第六单元:机械振动、机械波

合集下载

高中物理知识点之机械振动与机械波

高中物理知识点之机械振动与机械波

高中物理知识点之机械振动与机械波机械振动与机械波是高中物理中的重要知识点,涉及到物理学中的振动和波动的相关理论及应用。

下面将从机械振动的基本概念、机械振动的特性、机械波的传播和机械波的特性等方面进行详细介绍。

一、机械振动的基本概念机械振动是物体在作用力的驱动下沿其中一轴向或其中一平面上来回往复运动的现象。

常见的机械振动有单摆振动、弹簧振动等。

1.单摆振动:单摆是由一根细线或细杆悬挂的可以在竖直平面内摆动的物体。

摆动过程中,单摆的重心沿圆弧形轨迹在竖直平面内来回运动。

2.弹簧振动:弹簧振动是指将一端固定,另一端悬挂质点的弹簧在作用力的驱动下做往复振动的现象。

弹簧振动有线性振动和简谐振动两种形式。

二、机械振动的特性1.幅度:振动中物体运动的最大偏离平衡位置的距离。

2.周期:振动一次所需要的时间,记为T。

3.频率:振动在单位时间内所完成的周期数,记为f。

频率和周期之间的关系为f=1/T。

4.角频率:单位时间内振动角度的增量,记为ω。

角频率和频率之间的关系为ω=2πf。

5.相位:刻画振动状态的物理量。

任何时刻振动的状态都可由物体与参照物的相对位移和相对速度来描述。

三、机械波的传播机械波是指质点或介质在空间传播的波动现象。

按传播方向的不同,机械波可以分为纵波和横波。

1.纵波:波动传播的方向与波的传播方向一致。

纵波的传播特点是质点沿着波动方向做往复运动,如声波就是一种纵波。

2.横波:波动传播的方向与波的传播方向垂直。

横波的传播特点是质点沿波动方向做往复运动,如水波就是一种横波。

四、机械波的特性1.波长:波的传播方向上,相邻两个相位相同的点之间的距离。

记为λ。

2.波速:波的传播速度。

波速和频率、波长之间的关系为v=λf。

3.频率:波动现象中,单位时间内波的传输周期数。

记为f。

4.能量传递:机械波在传播过程中,能量从一个质点传递到另一个质点,并随着传播的距离逐渐减弱。

5.反射和折射:机械波在传播过程中,遇到不同介质的边界时会发生反射和折射现象。

高中物理机械振动和机械波知识点

高中物理机械振动和机械波知识点

高中物理机械振动和机械波知识点1.简谐运动(1)定义:物体在跟偏离平衡位置的位移大小成正比,并且总是指向平衡位置的回复力的作用下的振动,叫做简谐运动.(2)简谐运动的特征:答复力f=-kx,加速度a=-kx/m,方向与加速度方向恰好相反,总指向平衡位置.简谐运动是一种变加速运动,在平衡位置时,速度最大,加速度为零;在最大位移处,速度为零,加速度最大.(3)叙述简谐运动的物理量①位移x:由平衡位置指向振动质点所在位置的有向线段,是矢量,其最大值等于振幅.②振幅a:振动物体返回平衡位置的最小距离,就是标量,则表示振动的高低.③周期t和频率f:表示振动快慢的物理量,二者互为倒数关系,即t=1/f.(4)简谐运动的图像①意义:表示振动物体位移随时间变化的规律,注意振动图像不是质点的运动轨迹.②特点:简谐运动的图像就是正弦(或余弦)曲线.③应用:可直观地读取振幅a、周期t以及各时刻的位移x,判定回复力、加速度方向,判定某段时间内位移、回复力、加速度、速度、动能、势能的变化情况.2.弹簧振子:周期和频率只依赖于弹簧的劲度系数和振子的质量,与其置放的环境和置放的方式并无任何关系.例如某一弹簧振子搞简谐运动时的周期为t,不管把它放到地球上、月球上还是卫星中;就是水平置放、弯曲置放还是直角置放;振幅就是小还是大,它的周期就都就是t.3.单摆:摆线的质量不计且不可伸长,摆球的直径比摆线的长度小得多,摆球可视为质点.单摆是一种理想化模型.(1)单摆的振动可以看做简谐运动的条件就是:最小挂角α<5°.(2)单摆的回复力是重力沿圆弧切线方向并且指向平衡位置的分力.(3)并作简谐运动的单摆的周期公式为:①在振幅很小的条件下,单摆的振动周期跟振幅无关.②单摆的振动周期跟摆球的质量毫无关系,只与长棒l和当地的重力加速度g有关.③摆长l是指悬点到摆球重心间的距离,在某些变形单摆中,摆长l应理解为等效摆长,重力加速度应理解为等效重力加速度(一般情况下,等效重力加速度g'等于摆球静止在平衡位置时摆线的张力与摆球质量的比值).4.受迫振动(1)受迫振动:振动系统在周期性驱动力作用下的振动叫受迫振动.(2)受迫振动的特点:受迫振动平衡时,系统振动的频率等同于驱动力的频率,跟系统的固有频率毫无关系.(3)共振:当驱动力的频率等于振动系统的固有频率时,振动物体的振幅最大,这种现象叫做共振.共振的条件:驱动力的频率等同于振动系统的固有频率. .5.机械波:机械振动在介质中的传播形成机械波.(1)机械波产生的条件:①波源;②介质(2)机械波的分类①横波:质点振动方向与波的传播方向横向的波叫横波.横波有凸部(波峰)和凹部(波谷).②纵波:质点振动方向与波的传播方向在同一直线上的波叫纵波.纵波有密部和疏部.[特别注意]气体、液体、液态都能够传播纵波,但气体、液体无法传播横波.(3)机械波的特点①机械波传播的就是振动形式和能量.质点只在各自的平衡位置附近振动,并不随波搬迁.②介质中各质点的振动周期和频率都与波源的振动周期和频率相同.③距波源将近的质点助推距波源离的质点依次振动.6.波长、波速和频率及其关系(1)波长:两个相连的且在振动过程中对平衡位置的加速度总是成正比的质点间的距离叫做波长.振动在一个周期里在介质中传播的距离等同于一个波长.(2)波速:波的传播速率.机械波的传播速率由介质决定,与波源无关.(3)频率:波的频率始终等同于波源的振动频率,与介质毫无关系.(4)三者关系:v=λf由波的图像可以以获取的信息①从图像可以直接读出振幅(注意单位)②从图像可以轻易念出波长(特别注意单位).③可求任一点在该时刻相对平衡位置的位移(包括大小和方向)④在波速方向未知(或未知波源方位)时可以确认各质点在该时刻的振动方向.⑤可以确定各质点振动的加速度方向(加速度总是指向平衡位置)8.波动问题多解性波的传播过程中时间上的周期性、空间上的周期性以及传播方向上的双向性是导致“波动问题多解性”的主要原因.若题目假设一定的条件,可使无限系列解转化为有限或惟一解9.波的绕射波在传播过程中偏离直线传播,绕过障碍物的现象.衍射现象总是存在的,只有明显与不明显的差异.波发生明显衍射现象的条件是:障碍物(或小孔)的尺寸比波的波长小或能够与波长差不多.10.波的共振几列波相遇时,每列波能够保持各自的状态继续传播而不互相干扰,只是在重叠的区域里,任一质点的总位移等于各列波分别引起的位移的矢量和.两列波相遇前、相遇过程中、相遇后,各自的运动状态不发生任何变化,这是波的独立性原理.11.波的干预:频率相同的两列波叠加,某些区域的振动加强,某些区域的振动减弱,并且振动加强和振动减弱的区域相互间隔的现象,叫波的干涉.产生干涉现象的条件:两列波的频率相同,振动情况稳定.[特别注意]①干预时,振动强化区域或振动弱化区域的空间边线就是维持不变的,强化区域中心质点的振幅等同于两列波的振幅之和,弱化区域中心质点的振幅等同于两列波的振幅之差.②两列波在空间相遇发生干涉,两列波的波峰相遇点为加强点,波峰和波谷的相遇点是减弱的点,加强的点只是振幅大了,并非任一时刻的位移都大;减弱的点只是振幅小了,也并非任一时刻的位移都最小. 如图若s1、s2为振动方向同步的相干波源,当ps1-ps2=nλ时,振动加强;当ps1-ps2=(2n+1)λ/2时,振动减弱。

(6)机械振动与机械波——高考物理一轮复习 易混易错

(6)机械振动与机械波——高考物理一轮复习 易混易错

(6)机械振动与机械波——2025高考物理一轮复习易混易错专项复习一、易错点分析1. 机械波易错点(1)加强区永远是加强区,减弱区永远是减弱区,加强区内各质点的振动位移不一定都比减弱区内各点的振动位移大。

(2)波的干涉中,振动的强弱应该看波叠加后的振幅。

不能认为加强点的位移永远最大,减弱点的位移永远最小。

(3)在干涉现象中,振动加强区域是指该区域内质点振动的振幅最大,质点振动能量大,并且始终最大,而不是指位移始终最大:振动减弱区域是指该区域内质点振动的振幅最小,质点振动能量小,并且始终最小,而不是指位移始终为零。

(4)振动加强区域和振动减弱区域相互间隔,而不是振动加强点和振动减弱点相互间隔。

2. 波的多解问题求解思路一般采用从特殊到一般的思维方法,即找出一个周期内满足条件的关系Δt 或Δx ,若此关系为时间,则t =nT +Δt (n =0,1,2,…);若此关系为距离,则x =n λ+Δx (n =0,1,2,…)。

可按如下步骤进行:①假设波向x 轴正方向或负方向传播。

②由题目提供的波形变化等条件列出传播距离或传播时间与波长、周期等相关的通式。

③根据v Tλ=今或v f λ=,xv t∆=∆求出速度或其他未知量的关系通式。

④分析题目中有没有其他限制条件,看通过关系通式得到的多解能否变为有限个解或唯一解。

二、易错训练1.如图甲所示为以O 点为平衡位置,在A 、B 两点间运动的弹簧振子,图乙为这个弹簧振子的振动图象,由图可知下列说法中正确的是( )A.在0.2s t =时,弹簧振子的加速度为正向最大B.在0.1s t =与0.3s t =两个时刻,弹簧振子的速度相同C.从0t =到0.2s t =时间内,弹簧振子做加速度增大的减速运动D.在0.6s t =时,弹簧振子有最小的位移2.介质中平衡位置在同一水平面上的两个点波源1S 和2S ,二者做简谐运动的步调一致且周期均为0.4s 。

P 为波源平衡位置所在水平面上的一点,与1S 平衡位置的距离为3m ,与2S 平衡位置的距离为9m ,若由1S 和2S 发出的简谐波的波长为2m ,下列说法中正确的是( ) A.两波的波速均为20m/sB.两波在P 点引起的振动总是相互减弱的C.当1S 恰好在平衡位置向上运动时,点P 向下运动D.当2S 恰好在平衡位置向上运动时,点P 向上运动 3.图为一质点的简谐运动图像。

大学物理第6章机械波

大学物理第6章机械波

则合成振动 的振幅最大

2
r2
l
r1

( 0,1,2,
则合成振动 的振幅最小
)时
波程差为零或为波长的整数倍 时,各质点的振幅最大,干涉相长。
波程差为半波长的奇数倍时, 各质点的振幅最小,干涉相消。
两相干波源 同初相, 2 m 振动方向垂直纸面
到定点 P 的距离 50 m
P
当 满足什么条件时 在 P 点发生相消干涉; 在 P 点发生相长干涉。
A1
P点给定,则 A1
sin( j 1
2r1 )
l
A2 sin( j 2
c恒os定(。j故1 空间2l每r1一)点的A合2 c成os振( j幅2A
2r2 )
l
保2持r恒2 定) 。
l
相长与相消干涉
A
A12 A22
2 A1 A2 cos (j 2
j1
2
r2
l
r1
)

j2
j1
2
r2
l
r1

j2
j1
2
r2


ma x
波 节
min 0
正向行波
反向行波
驻波的形成
在同一坐标系 XOY 中
正向波 反向波 驻波
点击鼠标,观察 在一个周期T 中 不同时刻各波的 波形图。
每点击一次, 时间步进
正向波 反向波
驻波形成图解
ttt====t7353=TTTT0T///82488
4
合成驻波
驻波方程
正向波 由
反向波
为简明起见, 设
并用
改写原式得
驻波方程
注意到三角函数关系

机械振动和机械波知识点总结

机械振动和机械波知识点总结

机械振动和机械波知识点总结一、机械振动的基本概念1.简谐振动:具有恢复力的物体围绕平衡位置作周而复始的往复运动,其运动规律满足简谐振动的规律。

2.振幅:振动的最大偏离量,表示振动的幅度大小。

3.周期:振动完成一次往复运动所经历的时间。

4.频率:单位时间内振动的循环次数。

5.角频率:单位时间内振动的循环角度。

6.动能和势能:振动物体在做往复运动过程中,动能和势能不断转化。

7.谐振:当外力与物体的振动频率相同时,产生共振现象,能量传递效率最高。

二、机械振动的描述方法1.运动方程:描述物体随时间变化的位置。

2.振动曲线:以时间为横轴,位置或速度为纵轴,绘制出的曲线。

3.波形图:以距离为横轴,垂直方向的位移、压强或密度为纵轴,绘制出的曲线。

三、机械振动的特性1.振动的幅度、周期和频率可以通过测量来确定。

2.振动的速度和加速度随时间变化而变化,速度与位置之间呈正弦关系,加速度与位置之间呈负弦关系。

3.振动的能量在物体各个部分之间以波动形式传递,不断发生能量转化。

4.振动物体的相对稳定位置是平衡位置,物体相对平衡位置的偏离量越大,能量传递越快,振幅越大。

四、机械波的基本概念1.机械波是一种能量的传递方式,通过介质中的相互作用使得能量沿介质传播。

2.波的传播速度与介质的性质有关,弹性固体中传播速度最大,液体次之,气体最小。

3.机械波分为横波和纵波。

横波的传播方向与振动方向垂直,如水波;纵波的传播方向与振动方向一致,如声波。

五、机械波的描述方法1.波的频率、波长和传播速度之间存在关系:波速=频率×波长。

2.波谱分析:将波的复杂振动分解成一系列简单谐波的叠加。

3.波的传播可分为反射、折射、干涉、衍射和驻波等现象。

六、机械波的特性1.超前传播:波的传播速度比振动速度快。

2.波的干涉:两个波相遇时,根据叠加原理,产生增强或减弱的效果。

3.波的衍射:波通过孔隙或物体边缘时发生的现象。

4.驻波:两个等幅、频率相同的波在空间中相遇,发生干涉,形成波节和波腹。

机械振动和机械波知识点总结(最新整理)

机械振动和机械波知识点总结(最新整理)

机械振动和机械波一、知识结构二、重点知识回顾1机械振动(一)机械振动物体(质点)在某一中心位置两侧所做的往复运动就叫做机械振动,物体能够围绕着平衡位置做往复运动,必然受到使它能够回到平衡位置的力即回复力。

回复力是以效果命名的力,它可以是一个力或一个力的分力,也可以是几个力的合力。

产生振动的必要条件是:a、物体离开平衡位置后要受到回复力作用。

b、阻力足够小。

(二)简谐振动1. 定义:物体在跟位移成正比,并且总是指向平衡位置的回复力作用下的振动叫简谐振动。

简谐振动是最简单,最基本的振动。

研究简谐振动物体的位置,常常建立以中心位置(平衡位置)为原点的坐标系,把物体的位移定义为物体偏离开坐标原点的位移。

因此简谐振动也可说是物体在跟位移大小成正比,方向跟位移相反的回复力作用下的振动,即F=-k x,其中“-”号表示力方向跟位移方向相反。

2. 简谐振动的条件:物体必须受到大小跟离开平衡位置的位移成正比,方向跟位移方向相反的回复力作用。

3. 简谐振动是一种机械运动,有关机械运动的概念和规律都适用,简谐振动的特点在于它是一种周期性运动,它的位移、回复力、速度、加速度以及动能和势能(重力势能和弹性势能)都随时间做周期性变化。

(三)描述振动的物理量,简谐振动是一种周期性运动,描述系统的整体的振动情况常引入下面几个物理量。

1. 振幅:振幅是振动物体离开平衡位置的最大距离,常用字母“A ”表示,它是标量,为正值,振幅是表示振动强弱的物理量,振幅的大小表示了振动系统总机械能的大小,简谐振动在振动过程中,动能和势能相互转化而总机械能守恒。

2. 周期和频率,周期是振子完成一次全振动的时间,频率是一秒钟内振子完成全振动的次数。

振动的周期T 跟频率f 之间是倒数关系,即T=1/f 。

振动的周期和频率都是描述振动快慢的物理量,简谐振动的周期和频率是由振动物体本身性质决定的,与振幅无关,所以又叫固有周期和固有频率。

(四)单摆:摆角小于5°的单摆是典型的简谐振动。

物理电工电子类电子课件机械振动和机械波


1. 有些洗衣机的脱水筒在正常运转时,洗衣机的振动并不强烈。但当脱水筒转动逐渐减慢直到停下的过程中,在某一小段时间内洗衣机却会发生强烈的振动。请解释该现象。
第二节 受迫振动与共振
作业与活动
项目任务与实践活动
第二节 受迫振动与共振
3. 电磁打点计时器在接通低压交流电后,振动 片(如图)做受迫振动。请观察电磁打点计时器的 结构,并分析它是如何工作的。
三、单摆的周期
第一节 简谐运动
把一根不能伸长的细线上端固定,下端拴一个小球,线的质量和球的大小可忽略不计,这种装置称为单摆。单摆是实际摆的理想化模型。如图 5-4,单摆摆长为 ,把球拉离点 O 由静止释放,球在重力 和线的拉力 共同作用下,在竖直面内沿着半径为 的一段圆弧 来回运动,点 为平衡位 置。可以证明,在摆角很小(通常 )的情况下,单摆的振动可近似视为简谐运动。
二、共振
做中学
第二节 受迫振动与共振
从实验可见,固有周期与摆 A 周期相差越小的摆振幅越大,与摆 A 周期相同的摆 D 的振幅最大。 大量实验表明,物体做受迫振动时,驱动力的周期(或频率)与物体的固有周期(或固有频率)相差越小,受迫振动的振幅就越大(图 5-10)。当驱动力的周期(或频率)与物体的固有周期(或固有频率)相等时,受迫振动的振幅达到最大。物理学中,将这种现象称为共振。
05
机械振动和机械波
导入 从熟悉而又陌生的波说起
波就在我们身边。池塘里碧波荡漾、大海中波涛汹涌,这是水波;公园里鸟儿啼叫、音乐厅中琴声缭绕,这是声波;地震时房屋倒塌、桥梁断裂,这源于破坏力极大的地震波。水波、声波和地震波都是由于机械振动而形成的机械波。此外,用手机拨打电话,用微波炉加热食物等,这些都利用了电磁波;光波也属于电磁波。近年来,人们还探测到了来自双黑洞合并的引力波。这些波我们既熟悉又陌生,它们虽各有特点,但却有许多共同之处。本章,我们学习机械振动和机械波。什么是机械振动?机械波是怎样形成的?让我们去揭开机械振动和机械波的奥秘吧!

大学物理第六章 机械波

x
x 0
t
x /4
t
x /2
t
x 3 / 4
t
3.当 t c(常数)时,
y t 0
o
x
y f (x为) 某一时刻各质
点的振动位移.
y t T /4
o
x
不同时刻波线上各质点的位
y t T /2
移分布,称为波形图。
o
x
y t 3T / 4
o
x
4. 当 u 与 x 轴反向时取 u
y
A
cos
t
x u
③ 在平衡位置时质元具有最大动能和势能,在振幅处 动能和势能为零。在回到平衡位置时从相邻质元吸 收能量,离开时放出能量。
二、能量密度
1、能量密度 单位体积内的能量 w dE
dV
dE (dV )A 22 sin 2 (t x / u )
w A 22 sin 2 (t x / u )
2.平均能量密度 能量密度在一个周期内的平均值。
称为波面。
波前: 某时刻处在最前面的波面。
球面波
波线
平面波
波线
波面
波面
在各向同性均匀介质中,波线与波阵面垂直.
第二节
平面简谐波的 波函数
用数学表达式表示波动----函数y(x,t),称为波函数。
一、平面简谐波的波函数
·································
➢ 简谐波:在均匀的、无吸收的介质中,波源作 简谐运动时,在介质中所形成的波.
波面上的两点,A、B点达到界 面发射子波,
经t后, B点发射的子波到达界
面处D点, A点的到达C点,
i
B
A

高考物理专题六:机械振动与机械波

专题(六)机械振动与机械波一、大纲解读振动在介质中的传播形成波,本专题涉及的Ⅱ级要求有三个:弹簧振子、简谐运动、简谐运动的振幅、周期和频率、简谐运动的位移—时间图象;单摆,在小振幅条件下单摆做简谱运动,周期公式;振动在介质中的传播——波、横波和纵波、横波的图像、波长、频率和波速的关系。

它们是高考考查的重点,其中振动与波动的结合问题是高考出题的一个重要方向,单摆的问题经常结合实际的情景进行考查,有时也综合题出现,但往往比较简单,以考查周期公式为主。

涉及的I级要求有五个,其中共振,波的叠加、干涉、衍射等问题都曾在高考中出现,复习中不能忽视。

只要振动的能量转化、多普勒效应在高考中出现次数的相对较少是考查的冷门。

二、重点剖析1.机械振动这一部分概念较多,考点较多,对图象要求层次较高,因而高考试题对本部分内容考查的特点是试题容量较大,综合性较强,一道题往往要考查力学的多个概念或者多个规律。

因此,在复习本专题时,要注意概念的理解和记忆、要注意机械振动与牛顿定律、动量守恒定律、机械能守恒定律的综合应用。

要求掌握简谐运动的判断方法,知道简谐运动中各物理量的变化特点,知道简谐运动具有周期性,其运动周期由振动系统本身的性质决定,清楚简谐运动涉及到的物理量较多,且都与简谐运动物体相对平衡位置的位移x存在直接或间接关系,如果弄清了图6-1的关系,就很容易判断各物理量的变化情况。

2.理解和掌握机械波的特点:(1)在简谐波传播方向上,每一个质点都以它自己的平衡位置为中心做简谐运动;后一质点的振动总是落后于它前一质点的振动。

(2)波传播的只是运动形式(振动)和振动能量,介质并不随波的传播而迁移。

(3)同一列波上所有质点的振动都具有相同的周期和频率。

3.理解波长是两个相邻的在振动过程中对平衡位置的位移总相等的质点间的距离。

也是波在一个周期内向前传播的距离,波的周期决定于振源的周期,一列波上所有质点振动的周期都相等。

4.掌握衍射、干涉是波的特有现象。

(完整版)机械振动和机械波知识点总结

机械振动 考点一 简谐运动的描述与规律1. 机械振动:物体在平衡位置附近所做的往复运动,简称振动。

回复力是指振动物体所受的总是指向平衡位置的合外力。

回复力是产生振动的条件,它使物体总是在平衡位置附近振动。

它属于效果力,其效果是使物体再次回到平衡位置。

回复力可以是某一个力,也可以是几个力的合力或某个力的分力。

平衡位置是指物体所受回复力为零的位置!2.简谐运动: 物体在跟位移大小成正比并且总是指向平衡位置的回复力作用下的振动。

简谐运动属于最简单、最基本的振动形式,其振动过程关于平衡位置对称,是一种周期性的往复运动。

例如弹簧振子、单摆。

注: (1)描述简谐运动的物理量①位移x :由平衡位置指向振动质点所在位置的有向线段,是矢量.②振幅A :振动物体离开平衡位置的最大距离,是标量,它表示振动的强弱.③周期T 和频率f :物体完成一次全振动所需的时间叫做周期,而频率则等于单位时间 内完成全振动的次数.它们是表示振动快慢的物理量,二者互为倒数关系:T =1/f. (2)简谐运动的表达式①动力学表达式:F =-kx ,其中“-”表示回复力与位移的方向相反.②运动学表达式:x =A sin (ωt +φ),其中A 代表振幅,ω=2πf 表示简谐运动的快慢, (ωt +φ)代表简谐运动的相位,φ叫做初相.(可借助于做匀速圆周运动质点在水平方向的投影理解)(3)简谐运动的运动规律①变化规律:位移增大时⎩⎪⎨⎪⎧回复力、加速度增大⎭⎬⎫速度、动能减小势能增大机械能守恒振幅、周期、频率保持不变注意:这里所说的周期、频率为固有周期与固有频率,由振动系统本身构造决定。

振幅是反映振动强弱的物理量,也是反映振动系统所具备能量多少的物理量。

②对称规律:I 、做简谐运动的物体,在关于平衡位置对称的两点,回复力、位移、加速度具有等大反向的关系,另外速度的大小、动能具有对称性,速度的方向可能相同或相反.II 、振动物体来回通过相同的两点间的时间相等,如t BC =t CB ;振动物体经过关于平衡位置对称的等长的两线段的时间相等,如t BC =t B ′C ′,③运动的周期性特征:相隔T 或nT 的两个时刻振动物体处于同一位置且振动状态相同.注意:做简谐运动的物体在一个周期内的路程大小一定为4A ,半个周期内路程大小一定为2A ,四分之一个周期内路程大小不一定为A 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六单元:机械振动、机械波 [内容和方法] 本单元内容包括机械振动、回复力、振幅、周期、频率、简谐运动、受迫振动、共振、机械波、波长、波速、横波、纵波、波的干涉和衍射等基本概念,以及单摆振动的周期规律、简谐运动的图像、简谐运动中的能量转化规律、波的图像、波长和频率与波速之间的关系等规律。 本单元中所涉及到的基本方法有:由于振动和波动的运动规律较为复杂,且限于中学数学知识的水平,因此对于这部分内容不可能像研究直线运动、平抛、圆周运动那样从运动方向出发描述和研究物体的运动,而是利用图象法对物体做简谐运动的运动规律及振动在介媒中的传播过程进行描述与研究。图像法具有形象、直观等优点,其中包含有丰富的物理信息,在学习时同学们要注意加以体会;另外,在研究单摆振动的过程中,对于单摆所受的回复力特点的分析,采取了小摆角的近似的处理,这是一种理想化物理过程的方法。 [例题分析] 在本单元知识应用的过程中,初学者常犯的错误主要表现在:对于诸如机械振动、简谐运动、受迫振动、共振、阻尼振动、等幅振动等众多的有关振动的概念不能深刻的理解,从而造成混淆;不能从本质上把握振动图象和波的图象的区别和联系,这主要是由于振动的图象与波的图象形式上非常相似,一些学生只注意图象的形状,而忽略了图象中坐标轴所表示的物理意义,因此造成了将两个图象相混淆。另外,由于一些学生对波的形成过程理解不够深刻,导致对于波在传播过程中时间和空间的周期性不能真正的理解和把握;由于干涉和衍射的发生条件、产生的现象较为抽象,所以一些学生不能准确地把握相关的知识内容,表现为抓不住现象的主要特征、产生的条件混淆不清。 例1 水平弹簧振子,每隔时间t,振子的位移总是大小和方向都相 【错解分析】错解:1.首先排除A,认为A是不可能的。理由是:水平弹簧振子的运动轨迹可简化为如图6-1,O为平衡位置,假设计时开始时,振子位于A点,每隔时间t振

子的位移总是大小和方向都相同,所以t B之间非A即B点,而这两点距平衡位

置都等于振幅,所以加速度都等 所以振子的动能总是相同的,所以选C

是对的。

同的,都等于振幅,所以D是对的。 综上所述,应选B,C,D。 错解1是排除A,之所以产生错误,是因为在头脑中形成思维定势,认为在时间t内,振子只能在一个周期内振动。很多学生在解决振动和波的问题时,习惯上把所有问题都限定在一个周期内,而没有考虑到在时间t内,振子可能已经完成多个全振动了。 错解2的产生主要是对加速度的矢量性认识不够或头脑中根本就没有这个概念,认为位置对称,加速度大小一样就是加速度相同。 3.选择C是对的。 4.对弹簧振子这样一个物理模型认识不全面,所谓水平弹簧振子的弹簧是哪段没弄清楚。 【正确解答】 1.由题意可知,t = nt,n可以是1,2,3…,选项A是正确的。 相反,且对称于平衡位置,所以加速度的方向是相反的。 3.同错解3。 4.水平弹簧振子的弹簧应为如图6-2a或6-2b的样子。当振子的位置在平衡位置两侧时,弹簧长度是不同的。所以选项D不对。 另外,符合题意条件的不一定非选最大位移处的两点,也可以选其他的点分析,如图6-3 P、Q两点,同样可以得出正确结论。

所以此题的正确答案为A,C。 例2 一个做简谐运动的弹簧振子,周期为T,振幅为A,设振子 A.t1=t2 B.t1<t2 C.t1>t2 D.无法判断 度也大,因而时间短,所以t1>t2,应选C。 错解三:因为这是一个变加速运动问题,不能用匀速运动或匀变速运动规律求解,因而无法判断t1和t2的大小关系,所以选D。 主要是对简谐运动的特殊运动规律不清楚,只记住了周期公式,没注意分析简谐运动的全过程,没能深入地理解和掌握这种运动形式的特点。因而解题时错误地沿用了匀速或匀变速运动的规律,选择A的同学就是用匀速运动规律去解,而选择C的同学用了匀变速运动规律去解,因而错了。事实上,简谐运动的过程有其自身的许多规律,我们应该用它的特殊规律去求解问题,而不能用匀速或匀变速运动规律去求解。 【正确解答】 方法一:用图象法,画出x-t图象,从图象上,我们可以很直观地看出:t1<t2,因而正确答案为:B。

方法二:从图象为正弦曲线和数学知识可写出位移随时间的函数关系式,物理学上称为振动方程,从平衡位置开始,振子的振动方程为: 【小结】 以上两种方法,第一种方法是定性分析,在选择题练习时,是要重点掌握的。第二种方法可以进行定量计算,但由于要涉及振动方程,所以不做统一要求。 t'= nT + t2。此处,为了题目简明起见,题文中用了“第一次”和“最短时间”等字样。否则就无法比较两个过程所用时间的长短。 例3 一个弹簧振子,第一次被压缩x后释放做自由振动,周期为T1,第二次被压缩2x后释放做自由振动,周期为T2,则两次振动周期之比T1∶T2为 [ ] A.1∶1 B.1∶2 C.2∶1 D.1∶4 【错解分析】错解:压缩x时,振幅为x,完成一次全振动的路程为4x。压缩2x时,振幅即为2x,完成一次全振动的路程为8x。由于两种情况下全振动的路程的差异,第二次是第一次的2倍。所以,第二次振动的周期一定也是第一次的2倍,所以选B。 上述解法之所以错误是因为把振子的运动看成是匀速运动或加速度恒定的匀加速直线运动了。用了匀速或匀加速运动的规律。说明这些同学还是没有掌握振动的特殊规律。 【正确解答】 事实上,只要是自由振动,其振动的周期只由自身因素决定,对于弹簧振子而言,就是只由弹簧振子的质量m和弹簧的劲度系数k决定的,而与形变大小、也就是振幅无关。所以只要弹簧振子这个系统不变(m,k不变),周期就不会改变,所以正确答案为A。 【小结】 本题给出的错解是初学者中最常见的错误。产生这一错误的原因是习惯于用旧的思维模式分析新问题,而不善于抓住新问题的具体特点,这反映了学习的一种思维定势。只有善于接受新知识、新方法,并将其运用到实际问题中去,才能开阔我们分析、解决问题的思路,防止思维定势。 例4 一个单摆,如果摆球的质量增加为原来的4倍,摆球经过平

A.频率不变,振幅不变 B.频率不变,振幅改变 C.频率改变,振幅不变 D.频率改变,振幅改变 【错解分析】 错解一:因为单摆的周期(频率)是由摆长L和当地重 变(指平衡位置动能也就是最大动能),由机械能守恒可知,势能也不变。所以振幅也不变,应选A。

而振幅与质量、速度无关(由上述理由可知)所以振幅不变,应选C。 错解三:认为频率要改变,理由同错解二。而关于振幅的改变与否,除了错解一中所示理由外,即总能量不变,而因为重力势能EP= mgh,EP不变,m变为原来的4倍,h一定变小了,即上摆到最高点的高度下降了,所以振幅要改变,应选D。 此题主要考查决定单摆频率(周期)和振幅的是什么因素,而题中提供了两个变化因素,即质量和最大速度,到底频率和振幅与这两个因素有没有关系。若有关系,有什么关系,是应该弄清楚的。 而错解二和错解三中都认为频率不变,这是因为为不清楚决定单摆的因素是摆长L和当地重力加速度g,而与摆球质量及运动到最低点的速度无关。 错解二中关于频率不变的判断是正确的,错误出现在后半句的结论上。判断只从能量不变去看,当E总不变时,EP= mgh,m变大了,h一定变小。说明有些同学考虑问题还是不够全面。 【正确解答】 (1)实际上,通过实验我们已经了解到,决定单单摆的周期与质量无关,与单摆的运动速度也无关。当然,频率也与质量和速度无关,所以不能选C,D。 (2)决定振幅的是外来因素。反映在单摆的运动中,可以从能量去观察,从上面分析

我们知道,在平衡位置(即最低点)时的动能的重力势能也不变。但是由于第二次摆的质量增大了(实际上单摆已经变成另一个摆动过程了),势能EP= mgh不变,m大了,h就一定变小了,也就是说,振幅减小了。因此正确答案应选B。 【小结】 本题的分析解答提醒我们,一是考虑要全面,本题中m,v两因素的变化对确定的单摆振动究竟会产生怎样的影响,要进行全面分析;二是分析问题要有充分的理论依据,如本题中决定单摆振动的频率

例5 如图6-5所示,光滑圆弧轨道的半径为R,圆弧底部中点为O,两个相同的小球分别在O正上方h处的A点和离O很近的轨道B点,现同时释放两球,使两球正好在O点相碰。问h应为多高? 【错解分析】错解:对B球,可视为单摆,延用单摆周期公式可求B球到达O点的时间:

对A球,它做自由落体运动,自h高度下落至O点 上述答案并没有完全错,分析过程中有一点没有考虑,即是振动的周期性,因为B球在圆形轨道上自B点释放后可以做往复的周期性运动,除了经过 上述解答漏掉一些解,即上述解答只是多个解答中的一个。

对B球振动周期 到达O点的时间为 显然,前面的解仅仅是当n=0时的其中一解而已。 【小结】 在解决与振动有关的问题时,要充分考虑到振动的周期性,由于振动具有周期性,所以此类问题往往答案不是一个而是多个。 例6 一简谐波的波源在坐标原点o处,经过一段时间振动从o点向右传播20cm到Q点,如图6-6所示,P点离开o点的距离为30cm,试判断P质点开始振动的方向。 传到P点,所以画出如图6-7所示的波形图。因为波源在原点,波沿x轴正方向传播,所以可判定,P点开始振动的方向是沿y轴正方向(即向上)。 主要原因是把机械波的图象当成机械振动的图象看

面的波形也变化了。 【正确解答】 因为原图中的波形经历了半个周期的波形如图6-8所示,在此波形基础上,向前延长半个波形即为P点开始振动时的波形图,因为波源在原点处,所以介质中的每个质点都被其左侧质点带动,所以P点在刚开始时的振动方向沿y轴负方向(即向下)从另外一个角度来看,原图中Q点开始振动时是向下的,因为所有质点开始振动时的情况均相同,所以P点开始振动的方向应是向下的。

相关文档
最新文档