数学分析练习题

合集下载

数学分析Ⅰ练习8参考答案

数学分析Ⅰ练习8参考答案
⎧⎛ x 3 x ⎞ ⎫ D ) 3、设区间 I = (0,1) ,开区间集 S = ⎨⎜ , ⎟ x ∈ (0,1) ⎬ ,则( 2 2 ⎝ ⎠ ⎩ ⎭ A、 S 不是 I 的覆盖 B、 S 是 I 的覆盖,且存在 I 的有限覆盖 C、 S 是 I 的覆盖,也是 [0,1] 的覆盖 D、 S 是 I 的覆盖,但不存在 I 的有限覆盖. ⎛ x 3x ⎞ 解 (1) 由于 ∀x ∈ (0,1) ,有 x ∈ ⎜ , ⎟ ,故 S 是 I 的覆盖. ⎝2 2 ⎠ ⎛ x 3x ⎞ ⎛ x 3x ⎞ (2) 取 x0 = 0 ∈ [0,1] , ∀ ⎜ , ⎟ ∈ S , x0 ∉ ⎜ , ⎟ ,故 S 不是 [0,1] 的覆盖. ⎝2 2 ⎠ ⎝2 2 ⎠ (3) S 不存在 I 的有限覆盖.下面用反证法证明: ⎛ x 3x ⎞ ⎛ x 3x ⎞ ⎛ x 3x ⎞ 设 ⎜ 1 , 1 ⎟ , ⎜ 2 , 2 ⎟ ," , ⎜ n , n ⎟ ∈ S 构成了 I 的有限覆盖 . 取 x0 = min { x1 , x2 ," , xn } , 则 ⎝2 2 ⎠ ⎝2 2 ⎠ ⎝ 2 2 ⎠ ⎛ x 3x ⎞ ∀x ∈ ( 0, x0 ) ,有 x ∉ ⎜ i , i ⎟ , i = 1, 2," , n ,矛盾. ⎝2 2 ⎠
故 f ( x ) = x 2 在 R 上不一致连续.
2
2
2、证明 f ( x ) = x 在 [1, +∞) 上一致连续. 证明 ∀ε > 0, ∀x1 , x2 ∈ [1, +∞) ,由于
f ( x1 ) − f ( x2 ) = x1 − x2 = x1 − x2 x1 + x2 ≤ 1 x1 − x2 2
数学分析Ⅰ

数学分析第五版华中师大第八章课后习题答案

数学分析第五版华中师大第八章课后习题答案

数学分析第五版华中师大第八章课后习题答案基础概念理解型题目。

解析:需要学生对华中师大第五版数学分析第八章中相应概念有准确的理解和记忆。

然后,逐一分析每个选项与教材中定义的契合度。

通过对比概念的关键要素,如极限定义中的“任意给定”“存在”等关键词,来判断选项的正确性。

示例:A. 若limlimits_x to x_0 f(x) = A > 0,则在x_0的某一去心邻域内,f(x) ≥ 0。

B. 若limlimits_x to x_0 f(x) = A > 0,则在x_0的某一去心邻域内,f(x) > 0。

C. 若在x_0的某一去心邻域内,f(x) > 0,则limlimits_x to x_0 f(x) > 0。

D. 若在x_0的某一去心邻域内,f(x) ≥ 0,则limlimits_x to x_0 f(x) ≥ 0。

解析:根据华中师大第五版数学分析第八章中函数极限的局部保号性定义:若limlimits_x to x_0 f(x) = A > 0,则存在x_0的某一去心邻域→(∘)(x_0),当x ∈→(∘)(x_0)时,有f(x) > 0。

所以选项A错误,应该是f(x) > 0而不是f(x) ≥ 0;选项B正确;选项C错误,仅知道在某去心邻域内f(x) > 0,不能得出极限一定大于0,例如f(x)=1, x≠ 0 0, x = 0,在0的去心邻域内f(x)>0,但limlimits_x to 0 f(x)=1;选项D错误,同理不能由邻域内f(x) ≥ 0得出极限limlimits_x to x_0 f(x) ≥ 0。

故答案选B。

定理应用计算型题目。

题目:已知某函数(给出具体函数表达式),利用数学分析(华中师大第五版)第八章中的_____定理(如中值定理等),计算某个特定的值(如某点的导数等)。

解析:第一步,分析所给函数的特点和已知条件,确定适用的定理。

陈纪修《数学分析》配套题库【课后习题】(数列极限)

陈纪修《数学分析》配套题库【课后习题】(数列极限)

第2章数列极限§1 实数系的连续性1.(1)证明不是有理数;(2)是不是有理数?证明:(1)可用反证法若是有理数,则可写成既约分数.由可知m是偶数,设,于是有,从而得到n是偶数,这与是既约分数矛盾.(2)不是有理数.若是有理数,则可写成既约分数,于是,即是有理数,这与(1)的结论矛盾.2.求下列数集的最大数、最小数,或证明它们不存在:解:min A=0;因为,有,所以max A不存在.;因为,使得,于是有,所以min B不存在.max C与min C都不存在,因为,所以max C与min C都不存在.3.A,B是两个有界集,证明:(1)A∪B是有界集;(2)也是有界集.证明:(1)设,有,有,则,有.(2)设,有,有,则,有.4.设数集S有上界,则数集有下界.且.证明:设数集S的上确界为sup S,则对,有-x≤sup S,即;同时对,存在,使得,于是.所以-sup S为集合T的下确界,即.5.证明有界数集的上、下确界惟一.证明:设sup S既等于A,又等于B,且A<B.取,因为B为集合S的上确界,所以,使得,这与A为集合S的上确界矛盾,所以A=B,即有界数集的上确界惟一.同理可证有界数集的下确界惟一.6.对任何非空数集S,必有.当时,数集S有什么特点?解:对于,有,所以.当时,数集S 是由一个实数构成的集合.7.证明非空有下界的数集必有下确界.证:参考定理2.1.1的证明.具体过程略.8.设并且,证明:(1)S没有最大数与最小数;(2)S在Q内没有上确界与下确界.证:(1).取有理数r>0充分小,使得,于是.即,所以S没有最大数.同理可证S没有最小数.(2)反证法.设S在Q内有上确界,记(m,n∈N+且m,n互质),则显然有.由于有理数平方不能等于3,所以只有两种可能:(i),由(1)可知存在充分小的有理数r>0,使得,这说明,与矛盾;(ii),取有理数r>0充分小,使得,于是,这说明也是S的上界,与矛盾.所以S没有上确界.同理可证S没有下确界.§2 数列极限1.按定义证明下列数列是无穷小量:(1);(2);(3);(4);(5);(6);(7)(8).证明:(1),取,当n>N时,成立.(2),取,当时,成立.(3),取,当时,成立;取,当时,成立,则当时,成立.(4),取,当n>N时,成立.(5)当n>11时,有.于是,取,当n>N时,成立.(6)当n>5,有.于是,取,当n>N时,成立.(7),取,当n>N时,成立(8)首先有不等式,取,当n>N时,成立.2.按定义证明下述极限:证明:(1),取,当时,成立(2),取,当时,成立(3),取,当n>N时,成立(4)令,则.当n>3时,有所以,取,当时,成立.(5),取,当n>N时,若n是偶数,则成立;若z是奇数,则成立.3.举例说明下列关于无穷小量的定义是不正确的:(1)对任意给定的,存在正整数N,使当n>N时,成立;(2)对任意给定的,存在无穷多个,使.解:(1)例如,则满足条件,但不是无穷小量.(2)例如则满足条件,但不是无穷小量.4.设k是一正整数,证明:的充分必要条件是.证明:设,则,成立,于是也成立,所以;设,则,成立,取,则,成立,所以.5.设,证明:.证明:由可知,成立,成立.于是,成立.6.设.且,证明:.证明:首先有不等式.由,可知,成立,于是.7.是无穷小量,是有界数列,证明也是无穷小量.证明:设对一切.因为是无穷小量,所以,,成立.于是,成立,所以也是无穷小量.。

数学分析2.2收敛数列的性质(含练习答案)

数学分析2.2收敛数列的性质(含练习答案)

2、设: lim a = a, lim b = b,且 a<b. 证明:
n→∞
n→∞
存在正数 N,使得当 n>N 时,有 an<bn.
1
证:取ε0= 2 b − a > 0,则∃正数 N1,N2,
1
1
使当 n>N1 时,有 an<a+ε0= 2 b + a ; 当 n>N2 时,有 bn>b-ε0= 2 b + a .
由ε的任意性,得 a≤b,即 lim a ≤ lim b . 所以原命题得证.
n→∞
n→∞
1
注:当 an<bn 时,仍有 lim a ≤ lim b . 如当 an=0,bn=n 时,有 an<bn,
n→∞
n→∞
但 lim a = lim b = 0.
n→∞
n→∞
例 1:设 an≥0(n=1,2,…). 证明 lim a =a,则 lim a = a.
= 4.
n→∞ n 2 +n+n
n→∞
n→∞
1
1+ + 3
n n
n→∞ 4+ 2 + 3
n
n
=
1 1
1
+ +⋯ n
2 22
2
1 1
1
+ +⋯ n
3 32
3
n→∞
n2 + n − n = lim
(4) lim
(5) lim
n→∞ (−2)n +1 +3n +1
10);(6) lim
= lim
n2
n→∞

数学分析6.4函数的极值与最大(小)值(练习)

数学分析6.4函数的极值与最大(小)值(练习)

第六章微分中值定理及其应用4 函数的极值与最大(小)值(讲义)练习题1、求下列函数的极值.(1)f(x)=2x3-x4; (2)f(x)=; (3)f(x)=; (4)f(x)=arctanx ln(1+x2).解:(1)f在R上连续,当f’(x)=6x2-4x3=0时,x=0或x=.又当x<0时,f’(x)=6x2-4x3>0;当0<x<时,f’(x)=6x2-x3>0;当x>时,f’(x)=6x2-4x3<0. ∴f有极大值f()=2×-=.(2)f在R上连续,当f’(x)===0时,x=0,又x<0时,f’(x)<0;当x>0时,f’(x)>0. ∴f有极小值f(0)=0.(3)f在R+上连续,当f’(x)==0时,x=1或x=e2.又当x<1时,f’(x)<0;当1<x<e2时,f’(x)>0; 当x>e2时,f’(x)<0.∴f有极小值f(1)=0; 极大值f(e2)=4e-2.(4)f在R上连续,当f’(x)===0时,x=1.又当x<1时,f’(x)>0; 当x>1时,f’(x)<0,∴f有极大值f(1)=.2、设f(x)=.(1)证明x=0是函数f的极小值点; (2)说明在f的极小值点x=0处是否满足极值的第一充分条件或第二充分条件.证:(1)∵对任意x≠0,有f(x)=≥0,∴x=0是f的极小值点. (2)f’(x)=,令x n=(2nπ+)-1, y n=(2nπ+)-1, (n=1,2,…),则x n, y n>0且x n=y n=0,又f’(x n)=(2nπ+)-2·[2(2nπ+)-1-1]< 0,f’(y n)=(2nπ+)-2·[4(2nπ+)-1-0]=4(2nπ+)-3>0,即f’在任一U+⁰(0,δ)内变号,∴f不满足第一充分条件.又f”(0)=0,∴f不满足第二充分条件.3、证明:若函数f在x0处有f+’(x0)<0(或>0), f-’(x0)>0(或<0), 则x0为f 的极大(小)值点.证:∵f+’(x0)=<0,∴存在某U⁰+(x0,δ1),使当x∈U⁰+(x0,δ1)时,有<0,∴f(x)<f(x0).又∵f-’(x0)=>0,∴存在某U⁰-(x0,δ2),使当x∈U⁰-(x0,δ2)时,有>0,∴f(x)<f(x0).取δ=min(δ1,δ2),则当x∈U⁰(x0,δ)时有f(x)<f(x0),∴x0为f的极大值点.同理可证若f在x0处有f+’(x0)>0, f-’(x0)<0, 则x0为f的极小值点.4、求下列函数在给定区间上的最大最小值.(1)y=x5-5x4+5x3+1, [-1,2]; (2)y=2tanx-tan2x, 当[0,]; (3)y=lnx, (0,+∞). 解:(1)y在[-1,2]上连续, 当y’=5x4-20x3+15x2=0时, x=0,x=1或x=3(舍去),y(-1)=-10, y(0)=1, y(1)=2, y(2)=-7,∴y在[-1,2]的最大值为y(1)=2,最小值为y(-1)=-10.(2)记u=tanx,则当x∈[0,]时,u∈[0,+∞], y=2u-u2在[0,+∞)连续.当=2-2u=0时,u=1, x=arctan1=, y(0)=0, y()=1,由二次函数的性质知y在[0,]无最小值,最大值为y()=1.(3)y在(0,+∞)连续,当y’=+=0时,x=e-2.y(e-2)=<0, lnx=0, lnx=+∞.∴y在(0,+∞)无最大值,最小值为y(e-2)=.5、设f(x)在区间I连续,并且在I有唯一的极值点x0.证明:若x0是f的极大(小)值点,则x0是f(x)在I上的最大(小)值点. 解:∵f在I连续,∴若x0是f在I唯一的极大值点,则对任意的x∈I有f(x)<f(x0), ∴x0是f在I上的最大值点. 同理可证:若x0是f在I唯一的极小值点,则x0是f在I上的最小值点.6、把长为1的线段截为两段,问怎样截法能使以这两段线为边所组成的矩形的面积为最大?解:设两段线长为x, 1-x,则所求矩形面积为S=x(1-x)=x-x2, x∈(0,1). 当S’=1-2x=0时,x=0.5,又S”=-2<0,∴x=0.5是S唯一的极大值点.∴当两段线长都为0.5时,矩形的面积最大为S(0.5)=0.25.7、一个无盖的圆柱形容器,当给定体积为V时,要使容器的表面积最小,问底的半径与容器的高的比例应该怎样?解:设底的半径为r, 高为h,则V=πr2h, ∴h=.容器的表面积S=πr2+2πrh=πr2+. 当S’=2πr=0时,r==h,∴当底的半径与容器的高的比例为1:1时,容器的表面积最小.8、设用某仪器进行测量时,读得n次实验数据为a1,a2,…,a n. 问:以怎样的数值x表示所要测量的真值,才能使它与这n个数之差的平方和为最小?解:记S=(x-a1)2+(x-a2)2+…+(x-a n)2,当S’=2(x-a1)+2(x-a2)+…2(x-a n)=0时,x=,又S”=2n>0,∴x=是S唯一的极小值点. 又S=+∞,∴以x=表示真值时,它与这n个数之差的平方和最小.9、求正数a,使它与其倒数之和为最小.解:记f(a)=a+, a∈(0,+∞),当f’(a)=1=0时,a=1或a=-1(舍去).f(1)=2, f(a)=+∞, f(a)=+∞. ∴a=1为所求.10、求下列函数的极值.(1)f(x)=|x(x2-1)|; (2)f(x)=; (3)f(x)=(x-1)2(x+1)3.解:(1)f’(x)=(3x2-1)sgn(x3-x), f”(x)=6xsgn(x3-x), (x≠0,±1);当f’=0时,x=, ∵f”()=-6×=-2<0, f”()=6×()=-2<0, ∴f()=f()=是f的极大值.又f(x)≥0,∴f(0)=f(±1)=0是f的极小值.(2)当f’(x)===0时,x=±1. 当x<-1时,f’(x)<0;当1<x<1时,f’(x)>0;当x>1时,f’(x)<0.∴f(-1)=-1是f的极小值,f(1)=2是f的极大值.(3)当f’(x)=2(x-1)(x+1)3+3(x-1)2(x+1)2=(x2-1)(5x-1)(x+1)=0时,x=±1或x=0.2. 当x<-1时,f’(x)>0;当-1<x<0.2时,f’(x)>0;当0.2<x<1时,f’(x)<0;当x>1时,f’(x)>0.∴f(0.2)=1.10592是f的极大值;f(1)=0是f的极小值.11、设f(x)=alnx+bx2+x, 在x1=1,x2=2处都取得极值;试定出a与b的值;并问这时f在x1与x2是取得极大值还是极小值?解1:当f’(x)=+2bx+1==0时,x=,当=1, =2时,解得a=, b=;当=2, =1时,无解.又当0<x<1时,f’(x)>0;当1<x<2时,f’(x)<0;当x>2时,f’(x)>0.∴a=, b=,且f在x1=1取得极小值,在x2=2取得极大值.解2:f’(x)=+2bx+1,∵f在x1=1,x2=2处都取得极值,∴有, 解得:a=, b=; ∴f’(x)= 1.f”(x)=,∵f”(1)=>0,f”(2)=<0.∴f在x1=1取得极小值,在x2=2取得极大值.12、在抛物线y2=2px上哪一点的法线被抛物线所截之线段最短.解:2yy’=2p, y’=,设抛物线上一点(a,b),则过这点的法线方程为:y-b=(x-a),即y=. 代入x=得y=,即by2+2p2y-2pab=0,设另一交点为(a’,b’),则b+b’=,解得b’=, a’==.法线被抛物线所截线段长度的平方为:D(b)=(a’-a)2+(b’-b)2=()2+(b)2=.当D’(b)===0时,b=±p,a==p,∴抛物线在(p,±p)的法线被抛物线所截之线段最短.13、要把货物从运河边上A城运往与运河相距为BC=a千米的B城(如图). AC=d千米. 轮船运费单价是m元/千米. 火车运费单价是n元/千米(n>m). 试求运河边上的一点M,修建铁路MB,使总运费最省.解:设CM=x,则AM=d-x,在Rt△BCM中,BM=. 总运费f(x)=m(d-x)+n当f’(x)=-m=0时,x=.又f(0)=md+na, f(d)= n,f()=md+a< md+na=f(0). 令m=nsinθ, 则md+aθ+nacosθ=n sin(θ+φ)≤n=f(d). (φ=arcsin). ∴f()是f(x)在[0,d]上的最小值,即离C点千米处修铁路运费最省。

数学分析习题及答案(29)

数学分析习题及答案(29)

习 题 场论初步1.设 a 3i 20 j 15k ,对以下数目场 f ( x, y, z) ,分别计算 grad f 和 div ( fa) :1(1) (2) (3)f (x, y, z) ( x 2 y 2 z 2 ) 2 ; f (x, y, z) x 2 y 2 z 2 ; f (x, y, z) ln( x 2 y 2 z 2 ) 。

解(1) grad f3( x 2y 2 z 2 ) 2 ( xi yjzk ) ,3div ( fa)(x 2 y 2 z 2 ) 2 (3x 20 y 15z) 。

(2) grad f 2( xi yj zk ) ,div ( fa) 2(3x 20 y 15z) 。

(3) grad f 2( x 2 y 2 z 2 ) 1 (xi yj zk ) ,div ( fa) 2(x 2 y 2 z 2 ) 1 (3x 20 y 15 z) 。

2.求向量场 a x 2 i y 2 j z 2 k 穿过球面 x 2 y 2 z 2 1 在第一卦限部分 的通量,此中球面在这一部分的定向为上侧。

解 设 : x 2 y 2 z 2 1 ( x 0, y 0, z 0) ,方向取上侧,则所求通量为x 2 dydz y 2 dzdx z 2 dxdy ,因为z 2dxdy(1 x2y 2 )dxdy2d13dr ,r48xy同理可得x 2 dydzy 2dzdx,8因此x 2 dydzy 2 dzdx z 2 dxdy 3。

83.设 r xi yj zk , r | r | ,求:(1)知足 div [ f (r )r ] 0 的函数 f (r ) ; (2)知足 div[grad f (r )] 0 的函数 f (r ) 。

解(1)经计算获得( f ( r ) x)f (r ) f (r ) x2,xr( f (r ) y)f (r )f ( r )y 2 ,yr( f (r ) z)f (r ) f ( r ) z2,zr 因此。

数学分析21.6重积分的应用(含习题及参考答案)

数学分析21.6重积分的应用(含习题及参考答案)

第二十一章 重积分 6重积分的应用一、曲面的面积问题:设D 为可求面积的平面有界区域,函数f(x,y)在D 上具有连续的一阶偏导数,讨论由方程z=f(x,y), (x,y)∈D 所确定的曲面S 的面积.分析:对区域D 作分割T ,把D 分成n 个小区域σi (i=1,2,…,n). 曲面S 同时也被分割成相应的n 个小曲面片S i (i=1,2,…,n). 在每个S i 上任取一点M i , 作曲面在这一点的切平面πi , 并 在πi 上取出一小块A i , 使得A i 与S i 在xy 平面上的投影都是σi . 现在M i 附近,用切平面A i 代替小曲面片S i . 则当T 充分小时,有 △S=∑=∆ni i S 1≈∑=∆ni i A 1, 这里的△S, △S i , △A i 分别表示S, S i 和A i 的面积.∴当T →0时,可用和式∑=∆ni i A 1的极限作为S 的面积.建立曲面面积计算公式:∵切平面πi 的法向量就是曲面S 在点M i (ξi ,ηi ,ζi )处的法向量, 记其与z 轴的夹角为γi , 则|cos γi |=),(),(1122i i yi i xf f ηξηξ++.∵A i 在xy 平面上投影为σi , ∴△A i =iiγσcos ∆=i i i y i i x f f σηξηξ∆++),(),(122. 又和数∑=∆ni i A 1=∑=∆++ni i i i y i i x f f 122),(),(1σηξηξ是连续函数),(),(122y x f y x f y x ++在有界闭区域D 上的积分和,∴当T →0时,有△S=∑=→∆++ni i i i y i i x T f f 1220),(),(1lim σηξηξ=⎰⎰++Dy x dxdy y x f y x f ),(),(122, 或△S=∑=→∆ni i iT 1cos limγσ=⎰⎰∧Dz n dxdy ),cos(,其中),cos(∧z n 为曲面的法向量与z 轴正向夹角的余弦.例1:求圆锥z=22y x +在圆柱体x 2+y 2≤x 内那一部分的面积. 解:由x 2+y 2≤x, 得D={(r,θ)|0≤r ≤21, 0≤θ≤2π}, 又z x =22y x x +=r r θcos =cos θ, z y =22yx y+=r r θsin =sin θ, ∴△S=⎰⎰++Dyxdxdy z z 221=⎰⎰πθ202102rdr d =π42.例2:设平面光滑曲线的方程为y=f(x), x ∈[a,b] (f(x)>0). 求证:此曲线绕x 轴旋转一周得到的旋转曲面的面积为: S=⎰'+ba dx x f x f )(1)(22π.证:由上半旋转面方程为z=22)(y x f -, 得 z x =22)()()(yx f x f x f -', z y =22)(yx f y --. 即有221yxz z ++=2222222)()()()(1yx f y y x f x f x f -+-'+=2222)())(1)((yx f x f x f -'+. ∴S=⎰⎰--'+b a x f x f dy y x f x f x f dx )()(222)()(1)(2=⎰⎰-'+b a x f dyy x f dx x f x f )(0222)(1)(1)(4=⎰⎰---'+ba x f x yf d x f y dx x f x f )(01222))(()(11)(1)(4=⎰⎰-'+b a dt tdx x f x f 102211)(1)(4=⎰'+b adx x f x f )(1)(22π.注:若空间曲面S 由参量方程:x=x(u,v),y=y(u,v),z=z(u,v),(u,v)∈D 确定, 其中x(u,v), y(u,v), z(u,v)在D 上具有连续一阶偏导数,且),(),(v u u y x ∂,),(),(v u u z y ∂,),(),(v u u x z ∂中至少有一个不等于0,则 曲面S 在点(x,y,z)的法线方向数为⎝⎛∂),(),(v u u z y ,),(),(v u u x z ∂,⎪⎪⎭⎫∂),(),(v u u y x , 则 它与z 轴的夹角的余弦的绝对值为:),cos(∧z n =222),(),(),(),(),(),(),(),(⎪⎪⎭⎫ ⎝⎛∂+⎪⎪⎭⎫ ⎝⎛∂+⎪⎪⎭⎫ ⎝⎛∂∂v u u y x v u u x z v u u z y v u u y x=2222222)())((),(),(v u v u v u vvvuuuz z y y x x z y x z y x v u u y x ++-++++∂=21),(),(FEG v u u y x -∂,其中E=222u u u z y x ++,G=222v v v z y x ++,F=v u v u v u z z y y x x ++.当),(),(v u u y x ∂≠0,则有△S=⎰⎰∧Dz n dxdy ),cos(=dudv z n v u u y x D ⎰⎰'∧∂),cos(),(),(=dudv F EG D ⎰⎰'-2.例3:求球面上两条纬线和两条经线之间 的曲面的面积(图中阴影部分). 解:设球面方程为:(R 为球的半径). x=Rcos ψcos φ,y=Rcos ψsin φ, z=Rsin ψ.由E=222ψψψz y x ++=R 2, G=222ϕϕϕz y x ++=R 2cos 2ψ, F=ϕψϕψϕψz z y y x x ++=0, 得2F EG -=R 2cos ψ. ∴△S=⎰⎰2121cos 2ψψϕϕψψϕd R d =R 2(φ2-φ1)(sin ψ2-sin ψ1).二、质心引例:设V 是密度函数为ρ(x,y,z)的空间物体,ρ(x,y,z)在V 上连续. 为求得V 的质心坐标公式,先对V 作分割T ,在属于T 的每一小块v i 上任取一点(ξi ,ηi ,ζi ),则小块v i 的质量可用ρ(ξi ,ηi ,ζi )△v i 近似代替. 若把每一小块看作质量集中在(ξi ,ηi ,ζi )的质点时,整个物体就可用这n 个质点的质点系来近似代替. 由于质点系的质心坐标公式为:∑∑==∆∆=ni iiiini iiiiin v v x 11),,(),,(ζηξρζηξρξ, ∑∑==∆∆=ni iiiini iiiiin v v y 11),,(),,(ζηξρζηξρη, ∑∑==∆∆=n i iiiini ii i i in v v z 11),,(),,(ζηξρζηξρζ.当T →0时,n x , n y , n z 的极限x , y , z 就定义为V 的质心坐标,即⎰⎰⎰⎰⎰⎰=VVdVz y x dVz y x x x ),,(),,(ρρ, ⎰⎰⎰⎰⎰⎰=VVdVz y x dVz y x y y ),,(),,(ρρ, ⎰⎰⎰⎰⎰⎰=VVdVz y x dVz y x z z ),,(),,(ρρ.当物体V 的密度均匀即ρ为常数时,则有⎰⎰⎰∆=VxdV Vx 1, ⎰⎰⎰∆=VydV Vy 1, ⎰⎰⎰∆=VzdV Vz 1, 这里△V 为V 的体积.又密度分布为ρ(x,y)的平面薄板D 的质心坐标为:⎰⎰⎰⎰=DDd y x d y x x x σρσρ),(),(, ⎰⎰⎰⎰=DDd y x d y x y y σρσρ),(),(. 当平面薄板的密度均匀时,即ρ为常数时,则有⎰⎰∆=Dxd D x σ1, ⎰⎰∆=D yd D y σ1, △D 为薄板D 的面积.例4:求密度均匀的上半椭球体的质心.解:设椭球体由不等式a x 2+by 2+c z 2≤1表示.由对称性知x =0, y =0, 又由ρ为常数,得z =⎰⎰⎰⎰⎰⎰VVdVdVz ρρ=abc abc ππ3242=83c .三、转动惯量质点A 对于轴l 的转动惯量J 是质点A 的质量m 和A 与转动轴l 的距离r 的平方的乘积,即J=mr 2.设ρ(x,y,z)为空间物体V 的密度分布函数,它在V 上连续. 对V 作分割T ,在属于T 的每一小块v i 上任取一点(ξi ,ηi ,ζi ),则v i 的质量可用ρ(ξi ,ηi ,ζi )△v i 近似代替. 当以质点系{(ξi ,ηi ,ζi ), i=1,2,…, n}近似替代V 时,质点系对于x 轴的转动惯量为:i i i i ni i i x v J n∆+=∑=),,()(122ζηξρζη.当T →0时,上述积分和的极限就是物体V 对于x 轴的转动惯量 J x =⎰⎰⎰+VdV z y x z y ),,()(22ρ. 类似地,V 对于y 轴与z 轴的转动惯量分别为:J y =⎰⎰⎰+VdV z y x x z ),,()(22ρ, J z =⎰⎰⎰+VdV z y x y x ),,()(22ρ.同理,V 对于坐标平面的转动惯量分别为:J xy =⎰⎰⎰VdV z y x z ),,(2ρ, J yz =⎰⎰⎰VdV z y x x ),,(2ρ, J xz =⎰⎰⎰VdV z y x y ),,(2ρ.平面薄板对于坐标轴的转动惯量分别为:J x =⎰⎰Dd y x y σρ),(2, J y =⎰⎰Dd y x x σρ),(2. 以及有J l =⎰⎰Dd y x y x r σρ),(),(2,其中l 为转动轴, r(x,y)为D 中点(x,y)到l 的距离函数.例5:求密度均匀的圆环D 对于垂直于圆环面中心轴的转动惯量. 解:设圆环D 为R 12≤x 2+y 2≤R 22, 密度为ρ, 则D 中任一点(x,y)与转轴的距离平方为x 2+y 2, 于是转动惯量为:J=⎰⎰+Dd y x σρ)(22=⎰⎰21320R R dr r d πθρ=2πρ(R 24-R 14)=例6:求均匀圆盘D 对于其直径的转动惯量.解:设D 为x 2+y 2≤R 2, 密度为ρ, D 内任一点(x,y)与y 轴的距离为|x|, 于是转动惯量为:(m 为圆盘质量) J=⎰⎰Dd x σρ2=⎰⎰Rdr r d 02320cos θθρπ=⎰πθθρ2024cos 4d R =44R ρπ=42mR .例7:设某球体的密度与球心的距离成正比,求它对于切平面的转动惯量.解:设球体由x 2+y 2+z 2≤R 2表示,密度为k 222z y x ++, k 为比便常数. 切平面方程为x=R, 则球体对于平面x=R 的转动惯量为: J=k ⎰⎰⎰-++VdV x R z y x 2222)(=k ⎰⎰⎰-ππϕθϕϕθ003220sin )cos sin (Rdr r r R d d=kR 6⎰⎰⎪⎭⎫ ⎝⎛+-ππϕθϕθϕθ023220cos sin 61cos sin 5241d d =⎰πθθ2026cos 911d kR =911k πR 6.四、引力求密度为ρ(x,y,z)的立体对立体外质量为1的质点A 的引力.设A 的坐标为(ξi ,ηi ,ζi ),V 中点的坐标用(x,y,z)表示. V 中质量微元dm=ρdV 对A 的引力在坐标轴上的投影为 dF xyz其中K 为引力系数, r=222)()()(ζηξ-+-+-z y x 是A 到dV 的距离,于是 力F 在三个坐标轴上的投影分别为: F x =K ⎰⎰⎰-VdV r x ρξ3, F y =K ⎰⎰⎰-V dV r y ρη3, F z =K ⎰⎰⎰-VdV r z ρζ3, 所以F=F x i+F y j+F z k.例8:设球体V 具有均匀的密度ρ, 求V 对球外一点A(质量为1)的引力(引力系数为k).解:设球体为x 2+y 2+z 2≤R 2,球外一点坐标为(0,0,a) (R<a). 则F x =F y =0,F z =k ⎰⎰⎰-++-V dV a z y x a z ρ2/3222])([=k ρ⎰⎰⎰-++--zD R R a z y x dxdydz a z 2/3222])([)(, 其中D z ={(x,y)|x2+y2≤R 2-z 2}. 运用极坐标计算得: F z =k ρdr a z r rd dz a z z R RR ⎰⎰⎰---+-2202/32220])([)(πθ =2πk ρ⎰-+----R R dz aaz R a z )21(22=2πk ρ⎪⎪⎭⎫⎝⎛+--++-+-⎰-R R dz a az R R a a az R a R 22222222212= 2πk ρ⎥⎦⎤⎢⎣⎡-+----+---⎰⎰--RRRRaz d a az R a R a az d a az R a R )2(214)2(241222222222=2πk ρ⎥⎦⎤⎢⎣⎡+---+-----RRRRa az R a R a a az R a R 22222322222)2(612 =2πk ρ⎥⎦⎤⎢⎣⎡-++----222233)(6)()(2a R a R a a R R a R=2πk ρ⎪⎪⎭⎫⎝⎛-+++-232332a R R a R R R =2334a R k ρπ-. (注:z ≤R<a)习题1、求曲面az=xy 包含在圆柱x 2+y 2=a 2内那部分的面积.解:∵z x =a y, z y =ax , D={(r,θ)|0≤r ≤a, 0≤θ≤2π}, ∴曲面面积为: S=⎰⎰⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+Ddxdy a x a y 221=⎰⎰+a dr a r r d 022201πθ=)122(322-a π.2、求锥面z=22y x +被柱面z 2=2x 所截部分的曲面面积. 解:且面在xy 平面的投影区域为:D={(r,θ)|0≤r ≤1, 0≤θ≤2π}, 且z x =22yx x +, z y =22yx y +, ∴曲面面积为:S=⎰⎰⎪⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛++Ddxdy y x y y x x 2222221=⎰⎰10202rdr d πθ=π2.3、求下列均匀密度的平面薄板质心:(1)半椭圆2222by a x +≤1, y ≥0;(2)高为h, 底分别为a 和b 的等腰梯形.解:(1)设质心位置为(x ,y ), 由对称性得x =0.y =⎰⎰⎰⎰DDd yd σρσρ=⎰⎰⎰⎰DDd yd σσ=⎰⎰Dyd ab σπ2=dr r ab d ab ⎰⎰πθθπ122sin 2=π34b . (2)不妨设a 为下底,以下底中点为原点建立直角坐标系,则 D={(x,y)|l 1(y)≤x ≤l 2(y),0≤y ≤h}.设质心位置为(x ,y ), 由对称性得x =0.又等腰三角形的面积为2)(hb a +, ∴y =⎰⎰+D yd h b a σ)(2=⎰⎰+h y l y l dx ydy h b a 0)()(21)(2=⎰⎥⎦⎤⎢⎣⎡+---+--+h ydy a h y h a b a h y h b a h b a 02)(22)(2)(2=⎰⎥⎦⎤⎢⎣⎡+--+h ydy a h y h b a h b a 0)()(2=⎰⎪⎭⎫ ⎝⎛+-+h dy by y h b a h b a 02)(2=h b a a b )(32++. 其中:l 1(y): x=2)(2a h y h a b ---; l 2(y): x=2)(2ah y h b a +--.4、求下列均匀密度物体的质心.(1)z ≤1-x 2-y 2, z ≥0;(2)由坐标面及平面x+2y-z=1所围的四面体. 解:(1)设质心为(x ,y ,z ), 由对称性x =y =0, 应用柱面坐标变换有,z =⎰⎰⎰⎰⎰⎰VVdV dV z ρρ=⎰⎰⎰⎰⎰⎰--221020110201r r dz r d r d zdz r d r d ππθθ=dr r r dr r r )1()1(212102210--⎰⎰=31. (2)设质心为(x ,y ,z ),∵V=⎰⎰⎰VdV =121, ∴x =⎰⎰⎰--+21001211x y x dz dy xdx V =⎰⎰---2101)21(12x dy y x xdx =⎰-1024)1(12dx x x =41. y =⎰⎰⎰--+yy x dz dx ydy V 210122101=⎰⎰---ydx x y ydy 210210)21(12=⎰-21022)21(12dy y y =81. z =⎰⎰⎰--+yy x zdz dx dy V21012211=⎰⎰--+-ydx y x dy 2102210)12(6=⎰--21033)21(6dy y =41-.5、求下列均匀密度的平面薄板的转动惯量: (1)半径为R 的圆关于其切线的转动惯量;(2)边长为a 和b, 且夹角为φ的平行四边形,关于底边b 的转动惯量.解:(1)设切线为x=R, 密度为ρ.则对任一点P(x,y)∈D, P 到x=R 的距离为R-x ,从而转动惯量 J=ρ⎰⎰-Dd x R σ2)(=ρ⎰⎰+-Rdr r Rr R r d 022220)cos cos 2(θθθπ=ρ⎰+-πθθθ2024)cos 41cos 3221(d R= R 4. (2)设密度为ρ. 以底边为x 轴,左端点为原点,则转动惯量 J=⎰⎰Dd y σ2=ρ⎰⎰+by y a dx dy y ϕϕϕcot cot sin 02=3sin 33ϕρb a .6、计算下列引力:(1)均匀薄片x 2+y 2≤R 2, z=0对于轴上一点(0,0,c) (c>0)处的单位质量的引力;(2)均匀柱体x 2+y 2≤a 2, 0≤z ≤h 对于点P(0,0,c) (c>h)处的单位质量的引力;(3)均匀密度的正圆锥体(高h, 底半径R)对于在它的顶点处质量为m 的质点的引力.解:(1)根据对称性知引力方向在z 轴上,∴F z =0, F y =0.F z =k ρ⎰⎰++Ddxdy c y x c 2/3222)(=kc ρ⎰⎰+R dr c r r d 02/32220)(πθ=2k .∴F={0,0,2k }.(2)根据对称性知引力方向在z 轴上,∴F z =0, F y =0. F z =k ρ⎰⎰⎰-++-VdV c z y x c z 2/3222])([=k ρ⎰⎰⎰-+-a h dr c z r rd dz c z 02/322200])([)(πθ=-2k πρdz c z a c z h⎰⎥⎥⎦⎤⎢⎢⎣⎡-+-+022)(1=2k πρ[]h c h a c a --+-+2222)(. ∴F={0,0,2k πρ[]h c h a c a --+-+2222)(}.(3)以圆锥体的顶点为原点, 对称轴为z 轴建立xyz 三维直角坐标系. 根据对称性知引力方向在z 轴上,∴F z =0, F y =0.F z =k ρm ⎰⎰⎰++V dV z y x z 2/3222)(=k ρm ⎰⎰⎰+R hrR dz z r zrdr d 02/322020)(πθ=2k πR ρm ⎪⎪⎭⎫⎝⎛++-22221R h R h R . ∴F={0,0, 2k πR ρm ⎪⎪⎭⎫ ⎝⎛++-22221R h R h R }.7、求曲面⎪⎩⎪⎨⎧=+=+=ψϕψϕψsin sin )cos (cos )cos (a z a b y a b x (0≤φ≤2π, 0≤ψ≤2π) 的面积,其中常数a,b 满足0≤a ≤b.解:∵x φ=-(b+acos ψ)sin φ, y φ=(b+acos ψ)cos φ, z φ=0; x ψ=-asin ψcos φ, y ψ=-asin ψsin φ, z ψ=acos ψ.∴E=222ϕϕϕz y x ++=(b+acos ψ)2, G=222ψψψz y x ++=a 2, F=ψϕψϕψϕz z y y x x ++=0. ∴S=σd F EG D ⎰⎰'-2=σψd a b a D ⎰⎰'+)cos (=⎰⎰+ππψψϕ2020)cos (d a b d a =4ab π2.8、求螺旋面⎪⎩⎪⎨⎧===ϕϕϕb z r y r x sin cos (0≤r ≤a, 0≤φ≤2π) 的面积.解:∵x r =cos φ, y r =sin φ, z r =0; x φ=-rsin φ, y φ=rcos φ, z φ=b.∴E=222r r r z y x ++=1, G=222ϕϕϕz y x ++=r 2+b 2, F=ϕϕϕz z y y x x r r r ++=0.∴S=σd F EG D ⎰⎰'-2=σd b r D ⎰⎰'+22=⎰⎰+πϕ20022d dr b r a=π⎪⎪⎭⎫⎝⎛++++b b a a b b a a 22222ln .9、求边长为a 密度均匀的正方体关于其任一棱边的转动变量. 解:以正方体的一个顶点为原点,顶点上方的棱为z 轴,使 正方体处于第一卦限中,则正方体对z 轴上的棱的转动变量为: J z =ρ⎰⎰⎰+V dV y x )(22=ρ⎰⎰⎰+aaadz y x dy dx 00220)(=a ρ⎰⎰+aady y x dx 0220)(=a ρ⎰+adx a ax 032)31(=32a 5ρ. (ρ为正方体密度)。

数学分析20曲线积分总练习题(含参考答案)

数学分析20曲线积分总练习题(含参考答案)

第二十章 曲线积分总练习题1、计算下列曲线积分:(1)⎰L yds , 其中L 是由y 2=x 和x+y=2所围的闭曲线; (2)⎰L ds y , 其中L 为双纽线(x 2+y 2)2=a 2(x 2-y 2);(3)⎰L zds , 其中L 为圆锥螺线x=tcost, y=tsint, z=t ,t ∈[0,t 0];(4)ydx x dy xy L 22-⎰, 其中L 为以a 为半径,圆心在原点的右半圆周从最上面一点A 到最下面一点B ; (5)⎰--Lyx dxdy , 其中L 是抛物线y=x 2-4, 从A(0,-4)到B(2,0)的一段; (6)dz x dy z dx y L 222++⎰,L 是维维安尼曲线x 2+y 2+z 2=a 2, x 2+y 2=ax (z ≥0,a>0),若从x 轴正向看去,L 是沿逆时针方向进行的.解:(1)解方程组⎩⎨⎧=+=22y x x y ,得⎩⎨⎧-==24y x ,⎩⎨⎧==11y x .∴曲线L 抛物线段为x=y 2, y ∈[-2,1], ds=241y +dy; 直线段为x=2-y, y ∈[-2,1], ds=2dy; ∴⎰L yds =dy y y ⎰-+12241+dy y ⎰-122=1232)41(121-+y +12222-y=223)171755(121-- (2)双纽线的极坐标方程为:r 2=a 2cos2θ, θ∈[-4π,4π]∪[43π,45π], ∴ds=θd r r 22'+=θθd ra r 22422sin +=θd r a 2,由被积函数与L 的对称性, 有⎰Lds y =4θθπd r a r ⎰402sin =4a 2θθπd ⎰40sin =4a 2⎪⎪⎭⎫ ⎝⎛-221.(3)ds=dt z y x 222'+'+'=dt t 22+. ∴⎰L zds =dt t t t 2200+⎰=[]22)2(3120-+t.(4)L: x=acost, y=asint, -2π≤t ≤2π.∴ydx x dy xy L 22-⎰=dt t t a ⎰-22224sin cos 2ππ=)4()4cos 1(16224t d t a⎰--ππ=44πa -.(5)⎰--L y x dx dy =dx x x x ⎰+--202412=-)4(412202----⎰x x d x x =-ln|x 2-x-4|2=ln2.(6)设x=asin 2t, 则维维安尼曲线的参量方程为:x=asin 2t, y=asintcost, z=acost, 当t 从2π减少到-2π时,就是曲线的方向, ∴dz x dy z dx y L 222++⎰=a3dt t t t t t t )sin cos sin cos cos sin 2(52222433--+⎰-ππ= a 3⎪⎪⎭⎫ ⎝⎛-⎰⎰--dt t t dt t 2222222cos sin 2cos ππππ= a 3⎪⎭⎫ ⎝⎛+-42ππ=4π-a 3.2、设f(x,y)为连续函数,试就如下曲线: (1)L:连接A(a,a), C(b,a)的直线段;(2)L:连接A(a,a), C(b,a), B(b,b)三点的三角形(逆时针方向), 计算下列曲线积分:⎰L ds y x f ),(, ⎰Ldx y x f ),(,⎰Ldy y x f ),(.解:(1)⎰L ds y x f ),(=dx a x f ba ⎰),(; ⎰Ldx y x f ),(=dx a x f b a⎰),(;⎰Ldy y x f ),(=0.(2)∵⎰L =⎰AC +⎰CB +⎰BA ,∴⎰L ds y x f ),(=dx a x f ba ⎰),(+dy yb f ba ⎰),(+dt t t f ba 2),(⎰;⎰Ldx y x f ),(=dx a x f b a⎰),(+0+dt t t f ba⎰),(;⎰Ldy y x f ),(=0+dy y b f b a⎰),(+dt t t f ba⎰),(.3、设f(x,y)为定义在平面曲线弧段⌒AB上的非负连续函数,且在⌒AB上恒大于0.(1)试证明⎰⋂ABdsyxf),(>0;(2)在相同条件下,第二型曲线积分⎰⋂ABdxyxf),(>0是否成立?为什么?(1)证:∵存在点(x0,y0)∈⌒AB,使得⎰L dsyxf),(=f(x0,y0)△L,△L为⌒AB的弧长. 又f(x,y)在⌒AB上恒大于0,即f(x0,y0)>0,∴⎰⋂ABdsyxf),(>0.(2)解:不一定成立,如取⌒AB为从A(0,0)到B(0,1)的直线段,取f(x,y)=0,则⎰⋂ABdxyxf),(=0.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学分析练习题
数学分析练习题
数学分析是一门重要的数学学科,它研究的是数学中的极限、连续、微分、积
分等概念和性质。

通过学习数学分析,我们可以更好地理解和应用数学知识。

而练习题则是巩固和应用所学知识的重要方式。

在这篇文章中,我们将探讨一
些数学分析的练习题,帮助读者更好地理解和应用相关概念。

一、极限练习题
1. 计算极限:lim(x→0) (sinx/x)。

这是一个经典的极限问题,可以通过泰勒级数
展开或利用极限的定义来求解。

通过这个练习题,我们可以加深对极限的理解,并熟悉不同的求解方法。

2. 证明极限:lim(x→∞) (1+1/x)^x = e。

这是一个重要的极限关系,它揭示了自然对数e与指数函数的联系。

通过证明这个极限,我们可以深入理解e的定义
和性质。

二、连续性练习题
1. 设函数f(x) = x^2,证明f(x)在区间[0,1]上是连续的。

通过证明函数的连续性,我们可以理解连续函数的性质和重要定理,如介值定理和零点定理。

2. 设函数f(x) = |x|,证明f(x)在整个实数轴上是连续的。

这是一个稍微复杂一些
的例子,通过证明绝对值函数的连续性,我们可以进一步理解不同类型函数的
连续性。

三、微分练习题
1. 求函数f(x) = x^3的导数。

通过求解导数,我们可以熟悉微分的定义和基本
运算法则,并掌握求解各种函数的导数的方法。

2. 求函数f(x) = e^x的高阶导数。

通过求解高阶导数,我们可以进一步理解指数函数的性质,并学习应用泰勒级数展开来求解复杂函数的导数。

四、积分练习题
1. 计算定积分:∫(0,1) x^2 dx。

通过计算定积分,我们可以熟悉积分的定义和基本运算法则,并理解定积分的几何意义。

2. 计算不定积分:∫(x^2+2x) dx。

通过计算不定积分,我们可以掌握积分的基本运算法则,并学习应用不定积分解决实际问题。

通过以上练习题的学习和解答,我们可以加深对数学分析概念和性质的理解,提高数学分析的应用能力。

同时,我们还可以通过与他人的讨论和交流,进一步拓宽思路,发现更多有趣的数学问题和解法。

总结起来,数学分析练习题是巩固和应用数学分析知识的重要方式。

通过练习题的解答,我们可以加深对数学分析概念和性质的理解,并提高解决实际问题的能力。

希望读者通过这些练习题的学习,能够更好地掌握数学分析的知识和方法,为日后的学习和应用打下坚实的基础。

相关文档
最新文档