2018届高考数学(理)专题复习:第一部分 专题一 集合、常用逻辑用语、平面向量、复数 1-1-1含答案
2018届高三数学二轮复习 冲刺提分作业 第一篇 专题突破 专题一 集合、常用逻辑用语、平面向量

第3讲不等式时间:40分钟分值:80分1.对于任意实数a,b,c,d,有以下四个命题:①若ac2>bc2,且c≠0,则a>b;②若a>b,c>d,则a+c>b+d;③若a>b,c>d,则ac>bd;④若a>b,则>.其中正确的有( )A.1个B.2个C.3个D.4个2.如果ax2+bx+c>0的解集为{x|-1<x<3},那么对于函数f(x)=ax2+bx+c应有( )A.f(5)<f(-1)<f(2)B.f(-1)<f(5)<f(2)C.f(-1)<f(2)<f(5)D.f(2)<f(-1)<f(5)3.(2017河南郑州第三次质量预测)设变量x,y满足约束条件则目标函数z=x+2y 的最小值为( )A.2B.3C.4D.54.(2017四川成都第一次质量检测)若实数x,y满足约束条件则的最小值为( )A. B.-C. D.-5.设实数m,n满足m>0,n<0,且+=1,则4m+n( )A.有最小值9B.有最大值9C.有最大值1D.有最小值16.若a>0,b>0,且+=,则a3+b3的最小值为( )A.4B.2C.4D.27.(2017云南第一次统考)已知函数f(x)=则不等式f(x-1)≤0的解集为( )A.{x|0≤x≤2}B.{x|0≤x≤3}C.{x|1≤x≤2}D.{x|1≤x≤3}8.(2017山西太原模拟)已知实数x、y满足不等式组若x2+y2的最大值为m,最小值为n,则m-n=( )A. B. C.8 D.99.(2017河南洛阳第一次统考)已知实数x,y满足条件若z=y-ax取得最大值时的最优解有且只有一个,则实数a的取值集合为( )A.{2,-1}B.{a∈R|a≠2}C.{a∈R|a≠-1}D.{a∈R|a≠2且a≠-1}10.(2017甘肃兰州模拟)已知M(-4,0),N(0,-3),P(x,y)的坐标x,y满足则△PMN 面积的取值范围是( )A.[5,6]B.[8,10]C.[10,12]D.[6,12]11.(2017河南郑州质量预测)已知直线y=k(x+1)与不等式组表示的平面区域有公共点,则k的取值范围为( )A.[0,+∞)B.C. D.12.已知f(x)=|ln x|,设0<a<b,且f(a)=f(b),则a+2b的取值范围是( )A.[3,+∞)B.(3,+∞)C.[2,+∞)D.(2,+∞)13.设a>0,b>1,若a+b=2,则+的最小值为.14.(2017江苏,10,5分)某公司一年购买某种货物600吨,每次购买x吨,运费为6万元/次,一年的总存储费用为4x万元.要使一年的总运费与总存储费用之和最小,则x的值是.15.已知函数f(x)=若关于x的不等式[f(x)]2+af(x)<0恰有1个整数解,则实数a的最大值是.16.(2016课标Ⅰ,16,5分)某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5 kg,乙材料1 kg,用5个工时;生产一件产品B需要甲材料0.5 kg,乙材料0.3 kg,用3个工时.生产一件产品A的利润为2 100元,生产一件产品B的利润为900元.该企业现有甲材料150 kg,乙材料90 kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为元.答案精解精析1.B ①ac2>bc2,且c≠0,则a>b,①正确;②由不等式的同向可加性可知②正确;③需满足a、b、c、d均为正数才成立;④错误,比如:令a=-1,b=-2,满足-1>-2,但<.故选B.2.A 由题意知a<0,且ax2+bx+c=0的两根分别为-1和3,所以函数f(x)=ax2+bx+c图象的对称轴为x=1,所以f(5)<f(-1)<f(2).3.C 作出不等式组表示的平面区域如图中阴影部分所示,由图知,当直线z=x+2y经过A(2,1)时,z 取得最小值,即z min=2+2×1=4.4.B 作出不等式组表示的平面区域,如图中阴影部分所示,因为表示平面区域内的点与定点P(0,1)连线的斜率.由图知,点P与A连线的斜率最小,所以=k PA==-.5.C 因为+=1,所以4m+n=(4m+n)=5++,又m>0,n<0,故5++=5-≤5-4=1,当且仅当m=,n=-1时取等号,故选C.6.C 由=+≥(a>0,b>0),得ab≥2,当a=b=时等号成立.故a3+b3≥2≥4,且当a=b=时等号成立.所以a3+b3的最小值为4.选C.7.D 由题意,得f(x-1)=当x≥2时,由2x-2-2≤0,解得2≤x≤3;当x<2时,由22-x-2≤0,解得1≤x<2.综上所述,不等式f(x-1)≤0的解集为{x|1≤x≤3},故选D.8.B 作出不等式组所表示的平面区域,如图中阴影部分所示,x2+y2表示平面区域内的点与原点的距离的平方,观察图形可知,原点到直线x+y-3=0的距离|OD|的平方等于n,|OA|2=m,经过计算可得m=13,n=,则m-n=,故选B.9.D 不等式组对应的平面区域如图中阴影部分所示.由z=-ax+y得y=ax+z,若a=0,则直线为y=z,此时最大值的最优解只有一个,满足条件.若a>0,则直线y=ax+z的纵截距最大时,z取得最大值,若z=y-ax取得最大值时的最优解有且只有一个,则a≠2.若a<0,则直线y=ax+z的纵截距最大时,z 取得最大值,若z=y-ax取得最大值的最优解有且只有一个,则a≠-1.选D.10.D作出不等式组表示的平面区域如图中阴影部分所示.又过点M(-4,0),N(0,-3)的直线的方程为3x+4y+12=0,而它与直线3x+4y=12平行,其距离d==,所以当P点在原点O处时,△PMN的面积最小,为×3×4=6;当P点在线段AB上时,△PMN的面积最大,为××=12.故△PMN的面积的取值范围是[6,12].11.C 画出可行域,如图中阴影部分所示(不包括x轴),直线y=k(x+1)过定点(-1,0),由解得过点(-1,0)与(1,3)的直线的斜率是,根据题意可知0<k≤,故选C.12.B f(x)=|ln x|=作出它的图象如图:∵0<a<b,且f(a)=f(b),∴0<a<1<b,-ln a=ln b,∴ln(ab)=0,∴ab=1.∴a+2b=a+.令f(a)=a+,0<a<1.∴f '(a)=1-,易得当0<a<1时, f '(a)<0.可得f(a)在(0,1)上递减,即有a+2b>3,∴a+2b的取值范围是(3,+∞).13.答案3+2解析由a+b=2可知,a+b-1=1,因为b>1,所以b-1>0,又a>0,所以+=(a+b-1)=2+++1≥3+2,当且仅当=,即a=2-,b=时等号成立.14.答案30解析设总费用为y万元,则y=×6+4x=4≥240.当且仅当x=,即x=30时,等号成立.15.答案8解析作出函数f(x)的图象如图实线所示,因为关于x的不等式[f(x)]2+af(x)<0恰有1个整数解,所以-a<f(x)<0,且整数解x只能是3,当2<x<4时,-8<f(x)<0,又f(3)=-3,所以-8≤-a<-3,所以3<a≤8,即a的最大值为8.16.答案216 000解析设生产产品A x件,生产产品B y件,利润之和为z元,则z=2 100x+900y.根据题意得即作出可行域(如图).由得当直线2 100x+900y-z=0过点A(60,100)时,z取得最大值,z max=2 100×60+900×100=216 000.故所求的最大值为216 000元.。
名师导学2018届高三数学理二轮复习课件:专题1第1讲集合与常用逻辑用语 精品

2.常用逻辑用语 例2(1)下列命题中错误的是( )
A.命题“若 p 则 q”与命题“若綈 q 则綈 p”互
为逆否命题 B.命题 p:∀x∈0 ,1 ,ex≥1,命题 q:∃x
∈R,x2+x+1<0,p∨q 为真 C.若 p∨q 为假命题,则 p、q 均为假命题 D.“若 am2<bm2,则 a<b”的逆命题为真命题
又 p∧q 为真,所以 p 真且 q 真, 由12<<xx≤ <33,得 2<x<3, 所以实数 x 的取值范围为(2, 3).
(2)因为綈 p 是綈 q 的充分不必要条件,所以 q 是
p 的充分不必要条件, 又 p:{x|a<x<3a},q:{x|2<x≤3}, 所以aa>≤02,,解得 1<a≤2. 3a>3,
第1讲 集合与常用逻辑用语
1.考题展望 (1)集合考查的重点是集合的含义、表示、集合与集合 间的基本关系、基本运算、抽象集合等;常用逻辑用语主 要考查命题及其关系、充分条件与必要条件、简单逻辑联 结词、全称量词与存在量词;一般以客观题形式出现,难 度不大.另外,集合、简易逻辑知识,作为一种数学工具, 在函数、方程、不等式、排列组合及曲线与方程等方面都 有广泛的运用,高考题中也常以上述知识为载体,以集合 的语言为表现形式,结合简易逻辑知识考查学生的数学思 想、数学方法和数学能力,题型常以解答题的形式出现.高 考中也常与新定义问题结合考查.
(5)随着数列地位的下降,数学归纳法在新课程 全国卷试题中已很少出现.但不排除有与之相关的 数学思想在试题中隐性考查.
(6)复数部分几乎每年的试卷中都会考查,一般 会在选择题或填空题的前面位置出现,题目命制简 单,考查内容清晰,主要考查复数的概念、两复数 相等的充要条件、复数的代数形式的四则运算等.
【高考数学】2018届高三数学(文):专题一 集合、常用逻辑用语、平面向量、附属、算法、推理与证明1审

攻略一
学会 7 种审题方法
著名数学家波利亚总结了解决数学问题的四个步骤: 弄清问 题、 拟订计划、 实现计划、 代入回顾. 其中“弄清问题”即审题. 审 题是解题的基础和关键,一切解题的思路、方法、技巧都来源于 认真审题.在审题中要明确审题的四个步骤.
ห้องสมุดไป่ตู้
(1)读题——弄清字面含义 审题首先要逐字逐句读懂题目说了什么,给了你什么,要你干什么.真正弄 清哪些是条件,哪些是结论,各有几个,这是读题最实质性的工作. (2)理解——弄清数学含义 看懂题目的字面含义还不能算真正审清题意,它只是为实质性的数学理解扫 清了语言障碍,关键是要能进行文字语言、符号语言、形象语言之间的转化,从 题目的叙述中获取数学“符号信息”,从题目的图形中获取数学“形象信息”, 弄清题目的数学含义.
1 C.2,2 1 B.0,2
)
D.(0,2]
审 题 指 导
隐含a>0
1 log2a=-log2a
fx是偶函数
――→
flog2a≤f1
fx在[0,+∞上单调递增
――→
|log2a|≤1 ――→ a的取值范围
解析:
1 因为 log2a=-log2a,且 f(-x)=f(x),
π π 即 0<2A<2,0<π-A-2A<2, π π 2 3 ∴6<A<4,∴ 2 <cos A< 2 , ∴ 2<2cos A< 3,∴b∈( 2, 3). 答案: A
谢谢观看!
一审
审条件挖隐含
有的数学题条件不明显,而寓于概念、存于性质或含于图中.审题时,就要 注意深入挖掘这些隐含条件和信息,解题时可避免因忽视隐含条件而出现错误. 已知函数 f(x)是定义在 R 上的偶函数,且在区间[0,+∞)上单调递 1 增.若实数 a 满足 f(log2a)+f(log2a)≤2f(1),则 a 的取值范围是( A.[1,2]
2018届高考数学复习集合常用逻辑用语平面向量复数1.1.2平面向量复数运算限时规范训练理

限时规范训练 平面向量、复数运算限时45分钟,实际用时分值80分,实际得分一、选择题(本题共12小题,每小题5分,共60分)1.设i 是虚数单位,如果复数a +i2-i的实部与虚部相等,那么实数a 的值为( )A.13 B .-13C .3D .-3解析:选C.a +i 2-i =2a -1+a +5,由题意知2a -1=a +2,解之得a =3.2.若复数z 满足(1+2i)z =(1-i),则|z |=( ) A.25 B.35 C.105D.10解析:选C.z =1-i 1+2i =-1-3i 5⇒|z |=105.3.已知复数z =1+i(i 是虚数单位),则2z-z 2的共轭复数是( )A .-1+3iB .1+3iC .1-3iD .-1-3i 解析:选B.2z -z 2=21+i -(1+i)2=-+--2i =1-i -2i =1-3i ,其共轭复数是1+3i ,故选B.4.若z =(a -2)+a i 为纯虚数,其中a ∈R ,则a +i 71+a i=( )A .iB .1C .-iD .-1解析:选C.∵z 为纯虚数,∴a =2,∴a +i 71+a i =2-i 1+2i=2--2+2-2=-3i 3=-i.5.已知复数z =11-i ,则z -|z |对应的点所在的象限为( )A .第一象限B .第二象限C .第三象限D .第四象限解析:选B.∵复数z =11-i =1+i -+=12+12i , ∴z -|z |=12+12i -⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫122=1-22+12i ,对应的点⎝ ⎛⎭⎪⎫1-22,12所在的象限为第二象限.故选B.6.若复数z 满足z (1-i)=|1-i|+i ,则z 的实部为( ) A.2-12B.2-1 C .1D.2+12解析:选A.由z (1-i)=|1-i|+i ,得z =2+i1-i=2++-+=2-12+2+12i ,z 的实部为2-12,故选A. 7.已知△ABC 和点M 满足MA →+MB →+MC →=0.若存在实数m ,使得AB →+AC →=mAM →成立,则m =( ) A .2 B .3 C .4D .5解析:选B.由MA →+MB →+MC →=0知,点M 为△ABC 的重心,设点D 为边BC 的中点,则AM →=23AD →=23×12(AB →+AC →)=13(AB →+AC →),所以AB →+AC →=3AM →,故m =3,故选B. 8.已知向量a =(3,-2),b =(x ,y -1)且a ∥b ,若x ,y 均为正数,则3x +2y的最小值是( )A .24B .8 C.83D.53解析:选B.∵a ∥b ,∴-2x -3(y -1)=0,即2x +3y =3, ∴3x +2y =⎝ ⎛⎭⎪⎫3x +2y ×13(2x +3y )=13⎝ ⎛⎭⎪⎫6+9y x +4x y +6≥13⎝ ⎛⎭⎪⎫12+29y x·4x y =8,当且仅当2x =3y=32时,等号成立. ∴3x +2y的最小值是8.故选B.9.在平行四边形ABCD 中,AC =5,BD =4,则AB →·BC →=( ) A.414B .-414C.94 D .-94解析:选C.因为BD →2=(AD →-AB →)2=AD →2+AB →2-2AD →·AB →,AC →2=(AD →+AB →)2=AD →2+AB →2+2AD →·AB →,所以AC →2-BD →2=4AD →·AB →,∴AD →·AB →=AB →·BC →=94.10.在△ABC 中,已知向量AB →=(2,2),|AC →|=2,AB →·AC →=-4,则△ABC 的面积为( ) A .4 B .5 C .2D .3解析:选C.∵AB →=(2,2),∴|AB →|=22+22=2 2. ∵AB →·AC →=|AB →|·|AC →|cos A =22×2cos A =-4, ∴cos A =-22,∵0<A <π,∴sin A =22, ∴S △ABC =12|AB →|·|AC →|sin A =2.故选C.11.△ABC 的外接圆的圆心为O ,半径为1,2AO →=AB →+AC →且|OA →|=|AB →|,则向量BA →在BC →方向上的投影为( )A.12B.32 C .-12D .-32解析:选A.由2AO →=AB →+AC →可知O 是BC 的中点,即BC 为△ABC 外接圆的直径,所以|OA →|=|OB →|=|OC →|,由题意知|OA →|=|AB →|=1,故△OAB 为等边三角形,所以∠ABC =60°.所以向量BA →在BC →方向上的投影为|BA →|cos∠ABC =1×cos 60°=12.故选A.12.如图,菱形ABCD 的边长为2,∠BAD =60°,M 为DC 的中点,若N 为菱形内任意一点(含边界),则AM →·AN →的最大值为( )A .3B .2 3C .6D .9解析:选D.由平面向量的数量积的几何意义知,AM →·AN →等于AM →与AN →在AM →方向上的投影之积,所以(AM →·AN →)max =AM →·AC →=⎝ ⎛⎭⎪⎫12AB →+AD →·(AB →+AD →)=12AB 2→+AD 2→+32AB →·AD →=9. 二、填空题(本题共4小题,每小题5分,共20分) 13.已知复数z =3+i -32,z 是z 的共轭复数,则z ·z =________.解析:∵z =3+i -32=3+i-2-23i =3+i -+3=3+-3-+3-3=23-2i -8=-34+14i ,∴z ·z =⎝ ⎛⎭⎪⎫-34+14i ⎝ ⎛⎭⎪⎫-34-14i =316+116=14. 答案:1414.已知向量a ,b 满足|a |=2,|b |=1,且对一切实数x ,|a +x b |≥|a +b |恒成立,则a ,b 夹角的大小为________.解析:|a +x b |≥|a +b |恒成立⇒a 2+2x a ·b +x 2b 2≥a 2+2a·b +b 2恒成立⇒x 2+2a ·b x -1-2a ·b ≥0恒成立,∴Δ=4(a·b )2-4(-1-2a·b )≤0⇒(a·b +1)2≤0,∴a·b =-1,∴cos〈a ,b 〉=a·b |a |·|b |=-12,又〈a ,b 〉∈[0,π],故a 与b 的夹角的大小为2π3.答案:23π15.已知在△ABC 中,AB =4,AC =6,BC =7,其外接圆的圆心为O ,则AO →·BC →=________.解析:如图,取BC 的中点M ,连OM ,AM ,则AO →=AM →+MO →, ∴AO →·BC →=(AM →+MO →)·BC →.∵O 为△ABC 的外心,∴OM ⊥BC ,即OM →·BC →=0,∴AO →·BC →=AM →·BC →=12(AB →+AC →)·(AC →-AB →)=12(AC 2→-AB 2→)=12(62-42)=12×20=10. 答案:1016.已知非零向量a ,b ,c 满足|a |=|b |=|a -b |,〈c -a ,c -b 〉=2π3,则|c ||a |的最大值为________.解析:设OA →=a ,OB →=b ,则BA →=a -b . ∵非零向量a ,b ,c 满足|a |=|b |=|a -b |, ∴△OAB 是等边三角形. 设OC →=c ,则AC →=c -a ,BC →=c -b .∵〈c -a ,c -b 〉=2π3,∴点C 在△ABC 的外接圆上,∴当OC 为△ABC 的外接圆的直径时,|c ||a |取得最大值,为1cos 30°=233.答案:233。
2018年高考数学理一轮复习文档 第一章 集合与常用逻辑用语 第1讲 集合及其运算 含答案 精品

量词与存在量词1.集合与元素(1)集合元素的三个特征:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于关系,用符号∈或∉表示. (3)集合的表示法:列举法、描述法、图示法. (4)常见数集的记法 集合 自然数集正整数集 整数集 有理数集实数集 符号NN *(或N +)ZQR表示 关系自然语言符号 语言Venn 图子集集合A 中所有元素都在集合B 中(即若x ∈A ,x ∈B )A ⊆B (或B ⊇A )真子集集合A 是集合B 的子集,且集合B 中至少有一个元素不在集合A 中 A B (或B A )集合相等集合A ,B 中元素相同A =B集合的并集 集合的交集 集合的补集图形语言符号语言A ∪B ={x |x ∈A ,或x ∈B }A ∩B ={x |x ∈A ,且x ∈B }∁U A ={x |x ∈U ,且x ∉A }1.辨明三个易误点(1)认清元素的属性.解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.(2)注意元素的互异性.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致解题错误.(3)防范空集.在解决有关A∩B=∅,A⊆B等集合问题时,往往忽略空集的情况,一定先考虑∅是否成立,以防漏解.2.活用几组结论(1)A∪B=A⇔B⊆A,A∩B=A⇔A⊆B.(2)A∩A=A,A∩∅=∅.(3)A∪A=A,A∪∅=A.(4)A∩(∁U A)=∅,A∪(∁U A)=U,∁U(∁U A)=A.(5)A⊆B⇔A∩B=A⇔A∪B=B⇔∁U A⊇∁U B⇔A∩(∁U B)=∅.(6)若集合A中含有n个元素,则它的子集个数为2n,真子集个数为2n-1,非空真子集个数为2n-2.1.教材习题改编已知集合A={x|x是平行四边形},B={x|x是矩形},C={x|x是正方形},D={x|x是菱形},则( )A.A⊆B B.C⊆BC.D⊆C D.A⊆DB2.教材习题改编设集合A={x|2≤x<5},B={x∈Z|3x-7≥8-2x},则A∩B=( )A.{x|3≤x<5} B.{x|2≤x≤3}C.{3,4} D.{3,4,5}C 因为A={x|2≤x<5},B={x∈Z|3x-7≥8-2x}={x∈Z|x≥3},所以A∩B={3,4}.3.已知集合A={(x,y)|x,y∈R,且x2+y2=1},B={(x,y)|x,y∈R,且y=x},则A∩B的元素个数为( )A.0 B.1C.2 D.3C 集合A表示的是圆心在原点的单位圆,集合B表示的是直线y=x,据此画出图象,可得图象有两个交点,即A∩B的元素个数为2.4.教材习题改编已知全集U={1,2,3,4,5,6,7,8},集合A={2,3,5,6},集合B={1,3,4,6,7},则集合A∩∁U B=________.由题意得∁U B={2,5,8},所以A∩∁U B={2,3,5,6}∩{2,5,8}={2,5}.{2,5}5.教材习题改编已知集合A={x|x2-4x+3<0},B={x|2<x<4},则(∁R A)∪B=________.由已知可得集合A ={x |1<x <3},又因为B ={x |2<x <4},∁R A ={x |x ≤1或x ≥3},所以(∁R A )∪B ={x |x ≤1或x >2}.{x |x ≤1或x >2}集合的含义(1)已知集合A ={0,1,2},则集合B ={(x ,y )|x ≥y ,x ∈A ,y ∈A }中元素的个数是( )A .1B .3C .6D .9(2)设a ,b ∈R ,集合{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a,b ,则b -a =( )A .1B .-1C .2D .-2【解析】 (1)当x =0时,y =0;当x =1时,y =0或y =1;当x =2时,y =0,1,2. 故集合B ={(0,0),(1,0),(1,1),(2,0),(2,1),(2,2)},即集合B 中有6个元素.(2)因为{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a ,b ,a ≠0,所以a +b =0,则ba=-1,所以a =-1,b=1.所以b -a =2.【答案】 (1)C (2)C1.设集合A ={1,2,3},B ={4,5},M ={x |x =a +b ,a ∈A ,b ∈B },则M 中的元素个数为( )A .3B .4C .5D .6B 因为a ∈A ,b ∈B ,所以x =a +b 为1+4=5,1+5=2+4=6,2+5=3+4=7,3+5=8.共4个元素.2.已知集合A ={m +2,2m 2+m },若3∈A ,则m 的值为________. 因为3∈A ,所以m +2=3或2m 2+m =3. 当m +2=3,即m =1时,2m 2+m =3, 此时集合A 中有重复元素3, 所以m =1不符合题意,舍去;当2m 2+m =3时,解得m =-32或m =1(舍去),此时当m =-32时,m +2=12≠3符合题意.所以m =-32.-32集合间的基本关系(1)已知集合A ={x |x 2-3x +2=0,x ∈R },B ={x |0<x <5,x ∈N },则满足条件A ⊆C ⊆B 的集合C 的个数为( )A .1B .2C .3D .4(2)已知集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1},若B ⊆A ,则实数m 的取值范围为________.【解析】 (1)由x 2-3x +2=0,得x =1或x =2,所以A ={1,2}. 由题意知B ={1,2,3,4},所以满足条件的C 可为{1,2},{1,2,3},{1,2,4},{1,2,3,4}. (2)因为B ⊆A ,所以①若B =∅,则2m -1<m +1,此时m <2. ②若B ≠∅,则⎩⎪⎨⎪⎧2m -1≥m +1,m +1≥-2,2m -1≤5.解得2≤m ≤3.由①、②可得,符合题意的实数m 的取值范围为m ≤3. 【答案】 (1)D (2)(-∞,3]1.在本例(2)中,若A ⊆B ,如何求解?若A ⊆B ,则⎩⎪⎨⎪⎧m +1≤-2,2m -1≥5,即⎩⎪⎨⎪⎧m ≤-3,m ≥3.所以m 的取值范围为∅.2.若将本例(2)中的集合A 改为A ={x |x <-2或x >5},如何求解? 因为B ⊆A ,所以①当B =∅时,即2m -1<m +1时,m <2,符合题意.②当B ≠∅时,⎩⎪⎨⎪⎧m +1≤2m -1,m +1>5或⎩⎪⎨⎪⎧m +1≤2m -1,2m -1<-2, 解得⎩⎪⎨⎪⎧m ≥2,m >4或⎩⎪⎨⎪⎧m ≥2,m <-12.即m >4.综上可知,实数m 的取值范围为(-∞,2)∪(4,+∞).1.设P ={y |y =-x 2+1,x ∈R },Q ={y |y =2x,x ∈R },则( ) A .P ⊆Q B .Q ⊆P C .∁R P ⊆QD .Q ⊆∁R PC 因为P ={y |y =-x 2+1,x ∈R }={y |y ≤1},Q ={y |y =2x,x ∈R }={y |y >0},所以∁R P ={y |y >1},所以∁R P ⊆Q ,选C.2.已知集合A ={x |x 2-2x -3<0},B ={x |-m <x <m }.若B ⊆A ,则m 的范围为________. 当m ≤0时,B =∅,显然B ⊆A .当m >0时,因为A ={x |x 2-2x -3<0}={x |-1<x <3}. 当B ⊆A 时,有所以⎩⎪⎨⎪⎧-m ≥-1,m ≤3,-m <m .所以0<m ≤1.综上所述m 的范围为m ≤1. m ≤1集合的基本运算(高频考点)集合的基本运算是历年各地高考的热点,每年必考,常和不等式的解集、函数的定义域、值域相结合命题,主要以选择题的形式出现.试题多为低档题.高考对集合运算的考查主要有以下三个命题角度: (1)求集合间的交或并运算; (2)求集合的交、并、补的混合运算; (3)已知集合的运算结果求参数的值(范围).(1)(2016·高考全国卷乙)设集合A ={x |x 2-4x +3<0},B ={x |2x -3>0},则A ∩B =( )A.⎝ ⎛⎭⎪⎫-3,-32B .⎝ ⎛⎭⎪⎫-3,32 C.⎝ ⎛⎭⎪⎫1,32D .⎝ ⎛⎭⎪⎫32,3 (2)(2016·高考山东卷)设集合U ={1,2,3,4,5,6},A ={1,3,5},B ={3,4,5},则∁U (A ∪B )=( )A .{2,6}B .{3,6}C .{1,3,4,5}D .{1,2,4,6}(3)已知集合A 、B 均为U ={1,3,5,7,9}的子集,且A ∩B ={3},(∁U B )∩A ={9},则A =________.【解析】 (1)由题意得,A ={x |1<x <3},B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x >32,则A ∩B =⎝ ⎛⎭⎪⎫32,3. (2)由题知A ∪B ={1,3,4,5},所以∁U (A ∪B )={2,6}. (3)因为A ∩B ={3},所以3∈A , 又因为(∁U B )∩A ={9},所以9∈A ,又U ={1,3,5,7,9},假设1∈A ,由A ∩B ={3}, 知1∉B ,所以1∈∁U B ,则与(∁U B )∩A ={9}矛盾, 所以1∉A ,同理5,7∉A ,则A ={3,9}. 【答案】 (1)D (2)A (3){3,9}集合运算问题的常见类型及解题策略(1)离散型数集或抽象集合间的运算,常借助Venn 图求解; (2)连续型数集的运算,常借助数轴求解;(3)已知集合的运算结果求集合,常借助数轴或Venn 图求解;(4)根据集合运算结果求参数,先把符号语言译成文字语言,然后适时应用数形结合求解.角度一 求集合间的交或并运算1.(2016·高考全国卷甲)已知集合A ={1,2,3},B ={x |(x +1)(x -2)<0,x ∈Z },则A ∪B =( )A .{1}B .{1,2}C .{0,1,2,3}D .{-1,0,1,2,3}C 由已知可得B ={x |(x +1)(x -2)<0,x ∈Z }={x |-1<x <2,x ∈Z }={0,1},所以A ∪B ={0,1,2,3},故选C.角度二 求集合的交、并、补的混合运算2.(2017·海口市调研测试)设全集U =R ,集合A ={x |7-6x ≤0},集合B ={x |y =lg(x +2)},则(∁U A )∩B 等于( )A.⎝⎛⎭⎪⎫-2,76B .⎝ ⎛⎭⎪⎫76,+∞C.⎣⎢⎡⎭⎪⎫-2,76 D .⎝⎛⎭⎪⎫-2,-76A 依题意得A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≥76,∁U A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <76;B ={x |x +2>0}={x |x >-2},因此(∁U A )∩B=⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-2<x <76,选A.3.(2017·宜春中学、新余一中联考)已知全集为R ,集合A ={x |x 2-5x -6<0},B ={x |2x<1},则图中阴影部分表示的集合是( )A .{x |2<x <3}B .{x |-1<x ≤0}C .{x |0≤x <6}D .{x |x <-1}C 由x 2-5x -6<0,解得-1<x <6,所以A ={x |-1<x <6}.由2x<1,解得x <0,所以B ={x |x <0}.又图中阴影部分表示的集合为(∁R B )∩A ,因为∁R B ={x |x ≥0},所以(∁R B )∩A ={x|0≤x<6},故选C.角度三已知集合的运算结果求参数的值(范围)4.(2017·河南省六市第一次联考)已知集合A={x|x2-3x<0},B={1,a},且A∩B 有4个子集,则实数a的取值范围是( )A.(0,3) B.(0,1)∪(1,3)C.(0,1) D.(-∞,1)∪(3,+∞)B 因为A∩B有4个子集,所以A∩B中有2个不同的元素,所以a∈A,所以a2-3a<0,解得0<a<3且a≠1,即实数a的取值范围是(0,1)∪(1,3),故选B.)——集合中的创新问题以集合为背景的新定义问题是近几年高考命题创新型试题的一个热点,此类题目常常以“问题”为核心,以“探究”为途径,以“发现”为目的,这类试题只是以集合为依托,考查考生理解问题、解决创新问题的能力.常见的命题形式有新概念、新法则、新运算等,这类试题中集合只是基本的依托.如果集合A满足若x∈A,则-x∈A,那么就称集合A为“对称集合”.已知集合A={2x,0,x2+x},且A是对称集合,集合B是自然数集,则A∩B=________.【解析】由题意可知-2x=x2+x,所以x=0或x=-3.而当x=0时不符合元素的互异性,所以舍去.当x=-3时,A={-6,0,6},所以A∩B={0,6}.【答案】{0,6}解决集合创新型问题的方法(1)紧扣新定义.首先分析新定义的特点,把新定义所叙述的问题的本质弄清楚,并能够应用到具体的解题过程之中,这是破解新定义型集合问题难点的关键所在.(2)用好集合的性质.集合的性质(概念、元素的性质、运算性质等)是破解新定义型集合问题的基础,也是突破口,在解题时要善于从试题中发现可以使用集合性质的一些因素,在关键之处用好集合的性质.1.设A,B是非空集合,定义A⊗B={x|x∈A∪B且x∉A∩B}.已知集合A ={x|0<x<2},B={y|y≥0},则A⊗B=________.由已知A ={x |0<x <2},B ={y |y ≥0},又由新定义A ⊗B ={x |x ∈A ∪B 且x ∉A ∩B },结合数轴得A ⊗B ={0}∪ {0}∪ 符合题意的集合为{1,2,3},{2,3,4},{3,4,5},{4,5,6},{5,6,7},{6,7,8},共6个.6)1.(2016·高考天津卷)已知集合A ={1,2,3,4},B ={y |y =3x -2,x ∈A },则A ∩B =( )A .{1}B .{4}C .{1,3}D .{1,4}D 由题意得,B ={1,4,7,10},所以A ∩B ={1,4}.2.设集合M ={x |x 2-2x -3<0,x ∈Z },则集合M 的真子集个数为( ) A .8 B .7 C .4D .3B 依题意,M ={x |(x +1)·(x -3)<0,x ∈Z }={x |-1<x <3,x ∈Z }={0,1,2},因此集合M 的真子集个数为23-1=7,故选B .3.(2017·南昌月考)设集合P ={a 2,log 2a },Q ={2a,b },若P ∩Q ={0},则P ∪Q =( ) A .{0,1} B .{0,1,2} C .{0,2}D .{0,1,2,3}B 因为P ∩Q ={0},所以0∈P ,只能log 2a =0,所以a =1,a 2=1,又0∈Q ,因为2a=21=2≠0,所以b =0,所以,P ={0,1},Q ={2,0},所以P ∪Q ={0,1,2}.4.(2017·河南省八市重点高中质量检测)若U ={1,4,6,8,9},A ={1,6,8},B ={4,6},则A ∩(∁U B )等于( )A .{4,6}B .{1,8}C .{1,4,6,8}D .{1,4,6,8,9}B 因为U ={1,4,6,8,9},A ={1,6,8},B ={4,6},所以∁U B ={1,8,9},因此A ∩(∁U B )={1,8},故选B .5.(2017·湖南省东部六校联考)已知集合M ={-2,-1,0,1},N =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪12≤2x ≤4,x ∈Z ,则M ∩N =( )A .{-2,-1,0,1,2}B .{-1,0,1,2}C .{-1,0,1}D .{0,1}C 由12≤2x≤4,解得-1≤x ≤2,即集合N ={-1,0,1,2},所以M ∩N ={-1,0,1},故选C.6.(2017·石家庄教学质量检测(二))设集合M ={-1,1},N =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪1x<2,则下列结论正确的是( )A .N ⊆MB .M ⊆NC .M ∩N =∅D .M ∪N =RB 因为1x -2<0,即2x -1x >0,解得x <0或x >12,因为N =(-∞,0)∪⎝ ⎛⎭⎪⎫12,+∞,又M ={1,-1},所以可知B 正确,A ,C ,D 错误,故选B .7.已知全集U =Z ,P ={-2,-1,1,2},Q ={x |x 2-3x +2=0},则图中阴影部分表示的集合为( )A .{-1,-2}B .{1,2}C .{-2,1}D .{-1,2}A 因为Q ={1,2},所以P ∩(∁U Q )={-1,-2},故选A.8.已知集合M ={x |x 2-4x <0},N ={x |m <x <5},若M ∩N ={x |3<x <n },则m +n 等于( )A .9B .8C .7D .6C 由x 2-4x <0得0<x <4,所以M ={x |0<x <4}.又因为N ={x |m <x <5},M ∩N ={x |3<x <n },所以m =3,n =4,m +n =7.9.设集合A =⎩⎨⎧⎭⎬⎫5,ba,a -b ,B ={b ,a +b ,-1},若A ∩B ={2,-1},则A ∪B =( )A .{-1,2,3,5}B .{-1,2,3}C .{5,-1,2}D .{2,3,5}A 由A ∩B ={2,-1},可得⎩⎪⎨⎪⎧b a =2,a -b =-1或⎩⎪⎨⎪⎧b a =-1,a -b =2.当⎩⎪⎨⎪⎧b a =2,a -b =-1时,⎩⎪⎨⎪⎧a =1,b =2.此时B ={2,3,-1},所以A ∪B ={-1,2,3,5};当⎩⎪⎨⎪⎧b a =-1,a -b =2时,⎩⎪⎨⎪⎧a =1,b =-1,此时不符合题意,舍去.10.(2017·湖北省七市(州)协作体联考)已知集合P={n|n=2k-1,k∈N*,k≤50},Q ={2,3,5},则集合T={xy|x∈P,y∈Q}中元素的个数为( )A.147 B.140C.130 D.117B 由题意得,y的取值一共有3种情况,当y=2时,xy是偶数,不与y=3,y=5有相同的元素,当y=3,x=5,15,25,…,95时,与y=5,x=3,9,15,…,57时有相同的元素,共10个,故所求元素个数为3×50-10=140,故选B.11.(2017·开封市第一次模拟)设集合A={n|n=3k-1,k∈Z},B={x||x-1|>3},则A∩(∁R B)=( )A.{-1,2} B.{-2,-1,1,2,4}C.{1,4} D.∅A 当k=-1时,n=-4;当k=0时,n=-1;当k=1时,n=2;当k=2时,n =5.由|x-1|>3,得x-1>3或x-1<-3,即x>4或x<-2,所以B={x|x<-2或x>4},∁RB ={x|-2≤x≤4},A∩(∁R B)={-1,2}.12.(2017·临沂质检)已知全集U=R,集合A={x|x2-3x+2>0},B={x|x-a≤0},若∁U B⊆A,则实数a的取值范围是( )A.(-∞,1) B.(-∞,2]C.因为x2-3x+2>0,所以x>2或x<1.所以A={x|x>2或x<1},因为B={x|x≤a},所以∁U B={x|x>a}.因为∁U B⊆A,借助数轴可知a≥2,故选D.13.集合A={0,2,a},B={1,a2},若A∪B={0,1,2,4,16},则a的值为________.根据并集的概念,可知{a,a2}={4,16},故只能是a=4.414.(2017·山西省高三考前质量检测)设全集U={x∈Z|-2≤x≤4},A={-1,0,1,2,3}.若B⊆∁U A,则集合B的个数是________.由题意得,U={-2,-1,0,1,2,3,4},所以∁U A={-2,4},所以集合B的个数是22=4.415.设全集U={x∈N*|x≤9},∁U(A∪B)={1,3},A∩(∁U B)={2,4},则B=________.因为全集U={1,2,3,4,5,6,7,8,9},由∁U(A∪B)={1,3},得A∪B={2,4,5,6,7,8,9},由A∩(∁U B)={2,4}知,{2,4}⊆A,{2,4}⊆∁U B.所以B ={5,6,7,8,9}. {5,6,7,8,9}16.已知集合A ={x |1≤x <5},C ={x |-a <x ≤a +3},若C ∩A =C ,则a 的取值范围是________.因为C ∩A =C ,所以C ⊆A .①当C =∅时,满足C ⊆A ,此时-a ≥a +3,得a ≤-32;②当C ≠∅时,要使C ⊆A ,则⎩⎪⎨⎪⎧-a <a +3,-a ≥1,a +3<5,解得-32<a ≤-1.综上,可得a 的取值范围是(-∞,-1]. (-∞,-1]17.设函数f (x )=lg(1-x 2),集合A ={x |y =f (x )},B ={y |y =f (x )},则图中阴影部分表示的集合为________.因为A ={x |y =f (x )}={x |1-x 2>0}={x |-1<x <1},则u =1-x 2∈(0,1],所以B ={y |y =f (x )}={y |y ≤0},A ∪B =(-∞,1),A ∩B =(-1,0],故图中阴影部分表示的集合为(-∞,-1]∪(0,1).(-∞,-1]∪(0,1)18.已知集合M ={1,2,3,4},集合A 、B 为集合M 的非空子集,若∀x ∈A 、y ∈B ,x <y 恒成立,则称(A ,B )为集合M 的一个“子集对”,则集合M 的“子集对”共有_____个.当A ={1}时,B 有23-1=7种情况,当A ={2}时,B 有22-1=3种情况,当A ={3}时,B 有1种情况,当A ={1,2}时,B 有22-1=3种情况,当A ={1,3},{2,3},{1,2,3}时,B 均有1种情况,所以满足题意的“子集对”共有7+3+1+3+1+1+1=17个. 1719.已知集合A ={-4,2a -1,a 2},B ={a -5,1-a ,9},分别求适合下列条件的a 的值.(1)9∈(A ∩B ); (2){9}=A ∩B . (1)因为9∈(A ∩B ),所以2a -1=9或a 2=9,所以a =5或a =3或a =-3. 当a =5时,A ={-4,9,25},B ={0,-4,9};当a =3时,a -5=1-a =-2,不满足集合元素的互异性; 当a =-3时,A ={-4,-7,9},B ={-8,4,9}, 所以a =5或a =-3. (2)由(1)可知,当a =5时,A ∩B ={-4,9},不合题意,当a =-3时,A ∩B ={9}.所以a =-3.20.(2017·徐州模拟)已知集合A ={x |1<x <3},集合B ={x |2m <x <1-m }. (1)当m =-1时,求A ∪B ; (2)若A ⊆B ,求实数m 的取值范围; (3)若A ∩B =∅,求实数m 的取值范围. (1)当m =-1时,B ={x |-2<x <2}, 则A ∪B ={x |-2<x <3}. (2)由A ⊆B 知⎩⎪⎨⎪⎧1-m >2m ,2m ≤1,1-m ≥3,得m ≤-2,即实数m 的取值范围为(-∞,-2]. (3)由A ∩B =∅,得①若2m ≥1-m ,即m ≥13时,B =∅,符合题意;②若2m <1-m ,即m <13时,需⎩⎪⎨⎪⎧m <13,1-m ≤1或⎩⎪⎨⎪⎧m <13,2m ≥3,得0≤m <13或∅,即0≤m <13.综上知m ≥0,即实数m 的取值范围为[0,+∞).。
高考数学大二轮复习专题一集合、常用逻辑用语、不等式、平面向量、算法、复数、推理与证明1.1集合与常用

1.1 集合与常用逻辑用语【课时作业】1.(2018·全国卷Ⅰ)已知集合A ={x |x 2-x -2>0},则∁R A =( ) A .{x |-1<x <2} B .{x |-1≤x ≤2} C .{x |x <-1}∪{x |x >2} D .{x |x ≤-1}∪{x |x ≥2}解析: ∵x 2-x -2>0,∴(x -2)(x +1)>0,∴x >2或x <-1,即A ={x |x >2或x <-1}.在数轴上表示出集合A ,如图所示.由图可得∁R A ={}x |-1≤x ≤2. 故选B. 答案: B2.(2018·天津卷)设集合A ={1,2,3,4},B ={-1,0,2,3},C ={x ∈R |-1≤x <2},则(A ∪B )∩C =( )A .{-1,1}B .{0,1}C .{-1,0,1}D .{2,3,4}解析: ∵A ={1,2,3,4},B ={-1,0,2,3}, ∴A ∪B ={-1,0,1,2,3,4}. 又C ={x ∈R |-1≤x <2}, ∴(A ∪B )∩C ={-1,0,1}. 答案: C3.(2018·安徽皖南八校3月联考)已知集合A ={(x ,y )|x 2=4y },B ={(x ,y )|y =x },则A ∩B 的真子集个数为( )A .1B .3C .5D .7解析: 由⎩⎪⎨⎪⎧x 2=4y ,y =x 得⎩⎪⎨⎪⎧x =0,y =0或⎩⎪⎨⎪⎧x =4,y =4,即A ∩B ={(0,0),(4,4)},∴A ∩B的真子集个数为22-1=3.故选B.答案: B4.已知f (x )=3sin x -πx ,命题p :∀x ∈⎝⎛⎭⎪⎫0,π2,f (x )<0,则( )A .p 是假命题,綈p :∀x ∈⎝ ⎛⎭⎪⎫0,π2,f (x )≥0B .p 是假命题,綈p :∃x 0∈⎝ ⎛⎭⎪⎫0,π2,f (x 0)≥0C .p 是真命题,綈p :∃x 0∈⎝ ⎛⎭⎪⎫0,π2,f (x 0)≥0D .p 是真命题,綈p :∀x ∈⎝⎛⎭⎪⎫0,π2,f (x )>0 解析: 因为f ′(x )=3cos x -π,所以当x ∈⎝ ⎛⎭⎪⎫0,π2时,f ′(x )<0,函数f (x )单调递减,即对∀x ∈⎝ ⎛⎭⎪⎫0,π2,f (x )<f (0)=0恒成立,所以p 是真命题.又全称命题的否定是特称命题,所以綈p :∃x 0∈⎝⎛⎭⎪⎫0,π2,f (x 0)≥0.答案: C5.(2018·北京卷)设a ,b ,c ,d 是非零实数,则“ad =bc ”是“a ,b ,c ,d 成等比数列”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件解析: a ,b ,c ,d 是非零实数,若a <0,d <0,b >0,c >0,且ad =bc ,则a ,b ,c ,d 不成等比数列(可以假设a =-2,d =-3,b =2,c =3).若a ,b ,c ,d 成等比数列,则由等比数列的性质可知ad =bc .所以“ad =bc ”是“a ,b ,c ,d 成等比数列”的必要而不充分条件.故选B. 答案: B6.(2018·洛阳市第一统考)设全集U =R ,集合A ={x |log 2x ≤1},B ={x |x 2+x -2≥0},则A ∩∁U B =( )A .(0,1]B .(-2,2]C .(0,1)D .[-2,2]解析: 不等式log 2x ≤1即log 2x ≤log 22,由y =log 2x 在(0,+∞)上单调递增,得不等式的解集为(0,2],即A =(0,2].由x 2+x -2≥0,得(x +2)(x -1)≥0,得B ={x |x ≤-2或x ≥1},所以∁U B =(-2,1),从而A ∩∁U B =(0,1).故选C.答案: C7.设全集U 是自然数集N ,集合A ={x |x 2>9,x ∈N },B ={0,2,4},则图中阴影部分所表示的集合是( )A .{x |x >2,x ∈N }B .{x |x ≤2,x ∈N }C .{0,2}D .{1,2}解析: 由题图可知,图中阴影部分所表示的集合是B ∩(∁U A ),∁U A ={x |x 2≤9,x ∈N }={x |-3≤x ≤3,x ∈N }={0,1,2,3},因为B ={0,2,4},所以B ∩(∁U A )={0,2}.答案: C8.下列结论错误的是( )A .命题“若x 2-3x -4=0,则x =4”的逆否命题为“若x ≠4,则x 2-3x -4≠0” B .命题“x =4”是“x 2-3x -4=0”的充分条件C .命题“若m >0,则方程x 2+x -m =0有实根”的逆命题为真命题D .命题“若m 2+n 2=0,则m =0且n =0”的否命题是“若m 2+n 2≠0,则m ≠0或n ≠0” 解析: C 项命题的逆命题为“若方程x 2+x -m =0有实根,则m >0”.若方程有实根,则Δ=1+4m ≥0,即m ≥-14,不能推出m >0.所以不是真命题,故选C.答案: C9.(2018·陕西省质量检测(一))已知命题p :对任意的x ∈R ,总有2x>0;q :“x >1”是“x >2”的充分不必要条件,则下列命题为真命题的是( )A .p ∧qB .綈p ∧綈qC .綈p ∧qD .p ∧綈q解析: 由指数函数的性质知命题p 为真命题.易知x >1是x >2的必要不充分条件,所以命题q 是假命题.由复合命题真值表可知p ∧綈q 是真命题,故选D.答案: D10.(2018·辽宁省五校协作体联考)已知命题“∃x 0∈R,4x 20+(a -2)x 0+14≤0”是假命题,则实数a 的取值范围为( )A .(-∞,0)B .[0,4]C .[4,+∞)D .(0,4)解析: 因为命题“∃x 0∈R,4x 20+(a -2)x 0+14≤0”是假命题,所以其否定“∀x ∈R,4x 2+(a -2)x +14>0”是真命题,则Δ=(a -2)2-4×4×14=a 2-4a <0,解得0<a <4,故选D.答案: D11.(2018·山东泰安3月联考)下列命题正确的是( )A .命题“∃x 0∈[0,1],使x 20-1≥0”的否定为“∀x ∈[0,1],都有x 2-1≤0” B .若命题p 为假命题,命题q 是真命题,则(綈p )∨(綈q )为假命题 C .命题“若a 与b 的夹角为锐角,则a·b >0”及它的逆命题均为真命题D .命题“若x 2+x =0,则x =0或x =-1”的逆否命题为“若x ≠0且x ≠-1,则x 2+x ≠0”解析: 对于选项A ,命题“∃x 0∈[0,1],使x 20-1≥0”的否定为“∀x ∈[0,1],都有x 2-1<0”,故A 项错误;对于选项B ,p 为假命题,则綈p 为真命题,q 为真命题,则綈q为假命题,所以(綈p )∨(綈q )为真命题,故B 项错误;对于选项C ,原命题为真命题,若a·b >0,则a 与b 的夹角可能为锐角或零角,所以原命题的逆命题为假命题,故C 项错误;对于选项D ,命题“若x 2+x =0,则x =0或x =-1”的逆否命题为“若x ≠0且x ≠-1,则x 2+x ≠0”,故选项D 正确.因此选D.答案: D12.(2018·广东汕头一模)已知命题p :关于x 的方程x 2+ax +1=0没有实根;命题q :∀x >0,2x-a >0.若“綈p ”和“p ∧q ”都是假命题,则实数a 的取值范围是( )A .(-∞,-2)∪(1,+∞)B .(-2,1]C .(1,2)D .(1,+∞)解析: 方程x 2+ax +1=0无实根等价于Δ=a 2-4<0,即-2<a <2.∀x >0,2x-a >0等价于a <2x在(0,+∞)上恒成立,即a ≤1.因“綈p ”是假命题,则p 是真命题,又因“p ∧q ”是假命题,则q 是假命题,∴⎩⎪⎨⎪⎧-2<a <2,a >1,得1<a <2,所以实数a 的取值范围是(1,2),故选C.答案: C13.设命题p :∀a >0,a ≠1,函数f (x )=a x-x -a 有零点,则綈p :____________________. 解析: 全称命题的否定为特称命题,綈p :∃a 0>0,a 0≠1,函数f (x )=a x0-x -a 0没有零点.答案: ∃a 0>0,a 0≠1,函数f (x )=a x0-x -a 0没有零点14.若⎩⎨⎧⎭⎬⎫sin π2,a ,b a =⎩⎨⎧⎭⎬⎫cos π2,a 2,a +b ,则a 2 017+b 2 017的值为________.解析: 因为⎩⎨⎧⎭⎬⎫sin π2,a ,b a =⎩⎨⎧⎭⎬⎫cos π2,a 2,a +b ,所以⎩⎨⎧⎭⎬⎫1,a ,b a ={0,a 2,a +b },所以⎩⎪⎨⎪⎧b a=0,a 2=1或⎩⎪⎨⎪⎧b a =0,a +b =1,解得⎩⎪⎨⎪⎧a =-1,b =0或⎩⎪⎨⎪⎧a =1,b =0(舍去),则a2 017+b2 017=-1.答案: -115.设全集U ={(x ,y )|x ∈R ,y ∈R },集合M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ,y ⎪⎪⎪y -3x -2=1,P ={(x ,y )|y ≠x +1},则∁U (M ∪P )=________.解析: 集合M ={(x ,y )|y =x +1,且x ≠2,y ≠3}, 所以M ∪P ={(x ,y )|x ∈R ,y ∈R ,且x ≠2,y ≠3}. 则∁U (M ∪P )={(2,3)}. 答案: {(2,3)}16.a ,b ,c 为三个人,命题A :“如果b 的年龄不是最大,那么a 的年龄最小”和命题B :“如果c 不是年龄最小,那么a 的年龄最大”都是真命题,则a ,b ,c 的年龄由小到大依次是________.解析: 显然命题A 和B 的原命题的结论是矛盾的,因此我们应该从它们的逆否命题来看.由命题A 可知,当b 不是最大时,则a 是最小,所以c 最大,即c >b >a ;而它的逆否命题也为真,即“若a 的年龄不是最小,则b 的年龄是最大”为真,即b >a >c .同理,由命题B 为真可得a >c >b 或b >a >c .故由A 与B 均为真可知b >a >c ,所以a ,b ,c 三人的年龄大小顺序是:b 最大,a 次之,c 最小.答案: c ,a ,b。
2018年高考数学专题01集合与常用逻辑用语分项试题含解析理
专题 集合与常用逻辑用语1.【2018广西三校联考】如果集合{}|520M x y x ==-,集合{}3|log N x y x ==则M N ⋂=( )A. {}|04x x <<B. {}|4x x ≥C. {}|04x x <≤D. {}|04x x ≤≤ 【答案】B【解析】{}52004,?|4x x M x x -≥∴≥=≥, {}0N x x =, {}|4M N x x ⋂=≥ 故选B2.【2018豫南九校质考二】命题:,,命题:,,则是的( )A. 充分非必要条件B. 必要非充分条件C. 必要充分条件D. 既不充分也不必要条件 【答案】A点睛:充分必要条件中,小范围推大范围,大范围推不出小范围;这是这道题的跟本; 再者,根据图像判断范围大小很直观,快捷,而不是去解不等式;3.【2018吉林百校联盟联考】已知集合{}2|3410A x x x =-+≤, {}|43B x y x ==-,则A B ⋂= ( ) A. 3,14⎛⎤⎥⎝⎦ B. 3,14⎡⎤⎢⎥⎣⎦ C. 13,34⎡⎤⎢⎥⎣⎦D. 13,34⎡⎫⎪⎢⎣⎭【答案】B【解析】求解不等式: 23410x x -+≤可得: 1|13A x x ⎧⎫=≤≤⎨⎬⎩⎭, 函数43y x =-有意义,则: 430x -≥,则3|4B x x ⎧⎫=≥⎨⎬⎩⎭,据此可得: 3|14A B x x ⎧⎫⋂=≤≤⎨⎬⎩⎭. 本题选择B 选项.4.【2018湖南益阳联考】已知命题p :若复数z 满足()()5z i i --=,则6z i =;命题q :复数112i i ++的虚部为15i -,则下面为真命题的是( ) A.()()p q ⌝⌝∧ B. ()p q ⌝∧ C. ()p q ⌝∧ D. p q ∧【答案】C5.【2018湖南湘潭联考】设全集U R=,集合()()2{|log 2},{|210}A x x B x x x =≤=-+≥,则U A C B ⋂=( )A. ()0,2B. []2,4C. (),1-∞-D. (],4-∞ 【答案】A【解析】集合{}2|2{|04}A x log x x x =≤=<≤,()(){}|210{|12}B x x x x x x =-+≥=≤-≥或.{|12}U C B x x =-<<.所以{}()|020,2U A C B x x ⋂=<<=. 故障A. 6.【2018广东省广州市综合测试】已知集合()()22{,|4},{,|21}A x y x y B x y y x =+===+,则A B ⋂中元素的个数为( )A. 3B. 2C. 1D. 0 【答案】B【解析】由22201{ 540{ 121x x y x x y y x =+=⇒+=⇒==+或45{35x y =-=-, ∴集合A B ⋂中有两个元素,故选B.7.【2018江西省红色七校联考】在右边Venn 图中,设全集,U R =集合,A B 分别用椭圆内图形表示,若集合{}(){}2|2 ,|ln 1 A x x x B x y x =<==-,则阴影部分图形表示的集合为( )A. {}| 1 x x ≤B. {}| 1 x x ≥C. {}|0 1 x x <≤D. {}|1 2 x x ≤< 【答案】D8.【2018广西桂林柳州市模拟一】已知集合{}32,A x x n n N ==+∈, {}6,8,12,14B =,则集合A B ⋂中元素的个数为( ) A. 5 B. 4 C. 3 D. 2 【答案】D【解析】由题意可得,集合A 表示除以3之后余数为2的数,结合题意可得: {}8,14A B ⋂=, 即集合A B ⋂中元素的个数为2. 本题选择D 选项.9.【2018广东省珠海一中联考】下列选项中,说法正确的是( ) A. 若0a b >>,则ln ln a b <B. 向量()1,a m =, (),21b m m =-(R m ∈)垂直的充要条件是1m =C. 命题“*N n ∀∈, ()1322nn n ->+⋅”的否定是“*N n ∀∈, ()1322nn n -≥+⋅”D. 已知函数()f x 在区间[],a b 上的图象是连续不断的,则命题“若()()0f a f b ⋅<,则()f x 在区间(),a b 内至少有一个零点”的逆命题为假命题【答案】D10.【2018广东省珠海一中六校联考】已知集合(){}10A x x x =-<, {}e 1xB x =>,则()RA B ⋂=( )A. [)1,+∞B. ()0,+∞C. ()0,1D. []0,1 【答案】A 【解析】解A=(0,1) B=(0, ∞),()()R0,1A = ()()R 0,1A B ⋂=11.【2018陕西省西工大附中六模】下列说法正确的是( )A. “若1a >,则21a >”的否命题是“若1a >,则21a ≤”B. 在ABC ∆中,“A B >”是 “22sin sin A B >”的必要不充分条件C. “若tan 3α≠,则3πα≠”是真命题D. ()0,0,x ∃∈-∞ 使得0034xx<成立 【答案】C12.【2018陕西省西工大附中六模】已知集合{}1,A a =, {}2|540 ,B x x x x Z =-+=∈,若A B ⋂≠∅,则a 等于( ) A. 2 B. 3 C. 2或3 D. 2或4 【答案】C【解析】由题意可得: {}{}|14,2,3B x x x Z =<<∈=, 结合交集的定义可得:则a 等于2或3. 本题选择C 选项.13.【2018陕西省西工大附中七模】已知集合(){,|,,}xA x y y e x N y N ==∈∈,()2{,|1,,}B x y y x x N y N ==-+∈∈,则A B ⋂=( )A. ()0,1B. {}0,1C. (){}0,1D. φ【答案】C 【解析】(){}(){}0101A B A B =∈∴⋂=,,,选C. 14.【2018河北省石家庄二中模拟】已知函()1x xf x e x=++则120x x +>是()()()()1212f x f x f x f x +>-+-的 ( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件 【答案】C现证充分性:∵120x x +>, 12x x >-,又()()1x xf x e x∞∞=+-++在,上为单调增函数,∴()()12f x f x >-,同理: ()()21f x f x >-,故()()()()1212f x f x f x f x +>-+-.充分性证毕. 再证必要性:记()()gx ? f x f x =--,由()()1x xf x e x∞∞=+-++在,上单调递增,可知()()f x ∞∞--+在,上单调递减,∴()()gx ? f x f x =--在()∞∞-+,上单调递增。
2018高考数学(理)一轮复习课件:第一章 集合与常用逻辑用语 1-3
(3)确定“p∧q”“p∨q”“綈p”等形式命题的真假.
跟踪训练 1
真命题是
已知命题 p :若 x>y ,则- x< - y ;命题 q :若 x>y ,
则x2>y2.在命题①p∧q;②p∨q;③p∧(綈q);④(綈p)∨q中, 答案
解析
A.①③ B.①④ 当x>y时,-x<-y,
C.②③
D.②④
答案 3.(教材改编)下列命题中,为真命题的是
A.∀x∈R,-x2-1<0 1 C.∀x∈R,x -x+4>0
2
B.∃x0∈R,x2 0+x0=-1 D.∃x0∈R,x2 0+2x0+2<0
4.(2017· 西安调研)命题“全等三角形的面积一定都相等”的否
定是
A.全等三角形的面积不一定都相等 B.不全等三角形的面积不一定都相等 C.存在两个不全等三角形的面积相等 D.存在两个全等三角形的面积不相等 命题是省略量词的全称命题,易知选D.
§1.3 简单的逻辑联结词、全称量 词与 存在量词
内容索引
基础知识 自主学 习 题型分类 深度剖 析 课时作业
基础知识
自主学习
知识梳理
1.命题p∧q,p∨q,綈p的真假判断
p
q
p∧q
真 ____
p∨q
綈p
真
真
真
假
真
真
假
假
真 ____
假 ____
假
假
真
假
假
假
真
假 ____
真 ____
2.全称量词和存在量词
题型分类
深度剖析
题型一 含有逻辑联结词的命题的真假判断
2018年高考数学理一轮复习文档 第一章 集合与常用逻辑
第2讲 简单不等式的解法1.一元一次不等式ax >b (a ≠0)的解集(1)当a >0时,解集为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x >b a ;(2)当a <0时,解集为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x <b a .2.(x -a )(x -b )>0或(x -a )(x -b )<0型不等式的解集1.辨明三个易误点(1)对于不等式ax 2+bx +c >0,求解时不要忘记讨论a =0时的情形. (2)当Δ<0时,ax 2+bx +c >0(a ≠0)的解集是R 还是∅,要注意区别. (3)不同参数范围的解集切莫取并集,应分类表述. 2.分式不等式的四种形式求解思路 ①f (x )g (x )>0⇔f (x )g (x )>0; ②f (x )g (x )<0⇔f (x )g (x )<0; ③f (x )g (x )≥0⇔f (x )g (x )≥0且g (x )≠0⇔f (x )g (x )>0或f (x )=0; ④f (x )g (x )≤0⇔f (x )g (x )≤0且g (x )≠0⇔f (x )g (x )<0或f (x )=0. 3.绝对值不等式的解法 (1)|f (x )|>|g (x )|⇔2>2;(2)|f (x )|>g (x )⇔f (x )>g (x )或f (x )<-g (x ); (3)|f (x )|<g (x )⇔-g (x )<f (x )<g (x ).1.教材习题改编 不等式x 2-3x +2<0的解集为( ) A .(-∞,-2)∪(-1,+∞) B .(-2,-1)C .(-∞,1)∪(2,+∞)D .(1,2)D 将x 2-3x +2<0化为(x -1)·(x -2)<0,解得1<x <2.2.若不等式4x 2+ax +1>0的解集为⎩⎨⎧⎭⎬⎫x |x ≠-12,则a 的值为( ) A .4 B .-4 C .1D .-1A 由不等式4x 2+ax +1>0的解集为⎩⎨⎧⎭⎬⎫x |x ≠-12知,-a 2×4=-12.所以a =4.故选A.3.不等式x -12x +1≤0的解集为( )A.⎝ ⎛⎦⎥⎤-12,1 B .⎣⎢⎡⎦⎥⎤-12,1 C.⎝⎛⎭⎪⎫-∞,-12∪ 由不等式x -12x +1≤0 可得⎩⎪⎨⎪⎧(x -1)(2x +1)≤0,2x +1≠0,解得-12<x ≤1,所以不等式的解集为⎝ ⎛⎦⎥⎤-12,1. 4.设二次不等式ax 2+bx +1>0的解集为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫-1<x <13,则ab 的值为________.由不等式ax 2+bx +1>0的解集为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫-1<x <13,知a <0且ax 2+bx +1=0的两根为x 1=-1,x 2=13,由根与系数的关系知⎩⎪⎨⎪⎧-1+13=-b a ,-13=1a ,所以a =-3,b =-2,ab =6.65.若不等式x 2+ax +4<0的解集不是空集,则实数a 的取值范围是__________. 因为不等式x 2+ax +4<0的解集不是空集, 所以Δ=a 2-4×4>0,即a 2>16. 所以a >4或a <-4. (-∞,-4)∪(4,+∞)一元二次不等式的解法(高频考点)一元二次不等式的解法是高考的常考内容,题型多为选择题或填空题,难度为中档题. 高考对一元二次不等式解法的考查主要有以下两个命题角度: (1)解一元二次不等式;(2)已知一元二次不等式的解集求参数.解下列不等式: (1)-2x 2+3x +2<0; (2)12x 2-ax >a 2(a ∈R ).【解】 (1)-2x 2+3x +2<0,即为2x 2-3x -2>0. Δ=(-3)2-4×2×(-2)=25>0.方程2x 2-3x -2=0的两实根为x 1=-12,x 2=2.所以2x 2-3x -2>0的解集为{x |x <-12或x >2},即原不等式的解集为{x |x <-12或x >2}.(2)因为12x 2-ax >a 2,所以12x 2-ax -a 2>0,即(4x +a )(3x -a )>0. 令(4x +a )(3x -a )=0,解得x 1=-a 4,x 2=a3.①当a >0时,-a 4<a3,解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <-a 4,或x >a 3;②当a =0时,x 2>0,解集为{x |x ∈R ,且x ≠0};③当a <0时,-a 4>a3,解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <a 3,或x >-a 4. 综上所述:当a >0时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <-a 4,或x >a 3;当a =0时,不等式的解集为{x |x ∈R ,且x ≠0};当a <0时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <a 3,或x >-a 4.角度一 解一元二次不等式 1.解下列不等式: (1)-3x 2-2x +8≥0; (2)0<x 2-x -2≤4.(1)原不等式可化为3x 2+2x -8≤0, 即(3x -4)(x +2)≤0.解得-2≤x ≤43,所以原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-2≤x ≤43.(2)原不等式等价于⎩⎪⎨⎪⎧x 2-x -2>0,x 2-x -2≤4⇔⎩⎪⎨⎪⎧x 2-x -2>0,x 2-x -6≤0 ⇔⎩⎪⎨⎪⎧(x -2)(x +1)>0,(x -3)(x +2)≤0⇔⎩⎪⎨⎪⎧x >2或x <-1,-2≤x ≤3. 借助于数轴,如图所示,原不等式的解集为{x |-2≤x <-1或2<x ≤3}.角度二 已知一元二次不等式的解集求参数2.已知关于x 的不等式ax 2+2x +c >0的解集为⎝ ⎛⎭⎪⎫-13,12,则不等式-cx 2+2x -a >0的解集为______.依题意知,⎩⎪⎨⎪⎧-13+12=-2a,-13×12=c a ,所以解得a =-12,c =2,所以不等式-cx 2+2x -a >0,即为-2x 2+2x +12>0,即x 2-x -6<0, 解得-2<x <3.所以不等式的解集为(-2,3). (-2,3)简单的分式不等式的解法解下列不等式: (1)1-x 3x +5≥0; (2)x -1x +2>1. 【解】 (1)原不等式可化为x -13x +5≤0, 所以⎩⎪⎨⎪⎧(x -1)(3x +5)≤0,3x +5≠0,所以⎩⎪⎨⎪⎧-53≤x ≤1,x ≠-53,即-53<x ≤1.故原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-53<x ≤1.(2)原不等式可化为x -1x +2-1>0, 所以x -1-(x +2)x +2>0,所以-3x +2>0,则x <-2. 故原不等式的解集为{x |x <-2}.解下列不等式:(1)x +1x -3≥0; (2)5x +1x +1<3.(1)不等式x +1x -3≥0可以转化为(x +1)(x -3)≥0且x ≠3,所以解集为{x |x >3或x ≤-1}.(2)不等式5x +1x +1<3可以改写为5x +1x +1-3<0,即2(x -1)x +1<0,故原不等式的解集为{x |-1<x <1}.简单的绝对值不等式的解法设函数f (x )=|2x -3|-1. (1)解不等式f (x )<0;(2)若方程f (x )=a 无实数根,求a 的范围. 【解】 (1)f (x )<0即为|2x -3|<1. 即-1<2x -3<1. 所以1<x <2.所以不等式f (x )<0的解集为{x |1<x <2}. (2)法一:方程f (x )=a 无实数根, 即|2x -3|=a +1无实数根, 因为|2x -3|≥0, 所以a +1<0,即a <-1.所以当a <-1时,方程f (x )=a 无实数根.法二:方程f (x )=a 无实数根,即函数f (x )=|2x -3|-1与y =a 的图象无交点(如图).所以a 的范围为a <-1.含绝对值不等式的常用解法(1)基本性质法:a 为正实数,|x |<a ⇔-a <x <a ,|x |>a ⇔x <-a 或x >a .(2)平方法:两边平方去掉绝对值符号,适用于|x -a |<|x -b |或|x -a |>|x -b |型的不等式的求解.(3)零点分区间法:含有两个或两个以上绝对值符号的不等式,可用零点分区间法脱去绝对值符号,将其转化为与之等价的不含绝对值符号的不等式(组)求解.1.不等式|2x -1|>3的解集为( ) A .{x |x <-2或x >1} B .{x |-2<x <1} C .{x |x <-1或x >2} D .{x |-1<x <2}C 由|2x -1|>3得2x -1<-3或2x -1>3,即x <-1或x >2,故选C. 2.不等式|2x -3|<3x +1的解集为________. 由|2x -3|<3x +1得⎩⎪⎨⎪⎧3x +1>0,-(3x +1)<2x -3<3x +1, 解得⎩⎪⎨⎪⎧x >-13,x >25,即x >25.故不等式|2x -3|<3x +1的解集为{x |x >25}.{x |x >25}——分类讨论思想在解不等式中的应用解关于x 的不等式ax 2-(a +1)x +1<0(a >0).【解】 原不等式可化为⎝⎛⎭⎪⎫x -1a (x -1)<0(a >0),①若0<a <1,则1a>1,所以1<x <1a;②若a =1,则1a=1,所以不等式无解;③若a >1,则1a <1,所以1a<x <1.综上知,当0<a <1时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪1<x <1a ;当a =1时,不等式的解集为∅;当a >1时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪1a<x <1.(1)本题利用了分类讨论思想,所谓分类讨论思想,是在研究和解决数学问题时,若问题所给对象不能进行统一研究,我们就需要根据数学对象的本质属性的相同点和不同点,将对象区分为不同种类,然后逐类进行研究和解决,从而达到解决整个问题的目的,这一思想方法,我们称为“分类讨论思想”.分类讨论是“化整为零,各个击破,积零为整”的解题策略.(2)本题根据1a和1的大小进行比较,对于含参数的不等式一般要分类讨论,对于含绝对值的不等式也要分类讨论.不等式|x -1|+|x +2|≥5的解集为________.由⎩⎪⎨⎪⎧x ≤-2,-(x -1)-(x +2)≥5得x ≤-3; 由⎩⎪⎨⎪⎧-2<x <1,-(x -1)+(x +2)≥5得无解; 由⎩⎪⎨⎪⎧x ≥1,(x -1)+(x +2)≥5得x ≥2.即所求的解集为{x |x ≤-3或x ≥2}. {x |x ≤-3或x ≥2}1.不等式-2x 2+x <-3的解集为( ) A .{x |-32<x <1}B .{x |-1<x <32}C .{x |x <-32或x >1}D .{x |x <-1或x >32}D -2x 2+x <-3, 即为2x 2-x -3>0,Δ=25>0,方程2x 2-x -3=0的两实根为x 1=-1,x 2=32,所以2x 2-x -3>0的解集为{x |x <-1或x >32},故选D .2.不等式x -43-2x<0的解集是( )A .{x |x <4}B .{x |3<x <4}C.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <32或x >4 D .⎩⎨⎧⎭⎬⎫x ⎪⎪⎪32<x <4 C 不等式x -43-2x <0等价于⎝ ⎛⎭⎪⎫x -32(x -4)>0,所以不等式的解集是⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <32或x >4.3.关于x 的不等式-12x 2+mx +n >0的解集为{x |-1<x <2},则m +n 的值为( )A .-12B .-32C.12D .32D -12x 2+mx +n >0,即为x 2-2mx -2n <0.由题意知,x 2-2mx -2n <0的解集为{x |-1<x <2}.所以⎩⎪⎨⎪⎧-1+2=2m ,-1×2=-2n .所以m =12,n =1.所以m +n =32,故选D .4.若集合A ={x |-1≤2x +1≤3},B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x -2x ≤0,则A ∩B =( )A .{x |-1≤x <0}B .{x |0<x ≤1}C .{x |0≤x ≤2}D .{x |0≤x ≤1}B 因为A ={x |-1≤x ≤1},B ={x |0<x ≤2},所以A ∩B ={x |0<x ≤1}.5.(2017·福建晋江高二检测)若不等式f (x )=ax 2-x -c >0的解集为(-2,1),则函数y =f (x )的图象为( )B 因为不等式的解集为(-2,1),所以a <0,排除C 、D ;又与坐标轴交点的横坐标为-2,1,故选B .6.若0<a <1,则不等式x 2-3(a +a 2)x +9a 3≤0的解集为( ) A .{x |3a 2≤x ≤3a } B .{x |3a ≤x ≤3a 2} C .{x |x ≤3a 2或x ≥3a }D .{x |x ≤3a 或x ≥3a 2}A 因为0<a <1,所以0<3a 2<3a ,而方程x 2-3(a +a 2)x +9a 3=0的两个根分别为3a 和3a 2,所以不等式的解集为{x |3a 2≤x ≤3a }.7.已知关于x 的不等式ax +b >0的解集是(1,+∞),则关于x 的不等式ax -bx -2>0的解集是( )A .{x |x <-1或x >2}B .{x |-1<x <2}C .{x |1<x <2}D .{x |x >2}A 依题意,a >0且-b a=1.ax -b x -2>0⇔(ax -b )(x -2)>0⇔⎝ ⎛⎭⎪⎫x -b a (x -2)>0, 即(x +1)(x -2)>0⇒x >2或x <-1.8.已知函数f (x )=⎩⎪⎨⎪⎧x ,x ≥0,-x ,x <0,则不等式x +x ·f (x )≤2的解集为( )A .(-∞,-1]B .(-1,1)C .(-∞,1]D .(1,+∞)C 原不等式等价于⎩⎪⎨⎪⎧x ≥0x +x 2≤2或⎩⎪⎨⎪⎧x <0x -x 2≤2, 解得0≤x ≤1或x <0,所以不等式的解集为(-∞,1],故选C.9.已知不等式x 2-2x -3<0的解集为A ,不等式x 2+x -6<0的解集为B ,不等式x 2+ax +b <0的解集为A ∩B ,则a +b 等于( )A .-3B .1C .-1D .3A 由题意得,A ={x |-1<x <3},B ={x |-3<x <2},所以A ∩B ={x |-1<x <2},由根与系数的关系可知,a =-1,b =-2,则a +b =-3,故选A.10.若不等式-x 2+2x +m >0的解集是∅,则实数m 的取值范围为( ) A .m ≤-1 B .m ≥-1 C .m ≤1D .m ≥1A -x 2+2x +m >0, 即为x 2-2x -m <0.由题意得Δ=(-2)2-4×1×(-m )≤0, 即4+4m ≤0,所以m ≤-1.故选A.11.不等式x +5(x -1)≥2的解集是( ) A.⎣⎢⎡⎦⎥⎤-3,12 B .⎣⎢⎡⎦⎥⎤-12,3 C.⎣⎢⎡⎭⎪⎫12,1∪(1,3] D .⎣⎢⎡⎭⎪⎫-12,1∪(1,3] D 由x +5(x -1)2≥2,得x +5-2(x -1)2(x -1)2≥0, 即-2x 2+5x +3(x -1)2≥0. 所以原不等式等价于⎩⎪⎨⎪⎧-2x 2+5x +3≥0,x -1≠0, 即⎩⎪⎨⎪⎧2x 2-5x -3≤0,x ≠1.解得⎩⎪⎨⎪⎧-12≤x ≤3,x ≠1,所以原不等式的解集是⎣⎢⎡⎭⎪⎫-12,1∪(1,3]. 12.(2017·广东省联合体联考)已知函数f (x )=⎩⎪⎨⎪⎧|3x -4|,x ≤2,2x -1,x >2,则使f (x )≥1的x 的取值范围为( )A.⎣⎢⎡⎦⎥⎤1,53 B .⎣⎢⎡⎦⎥⎤53,3 C .(-∞,1)∪⎣⎢⎡⎭⎪⎫53,+∞ D .(-∞,1]∪⎣⎢⎡⎦⎥⎤53,3 D 不等式f (x )≥1等价于⎩⎪⎨⎪⎧x >2,2x -1≥1或⎩⎪⎨⎪⎧x ≤2,|3x -4|≥1,解之得x ≤1或53≤x ≤3,所以不等式的解集为(-∞,1]∪⎣⎢⎡⎦⎥⎤53,3,故选D . 13.不等式|x (x -2)|>x (x -2)的解集是________.不等式|x (x -2)|>x (x -2)的解集即x (x -2)<0的解集,解得0<x <2.{x |0<x <2}14.若0<a <1,则不等式(a -x )⎝ ⎛⎭⎪⎫x -1a >0的解集是________. 原不等式即(x -a )·⎝ ⎛⎭⎪⎫x -1a <0,由0<a <1得a <1a,所以a <x <1a. ⎩⎨⎧⎭⎬⎫x |a <x <1a 15.不等式x -1x ≥2的解集为________. 不等式x -1x ≥2,即x -1x -2≥0,即-x -1x ≥0,所以x +1x≤0,等价于x (x +1)≤0且x ≠0,所以-1≤x <0.原不等式可化为⎩⎪⎨⎪⎧x <-12,1-2x -2x -1≤6或⎩⎪⎨⎪⎧-12≤x ≤12,1-2x +2x +1≤6或⎩⎪⎨⎪⎧x >12,2x -1+2x +1≤6,解得-32≤x ≤32,即原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-32≤x ≤32. ⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-32≤x ≤3217.已知集合A ={x |x 2-2x -3>0},B ={x |x 2+ax +b ≤0},若A ∪B =R ,A ∩B =(3,4],则有a =________,b =________.由题意得集合A ={x |x <-1或x >3},又A ∪B =R ,A ∩B =(3,4],所以集合B 为{x |-1≤x ≤4},由一元二次不等式与一元二次方程的关系,可得a =-3,b =-4.-3 -418.对于实数x ,当且仅当n ≤x <n +1(n ∈N *)时,=n ,则关于x 的不等式42-36+45<0的解集为________.由42-36+45<0,得32<<152,又当且仅当n ≤x <n +1(n ∈N *)时,=n ,所以=2,3,4,5,6,7,所以所求不等式的解集为 (1)由题意知a <0,且方程ax 2+5x -2=0的两个根为12,2,代入解得a =-2.(2)由(1)知不等式为-2x 2-5x +3>0,即2x 2+5x -3<0,解得-3<x <12, 即不等式ax 2-5x +a 2-1>0的解集为⎝ ⎛⎭⎪⎫-3,12.20.设二次函数f (x )=ax 2+bx +c ,函数F (x )=f (x )-x 的两个零点为m ,n (m <n ).(1)若m =-1,n =2,求不等式F (x )>0的解集;(2)若a >0,且0<x <m <n <1a,比较f (x )与m 的大小. (1)由题意知,F (x )=f (x )-x =a (x -m )·(x -n ),当m =-1,n =2时,不等式F (x )>0,即a (x +1)(x -2)>0.当a >0时,不等式F (x )>0的解集为{x |x <-1,或x >2};当a <0时,不等式F (x )>0的解集为{x |-1<x <2}.(2)f (x )-m =a (x -m )(x -n )+x -m =(x -m )(ax -an +1),因为a >0,且0<x <m <n <1a, 所以x -m <0,1-an +ax >0.所以f (x )-m <0,即f (x )<m .。
2018年高考数学二轮复习专题一集合逻辑用语不等式向量复数算法推理1.1集合与常用逻辑用语课件
p∧ q2>bc2”的必要不充分条件 B.p∧(������ q) 故“a>bA. ”是 “ac ,故命题 q 也是假命题,选 C.
(2)当 x=0 时,x2-x+1=1≥0,故命题 p 为真命题. 取 a=1,b=-2,则 a <b ,但 a>b,故命题 q 为假命题,所以 p∧(������ q)为真命题. (1)CC.( (2)B ������ p)∧q D.(������ p)∧(������ q)
3
(2)设集合 A={0,2,4,6,8,10},B={4,8},则∁AB= A.{4,8} B.{0,2,6} (1)A (2)C C.{0,2,6,10} D.{0,2,4,6,8,10}
(
解析
关闭 )
答案
-4热点1 热点2 热点3 热点4
题后反思解答集合间的关系与运算问题的基本思路:先正确理解 各个集合的含义,弄清集合元素的属性;再依据元素的不同属性采 用不同的方法对集合进行化简求解.常用技巧有: (1)若给定的集合是不等式的解集,用数轴求解; (2)若给定的集合是点集,用图象法求解; (3)若给定的集合是抽象集合,常用Venn图求解.
解析
2 2
关闭
答案
-10热点1 热点2 热点3 热点4
全称命题与特称命题
【思考】 如何判断全称命题与特称命题的真假?全(特)称命
由 20=30 知,p 为假命题.令 h(x)=x3-1+x2.∵h(0)=-1<0,h(1)=1>0,
3
题的否定与命题的否定有什么区别?
关闭
x x 3 2 例 3 已知命题 p : ∀ x ∈ R ,2 < 3 ; 命题 3 q :∃ 2 2x0∈R,������0 =1-������0 ,则下列 ∴x -1+x =0 在区间(0,1)内有解.∴∃x0∈R,������ =1-������ ,即命题 q 为真命题.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
限时规范训练一 集合、常用逻辑用语 限时40分钟,实际用时 分值80分,实际得分
一、选择题(本题共12小题,每小题5分,共60分)
1.集合A={x∈N|-1<x<4}的真子集个数为( )
A.7 B.8
C.15 D.16
解析:选C.A={0,1,2,3}中有4个元素,则真子集个数为24-1=15.
2.已知集合A={x|2x2-5x-3≤0},B={x∈Z|x≤2},则A∩B中的元素个数为
( )
A.2 B.3
C.4 D.5
解析:选B.A=x -12≤x≤3,∴A∩B={0,1,2},A∩B中有3个元素,故
选B.
3.设集合M={-1,1},N={x|x2-x<6},则下列结论正确的是( )
A.N⊆M B.N∩M=∅
C.M⊆N D.M∩N=R
解析:选C.集合M={-1,1},N={x|x2-x<6}={x|-2<x<3},则M⊆N,故
选C.
4.已知p:a<0,q:a2>a,则﹁p是﹁q的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
解析:选B.因为﹁p:a≥0,﹁q:0≤a≤1,所以﹁q⇒﹁p且﹁p⇒/﹁q,所以﹁
p是﹁q的必要不充分条件.
5.下列命题正确的是( )
A.若p∨q为真命题,则p∧q为真命题
B.“a>0,b>0”是“ba+ab≥2”的充要条件
C.命题“若x2-3x+2=0,则x=1或x=2”的逆否命题为“若x≠1或x≠2,
则x2-3x+2≠0”
D.命题p:∃x∈R,x2+x-1<0,则﹁p:∀x∈R,x2+x-1≥0
解析:选D.若p∨q为真命题,则p,q中至少有一个为真,那么p∧q可能为真,
也可能为假,故A错;若a>0,b>0,则ba+ab≥2,又当a<0,b<0时,也有ba+ab≥2,
所以“a>0,b>0”是“ba+ab≥2”的充分不必要条件,故B错;命题“若x2-3x+2
=0,则x=1或x=2”的逆否命题为“若x≠1且x≠2,则x2-3x+2≠0”,故C错;
易知D正确.
6.设集合A={x|x>-1},B={x||x|≥1},则“x∈A且x∉B”成立的充要条
件是( )
A.-1<x≤1 B.x≤1
C.x>-1 D.-1<x<1
解析:选D.由题意可知,x∈A⇔x>-1,x∉B⇔-1<x<1,所以“x∈A且x∉
B”成立的充要条件是-1<x<1.故选D.
7.“a=0”是“函数f(x)=sin x-1x+a为奇函数”的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
解析:选C.f(x)的定义域为{x|x≠0},关于原点对称.当a=0时,f(x)=sin x
-1x,f(-x)=sin(-x)-1-x=-sin x+1x=-sin x-1x=-f(x),故f(x)为奇函
数;反之,当f(x)=sin x-1x+a为奇函数时,
f(-x)+f(x)=0,
又f(-x)+f(x)=sin (-x)-1-x+a+sin x-1x+a=2a,故a=0,
所以“a=0”是“函数f(x)=sin x-1x+a为奇函数”的充要条件,故选C.
8.已知命题p:“∃x∈R,ex-x-1≤0”,则﹁p为( )
A.∃x∈R,ex-x-1≥0
B.∃x∈R,ex-x-1>0
C.∀x∈R,ex-x-1>0
D.∀x∈R,ex-x-1≥0
解析:选C.特称命题的否定是全称命题,所以﹁p:∀x∈R,ex-x-1>0.故选
C.
9.下列命题中假命题是( )
A.∃x0∈R,ln x0<0
B.∀x∈(-∞,0),ex>x+1
C.∀x>0,5x>3x
D.∃x0∈(0,+∞),x0<sin x0
解析:选D.令f(x)=sin x-x(x>0),则f′(x)=cos x-1≤0,所以f(x)在
(0,+∞)上为减函数,所以f(x)<f(0),即f(x)<0,即sin x<x(x>0),故∀x∈(0,
+∞),sin x<x,所以D为假命题,故选D.
10.命题p:存在x0∈0,π2,使sin x0+cos x0>2;命题q:命题“∃x0∈(0,
+∞),ln x0=x0-1”的否定是∀x∈(0,+∞),ln x≠x-1,则四个命题(﹁p)∨(﹁
q)、p∧q、(﹁p)∧q、p∨(﹁q)中,正确命题的个数为( )
A.1 B.2
C.3 D.4
解析:选B.因为sin x+cos x=2sinx+π4≤2,故命题p为假命题;特称
命题的否定为全称命题,易知命题q为真命题,故(﹁p)∨(﹁q)真,p∧q假,(﹁p)∧q
真,p∨(﹁q)假.
11.下列说法中正确的是( )
A.命题“∀x∈R,ex>0”的否定是“∃x∈R,ex>0”
B.命题“已知x,y∈R,若x+y≠3,则x≠2或y≠1”是真命题
C.“x2+2x≥ax在x∈[1,2]上恒成立”⇔“对于x∈[1,2],有(x2+
2x)min≥(ax)max”
D.命题“若a=-1,则函数f(x)=ax2+2x-1只有一个零点”的逆命题为真命
题
解析:选B.全称命题“∀x∈M,p(x)”的否定是“∃x∈M,﹁p(x)”,故命题
“∀x∈R,ex>0”的否定是“∃x∈R,ex≤0”,A错;命题“已知x,y∈R,若x+