诱导公式课件 北师大

第三十二页,共38页。
诱导公式(gōngshì)的综合应用
已知 cosπ6-α=m(|m|≤1), 化简 cos56π+α+sin23π-α. [思路分析] 观察角的特点,由于56π+α=π-π6-α,故可 运用 π-α,π2+α 的诱导公式求正弦、余弦值.
第三十三页,共38页。
[规范解答] cos56π+α+sin23π-α =cosπ-π6-α+sinπ2+π6-α =-cosπ6-α+cosπ6-α=-m+m=0. [规律总结] 观察已知角和未知角之间的关系,运用诱导公 式(gōngshì)将不同名的函数化为同名的函数,将不同角化为同角 是解决问题的关键.
第二十一页,共38页。
[规范解答] (1)解法一:sin(-1665°)=-sin1665° =-sin(225°+4×360°)=-sin225°
=-sin(180°+45°)=sin45°=
2 2.
解法二:sin(-1665°)=sin(135°-5×360°)
=sin135°=sin(180°-45°)=sin45°=
+120°)=-sin45°+cos30°+sin60°=
3-
2 2.
第十二页,共38页。
5.若 f(n)=sinn4π(n∈N),则 f(1)+f(2)+f(3)+…+f(9)=
__________.
[答案] [解析]
2 2
f(1)=sinπ4= 22,f(2)=sinπ2=1,f(3)=sin34π= 22,
D.4cosα
[答案(dáàn)] A [解析] 原式=cosα+cosα-cosα-cosα=0.
第十一页,共38页。
4 . 计 算 (jì suàn)sin315° + cos( - 330°) - sin( - 480°) = __________.

高中数学第一章 §4 第2课时 单位圆与正弦函数、余弦函数的基本性质 单位圆的对称性与诱导公式

第2课时单位圆与正弦函数、余弦函数的基本性质单位圆的对称性与诱导公式[核心必知]正弦函数、余弦函数的诱导公式1.比较公式两边的函数名称,有什么规律?提示:公式(一)~(五)中,左、右两边的函数名称相同;公式(六)、(七)中,左、右两边的函数名称不同,规律为正、余弦互换.2.公式右边的正、负号有规律吗?提示:有,把α看作锐角时,公式左边函数值的符号与右边的正、负号相同.3.公式(二)反映了三角函数的什么性质?提示:由sin(-α)=-sin α知y=sin x是奇函数;由cos(-α)=cos α知y=cos x是偶函数.讲一讲1.求下列三角函数值. (1)cos 945°;(2)sin 35π6;(3)cos ⎝⎛⎭⎪⎫3π2+π3;(4)sin ⎝ ⎛⎭⎪⎫-100π3.[尝试解答] (1)cos 945°=cos (2×360°+225°) =cos 225°=cos(180°+45°)=-cos 45°=-22. (2)sin 35π6=sin ⎝ ⎛⎭⎪⎫4π+11π6=sin 11π6=sin ⎝ ⎛⎭⎪⎫2π-π6=-sin π6=-12.(3)cos ⎝⎛⎭⎪⎫3π2+π3=cos ⎝ ⎛⎭⎪⎫π+π2+π3=-cos ⎝ ⎛⎭⎪⎫π2+π3=-⎝⎛⎭⎪⎫-sin π3=32. (4)sin ⎝ ⎛⎭⎪⎫-100π3)=-sin (32π+4π3=-sin 4π3=sin π3=32.1.诱导公式都是角α的正弦、余弦函数与k ×π2±α(k ∈Z )的正弦、余弦函数之间的转化,记忆的口诀是:奇变偶不变,符号看象限.“奇变偶不变”解释如下:α前面加的是k ×π2,当k 是奇数时,得α的异名三角函数值;当k 是偶数时,得α的同名三角函数值.“符号看象限”解释如下:由于对于任意角α,公式都成立,不妨将角α看作一个锐角,考查k ×π2±α(k ∈Z )所在的象限,并判断此时函数值的符号是正还是负.2.利用诱导公式可把任意角的三角函数转化为锐角三角函数,步骤如下:记忆口诀:负化正,大化小,化到锐角再查表(特殊角的三角函数值表). 练一练1.求下列各式的值: (1)sin 495°cos(-675°);(2)sin ⎝⎛⎭⎪⎫-43π6cos ⎝ ⎛⎭⎪⎫11π4 解:(1)sin 495°cos(-675°) =sin(135°+360°)cos 675° =sin 135°cos 315°=sin(180°-45°)cos(360°-45°) =sin 45°cos 45° =22×22=12. (2)sin ⎝ ⎛⎭⎪⎫-43π6cos 11π4 =-sin 43π6cos 11π4=-sin ⎝ ⎛⎭⎪⎫6π+7π6cos ⎝ ⎛⎭⎪⎫2π+3π4=-sin 7π6cos 3π4=-sin ⎝ ⎛⎭⎪⎫π+π6cos ⎝ ⎛⎭⎪⎫π2+π4=-sin π6sin π4=-12×22=-24.讲一讲 2.(1)已知cos ⎝ ⎛⎭⎪⎫π6-α=m (|m |≤1),求cos ⎝⎛⎭⎪⎫5π6+α,sin ⎝⎛⎭⎪⎫2π3-α的值.(2)已知sin ⎝ ⎛⎭⎪⎫π2-α=-13,求cos(5π+α)的值.[尝试解答] (1)cos ⎝⎛⎭⎪⎫5π6+α=cos ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π6-α =-cos ⎝ ⎛⎭⎪⎫π6-α=-m . sin ⎝ ⎛⎭⎪⎫23π-α=sin ⎣⎢⎡⎦⎥⎤π2+⎝ ⎛⎭⎪⎫π6-α =cos ⎝ ⎛⎭⎪⎫π6-α=m . (2)∵sin ⎝ ⎛⎭⎪⎫π2-α=-13∴cos α=-13∴cos(5π+α) =cos[4π+(π+α)] =cos(π+α) =-cos α=-⎝ ⎛⎭⎪⎫-13=13.解决条件求值问题的常见思路是:寻找已知条件与所求问题之间的关系,特别是寻找角与角之间的关系,然后利用有关的诱导公式求解.另外要善于发现已知角与待求角之间的互余、互补关系.常见的互余关系有:π3-α与π6+α;π3+α与π6-α;π4+α与π4-α等.常见的互补关系有:π3+θ与2π3-θ;π4+θ与3π4-θ,π6-θ与5π6+θ等.练一练2. 已知sin ⎝ ⎛⎭⎪⎫π6+α=33,求cos ⎝ ⎛⎭⎪⎫10π3-α的值.解:∵103π-α=3π+⎝ ⎛⎭⎪⎫π3-α ∴cos ⎝ ⎛⎭⎪⎫103π-α=cos ⎣⎢⎡⎦⎥⎤3π+⎝ ⎛⎭⎪⎫π3-α =-cos ⎝ ⎛⎭⎪⎫π3-α又∵⎝ ⎛⎭⎪⎫π6+α+⎝ ⎛⎭⎪⎫π3-α=π2.∴cos ⎝⎛⎭⎪⎫10π3-α=-cos ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π6+α =-sin ⎝ ⎛⎭⎪⎫π6+α=-33.讲一讲3.化简下列各式:(1)cos (2π-α)sin (3π+α)cos ⎝⎛⎭⎪⎫3π2-αcos ⎝ ⎛⎭⎪⎫-π2+αcos (α-3π)sin (-π-α).(2)cos ⎝⎛⎭⎪⎫4n +14π+x +cos ⎝ ⎛⎭⎪⎫4n -14π-x )(n ∈Z .[尝试解答] (1)原式=cos α(-sin α)(-sin α)sin α(-cos α)sin α=-1. (2)∵⎝⎛⎭⎪⎫4n +14π+x +⎝ ⎛⎭⎪⎫4n -14π-x =2n π,∴原式=cos ⎝ ⎛⎭⎪⎫4n +14π+x +cos ⎣⎢⎡⎦⎥⎤2n π-⎝ ⎛⎭⎪⎫4n +14π+x=2cos ⎝⎛⎭⎪⎫4n +14π+x =2cos ⎝ ⎛⎭⎪⎫n π+π4+x .①当n 为奇数,即n =2k +1(k ∈Z )时, 原式=2cos ⎝ ⎛⎭⎪⎫2k π+π+π4+x=-2cos ⎝ ⎛⎭⎪⎫π4+x ;②当n 为偶数,即n =2k (k ∈Z )时, 原式=2cos ⎝ ⎛⎭⎪⎫2k π+π4+x =2cos ⎝ ⎛⎭⎪⎫π4+x .故原式=⎩⎪⎨⎪⎧-2cos ⎝ ⎛⎭⎪⎫π4+x ,n 是奇数,2cos ⎝ ⎛⎭⎪⎫π4+x ,n 为偶数.1.所谓化简,就是使表达式经过某种变形,使结果尽可能的简单,也就是项数尽可能的少,次数尽可能的低,函数的种类尽可能的少,分母中尽量不含三角函数符号,能求值的一定要求值.2.利用诱导公式解决化简求值问题的关键是诱导公式的灵活选择,当三角函数式中含有k π±α,k2π±α时,要注意对k 的奇偶性进行讨论.练一练3.设k 为整数,化简:sin (k π-α)cos[(k -1)π-α]sin[(k +1)π+α]cos (k π+α).解:法一:当k 为偶数时,不妨设k =2m (m ∈Z ), 则原式=sin (2m π-α)cos[(2m -1)π-α]sin[(2m +1)π+α]cos (2m π+α)=sin (-α)cos (π+α)-sin αcos α=(-sin α)(-cos α)-sin αcos α=-1;当k 为奇数时,可设k =2m +1(m ∈Z ), 同理,可得原式=-1.法二:由(k π+α)+(k π-α)=2k π, [(k -1)π-α]+[(k +1)π+α]=2k π,得sin(k π-α)=-sin(k π+α)=sin[(k +1)π+α], cos[(k -1)π-α]=cos[(k +1)π+α] =-cos(k π+α), 所以原式=-1.若cos θ=33,则cos (π-θ)cos θ⎣⎢⎡⎦⎥⎤sin ⎝ ⎛⎭⎪⎫3π2-θ-1+ cos (2π-θ)cos (π+θ)sin ⎝ ⎛⎭⎪⎫π2+θ-sin ⎝ ⎛⎭⎪⎫3π2+θ的值为________.[错解] 原式=cos θcos θ(-sin θ-1)+cos θcos θsin θ+cos θ=0.[错因] 混淆了诱导公式,应有sin ⎝ ⎛⎭⎪⎫3π2-θ=sin ⎝ ⎛π+)⎭⎪⎫π2-θ=-sin ⎝ ⎛⎭⎪⎫π2-θ-cos θ,sin ⎝ ⎛⎭⎪⎫π2+θ=cos θ.cos(π-θ)=-cos θ,cos(π+θ)=-cos θ.[正解] 原式=-cos θcos θ(-cos θ-1)+cos θ-cos θcos θ+cos θ=11+cos θ+11-cos θ=21-cos 2θ. 因为cos θ=33, 所以原式=21-⎝ ⎛⎭⎪⎫332=3. [答案] 31.当α∈R 时,下列各式恒成立的是( ) A .sin ⎝⎛⎭⎪⎫π2+α=-cos α B .sin(π-α)=-sin αC .cos(π+α)=cos αD .cos(-α)=cos α 答案:D2.cos 2π3的值是( )A .-32 B.32C.12 D .-12解析:选D cos 2π3=cos(π-π3)=-cos π3=-12.3.(广东高考)已知sin(5π2+α)=15,那么cos α=( )A .-25B .-15C.15D.25解析:选C sin(5π2+α)=sin[2π+(π2+α)]=sin(π2+α)=cos α=15.4.已知cos(π+α)=-12,则sin ⎝ ⎛⎭⎪⎫π2-α=________.解析:∵cos(π+α)=-12,∴cos α=12.∴sin ⎝ ⎛⎭⎪⎫π2-α=cos α=12. 答案: 125.已知cos(508°-α)=1213,则cos(212°+α)=________.解析:∵508°+212°=720°∴cos(212°+α)=cos [2×360°-(508°-α)] =cos(508°-α)=1213.答案: 12136.求sin π4cos 19π6sin 21π4的值.解:原式=sin π4cos(2π+7π6)sin(4π+5π4)=22cos 7π6sin 5π4 =22cos(π+π6)sin ⎝⎛⎭⎪⎫π+π4=22×⎝ ⎛⎭⎪⎫-cos π6⎝ ⎛⎭⎪⎫-sin π4=22×32×22=34.一、选择题1.cos 150°的值是( ) A .-32 B .-12 C.12 D.32解析:选A cos 150°=cos(180°-30°)=-cos 30°=-32. 2.已知600°角的终边上有一点P (a ,-3),则a 的值为( )A. 3 B .- 3 C.33 D .-33解析:选B ∵sin 600°=sin(360°+240°)=sin 240° =sin(180°+60°)=-sin 60°=-32, ∴-3a 2+32=-32,∴a =± 3. 又∵600°角的终边在第三象限∴a =- 3. 3.在△ABC 中,下列4个等式恒成立的是( ) ①sin(A +B )+sin C =0,②cos(A +B )+cos C =0, ③sin(2A +2B )+sin 2C =0,④cos(2A +2B )+cos 2C =0 A .①② B .②③ C .③④ D .①②解析:选B 对于②,cos(A +B )+cos C =cos(180°-C )+cos C =-cos C +cos C =0,成立.对于③,sin(2A +2B )+sin 2C =sin[2(180°-C )]+sin 2C =sin(360°-2C )+sin 2C =-sin 2C +sin 2C =0,成立.4.下列三角函数中,与sin π3数值相同的是( )①sin ⎝ ⎛⎭⎪⎫n π+4π3 ②cos ⎝ ⎛⎭⎪⎫2n π+π6 ③sin ⎝ ⎛⎭⎪⎫2n π+π3 ④cos ⎣⎢⎡⎦⎥⎤(2n +1)π-π6 ⑤sin ⎣⎢⎡⎦⎥⎤(2n +1)π-π3,(n ∈Z )A .①②B .①②③C .②③⑤D .①③④解析:选C ①中n 为偶数时,sin ⎝ ⎛⎭⎪⎫n π+4π3=-sin π3;②中cos(2n π+π6)=cos π6=sin π3;③中sin ⎝⎛⎭⎪⎫2n π+π3=sin π3; ④中cos ⎣⎢⎡⎦⎥⎤(2n +1)π-π6=-cos π6=-sin π3;⑤中sin[(2n +1)π-π3]=sin(π-π3)=sin π3.故②③⑤正确. 二、填空题5.sin ⎝⎛⎭⎪⎫-31π4=________. 解析:sin ⎝ ⎛⎭⎪⎫-31π4=-sin 31π4=-sin ⎝⎛⎭⎪⎫8π-π4 =-sin ⎝ ⎛⎭⎪⎫-π4=sin π4=22.答案:226.化简sin (90°-α)cos (-α)cos (180°-α)=________.解析:原式=cos αcos α-cos α=-cos α.答案:-cos α7.已知sin ⎝ ⎛⎭⎪⎫α-π3=13,则cos ⎝ ⎛⎭⎪⎫π6+α的值等于________. 解析:∵sin ⎝⎛⎭⎪⎫α-π3=13,∴sin(π3-α)=-13, 又∵⎝ ⎛⎭⎪⎫π3-α+⎝ ⎛⎭⎪⎫π6+α=π2,∴cos(π6+α)=cos ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π3-α=sin ⎝ ⎛⎭⎪⎫π3-α=-13.答案:-13.8.若函数f (x )=a sin(πx +α)+b cos(πx +β),其中a ,b ,α,β都是非零实数,且满足f (2 011)=2,则f (2 012)=________.解析:∵f (2 011)=a sin(2 011π+α)+b cos(2 011π+β)=a sin(π+α)+b cos(π+β)=-(a sin α+b cos β)=2,∴f (2 012)=a sin(2 012π+α)+b cos(2 012π+β) =a sin α+b cos β=-2. 答案:-2 三、解答题9.求值:sin (-150°)cos (-210°)cos (-420°)cos (-600°)sin (-1 050°).解:原式=(-sin 150°)cos 210°cos 420°cos 600°(-sin 1 050°)=sin (180°-30°)cos (180°+30°)cos (360°+60°)cos (720°-120°)sin (1 080°-30°)=sin 30°(-cos 30°)cos 60°cos 120°(-sin 30°)缘份让你看到我在这里缘份让你看到我在这里 =-sin 30°cos 30°cos 60°sin 30°sin 30°=-12×32×1212×12=-32. 10.已知f (α)=sin (α-3π)cos (2π-α)sin ⎝ ⎛⎭⎪⎫-α+3π2cos (-π-α)sin (-π-α), (1)化简f (α);(2)若α=-31π3,求f (α)的值. 解:(1)f (α)=-sin α×cos α×(-cos α)(-cos α)sin α=-cos α; (2)f ⎝ ⎛⎭⎪⎫-31π3=-cos ⎝ ⎛⎭⎪⎫-31π3 =-cos ⎝⎛⎭⎪⎫-6×2π+5π3 =-cos 5π3=-cos π3=-12.。

1.4.1单位圆的对称性与诱导公式(第1课时)课件

第一章 三角函数
§4
正弦函数和余弦函数的定义与诱导公式
单位圆的对称性与诱导公式(第1课时)
高中数学北师大版必修4
学习目标
1.温习各个象限中三角函数值的符号相关问题
2. 学会自主推到诱导公式一
3. 运用诱导公式一解决三角函数问题
新课引入
问题回顾:
在1.1.2中,与角终边相同的角如何表示?
k 2
其中k∈
典例精讲:题型一:求三角函数值
求下列三角函数值:
9
11
(1) cos
; (2)sin(
)。
4
6
典例精讲:题型一:求三角函数值
根据诱导公式一,将角转化成0- 2π以内的
角,进而求出其三角函数值
9


2
解:(1) cos cos( 2 ) cos
4
4
4
2
11


角π+α的终边与单位圆的交点P3(cos(π+α),sin(π+α))与
点P(cos α,sin α)有怎样的关系?
答案 关于原点对称.
公式
sinπ+α=-sin α
cosπ+α=-cos α
题型探究
类型一 给角求值问题
例1 求下列各三角函数式的值.
(1)cos 210°;

cos 210°=cos(180°+30°)
三角函数来表示点P 呢?
答案 由三角函数的定义知y=sin α,x=cos α.
∴交点P(cos α,sin α) .
知识点二
思考
角α与-α的正弦函数、余弦函数关系
角-α的终边与单位圆的交点P1(cos(-α),sin(-α))与点
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

- 1 -
安边中学 高一 年级 下 学期 数学 学科导学稿 执笔人: 王广青 总第 课时
备课组长签字: 包级领导签字: 学生: 上课时间:第 周
集体备课 个人空间
一、课题: 4.4 单位圆的对称性与诱导公式(二)
二、学习目标

会初步运用诱导公式求三角函数的值,并进行简单三角函数式的化简;
三、落实目标
【自主预习】

1、如图:设锐角的终边与单位圆相交于点P(a,b),角2的终

边与单位圆交于点'p则点'p的坐标为 ,

观察点'p的坐标,从中发现角与2的三角函数值之间的关系为:
公式五: 。
2、动手验证:sin()cos,cos()sin22a

思考:角

与32的三角函数值之间有什么关系?

【合作探究】
1、求下列三角函数值:

(1)5cos()23 (2)15sin()2


2、已知A、B、C为ABC的三个内角,求证: 2cos2sinACB
- 2 -

3、 化简:
【检测训练】
1.求下列各三角函数的值:
(1) sin13 π2 ; (2) cos19 π3 ;

2.化简:

3.在单位圆中,已知角的终边与单位圆的交点是34(,)55p,分别求角,
2,2


的正弦函数值,余弦函数值。



11
sin(2)cos()cos()cos()229sin()sin(3)sin()sin()2





3

sin2cos3cos2sinsin3cos






相关文档
最新文档